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Organisatorisches Einführung Chomsky-Hierarchie Reguläre Sprachen Kontextfreie Sprachen

Das heutige Programm:

Organisatorisches

Vorstellung
Ablauf der Vorlesung und der Übungen
Prüfung & Klausur
Literatur & Folien

Einführung und Motivation: “Automaten und Formale
Sprachen”

Inhalt der Vorlesung
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Organisatorisches Einführung Chomsky-Hierarchie Reguläre Sprachen Kontextfreie Sprachen

Wer sind wir?

Dozent: Sebastian Küpper

Raum LF 261

E-Mail: sebastian.kuepper@uni-due.de

Übungsleitung: Christina Mika

Raum LF 261

christine.mika@uni-due.de

Web-Seite: www.ti.inf.uni-due.de/teaching/ss2017/afs/
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Vorlesungstermine

Termin:

Dienstag, 12:15-13:45 Uhr im Raum LX 1203
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Termine der Übungsgruppen

Übungsgruppen:

Gruppe Tag Uhrzeit Raum Sprache

1 Di 8:00 – 10:00 LE 120 Englisch
2 Di 16:00 – 18:00 LE 103 Deutsch
3 Mi 10:00 – 12:00 LE 120 Deutsch
4 Do 10:00 – 12:00 LK 051 Deutsch
5 Fr 8:00 – 10:00 LC 137 Deutsch
6 Fr 10:00 – 12:00 LC 137 Deutsch
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Hinweise zu den Übungen

Die Übungen beginnen in der dritten Vorlesungswoche am
Dienstag, den 2. Mai.

Bitte versuchen Sie, sich möglichst gleichmäßig auf die
Übungen zu verteilen.

Besuchen Sie die Übungen! Diesen Stoff kann man nur durch
regelmäßiges Üben erlernen. Auswendiglernen hilft nicht
besonders viel.

Die Übungsblätter (in Deutsch und Englisch) werden jeweils
am Dienstag der Vorwoche ins Netz gestellt. Das erste
Übungsblatt wird am 25.4. bereitgestellt.
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Hinweise zu den Übungen

Abgabe der gelösten Aufgaben bis Dienstag der folgenden
Woche, 8:00 Uhr.

Einwurf in den Briefkasten neben dem Raum LF 259 oder
Abgabe per Moodle.

Bitte geben Sie auf Ihrer Lösung deutlich die Vorlesung, Ihren
Namen, Ihre Matrikelnummer und Ihre Gruppennummer an.

Sie dürfen in Paaren abgeben. Bei Abgaben in Paaren sollte
die Abgabe nur ein Mal eingerecht, aber mit beiden Namen
versehen werden.
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Hinweise zu den Übungen

Wir verwenden Moodle, um:

die Aufgabenblätter zur Verfügung zu stellen,

die Hausaufgaben elektronisch (nur PDF!) abzugeben und

um Diskussionsforen bereitzustellen.

Moodle-Plattform an der Universität Duisburg-Essen:
http://moodle.uni-due.de/ (siehe auch Link auf der Webseite)

Bitte legen Sie dort einen Zugang an (falls noch nicht vorhanden)
und tragen Sie sich in den Kurs “Automaten und Formale
Sprachen 2017” (Sommersemester 2017 →
Ingenieurwissenschaften → Informatik und Angewandte
Kognitionswissenschaft) ein. Bitte mit Uni-Kennung anmelden!
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Tutorium

In diesem Semester wird es ein Tutorium geben, das wechselweise
in Deutsch und in Englisch von Christina Mika gehalten wird. In
dem Tutorium können Fragen zur Vorlesung besprochen werden;
wenn allerdings im Vorfeld keine Fragen an Christina Mika
gesendet werden (per Moodle-Forum oder per Mail), dann entfällt
der jeweilige Termin ersatzlos. Das Tutorium findet an den
folgenden Terminen statt:

1 Donnerstag, 14:00-16:00 (Deutsch, in geraden
Kalenderwochen)

2 Freitag, 14:00-16:00 (Englisch, in ungeraden Kalenderwochen)

Erstmals findet das Tutorium am 4. Mai statt.
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Prüfung

Es gibt mehrere Möglichkeiten, die Vorlesung prüfen zu lassen . . .

Klausur (für BAI & ISE & Nebenfach-Studierende).

Termin: 22. August 2017, 8:30 Uhr

Mündliche Prüfung (für BAIs, die diese Vorlesung mündlich
prüfen lassen; Alternative: mündliche Prüfung in
“Rechnernetze und Sicherheit”)

Voraussichtlicher Termin: 21.-25. August 2017

Im Allgemeinen findet diese mündliche Prüfung als
Kombiprüfung/Modulprüfung gemeinsam mit
“Berechenbarkeit und Komplexität” statt. Es gibt Ausnahmen
für Studierende, die im Sommersemester beginnen und beide
Vorlesungen in größerem Abstand hören.

Anmeldung über das Prüfungsamt
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Prüfung

Hinweise:

Die Vorlesung heißt “Automaten und Formale Sprachen”.

Das Modul, das “Automaten und Formale Sprachen” &
“Berechenbarkeit und Komplexität” umfasst, heißt
“Theoretische Informatik”.

Für ISE trägt die Vorlesung nach der alten Prüfungsordnung
alleine den Namen “Theoretische Informatik”.
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Prüfung

Wenn Sie 50% der Übungspunkte erzielt haben, so erhalten Sie
einen Bonus für die Prüfung. (Für das Vorrechnen in der Übung
gibt es 10 Extrapunkte.)

Auswirkung: Verbesserung um eine Notenstufe; z.B. von 2,3 auf
2,0.

Bonuspunkte aus dem SS 2016 (oder früher) gelten nicht mehr!

Für die mündliche Modulprüfung “Theoretische Informatik”
(Kombiprüfung) ist es erforderlich, den Bonus für jede der beiden
Vorlesungen (“Automaten und Formale Sprachen” &
“Berechenbarkeit & Komplexität”) zu erzielen, um eine bessere
Note zu erhalten.

Der Bonus ist keine Voraussetzung für die Teilnahme an einer
Prüfung.
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LuDi - Lern- und Diskussionszentrum

Zur Unterstützung in der Studieneingangsphase bietet das LuDi
einen Raum zum gemeinsamen Lernen und Nachfragen, betreut
durch studentische Tutoren höherer Semester. Im LuDi erhalten Sie
Hausaufgabenhilfe, können Fragestellungen aus Vorlesungen
diskutieren und sich gemeinsam in der Klausurphase vorbereiten.
Es gibt ein LuDi zu Informatik-nahen Veranstaltungen im LF 031
zu den folgenden Zeiten:

Montag 11-14 Uhr

Mittwoch 12-16 Uhr

Freitag 11-14 Uhr

Zu allen weiteren Zeiten steht das LuDi als Arbeitsraum zur
Verfügung.
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LuDi - Lern- und Diskussionszentrum

Weitere Informationen finden Sie unter der URL
https://www.uni-due.de/iw/de/studium/ludi-inko sowie in
der Facebook-Gruppe des LuDi: http://bit.ly/LuDi-INKO.
Ein analoges Angebot existiert auch für Mathematik-nahe
Veranstaltungen, immer Montags bis Freitags von 10-18 Uhr im
BC 520.
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Literatur

Die Vorlesung basiert im wesentlichen auf folgendem Buch:

Uwe Schöning: Theoretische Informatik – kurzgefaßt.
Spektrum, 2008. (5. Auflage)

Weitere relevante Bücher:

Neuauflage eines alten Klassikers:
Hopcroft, Motwani, Ullman: Introduction to Automata
Theory, Languages, and Computation, Addison-Wesley, 2001.

Auf Deutsch: Hopcroft, Motwani, Ullman: Einführung in die
Automatentheorie, Formale Sprachen und
Komplexitätstheorie, Pearson, 2002.

Vossen, Witt: Grundkurs Theoretische Informatik, vieweg,
2006.

Asteroth, Baier: Theoretische Informatik, Pearson, 2003.
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Literatur
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Literatur
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Literatur
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Folien

Folien werden

auf der Webseite bereitgestellt

regelmäßig aktualisiert

Die Folien basieren auf den Folien aus dem letzten Jahr. Die
behandelten Inhalte werden sich im Vergleich zur vorherigen
Veranstaltung nicht wesentlich ändern.
Sie können daher bei Bedarf auf die Folien des Vorjahrs zurückgreifen
(www.ti.inf.uni-due.de/teaching/ss2016/afs/downloads/).

Unter
www.ti.inf.uni-due.de/teaching/ss2014/afs/downloads/

gibt es auch eine englische Übersetzung der Folien aus dem
Jahr 2014.
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Adventure-Problem

Zum Aufwärmen: wir betrachten das sogenannte
Adventure-Problem, bei dem ein Abenteurer/eine Abenteurerin
einen Weg durch ein Adventure finden muss.

(Später wird dann erklärt, was das eigentlich mit theoretischer
Informatik zu tun hat.)
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Adventure-Problem

Adventures bestehen aus Graphen bzw. Automaten, die mit
folgenden Symbolen markiert sind:

Drachen:

Schwert:

Fluss:

Torbogen:

Tür:

Schlüssel:

Schatz:
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Adventure-Problem (Level 1)

Natürlich gibt es bestimmte Regeln, die bei einem erfolgreichen
Abenteuer zu beachten sind:

Die Schatz-Regel

Man muss mindestens zwei Schätze finden.

Die Tür-Regel

Durch eine Tür kann man nur gehen, wenn man zuvor einen
Schlüssel gefunden hat. (Dieser Schlüssel darf aber dann beliebig
oft verwendet werden.)
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Adventure-Problem (Level 1)

Die Drachen-Regel

Unmittelbar nach der Begegnung mit einem Drachen muss man in
einen Fluss springen, da uns der Drache in Brand stecken wird.
Dies gilt nicht mehr, sobald man ein Schwert besitzt, mit dem man
den Drachen vorher töten kann.

Bemerkung: Drachen, Schätze und Schlüssel werden “nachgefüllt”,
sobald man das entsprechende Feld verlassen hat.

Gesucht ist der kürzeste Weg, von einem Anfangszustand zu einem
Endzustand, der alle diese Bedingungen erfüllt:
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Adventure-Problem (Level 2)

Neue Tür-Regel

Die Schlüssel sind magisch und verschwinden sofort, nachdem eine
Tür mit ihnen geöffnet wurde. Sobald man eine Tür durchschritten
hat, schließt sie sich sofort wieder.
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Adventure-Problem (Level 3)

Neue Drachen-Regel

Auch Schwerter werden durch das Drachenblut unbenutzbar,
sobald man einen Drachen damit getötet hat. Außerdem werden
Drachen sofort wieder “ersetzt”.
Es gibt jedoch immer noch die Option, ein Schwert nicht zu
benutzen und nach der Begegnung mit dem Drachen in den Fluss
zu springen.

Außerdem bleibt die neue Tür-Regel bestehen.
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Adventure-Problem (Level 4)

Schlüssel-Regel

Der magische Torbogen kann nur passiert werden, wenn man
keinen Schlüssel besitzt.

Schwert-Regel

Ein Fluss kann nur passiert werden, wenn man kein Schwert besitzt
(weil man sonst ertrinkt!).

Das Wegwerfen von Schlüsseln oder Schwertern ist nicht erlaubt.
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Think-Pair-Share

Wir werden nun eine kleine Aufgabe bearbeiten und dazu das
Verfahren Think-Pair-Share verwenden. Wir werden Aufgaben
dieser Art regelmäßig durchführen, da sie dazu beitragen können,
einen größeren Lernerfolg zu erzielen.
Sie erhalten gleich eine Aufgabenstellung, die zunächst jeder für
sich bearbeiten sollte. Nach drei Minuten beginnt die
Paararbeitsphase, in der Sie Ihre Ergebnisse mit Ihrem Sitzpartner
besprechen. Nach weiteren vier Minuten bitte ich Sie, Ihre
Ergebnisse dem Plenum vorzustellen. Gibt es Fragen zu dem
Vorgehen?
Bitte suchen Sie sich ein Level (1, 2, 3 oder 4) aus und ermitteln
Sie den kürzesten Pfad von einem Start- zu einem Endzustand, der
alle Adventure-Regeln des Levels erfüllt.
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Level 1: Man muss mindestens zwei Schätze finden. Bevor man
eine Tür durchqueren kann, muss man mindestens einen Schlüssel
auflesen. Nach einer Begegnung mit einem Drachen muss man
unmittelbar in einen Fluss springen, außer man hat irgendwann
vorher ein Schwert aufgelesen.
Level 2: Schlüssel
verschwinden beim Einsatz an
einer Tür; man muss also vor
Passieren der n-ten Tür
bereits mindestens n Schlüssel
gesammelt haben.
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Level 3: Zusätzlich kann jedes Schwert nur einmal verwendet
werden um einen Drachen zu töten.
Level 4: Ein Torbogen kann nur passiert werden, wenn man keinen
Schlüssel besitzt und ein Fluss nur passiert werden, wenn man kein
Schwert besitzt.
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Adventure-Problem (Level 1)

Fragen (Level 1)

Gibt es in dem Beispiel eine Lösung? Adventure

 Ja! Die kürzeste Lösung ist
1, 2, 3, 1, 2, 4, 10, 4, 5, 6, 4, 5, 6, 4, 11, 12 (Länge 16).

Gibt es ein allgemeines Lösungsverfahren, das – gegeben ein
Adventure in Form eines Automaten – immer bestimmen
kann, ob es eine Lösung gibt?

 Ja! Wir werden dieses Verfahren noch kennenlernen.

Um das Verfahren implementieren zu können, benötigen wir
auch formale Beschreibungen der Regeln (Tür-Regel,
Drachen-Regel, Schatz-Regel).
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Adventure-Problem (Level 2)

Fragen (Level 2)

Gibt es in dem Beispiel eine Lösung? Adventure

 Ja! Die kürzeste Lösung ist 1, 2, 3, 1, 2, 4, 10, 4, 7, 8, 9,
4, 7, 8, 9, 4, 11, 12. (Länge 18)

Gibt es ein allgemeines Lösungsverfahren?

 Ja! Wir werden dieses Verfahren noch kennenlernen.

Warum ist das Problem jetzt schwieriger?

 Wir haben jetzt durch die Schlüssel eine Art Zähler
eingeführt.
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Adventure-Problem (Level 3)

Fragen (Level 3)

Gibt es in dem Beispiel eine Lösung? Adventure

 Ja! Die kürzeste Lösung ist 1, 2, 3, 1, 2, 4, 10, 4, 7, 8, 9,
4, 7, 8, 9, 4, 11, 12. (Länge 18)

Gibt es ein allgemeines Lösungsverfahren?

 Ja! Dieses Problem ist “gerade noch” lösbar. Eine genaue
Laufzeit kann nicht angegeben werden. (Mögliche Lösungen
werden in der Vorlesung voraussichtlich nicht behandelt.)

Warum wird das Problem schwieriger?

 Durch die Schwerter haben wir einen weiteren Zähler
hinzubekommen. Weitere Zähler (d.h., drei oder mehr)
machen das Problem nicht wesentlich schwieriger.
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Adventure-Problem (Level 4)

Fragen (Level 4)

Gibt es in dem Beispiel eine Lösung? Adventure

 Ja! Die kürzeste Lösung ist 1, 2, 3, 1, 2, 4, 10, 4, 7, 8, 9,
4, 10, 4, 5, 6, 4, 11, 12. (Länge 19)

Gibt es ein allgemeines Lösungsverfahren?

 Nein! Es handelt sich hier um ein sogenanntes
unentscheidbares Problem. Wir werden in der Vorlesung
“Berechenbarkeit und Komplexität” beweisen, dass es
tatsächlich kein Lösungsverfahren gibt.
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Adventure-Problem (Level 4)

Fragen (Level 4)

Warum wird das Problem schwieriger?

 Wir haben jetzt nicht nur zwei Zähler, sondern können
diese auch auf Null testen. Damit hat unser Modell bereits
eine Mächtigkeit, bei der viele Problemstellungen
unentscheidbar werden.

Man beachte: Computer-Programme sind mindestens so
mächtig, denn es ist ganz einfach zwei Zähler einzuführen und
ebenso sind Null-Tests möglich!
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Adventure-Problem und Formale Sprachen

(Formale) Sprachen

Sprachen = Mengen von Wörtern

Im Beispiel: Menge aller Pfade in einem Adventure; Menge aller
zulässigen Pfade in einem Adventure; Menge aller Pfade, die die
Tür-Regel erfüllen (unabhängig vom Adventure), . . .

Im Allgemeinen: Mengen von Wörtern, die bestimmten
Bedingungen genügen (zum Beispiel: Menge aller korrekt
geklammerten arithmetischen Ausdrücke; Menge aller syntaktisch
korrekter Java-Programme; . . . )
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Adventure-Problem und Formale Sprachen

Automaten und Formale Sprachen

Sprachen enthalten im Allgemeinen unendliche viele Wörter.

Daher: Man benötigt endliche Beschreibungen für unendliche
Sprachen.
Mögliche endliche Beschreibungen sind Automaten (wie im
Beispiel), Grammatiken (ähnlich zu Grammatiken für natürliche
Sprachen) oder reguläre Ausdrücke.

Es gibt auch Beschreibungen in Worten (Tür-Regel, etc.), aber
diese müssen – damit sie eindeutig sind und mechanisch
weiterverarbeitet werden können – formalisiert werden.
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Adventure-Problem und Formale Sprachen

Fragestellungen

Typische Fragen in diesem Zusammenhang sind:

Ist eine bestimmte Sprache L leer oder enthält sie ein Wort?
L = ∅?
Ist ein gegebenes Wort w in der Sprache? w ∈ L?

Sind zwei Sprachen ineinander enthalten? L1 ⊆ L2?

Wir betrachten verschiedene Algorithmen, die solche Fragen
beantworten können.
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Adventure-Problem und Formale Sprachen

Die einzelnen Level des Adventures entsprechen in etwa folgenden
Sprachklassen:

Level 1 → reguläre Sprachen

Level 2 → kontextfreie Sprachen

(Level 3 → Petri-Netz-Sprachen)
Stattdessen: wir behandeln kontextsensitiven Sprachen

Level 4 → Chomsky-0-Sprachen (semi-entscheidbare
Sprachen)

Kontextsensitive und semi-entscheidbare Sprachen werden im
Detail erst in der Nachfolgervorlesung “Berechenbarkeit und
Komplexität” behandelt.
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Vom Nutzen der theoretischen Informatik

Wie kann man unendliche Strukturen (Sprachen) durch
endliche Beschreibungen (Automaten, Grammatiken)
erfassen?

Es geht um die Fragen: Was ist berechenbar? Wie sehen die
dazugehörigen Algorithmen aus? Was sind wirklich harte
Probleme?

Es gibt zahlreiche Anwendungen, beispielsweise in folgenden
Gebieten:

Suchen in Texten (reguläre Ausdrücke)
Syntax von (Programmier-)Sprachen und Compilerbau
Systemverhalten modellieren
Programmverifikation
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Inhalt der Vorlesung

Automatentheorie und Formale Sprachen

Sprachen, Grammatiken und Automaten

Chomsky-Hierarchie (verschiedene Klassen von Sprachen)

Reguläre Sprachen, kontextfreie Sprachen

Wie kann man zeigen, dass eine Sprache nicht zu einer
bestimmten Sprachklasse gehört? (Pumping-Lemma)

Wortproblem (Gehört ein Wort zu einer bestimmten Sprache?)

Abschlusseigenschaften (Ist der Schnitt zweier regulärer
Sprachen wieder regulär?)
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Notation: Mengen und Funktionen

Menge

Menge M von Elementen, wird beschrieben als Aufzählung

M = {0, 2, 4, 6, 8, . . . }

oder als Menge von Elementen mit einer bestimmten Eigenschaft

M = {n | n ∈ N0 und n gerade}.

Allgemeines Format:
M = {x | P(x)}

(M ist Menge aller Elemente x , die die Eigenschaft P erfüllen.)
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Notation: Mengen und Funktionen

Bemerkungen:

Die Elemente einer Menge sind ungeordnet, d.h., ihre
Ordnung spielt keine Rolle. Beispielsweise gilt:

{1, 2, 3} = {1, 3, 2} = {2, 1, 3} = {2, 3, 1} = {3, 1, 2} = {3, 2, 1}

Ein Element kann nicht “mehrfach” in einer Menge auftreten.
Es ist entweder in der Menge, oder es ist nicht in der Menge.
Beispielsweise gilt:

{1, 2, 3} 6= {1, 2, 3, 4} = {1, 2, 3, 4, 4}
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Notation: Mengen und Funktionen

Element einer Menge

Wir schreiben a ∈ M, falls ein Element a in der Menge M
enthalten ist.

Anzahl der Elemente einer Menge

Für eine Menge M gibt |M| die Anzahl ihrer Elemente an.

Teilmengenbeziehung

Wir schreiben A ⊆ B, falls jedes Element von A auch in B
enthalten ist. Die Relation ⊆ heißt auch Inklusion.

Leere Menge

Mit ∅ oder {} bezeichnet man die leere Menge. Sie enthält keine
Elemente und ist Teilmenge jeder anderen Menge.
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Notation: Mengen und Funktionen

Vereinigung

Die Vereinigung zweier Mengen A,B ist die Menge M, die die
Elemente enthält, die in A oder B vorkommen. Man schreibt dafür
A ∪ B.

A ∪ B = {x | x ∈ A oder x ∈ B}

Schnitt

Der Schnitt zweier Mengen A,B ist die Menge M, die die Element
enthält, die sowohl in A als auch in B vorkommen. Man schreibt
dafür A ∩ B.

A ∩ B = {x | x ∈ A und x ∈ B}
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Notation: Mengen und Funktionen

Kreuzprodukt

Seien A,B zwei Menge. Die Menge A× B ist die Menge aller
Paare (a, b), wobei das erste Element des Paars aus A, das zweite
aus B kommt.

A× B = {(a, b) | a ∈ A, b ∈ B}

Beispiel:
{1, 2} × {3, 4, 5} = {(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)}
Es gilt: |A× B| = |A| · |B| (für endliche Menge A,B).
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Notation: Mengen und Funktionen

Bemerkungen:

Wir betrachten nicht nur Paare, sondern auch sogenannte
Tupel, bestehend aus mehreren Elementen. Ein Tupel
(a1, . . . , an) bestehend aus n Elementen heißt auch n-Tupel.

In einem Tupel sind die Element geordnet! Beispielsweise gilt:

(1, 2, 3) 6= (1, 3, 2) ∈ N0 × N0 × N0

Ein Element kann “mehrfach” in einem Tupel auftreten. Tupel
unterschiedlicher Länge sind immer verschieden.
Beispielsweise:

(1, 2, 3, 4) 6= (1, 2, 3, 4, 4)

Merke: Runde Klammern (, ) und geschweifte Klammern {, }
stehen für ganz verschiedene mathematische Objekte!
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Notation: Mengen und Funktionen

Potenzmenge

Sei M eine Menge. Die Menge P(M) ist die Menge aller
Teilmengen von M.

P(M) = {A | A ⊆ M}

Beispiel:
P({1, 2, 3}) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Es gilt: |P(M)| = 2|M| (für eine endliche Menge M).
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Notation: Mengen und Funktionen

Funktion

f : A → B

a 7→ f (a)

Die Funktion f bildet ein Element a ∈ A auf ein Element f (a) ∈ B
ab. Dabei ist A der Definitionsbereich und B der Wertebereich.

Beispiel (Quadratfunktion):

f : Z→ N0, f (n) = n2

. . . ,−3 7→ 9,−2 7→ 4,−1 7→ 1, 0 7→ 0, 1 7→ 1, 2 7→ 4, 3 7→ 9, . . .

Dabei ist N0 die Menge der natürlichen Zahlen (mit der Null) und
Z die Menge der ganzen Zahlen.
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Fragestellungen zu dieser Vorlesungseinheit

Zum Ende einer jeden Vorlesungseinheit betrachten wir im
Regelfall drei Fragestellungen, die mithilfe der in dieser Einheit
besprochenen Inhalte beantwortet werden sollen. In der
darauffolgenden Einheit können zu Beginn mögliche Antworten
gesammelt werden. Diese Antworten werden nur in der Vorlesung
besprochen und nicht online verfügbar gemacht.

Fragen zur ersten Vorlesungseinheit

Was sind typische Fragestellungen die wir im Zusammenhang
mit formalen Sprachen beantworten wollen und was bedeuten
diese Fragestellungen in Bezug auf das Adventure-Beispiel?

Wie werden Mengen, Tupel und Funktionen notiert?

Was bedeuten die Operatoren ∈, | · |, ⊆, ∪, ∩, ×, P?
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Wörter

Wort

Sei Σ ein Alphabet, d.h., eine endliche Menge von Zeichen. Dann
bezeichnet man mit Σ∗ die Menge aller Wörter, d.h., die Menge
aller (endlichen) Zeichenketten mit Zeichen aus Σ.
Das leere Wort (das Wort der Länge 0) wird mit ε bezeichnet.
Die Menge aller nicht-leeren Wörter über Σ wird mit Σ+

bezeichnet.
Mit |w | bezeichnen wir die Länge des Wortes w .

Beispiel: Sei Σ = {a, b, c}. Dann sind mögliche Wörter aus Σ∗:

ε, a, b, aa, ab, bc, bbbab, . . .

Ein anderes mögliches Alphabet Σ (mit den Zeichen “Drache”,
“Schlüssel”, . . . ) haben wir im vorigen Beispiel kennengelernt.
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Sprachen

Sprache

Sei Σ ein Alphabet.
Eine (formale) Sprache L über Σ ist eine beliebige Teilmenge
von Σ∗ (L ⊆ Σ∗).

Beispiel: sei Σ = {(, ),+,−, ∗, /, a}, so können wir die Sprache
EXPR der korrekt geklammerten Ausdrücke definieren. Es gilt
beispielsweise:

(a− a) ∗ a + a/(a + a)− a ∈ EXPR

(((a))) ∈ EXPR

((a+)− a( 6∈ EXPR
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Beispielsprachen

Alphabete und Sprachen:

Σ1 = {(, ),+,−, ∗, /, a}
L1 = EXPR = {w ∈ Σ∗1 | w ist ein arithmetischer Ausdruck}

Σ2 = {a, . . . , z, ä, ü, ö, ß, ., ,, :, . . .}
L2 = Grammatikalisch korrekte deutsche Sätze

Σ3 = beliebig
L3 = ∅, L′3 = {ε}

Typische Sprachen über dem Alphabet Σ4 = {a, b, c}:
L4 = {w ∈ Σ∗

4 | w enthält aba als Teilwort}
L5 = {anbn | n ∈ N0}
L6 = {anbncn | n ∈ N0}

(wobei xn = x . . . x︸ ︷︷ ︸
n-mal

)
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Grammatiken (Einführung)

Grammatiken in der Informatik sind – ähnlich wie Grammatiken für
natürliche Sprachen – ein Mittel, um alle syntaktisch korrekten
Sätze (hier: Wörter) einer Sprache zu erzeugen.

Beispiel: Vereinfachte Grammatik zur Erzeugung
natürlichsprachiger Sätze

〈Satz〉 → 〈Subjekt〉〈Prädikat〉〈Objekt〉
〈Subjekt〉 → 〈Artikel〉〈Attribut〉〈Substantiv〉
〈Artikel〉 → ε

〈Artikel〉 → der

〈Artikel〉 → die

〈Artikel〉 → das

〈Attribut〉 → ε
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Grammatiken (Einführung)

〈Attribut〉 → 〈Adjektiv〉
〈Attribut〉 → 〈Adjektiv〉〈Attribut〉
〈Adjektiv〉 → kleine

〈Adjektiv〉 → bissige

〈Adjektiv〉 → große

〈Substantiv〉 → Hund

〈Substantiv〉 → Katze

〈Prädikat〉 → jagt

〈Objekt〉 → 〈Artikel〉〈Attribut〉〈Substantiv〉

In spitzen Klammern: Variable, Nicht-Terminale

Ohne spitze Klammern: Terminale
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Grammatiken (Einführung)

Gehört folgender Satz zu der Sprache, die von der Grammatik
erzeugt wird?

der kleine bissige Hund jagt die große Katze
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Grammatiken (Einführung)

〈Artikel〉 〈Attr.〉 〈Subst.〉

〈Satz〉

〈Prädikat〉 〈Objekt〉

〈Artikel〉 〈Attr.〉 〈Subst.〉

〈Adj.〉 〈Attr.〉

〈Adj.〉

jagt

〈Adj.〉

die große Katzeder kleine bissige Hund

〈Subjekt〉

Dieser Baum ist der “Beweis” dafür, dass der Satz in der Sprache
vorkommt. Man nennt ihn Syntaxbaum.
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Grammatiken (Einführung)

Mit Hilfe dieser (endlichen) Grammatik ist es möglich, unendlich
viele Sätze zu erzeugen:

der Hund jagt die kleine kleine kleine . . . Katze

Das heißt, die zu der Grammatik gehörende Sprache (man sagt
auch: die von der Grammatik erzeugte Sprache) ist unendlich.
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Grammatiken (Definition)

Grammatiken besitzen Regeln der Form

linke Seite → rechte Seite

Sowohl auf der linken als auch auf auf der rechten Seite können
zwei Typen von Symbolen vorkommen:

Nicht-Terminale (die Variablen, aus denen noch weitere
Wortbestandteile abgeleitet werden sollen)

Terminale (die “eigentlichen” Symbole)

Im vorherigen Beispiel: auf der linken Seite befindet sich immer
genau ein Nicht-Terminal (kontextfreie Grammatik).

Es gibt aber allgemeinere Grammatiken. (Es gibt sogar
Grammatiken, die auf Bäumen und Graphen statt auf Wörtern
arbeiten. Diese werden in der Vorlesung jedoch nicht behandelt.)
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Grammatiken (Definition)

Definition (Grammatik)

Eine Grammatik G ist ein 4-Tupel G = (V ,Σ,P,S), das folgende
Bedingungen erfüllt:

V ist eine endliche Menge von Nicht-Terminalen bzw.
Variablen

Σ ist das endliche Alphabet bzw. die Menge der
Terminal(symbol)e. (Es muss gelten: V ∩ Σ = ∅, d.h., kein
Zeichen ist gleichzeitig Terminal und Nicht-Terminal.)

P ist eine endliche Menge von Regeln bzw. Produktionen mit
P ⊆ (V ∪ Σ)+ × (V ∪ Σ)∗.

S ∈ V ist die Startvariable bzw. das Axiom.
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Grammatiken (Definition)

Wie sehen Produktionen aus?

Eine Produktion aus P ist ein Paar (`, r) von Wörtern über V ∪ Σ,
das zumeist `→ r geschrieben wird. Dabei gilt:

Sowohl ` als auch r bestehen aus Variablen und
Terminalsymbolen.

` darf nicht leer sein. (Eine Regel muss immer zumindest ein
Zeichen ersetzen.)

Konventionen:

Variablen (Elemente aus V ) werden mit Großbuchstaben
bezeichnet: A, B, C , . . . , S , T , . . .

Terminalsymbole (Elemente aus Σ) werden mit
Kleinbuchstaben dargestellt: a, b, c , . . .
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Grammatiken (Beispiel)

Beispiel-Grammatik

G = (V ,Σ,P,S) mit

V = {S ,B,C}
Σ = {a, b, c}
P = {S → aSBC , S → aBC ,CB → BC , aB → ab,
bB → bb, bC → bc, cC → cc}
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Grammatiken (Ableitungen)

Wie werden die Produktionen eingesetzt, um Wörter aus der
Startvariable S zu erzeugen?

Idee: Wenn die Grammatik eine Produktion `→ r enthält, dürfen
wir ` durch r ersetzen.

Beispiel:
Produktion: CB → BC
Ableitungsschritt: aab︸︷︷︸

x

CB︸︷︷︸
`

Bcca︸︷︷︸
y

⇒ aab︸︷︷︸
x

BC︸︷︷︸
r

Bcca︸︷︷︸
y

.
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Grammatiken (Ableitungen)

Definition (Ableitung)

Sei G = (V ,Σ,P, S) eine Grammatik und seien u, v ∈ (V ∪ Σ)∗.
Es gilt:

u ⇒G v (u geht unter G unmittelbar über in v),

falls u, v folgende Form haben:

u = x`y v = xry ,

wobei x , y ∈ (V ∪ Σ)∗ und `→ r eine Regel in P ist.
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Grammatiken (Ableitungen)

Konventionen:

Wörter aus (V ∪ Σ)∗ werden mit Kleinbuchstaben (aus der
hinteren Hälfte des Alphabets) bezeichnet: u, v , w , x , y , z ,
. . .

Die Konkatenation zweier Wörter u, v wird mit uv bezeichnet.
Es gilt vε = εv = v , d.h., das leere Wort ε ist das neutrale
Element der Konkatenation.

Statt u ⇒G v schreibt man auch u ⇒ v , wenn klar ist, um
welche Grammatik es sich handelt.
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Grammatiken (Ableitungen)

Ableitung

Eine Folge von Wörtern w0,w1,w2, . . . ,wn ∈ (V ∪Σ)∗ mit w0 = S
und

w0 ⇒G w1 ⇒G w2 ⇒G · · · ⇒G wn

heißt Ableitung von wn (aus S). Dabei darf wn sowohl Terminale
als auch Variablen enthalten und heißt Satzform.

Man schreibt in diesem Fall auch w0 ⇒∗G wn, wobei ⇒∗G die
reflexive und transitive Hülle von ⇒G ist.
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Grammatiken und Sprachen

Die von einer Grammatik erzeugte Sprache

Die von einer Grammatik G = (V ,Σ,S ,P) erzeugte Sprache ist

L(G ) = {w ∈ Σ∗ | S ⇒∗G w}.

In anderen Worten:

Die von G erzeugte Sprache besteht genau aus den
Satzformen, die nur Terminalsymbole enthalten.

Oder: genau die Wörter, die in mehreren Schritten aus S
abgeleitet werden und nur aus Terminalen bestehen, gehören
zu L(G ).
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Grammatiken und Sprachen

Die vorherige Beispielgrammatik G erzeugt die Sprache

L(G ) = {anbncn | n ≥ 1}.

Dabei ist an = a . . . a︸ ︷︷ ︸
n-mal

.

Die Behauptung, dass G wirklich diese Sprache erzeugt, ist nicht
einfach nachzuweisen.

Sebastian Küpper Automaten und Formale Sprachen 67
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Grammatiken und Sprachen

Bemerkung: Ableiten ist kein deterministischer, sondern ein
nichtdeterministischer Prozess. Für ein u ∈ (V ∪ Σ)∗ kann es
entweder gar kein, ein oder mehrere v geben mit u ⇒G v .

In anderen Worten: ⇒G ist keine Funktion.

Dieser Nichtdeterminismus kann durch zwei verschiedene Effekte
verursacht werden . . .
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Grammatiken und Sprachen

Eine Regel ist an zwei verschiedenen Stellen anwendbar.

Beispiel-Grammatik:

aaaSBBC CBC

aaaSBCBCBC
.6

(0
aaaSBCBBC C

Zwei verschiedene Regeln sind anwendbar (entweder an der
gleichen Stelle – wie unten abgebildet – oder an verschiedenen
Stellen):

Beispiel-Grammatik:

aSBC

S
19

%-
aBC
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Grammatiken und Sprachen

Weitere Bemerkungen:

Es kann beliebig lange Pfade geben, die nie zu einem Wort
aus Terminalsymbolen führen:

S ⇒ aSBC ⇒ aaSBCBC ⇒ aaaSBCBCBC ⇒ . . .

Manchmal können Pfade in einer Sackgasse enden, d.h.,
obwohl noch Variablen in einer Satzform vorkommen, ist keine
Regel mehr anwendbar.

S ⇒ aSBC ⇒ aaBCBC ⇒ aabCBC ⇒ aabcBC 6⇒
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Grammatiken und Sprachen

Wir werden oft die folgende kürzere Schreibweise benutzen (die
sogenannte Backus-Naur-Form).

Wenn es Regeln

u → w1

...

u → wn

gibt, schreiben wir auch

u → w1 | · · · | wn
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Think-Pair-Share: Grammatiken und Sprachen

Betrachten Sie die folgende Grammatik:

G = ({S ,A,B}, {a, b},P,S)

mit den folgenden Regeln:

S → aA | bB

A→ aA | bA | a

B → aB | bB | b

Geben Sie ein Wort minimaler Länge an, das von der Grammatik
erzeugt wird und überlegen Sie sich, welche Sprache von der
Grammatik erzeugt wird. Überlegen Sie zunächst zwei Minuten in
Einzelarbeit eine Lösung. Anschließend tauschen Sie sich für
weitere zwei Minuten mit ihrem Sitznachbarn aus. Schlussendlich
besprechen wir die Lösung im Plenum.
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Grammatiken und Sprachen

Σ =

{
, , , , , ,

}

Die Tür-Regel

Durch eine Tür kann man nur gehen, wenn man zuvor einen
Schlüssel gefunden hat. (Dieser Schlüssel darf aber dann beliebig
oft verwendet werden.)

G1 =
(
{K ,N,X},Σ,P1,N

)
, wobei P1 aus den folgende

Produktionen besteht:

N → XN | K | ε

K → XK | K | K | ε

X →
∣∣ ∣∣ ∣∣ ∣∣
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Grammatiken und Sprachen

Σ =

{
, , , , , ,

}

Neue Tür-Regel (Level 2)

Die Schlüssel sind magisch und verschwinden sofort, nachdem eine
Tür mit ihnen geöffnet wurde. Sobald man eine Tür durchschritten
hat, schließt sie sich sofort wieder.

G2 =
(
{S ,X},Σ,P2, S

)
, wobei P2 aus den folgende Produktionen

besteht:

S → XS | S | S | SS | ε

X →
∣∣ ∣∣ ∣∣ ∣∣
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Chomsky-Hierarchie

Wir klassifizieren nun Grammatiken nach der Form ihrer Regeln:

Typ 0 – Chomsky-0

Jede Grammatik ist vom Typ 0. (Keine Einschränkung der Regeln.)

Typ 1 – Chomsky-1

Für alle Regeln `→ r gilt: |`| ≤ |r |. (Man sagt auch, die
Grammatik ist monoton oder kontextsensitiv.)

Typ 2 – Chomsky-2

Eine Typ-1-Grammatik ist vom Typ 2 oder kontextfrei, wenn für
alle Regeln `→ r gilt, dass ` ∈ V , d.h., ` ist eine einzelne Variable.

D.h., es sind nur Regeln der Form A→ r mit A ∈ V , r ∈ (V ∪Σ)∗

erlaubt.
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Chomsky-Hierarchie

Typ 3 – Chomsky-3

Eine Typ-2-Grammatik ist vom Typ 3 oder regulär, falls zusätzlich
gilt: r ∈ Σ∪ΣV , d.h., die rechten Seiten von Regeln sind entweder
einzelne Terminale oder ein Terminal gefolgt von einer Variablen.

D.h., es sind nur Regeln der Form A→ aB und A→ a mit
A,B ∈ V , a ∈ Σ erlaubt.

Typ-i-Sprache

Eine Sprache L ⊆ Σ∗ heißt vom Typ i (i ∈ {0, 1, 2, 3}), falls es eine
Typ-i-Grammatik G gibt mit L(G ) = L (d.h., L wird von G
erzeugt.)

Solche Sprachen nennt man dann auch semi-entscheidbar bzw.
rekursiv aufzählbar (Typ 0), kontextsensitiv (Typ 1), kontextfrei
(Typ 2) oder regulär (Typ 3).
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Chomsky-Hierarchie

ε-Sonderregelung (Teil 1)

Bei Typ-1-Grammatiken (und damit auch bei regulären und
kontextfreien Grammatiken) ist die Regel S → ε zunächst nicht
zugelassen, wegen |S | = 1 6≤ 0 = |ε|. Das bedeutet aber: das leere
Wort kann nicht abgeleitet werden!

Wir modifizieren daher die Grammatik-Definition für
Typ-1-Grammatiken leicht und erlauben S → ε, falls S das
Startsymbol ist und auf keiner rechten Seite vorkommt. Diese
Bedingung heißt ε-Sonderregelung.
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Chomsky-Hierarchie

ε-Sonderregelung (Teil 2)

Bei kontextfreien und regulären Grammatiken (Typ 2, Typ 3)
ändert sich die Ausdrucksmächtigkeit nicht, wenn man beliebige
Produktionen der Form A→ ε erlaubt:

Durch geeignete Umformungen kann man eine Grammatik die bis
auf ε-Ableitungen regulär (kontextfrei) ist, in eine reguläre
(kontextfreie) Grammatik transformieren, die die ε-Sonderregel
erfüllen. Eine solche Konstruktion existiert im Allgemeinen nicht
für alle Typ-1-Grammatiken.
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Chomsky-Hierarchie

Bemerkungen:

Woher kommt der Begriff “kontextsensitiv”?

Bei kontextfreien Sprachen gibt es Regeln der Form A→ x ,
wobei x ∈ (Σ ∪ V )∗. Das bedeutet: A kann – unabhängig vom
Kontext – durch x ersetzt werden.

Bei den mächtigeren kontextsensitiven Sprachen sind dagegen
Regeln der Form uAv → uxv möglich, mit der Bedeutung: A
kann nur in bestimmten Kontexten durch x ersetzt werden.
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Chomsky-Hierarchie

Jede Typ-i-Grammatik ist
eine Typ-(i−1)-Grammatik
(für i ∈ {1, 2, 3})  die
entsprechenden Mengen von
Sprachen sind ineinander
enthalten.

Außerdem: die Inklusionen
sind echt, d.h., es gibt für
jedes i eine
Typ-(i−1)-Sprache, die keine
Typ-i-Sprache ist. (Zum
Beispiel eine kontextfreie
Sprache, die nicht regulär ist.)
Das werden wir später zeigen.

Typ-2-Sprachen
kontextfreie Sprachen

Typ-3-Sprachen
reguläre Sprachen

kontextsensitive Sprachen
Typ-1-Sprachen

semi-entscheidbare Sprachen
Typ-0-Sprachen

Menge aller Sprachen
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Chomsky-Hierarchie

Bemerkungen:

Für eine Sprache der Chomsky-Hierarchie gibt es immer
mehrere Grammatiken, die diese Sprache erzeugen.

Eine Sprache, die durch eine Grammatik vom Typ i erzeugt
wird, hat Typ k für alle k ≤ i . Sie kann in manchen Fällen
aber auch Typ j mit j > i haben.

Beispielsweise erzeugt die Grammatik G mit den
Produktionen S → X | ε, X → aXa | aa die Sprache
L(G ) = {an | n ∈ N0, n gerade}.
Die Grammatik G ist vom Typ 2, aber nicht vom Typ 3. Die
Sprache L(G ) hat sowohl Typ 2 als auch Typ 3.
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Chomsky-Hierarchie

L(G1) = {an | n gerade} = L(G2)

S → aX | ε
Y → aX

X → aY | a
S → X | ε
X → aXa | aa

Reguläre Grammatik G1 (Typ 3) Kontextfreie Grammatik G2 (Typ 2)

Reguläre Sprache (Typ 3)
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Fragestellungen zu dieser Vorlesungseinheit

Zum Ende einer jeden Vorlesungseinheit betrachten wir im Regelfall
drei Fragestellungen, die mithilfe der in dieser Einheit besprochenen
Inhalte beantwortet werden sollen. In der darauffolgenden Einheit
können zu Beginn mögliche Antworten gesammelt werden.

Fragen zur zweiten Vorlesungseinheit

Was sind Grammatiken und Sprachen und wie hängen diese
beiden Begriffe zusammen?

Wie sind die vier Hierarchie-Ebenen der Chomsky-Hierarchie
definiert; wann ist eine Grammatik und wann ist eine Sprache
vom Chomsky Typ i , i ∈ {0, 1, 2, 3}?
Was bedeutet es, dass ein Wort von einer Grammatik erzeugt
wird und wie wird in dieser Hinsicht mit Nichtdeterminismus
der Ableitung umgegangen?
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Wortproblem

Wortproblem

Gegeben eine Grammatik G (von beliebigem Typ) und ein Wort
w ∈ Σ∗. Entscheide, ob w ∈ L(G ).

Entscheidbarkeit des Wortproblems (Satz)

Das Wortproblem ist entscheidbar für Typ-1-Sprachen (und damit
auch für reguläre und kontextfreie Sprachen). Das heißt: es gibt ein
Verfahren, das entscheidet, ob w ∈ L(G ) gilt.
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Wortproblem für Typ-1-Sprachen

Algorithmus zum Lösen des Wortproblems für Typ-1-Sprachen:
gibt “true” aus genau dann, wenn w ∈ L(G ).

input (G ,w)
T := {S}
repeat

T ′ := T
T := T ′ ∪ {u | |u| ≤ |w | und u′ ⇒ u, für ein u′ ∈ T ′}

until (w ∈ T ) or (T = T ′)
return (w ∈ T )
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Wortproblem für Typ-1-Sprachen

Wir können die Korrektheit des Algorithmus wie folgt einsehen:

Da die Grammatik vom Typ 1 ist, können bei einer Ableitung
eines Wortes (der Länge größer 1) nur Wörter entstehen, die
länger oder gleich lang sind.

Also müssen Wörter, die die Länge des gesuchten Wortes w
übersteigen, nicht weiter exploriert werden – sie können auf
keinen Fall mehr zu w abgeleitet werden.

Daher gilt: Wann immer der Algorithmus
”
false“ ausgibt, ist

w /∈ L(G ). Offensichtlich gilt auch w ∈ L(G ) wann immer der
Algorithmus

”
true“ ausgibt, da in diesem Fall eine

Ableitungsfolge S ⇒ w gefunden wurde.

Es bleibt zu zeigen, dass der Algorithmus auch tatsächlich
terminiert, da aber nur endlich viele Wörter u mit |u| ≤ |w |
existieren (sowohl Σ als auch V sind endlich), lässt sich das leicht
einsehen.
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Wortproblem für Typ-1-Sprachen

Beispiel:

Grammatik G : S → aX | bX , X → cS | d

Wort w = acbdc

Entstehende Folge von Mengen von Satzformen:
1 T = {S}
2 T = {S , aX , bX}
3 T = {S , aX , bX , acS , ad , bcS , bd}
4 T = {S , aX , bX , acS , ad , bcS , bd , acaX , acbX , bcaX , bcbX}
5 T = {S , aX , bX , acS , ad , bcS , bd , acaX , acbX , bcaX , bcbX ,

acacS , acad , acbcS , acbd , bcacS , bcad , bcbcS , bcbd}
Nach dem fünften Schritt bricht der Algorithmus ab, da nur
noch Wörter entstehen, die länger als w sind.
Es gilt: w 6∈ T , daraus folgt w 6∈ L(G ).
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Syntaxbäume und Eindeutigkeit

Wir beschränken uns im Folgenden auf kontextfreie Grammatiken.

Wir betrachten folgende (eindeutige) Beispiel-Grammatik zur
Erzeugung von korrekt geklammerten arithmetischen Ausdrücken:

G = ({E ,T ,F}, {(, ), a,+, ∗},P,E )

mit folgender Produktionenmenge P (in abkürzender
Backus-Naur-Form):

E → T | E + T

T → F | T ∗ F

F → a | (E )
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Think-Pair-Share: Eindeutigkeit

G = ({E ,T ,F}, {(, ), a,+, ∗},P,E )

E → T | E + T

T → F | T ∗ F

F → a | (E )

Zeigen Sie, dass der Ausdruck a ∗ (a + a) mit G ableitbar ist.
Erarbeiten Sie zunächst drei Minuten in Einzelarbeit eine Lösung.
Anschließend tauschen Sie sich für weitere drei Minuten mit ihrem
Sitznachbarn aus. Schlussendlich besprechen wir die Lösung im
Plenum.
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Syntaxbäume und Eindeutigkeit

Für die meisten Wörter der von G erzeugten Sprache gibt es
mehrere mögliche Ableitungen:

E ⇒ T ⇒ T ∗ F ⇒ F ∗ F → a ∗ F ⇒ a ∗ (E )

⇒ a ∗ (E + T )⇒ a ∗ (T + T )⇒ a ∗ (F + T )

⇒ a ∗ (a + T )⇒ a ∗ (a + F )⇒ a ∗ (a + a)

E ⇒ T ⇒ T ∗ F ⇒ T ∗ (E )→ T ∗ (E + T )

⇒ T ∗ (E + F )⇒ T ∗ (E + a)⇒ T ∗ (T + a)

⇒ T ∗ (F + a)⇒ T ∗ (a + a)⇒ F ∗ (a + a)⇒ a ∗ (a + a)

Die erste Ableitung ist eine sogenannte Linksableitung (immer so
weit links wie möglich ableiten), die zweite eine Rechtsableitung
(so weit rechts wie möglich ableiten).
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Syntaxbäume und Eindeutigkeit

Syntaxbaum aufbauen

Wir bilden nun aus beiden Ableitungen den Syntaxbaum, indem
wir

Die Wurzel des Baums mit der Startvariable der Grammatik
beschriften.

Bei jeder Regelanwendung der Form A→ z zu A |z | Kinder
hinzufügen, die mit den Zeichen von z beschriftet sind.

Syntaxbäume lassen sich für alle Ableitungen von kontextfreien
Grammatiken aufbauen.
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Syntaxbäume und Eindeutigkeit

Dabei erhalten wir in beiden
Fällen den gleichen Syntaxbaum.

Man sagt, eine Grammatik ist
eindeutig, wenn es für jedes Wort
in der erzeugten Sprache genau
einen Syntaxbaum gibt
⇐⇒ es gibt für jedes Wort

genau eine Linksableitung
⇐⇒ es gibt für jedes Wort

genau eine Rechtsableitung.

Ansonsten heißt die Grammatik
mehrdeutig.

F

a

F

a

T

F

a

T

T

E

T F

E( )

∗

E +
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Endliche Automaten

In diesem Abschnitt beschäftigen wir uns mit regulären Sprachen,
aber zunächst unter einem anderen Blickwinkel. Statt
Typ-3-Grammatiken betrachten wir zustandsbasierte
Automatenmodelle, die man auch als “Spracherzeuger” bzw.
“Sprachakzeptierer” betrachten kann.

1 2

a

b

b
a
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Deterministische endliche Automaten

Deterministischer endlicher Automat (Definition)

Ein (deterministischer) endlicher Automat M ist ein 5-Tupel
M = (Z ,Σ, δ, z0,E ), wobei

Z die Menge der Zustände,

Σ das Eingabealphabet (mit Z ∩ Σ = ∅),

z0 ∈ Z der Startzustand,

E ⊆ Z die Menge der Endzustände und

δ : Z × Σ→ Z die Überführungsfunktion (oder
Übergangsfunktion) ist.

Z , Σ müssen endliche Mengen sein.

Abkürzung: DFA (deterministic finite automaton)
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Deterministische endliche Automaten

Graphische Notation:

Zustand: Startzustand: Endzustand:

Übergang δ(1, a) = 2: 2
a

1
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Deterministische endliche Automaten

Woher kommt der Name “endlicher Automat”?

Vorstellung von einer Maschine, die sich in endlich vielen
Zuständen befinden kann, die eine Eingabe (von links nach rechts)
liest und signalisiert, sobald die Eingabe akzeptiert ist.

e i n g a b e

Automat mit
endlich vielen
Zuständen

Signal für
Endzustand
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Deterministische endliche Automaten

Analogie zum Fahrkartenautomat: ein Fahrkartenautomat kann
sich in folgenden Zuständen befinden:

Keine Eingabe

Fahrtziel ausgewählt

Geld eingegeben

Fahrkarte wurde ausgegeben

(Das ist eine vereinfachte Darstellung, da ein Fahrkartenautomat
auch mitzählen muss, wieviel Geld bereits eingeworfen wurde.
Dafür würde man jedoch (idealisiert, unter Missachtung der
maximalen Kapazität eines Fahrkartenautomaten) unendlich viele
Zustände benötigen.)
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Deterministische endliche Automaten

Die bisherige Übergangsfunktion δ liest nur ein Zeichen auf einmal
ein. Wir verallgemeinern sie daher zu einer Übergangsfunktion δ̂,
die die Übergänge für ganze Wörter ermittelt.

Mehr-Schritt-Übergänge

Zu einem gegebenen DFA M = (Z ,Σ, δ, z0,E ) definieren wir eine
Funktion δ̂ : Z × Σ∗ → Z induktiv wie folgt:

δ̂(z , ε) = z

δ̂(z , ax) = δ̂(δ(z , a), x)

mit z ∈ Z , x ∈ Σ∗ und a ∈ Σ.
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Deterministische endliche Automaten

Akzeptierte Sprache

Die einem DFA M akzeptierte Sprache ist

T (M) = {x ∈ Σ∗ | δ̂(z0, x) ∈ E}.

In anderen Worten:
Die Sprache kann man dadurch erhalten, indem man allen Pfaden
vom Anfangszustand zu einem Endzustand folgt und dabei alle
Zeichen auf den Übergängen aufsammelt.
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Deterministische endliche Automaten

Beispiel 1: Wir suchen einen endlichen Automaten, der folgende
Sprache L akzeptiert:

L = {w ∈ {a, b}∗ | #a(w) gerade}.

Dabei ist #a(w) die Anzahl der a’s in w .

b
a

a

b

g u
Bedeutung der Zustände:
g – gerade Anzahl a’s; u –
ungerade Anzahl a’s
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Deterministische endliche Automaten

Beispiel 2: Wir suchen einen endlichen Automaten, der folgende
Sprache L akzeptiert:

L = {w ∈ {a, b, c}∗ | das Teilwort abc kommt in w nicht vor}.

a

a

ε fab

b c

a

b, c a a, b, c

c

b

Bedeutung der Zustände:
ε – kein Präfix von abc gelesen; a – letztes gelesenes Zeichen war
ein a; ab – zuletzt ab gelesen; f – abc kam im bereits gelesenen
Wort vor (Fangzustand, Fehlerzustand)
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Think-Pair-Share: DFA

Geben Sie einen DFA für die Sprache

L = {w ∈ {a, b, c} | auf jedes a folgt ein b}

an.
Erarbeiten Sie zunächst drei Minuten in Einzelarbeit eine Lösung.
Anschließend tauschen Sie sich für weitere drei Minuten mit ihrem
Sitznachbarn aus. Schlussendlich besprechen wir die Lösung im
Plenum.
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Fragestellungen zu dieser Vorlesungseinheit

Zum Ende einer jeden Vorlesungseinheit betrachten wir im Regelfall
drei Fragestellungen, die mithilfe der in dieser Einheit besprochenen
Inhalte beantwortet werden sollen. In der darauffolgenden Einheit
können zu Beginn mögliche Antworten gesammelt werden.

Fragen zur dritten Vorlesungseinheit

Wie kann man für eine beliebige Typ-1 Grammatik G
entscheiden, ob ein Wort w von G erzeugt wird, also ob
w ∈ L(G ) gilt?

Was sind Syntaxbäume für kontextfreie Grammatiken und wie
hängen diese mit dem Begriff der Eindeutigkeit (einer
Grammatik) zusammen?

Was ist ein deterministischer endlicher Automat?
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Deterministische endliche Automaten

DFAs → Reguläre Sprachen (Satz)

Jede von einem endlichen Automaten akzeptierte Sprache ist
regulär.

Beweisidee: Ein endlicher Automat M = (Z ,Σ, δ, z0,E ) wird in
eine Grammatik G = (V ,Σ,P,S) umgewandelt, wobei V = Z ,
S = z0 und P folgende Produktionen enthält:

falls δ(z1, a) = z2, dann gilt (z1 → az2) ∈ P

Falls zusätzlich z2 ∈ E , dann gilt (z1 → a) ∈ P.

Außerdem gilt (z0 → ε) ∈ P, falls z0 ∈ E .
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Deterministische endliche Automaten

Bemerkungen:

Bei der Konstruktion kann die Regel z0 → ε hinzugefügt
werden und die Variable z0 gleichzeitig auf einer rechten Seite
auftreten, was eigentlich ein Verstoß gegen die
ε-Sonderregelung ist. Bei regulären (und auch kontextfreien
Grammatiken) kann die Grammatik jedoch immer so
umgeformt werden, dass die Bedingungen der
ε-Sonderregelung wieder erfüllt sind.

Es gilt auch die umgekehrte Aussage: jede reguläre Sprache
kann von einem endlichen Automaten akzeptiert werden.
(Dazu später mehr.)
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Nichtdeterministische endliche Automaten

Im Gegensatz zu Grammatiken gibt es bei DFAs keine
nichtdeterministischen Effekte. Das heißt, sobald das nächste
Zeichen eingelesen wurde, ist klar, welcher Zustand der
Folgezustand ist.

Aber: In vielen Fällen ist es natürlicher, wenn man auch
nichtdeterministische Übergänge zulässt. Das führt auch oft zu
kleineren Automaten.

a

a

1

2

3
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Nichtdeterministische endliche Automaten

Definition: Nichtdeterministischer endlicher Automat

Ein nichtdeterministischer endlicher Automat M ist ein 5-Tupel
M = (Z ,Σ, δ,S ,E ), wobei

Z die Menge der Zustände,

Σ das Eingabealphabet (mit Z ∩ Σ = ∅),

S ⊆ Z die Menge der Startzustände,

E ⊆ Z die Menge der Endzustände und

δ : Z × Σ→ P(Z ) die Überführungsfunktion (oder
Übergangsfunktion) ist.

Z , Σ müssen endliche Mengen sein.

Abkürzung: NFA (nondeterministic finite automaton)
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Nichtdeterministische endliche Automaten

Dabei ist P(Z ) die Potenzmenge von Z , d.h., die Menge aller
Teilmengen von Z . (Diese Menge wird manchmal auch mit 2Z

bezeichnet.)

Beispiel: δ(1, a) = {2, 3}

a

a

1

2

3
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Nichtdeterministische endliche Automaten

Die Übergangsfunktion δ kann wieder zu einer
Mehr-Schritt-Übergangsfunktion erweitert werden:

Mehr-Schritt-Übergänge

Zu einem gegebenen NFA M = (Z ,Σ, δ,S ,E ) definieren wir eine
Funktion δ̂ : P(Z )× Σ∗ → P(Z ) induktiv wie folgt:

δ̂(Z ′, ε) = Z ′

δ̂(Z ′, ax) =
⋃
z∈Z ′

δ̂(δ(z , a), x)

mit Z ′ ⊆ Z , x ∈ Σ∗ und a ∈ Σ.
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Nichtdeterministische endliche Automaten

Akzeptierte Sprache

Die einem NFA M akzeptierte Sprache ist

T (M) = {x ∈ Σ∗ | δ̂(S , x) ∩ E 6= ∅}.

In anderen Worten: ein Wort w wird akzeptiert, genau dann wenn
es einen Pfad von einem Anfangszustand zu einem Endzustand
gibt, dessen Übergänge mit den Zeichen von w markiert sind. (Es
könnte auch mehrere solche Pfade geben.)
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Nichtdeterministische endliche Automaten

Beispiel 1: bei nicht-deterministischen Automaten darf auch
δ(z , a) = ∅ für ein a ∈ Σ gelten, das heißt, es muss nicht für jedes
Alphabetsymbol immer einen Übergang geben und der sogenannte
“Fangzustand” kann weggelassen werden.

a

a

ε ab

b

a

a

c

b, c

b
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Nichtdeterministische endliche Automaten

Beispiel 2: gesucht ist ein nicht-deterministischer Automat, der die
Sprache

L = {w ∈ {a, b, c}∗ | das Teilwort abc kommt in w vor}

akzeptiert.

a

ε ab

b c

a, b, c

abca

a, b, c

Dieser Automat entscheidet zu einem bestimmten Zeitpunkt
nicht-deterministisch, dass jetzt das Teilwort abc beginnt.
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Nichtdeterministische endliche Automaten

Andere Interpretation: jedes Mal, wenn eine nicht-deterministische
Verzweigung möglich ist, werden mehrere “Paralleluniversen”
erzeugt, in denen verschiedene Kopien der Maschine die
verschiedenen möglichen Pfade erkunden. Das Wort wird
akzeptiert, wenn es in einem dieser Paralleluniversen akzeptiert
wird.
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Nichtdeterministische endliche Automaten

ε-Kanten

Es gibt auch nichtdeterministische Automaten mit sogenannten
ε-Kanten (spontante Übergänge, bei denen kein Alphabetsymbol
eingelesen wird). Diese werden jedoch in der Vorlesung im
Allgemeinen nicht benutzt.

21
ε

Neue Übergangsfunktion: δ : Z × (Σ ∪ {ε})→ P(Z )

Im Beispiel: δ(1, ε) = {2}.
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Nichtdeterministische endliche Automaten

Neue Mehr-Schritt-Übergangsfunktion: δ̂ : P(Z )× Σ∗ → P(Z ).
Dabei dürfen zwischen dem Einlesen der Zeichen beliebig viele
ε-Übergänge gemacht werden.

1
ε a ε ε ε εb

2 3 4 5 6 7 8

δ̂({1}, ab) = {6, 7, 8}
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Think-Pair-Share: ε-Übergänge

Zeigen Sie:

Äquivalenz von NFAs mit und ohne ε-Übergängen

Jeder NFA mit ε-Übergängen kann in einen NFA ohne ε-Übergänge
umgewandelt werden, ohne die Anzahl der Zustände zu erhöhen.

Erarbeiten Sie zunächst vier Minuten in Einzelarbeit eine Lösung.
Anschließend tauschen Sie sich für weitere vier Minuten mit ihrem
Sitznachbarn aus. Schlussendlich besprechen wir die Lösung im
Plenum. Es reicht, wenn Sie die notwendige Konstruktion angeben.
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Lösungsvorschlag zur Think-Pair-Share-Aufgabe

Beweisidee:

Für jeden Übergang δ(z , a) 3 z ′ so dass es einen ε-Übergang
von z ′ zu einem Zustand z ′′ gibt, füge z ′′ zu δ(z , a) hinzu.

Wiederhole diesen Schritt, bis sich hierdurch keine Änderung
mehr ergibt.

Für alle Startzustände, die einen ε-Übergang zu einem
Zustand z haben, füge z zu der Startzustandsmenge hinzu.

Entferne alle ε-Übergänge
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NFAs, DFAs und reguläre Grammatiken

NFAs → DFAs (Satz)

Jede von einem NFA akzeptierbare Sprache ist auch von einem
DFA akzeptierbar.

Idee: Wir lassen die verschiedenen “Paralleluniversen” von einem
Automaten simulieren. Dieser merkt sich, in welchen Zuständen er
sich gerade befindet.

Das heißt, die Zustände dieses Automaten sind Mengen von
Zuständen des ursprünglichen Automaten. Man nennt diese
Konstruktion daher auch Potenzmengenkonstruktion.
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NFAs, DFAs und reguläre Grammatiken

Potenzmengenkonstruktion:

Gegeben sei ein nicht-deterministischer endlicher Automat
M = (Z ,Σ, δ,S ,E ). Daraus konstruieren wir einen
deterministischen endlichen Automaten M ′ = (Z,Σ, δ′, z ′0,E ′) mit:

Z = P(Z )

δ′(Z ′, a) = δ̂(Z ′, a), Z ′ ⊆ Z

z ′0 = S

E ′ = {Z ′ ⊆ Z | Z ′ ∩ E 6= ∅}

Dabei entspricht der Zustand Z ′ = ∅ einem Fangzustand.
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Beispiel zur Potenzmengenkonstruktion

Wir betrachten folgendes Beispiel für einen NFA (welche Sprache
akzeptiert der NFA?):

1

2 3
b, c

b, c

a
b, c

a, b, c

Wir wollen nun mithilfe der Potenzmengenkonstruktion diesen
Automaten in einen DFA umwandeln.
Hierzu werden wir den Automaten ausgehend vom Startzustand
konstruieren, auf diese Weise können wir nicht erreichbare
Zustände auslassen.
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Der Startzustand

Der Startzustand ist die Menge aller Startzustände des NFA, in
diesem Fall {1, 2}. Der Zustand ist ein Endzustand, weil 2 ein
Endzustand ist.

{1, 2}
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Übergänge vom Startzustand aus

Mit einem a erreichen wir von Zustand 1 aus Zustand 2,
wohingegen kein Übergang a-Übergang von Zustand 2 aus
existiert. Von Zustand 1 aus kann man mit b oder c kann man den
Zustand 3 erreichen, von Zustand 2 aus den Zustand 2 oder den
Zustand 3. Insgesamt kann man von {1, 2} also mit b, c den
Zustand {2, 3} erreichen.

{1, 2} {2}

{2, 3}

a

b, c
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Übergänge von {2}, {2, 3} aus

Die Übergänge von Zustand {2} sind unmittelbar ablesbar: Es gibt
keinen Übergang mit a, es wird also ∅ erreicht, mit b und c können
Zustände 2 und 3 erreicht werden. Von Zustand {2, 3} aus kann
mit a der Zustand {3} erreicht werden, da von 3 mit a ein
Übergang zu 3 möglich ist und weitere a-Übergänge in 2 und 3
nicht existieren. Mit b, c ist ein Übergang zu {2, 3} möglich, da
von 2 aus b, c-Übergänge zu 2 und 3 existieren.

{1, 2} {2}

{2, 3}

∅

{3}

a

b, c

a

b, c

a

b, c
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Übergänge von {3}, ∅ aus

Die Übergänge von Zustand {3} sind unmittelbar ablesbar: Für alle
Eingabezeichen erreicht man wieder Zustand {3}. Für ∅ gilt hier
und in jedem anderen Fall: Für jedes Alphabetsymbol bleibt man
im Zustand ∅.

{1, 2} {2}

{2, 3}

∅

{3}

a

b, c

a

b, c

a

b, c

a, b, c

a, b, c
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Nicht erreichbare Zustände

Durch diese Konstruktion haben wir alle erreichbaren Zustände des
Potenzmengenautomaten erzeugt. Allerdings gibt es auch einige
nicht erreichbare Zustände, die wir auf diese Weise nicht erzeugt
haben (und in aller Regel auch nicht erzeugen wollen):
{1}, {1, 3}, {1, 2, 3}.
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NFAs, DFAs und reguläre Grammatiken

Bemerkungen zur Potenzmengenkonstruktion:

Wegen |P(Z )| = 2|Z | hat der DFA exponentiell mehr Zustände als
der dazugehörige NFA. Evtl. kann er aber noch verkleinert werden
(z.B. durch Entfernen nicht-erreichbarer Zustände).

In vielen Fällen ist der kleinste DFA, der eine Sprache akzeptiert,
tatsächlich exponentiell größer als der kleinste NFA. Ein Beispiel
hierfür ist die folgende Sprache:

Lk = {x ∈ {0, 1}∗ | |x | ≥ k , das k-letzte Zeichen von x ist 0}

Lk wird durch einen NFA mit k + 1 Zuständen erkannt und man
kann zeigen, dass der kleinste DFA, der Lk erkennt, mindestens 2k

Zustände haben muss.
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NFAs, DFAs und reguläre Grammatiken

Wir können nun

NFAs in DFAs umwandeln

DFAs in reguläre Grammatiken umwandeln

Es fehlt noch die Richtung “reguläre Grammatik → NFA”, dann
haben wir die Äquivalenz aller dieser Formalismen gezeigt.

reguläre
Grammatik

��

DFA

55

NFAoo

Sebastian Küpper Automaten und Formale Sprachen 127
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NFAs, DFAs und reguläre Grammatiken

Reguläre Grammatiken → NFAs (Satz)

Zu jeder regulären Grammatik G gibt es einen NFA M mit
L(G ) = T (M).
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NFAs, DFAs und reguläre Grammatiken

Umwandlung reguläre Grammatik → NFA:

Gegeben sei eine reguläre Grammatik G = (V ,Σ,P,S), die die
ε-Sonderregelung erfüllt. Wir erstellen einen NFA
M = (Z ,Σ, δ,S ′,E ) mit

Z = V ∪ {X}, X 6∈ V

S ′ = {S}

E =

{
{S ,X} falls (S → ε) ∈ P
{X} falls (S → ε) 6∈ P

B ∈ δ(A, a) falls (A→ aB) ∈ P

X ∈ δ(A, a) falls (A→ a) ∈ P
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NFAs, DFAs und reguläre Grammatiken

Zwischenzusammenfassung

Wir haben verschiedene Modelle zur Beschreibung regulärer
Sprachen kennengelernt:

Reguläre Grammatiken: Schaffen die Verbindung zur
Chomsky-Hierarchie. Werden zur Erzeugung von Sprachen
eingesetzt. Sind weniger gut dazu geeignet, um zu
entscheiden, ob sich ein bestimmtes Wort in der Sprache
befindet.

NFAs: Erlauben oft kleine, kompakte Darstellungen von
Sprachen. Sind, wegen ihres Nichtdeterminismus, genauso wie
Grammatiken weniger gut für die Lösung des Wortproblems
geeignet. Besitzen aber eine intuitive graphische Notation.
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NFAs, DFAs und reguläre Grammatiken

Zwischenzusammenfassung

Wir haben verschiedene Modelle zur Beschreibung regulärer
Sprachen kennengelernt:

DFAs: Können gegenüber äquivalenten NFAs exponentiell
größer werden. Sobald man jedoch einen DFA gegeben hat,
erlaubt dieser eine effiziente Lösung des Wortproblems
(einfach den Übergängen des Automaten nachlaufen und
überprüfen, ob ein Endzustand erreicht wird).

Alle Modelle benötigen jedoch relativ viel Schreibaufwand und
Platz für die Notation. Gesucht wird also eine kompaktere
Repräsentation: sogenannte reguläre Ausdrücke.
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Reguläre Ausdrücke

Regulärer Ausdruck

Ein regulärer Ausdruck α ist von einer der folgenden Formen:

∅
ε

a mit a ∈ Σ

αβ

(α|β)

(α)∗

wobei α, β reguläre Ausdrücke sind.

Bemerkung: Statt (α|β) wird oft auch (α + β) geschrieben.
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Reguläre Ausdrücke

Nach der Festlegung der Syntax regulärer Ausdrücke, müssen wir
auch deren Bedeutung festlegen, d.h., welcher reguläre Ausdruck
steht für welche Sprache?

Sprache eines regulären Ausdrucks

L(∅) = ∅
L(ε) = {ε}
L(a) = {a}

L(αβ) = L(α)L(β), wobei
L1L2 = {w1w2 | w1 ∈ L1,w2 ∈ L2} für
zwei Sprachen L1, L2.

L(α|β) = L(α) ∪ L(β)

L((α)∗) = (L(α))∗, wobei
L∗ = {w1 . . .wn | n ∈ N0,wi ∈ L} für
eine Sprache L
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Reguläre Ausdrücke

Bemerkungen zum ∗-Operator: L∗ = {w1 . . .wn | n ∈ N0,wi ∈ L}

Dieser Operator wird oft Kleenesche Hülle genannt. Nur durch
ihn kann man unendliche Sprachen erzeugen.

L∗ enthält immer das leere Wort ε (siehe Definition).

Beispiel für die Anwendung des ∗-Operators:
L = {a, bb, cc}

 L∗ =
{ε, a, bb, cc , aa, abb, acc, bba, bbbb, bbcc, cca, ccbb, cccc , . . . }

Alle Kombinationen beliebiger Länge sind möglich.
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Reguläre Ausdrücke

Beispiele für reguläre Ausdrücke über dem Alphabet Σ = {a, b}.

Beispiel 1: Sprache aller Wörter, die mit a beginnen und mit bb
enden

α = a(a|b)∗bb

Beispiel 2: Sprache aller Wörter, die das Teilwort aba enthalten.

α = (a|b)∗aba(a|b)∗

Beispiel 3: Sprache aller Wörter, die gerade viele a’s enthalten.

α = (b∗ab∗a)∗b∗ oder α = (b | ab∗a)∗
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Fragestellungen zu dieser Vorlesungseinheit

Zum Ende einer jeden Vorlesungseinheit betrachten wir im Regelfall
drei Fragestellungen, die mithilfe der in dieser Einheit besprochenen
Inhalte beantwortet werden sollen. In der darauffolgenden Einheit
können zu Beginn mögliche Antworten gesammelt werden.

Fragen zur vierten Vorlesungseinheit

Was unterscheidet NFA und DFA?

Wie transformiert man einen NFA in einen äquivalenten DFA?

Wie bildet man reguläre Ausdrücke?
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Reguläre Ausdrücke

Reguläre Ausdrücke → NFAs

Zu jedem regulären Ausdruck γ gibt es einen NFA M mit
L(γ) = T (M).
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Reguläre Ausdrücke

Beweis durch Induktion über den Aufbau von γ.

Für γ = ∅, γ = ε, γ = a gibt es offensichtlich entsprechende
Automaten.

Sei nun γ = αβ. Dann gibt es Automaten Mα, Mβ mit
T (Mα) = L(α) und T (Mβ) = L(β). Wir schalten diese Automaten
nun wie folgt hintereinander zu einem Automaten M:

M hat als Zustände die Vereinigung beider Zustandsmengen,
die gleichen Startzustände wie Mα und die gleichen
Endzustände wie Mβ. (Falls ε ∈ L(α), so sind auch die
Startzustände von Mβ Startzustände von M.)

Alle Übergänge von Mα bzw. Mβ bleiben erhalten.

Alle Zustände, die einen Übergang zu einem Endzustand von
Mα haben, erhalten zusätzlich genauso beschriftete
Übergänge zu allen Startzuständen von Mβ.
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Reguläre Ausdrücke

Sα Eα Sβ Eβ

a a

a

neu!
Mα Mβ

Es gilt T (M) = T (Mα)T (Mβ) = L(α)L(β)
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Reguläre Ausdrücke

Sei nun γ = (α | β). Dann gibt es Automaten Mα, Mβ mit
T (Mα) = L(α) und T (Mβ) = L(β). Wir bauen nun aus diesen
zwei Automaten einen Vereinigungsautomaten M:

M hat als Zustände die Vereinigung beider Zustandsmengen.
Ebenso ergeben sich die Startzustände als Vereinigung der
Startzustandsmengen und die Endzustände als Vereinigung
der Endzustandsmengen.

Alle Übergänge von Mα bzw. Mβ bleiben erhalten.
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Reguläre Ausdrücke

Sα Eα

Sβ Eβ

Mα

Mβ

Es gilt T (M) = T (Mα) ∪
T (Mβ) = L(α) ∪ L(β)
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Reguläre Ausdrücke

Sei nun γ = (α)∗. Dann gibt es einen Automaten Mα mit
T (Mα) = L(α). Wir bauen aus diesem Automaten nun wie folgt
einen Automaten M:

Alle Zustände, Start- und Endzustände sowie Übergänge
bleiben erhalten.

Zusätzlich erhalten alle Zustände, die einen Übergang zu
einem Endzustand von Mα haben, genauso beschriftete
Übergänge zu allen Startzuständen von Mα (Rückkopplung).

Falls ε 6∈ T (Mα), so gibt es einen weiteren Zustand, der
sowohl Start- als auch Endzustand ist. (Damit auch das leere
Wort erkannt wird.)
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Reguläre Ausdrücke

evtl. zusätzl. Zustand

Sα Eα

aa

a

Mα

Es gilt T (M) = (T (Mα))∗ = (L(α))∗.

Sebastian Küpper Automaten und Formale Sprachen 143
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Reguläre Ausdrücke

NFAs → Reguläre Ausdrücke

Zu jedem NFA M gibt es einen regulären Ausdruck γ mit
T (M) = L(γ).
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Reguläre Ausdrücke

Wir verwenden das folgende Zustandseliminations-Verfahren, das
einen NFA M in einen regulären Ausdruck verwandelt. Dabei erhält
man als Zwischenzustände Automaten, deren Übergänge nicht mit
Alphabetsymbolen, sondern mit regulären Ausdrücken beschriftet
sind.

Zunächst führen wir einen neuen Startzustand und einen neuen
Endzustand ein und verbinden die bisherigen Start- bzw.
Endzustände mit den neuen Zuständen durch ε-Kanten.

ε

ε

.

.

.
.
.
.

S
ε

ε

E
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Reguläre Ausdrücke

Transformations-Regeln: Zwei parallel verlaufende Übergänge mit
den Beschriftungen α1 und α2 können zu einer einzigen mit der
Beschriftung (α1 | α2) verschmolzen werden (Regel V).

α1

α2

(α1|α2)

Gleiches gilt im Fall, wenn ein Zustand zwei Schleifen besitzt.

α1

α2

(α1|α2)
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Reguläre Ausdrücke

Schleifen werden entfernt, indem man ihre Beschriftung α (mit
einem ∗ versehen) mit auf die nachfolgenden Kanten setzt.
(Regel S).

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

α
α1

αn

(α)∗α1

(α)∗αn

Nur zulässig, wenn es sich dabei um die einzige Schleife des
Zustands handelt.
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Reguläre Ausdrücke

Ein Zustand z wird eliminiert, indem man die Zustände, von denen
aus Kanten nach z hineinführen, und Zustände, in die Kanten
von z aus hineinführen, geeignet miteinander verbindet (Regel E).
Hierbei ergibt jedes Paar von eingehender und ausgehender Kante
eine neue Kante.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
z

α1

αm

β1

βn

(α1β1)

(αmβn)

(α1βn) (αmβ1)

Sebastian Küpper Automaten und Formale Sprachen 148
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Reguläre Ausdrücke

Die Anwendung von Regel E ist nur zulässig, wenn:

sich keine Schleife am zu entfernenden Zustand befindet und

es mindestens eine nach z hineinführende und eine aus z
herausführende Kante gibt.
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Reguläre Ausdrücke

Sobald keine Regel mehr anwendbar ist, haben wir im Allgemeinen
folgende Situation (plus evtl. zusätzliche Sackgassen):

γ

Dann ist γ der gesuchte reguläre Ausdruck.

Falls es keine Kante zwischen Anfangs- und Endzustand gibt:
γ = ∅.
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Reguläre Ausdrücke

Beispiel: Umwandlung des folgenden nicht-deterministischen
Automaten in einen regulären Ausdruck

1
b

2

3 4

a

b
a

b

Ergebnis: (εa|εb)(b∗ab)∗b∗aε
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Reguläre Ausdrücke

Wozu sind reguläre Ausdrücke in der Praxis nützlich?

Suchen und Ersetzen in Editoren

Pattern-Matching und Verarbeitung großer Texte und
Datenmengen, z.B., beim Data-Mining
(Tools: Stream-Editor grep, sed, awk, perl, . . . )

Übersetzung von Programmiersprachen:
Lexikalische Analyse – Umwandlung einer Folge von Zeichen
(das Programm) in eine Folge von Tokens, in der bereits die
Schlüsselwörter, Bezeichner, Daten, etc. identifiziert sind.
(Tools: lex, flex, . . . )
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Abschlusseigenschaften

Abgeschlossenheit (Definition)

Gegeben sei eine Menge M und ein binärer Operator
⊗ : M ×M → M.
Man sagt, eine Menge M ′ ⊆ M ist unter ⊗ abgeschlossen, wenn
für zwei beliebige Elemente m1,m2 ∈ M ′ gilt: m1 ⊗m2 ∈ M ′.

Wir betrachten hier Abschlusseigenschaften für die Menge aller
regulärer Sprachen. Die interessante Frage ist:

Falls L1, L2 regulär sind, sind dann auch L1 ∪ L2, L1 ∩ L2,
L1L2, L1 = Σ∗\L1 (Komplement) und L∗1 regulär?

Kurze Antwort: Die regulären Sprachen sind unter allen diesen
Operationen abgeschlossen.
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Abschlusseigenschaften

Warum sind Abschlusseigenschaften interessant?

Sie sind vor allem dann interessant, wenn sie konstruktiv
verwirklicht werden können, das heißt, wenn man – gegeben
Automaten für L1 und L2 – auch einen Automaten beispielsweise
für den Schnitt von L1 und L2 konstruieren kann.

Damit hat man dann mit Automaten eine Datenstruktur für
unendliche Sprachen, die man maschinell weiterverarbeiten kann.
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Abschlusseigenschaften

Abschluss unter Vereinigung

Wenn L1 und L2 reguläre Sprachen sind, dann ist auch L1 ∪ L2

regulär.

Begründung: den (nicht-deterministischen) Automaten für L1 ∪ L2

kann man mit denselben Methoden bauen wie den Automaten für
L(α|β) bei der Umwandlung von regulären Ausdrücken in NFAs.
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Think-Pair-Share: Abschlusseigenschaften

Abschluss unter Komplement

Wenn L eine reguläre Sprache ist, dann ist auch L = Σ∗\L regulär.

Bemerkung: bei Bildung des Komplements muss immer festgelegt
werden, bezüglich welcher Obermenge das Komplement gebildet
werden soll. Hier ist das die Menge Σ∗ aller Wörter über dem
Alphabet Σ, das gerade betrachtet wird.

Wir untersuchen nun, wieso diese Abschlusseigenschaft erfüllt ist.
Sei dazu ein DFA M = (Z ,Σ, δ, z0,E ) für L gegeben. Wie kann
man auf dieser Grundlage einen DFA M ′ konstruieren, der die
Komplementsprache Σ∗ \ L akzeptiert?
Erarbeiten Sie zunächst fünf Minuten in Einzelarbeit eine Lösung.
Anschließend tauschen Sie sich für weitere fünf Minuten mit ihrem
Sitznachbarn aus. Schlussendlich besprechen wir die Lösung im
Plenum. Es reicht, wenn Sie die Konstruktion angeben.
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Lösungsvorschlag zur Think-Pair-Share-Aufgabe

Begründung: Aus einem DFA M = (Z ,Σ, δ, z0,E ) für L gewinnt
man leicht einen DFA M ′ für L indem man die End- und
Nicht-Endzustände vertauscht. D.h. M ′ = (Z ,Σ, δ, z0,Z\E ).

Dann gilt:
w ∈ L ⇐⇒ δ̂(z0,w) ∈ E ⇐⇒ δ̂(z0,w) 6∈ Z\E ⇐⇒ w 6∈ L.
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Abschlusseigenschaften

Abschluss unter Produkt/Konkatenation

Wenn L1 und L2 reguläre Sprachen sind, dann ist auch L1L2

regulär.

Begründung: den (nicht-deterministischen) Automaten für L1L2

kann man mit denselben Methoden bauen wie den Automaten für
L(αβ) bei der Umwandlung von regulären Ausdrücken in NFAs.
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Abschlusseigenschaften

Abschluss unter der Stern-Operation

Wenn L eine reguläre Sprache ist, dann ist auch L∗ regulär.

Begründung: den (nicht-deterministischen) Automaten für L∗ kann
man mit denselben Methoden bauen wie den Automaten für
L((α)∗) bei der Umwandlung von regulären Ausdrücken in NFAs.
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Abschlusseigenschaften

Abschluss unter Schnitt

Wenn L1 und L2 reguläre Sprachen sind, dann ist auch L1 ∩ L2

regulär.

Begründung 1: Es gilt L1 ∩ L2 = L1 ∪ L2 und wir wissen bereits,
dass reguläre Sprachen und Komplement und Vereinigung
abgeschlossen sind.
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Abschlusseigenschaften

Begründung 2: Es gibt noch eine andere direktere Konstruktion für
den Schnitt. Dabei werden die zwei Automaten für L1 und L2

miteinander synchronisiert und quasi “parallelgeschaltet”. Dies
erfolgt durch das Bilden des Kreuzprodukts.

Seien M1 = (Z1,Σ, δ1,S1,E1), M2 = (Z2,Σ, δ2, S2,E2) NFAs mit
T (M1) = L1 und T (M2) = L2. Dann akzeptiert folgender Automat
M die Sprache L1 ∩ L2:

M = (Z1 × Z2,Σ, δ, S1 × S2,E1 × E2),

wobei δ((z1, z2), a) = {(z ′1, z
′
2) | z ′1 ∈ δ1(z1, a), z ′2 ∈ δ2(z2, a))}.

M akzeptiert ein Wort w genau dann, wenn sowohl M1 als auch
M2 das Wort w akzeptieren.
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Abschlusseigenschaften

Beispiel für ein Kreuzprodukt: bilde das Kreuzprodukt der
folgenden zwei Automaten:

b
a

a

b

g u 1 2

a, b

b
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Abschlusseigenschaften

Wir betrachten eine Anwendung des Kreuzprodukts auf
Adventures. Wiederholung der Regeln für Level 1:

Die Schatz-Regel

Man muss mindestens zwei Schätze finden.

Die Tür-Regel

Durch eine Tür kann man nur gehen, wenn man zuvor einen
Schlüssel gefunden hat. (Dieser Schlüssel darf aber dann beliebig
oft verwendet werden.)
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Abschlusseigenschaften

Die Drachen-Regel

Unmittelbar nach der Begegnung mit einem Drachen muss man in
einen Fluss springen, da uns der Drache in Brand stecken wird.
Dies gilt nicht mehr, sobald man ein Schwert besitzt, mit dem man
den Drachen vorher töten kann.

Alphabetsymbole:

Drachen (D):

Schwert (W):

Fluss (F):

Torbogen (B):

Tür (T):

Schlüssel (L):

Schatz (A):
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Abschlusseigenschaften

Man kann diese Regeln durch folgende endliche Automaten
beschreiben:

1 2

1 2 3 1 2

Σ

Σ\{ , }

3

D

Σ Σ Σ

T

Σ\{ , } Σ

A
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Abschlusseigenschaften

Gegeben sei ein Automat M, der eine Adventure-Karte beschreibt.
Sei

LM = T (M) die Sprache aller Pfade durch M von einem
Anfangs- zu einem Endzustand,

LA = T (A) die Menge aller Pfade, die die Schatz-Regel
erfüllen,

LT = T (T ) die Menge aller Pfade, die die Tür-Regel erfüllen
und

LD = T (D) die Menge aller Pfade, die die Drachen-Regel
erfüllen.

Außerdem sei AM die Menge aller Pfade durch die
Adventure-Karte, die alle Bedingungen erfüllen. Offensichtlich gilt:

AM = LM ∩ LA ∩ LT ∩ LD
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Abschlusseigenschaften

Damit haben wir ein Verfahren, um das Adventure-Problem
(Level 1) zu lösen, d.h., um zu überprüfen, ob ein Adventure eine
Lösung hat:

1 Bilde nacheinander das Kreuzprodukt der vier Automaten M,
A, T , D (das Kreuzprodukt ist assoziativ und daher die
Reihenfolge gleichgültig).

2 Überprüfe, ob der dadurch entstehende Automat mindestens
ein Wort akzeptiert, d.h., ob es einen Pfad von einem
Anfangs- zu einem Endzustand gibt.

Dies kann automatisch erfolgen, beispielsweise mit dem Tool Grail
zur Manipulation endlicher Automaten:
http://www3.cs.stonybrook.edu/

~algorith/implement/grail/implement.shtml
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Abschlusseigenschaften

Kürzeste Lösungen, ermittelt mit Grail (Befehle fmcross, fmenum):

> fmcross a.aut < t.aut > at.aut

> fmcross at.aut < d.aut > atd.aut

> fmcross m.aut < atd.aut > loesung.aut

> fmenum loesung.aut

DFWDWLDTATTATBF

DFWDWLDTATTAWLBF

DFWDWLDTAWLTATBF

DFWDWLDLDTATTATBF

...
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Abschlusseigenschaften

42

3

1

5 6

9

8

7

11

10

12

13

14 15 16

DFWDWLDTATTATBF =
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Abschlusseigenschaften

21 5

13

10147

6

8

11 12

3 4

9

15

BDFLTDFWBLBATAD =
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Ausblick

Weitere interessante Fragen

Wie kann man zeigen, dass eine Sprache nicht regulär ist?

Beispiel: Die Sprache {anbncn | n ≥ 1}, die bereits als Beispiel
auftauchte, scheint nicht regulär zu sein. Wie kann man das
zeigen?

Wenn eine Sprache regulär ist, wie groß ist dann der kleinste
Automat, der die Sprache akzeptiert? Gibt es überhaupt den
kleinsten Automaten?
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Fragestellungen zu dieser Vorlesungseinheit

Zum Ende einer jeden Vorlesungseinheit betrachten wir im Regelfall
drei Fragestellungen, die mithilfe der in dieser Einheit besprochenen
Inhalte beantwortet werden sollen. In der darauffolgenden Einheit
können zu Beginn mögliche Antworten gesammelt werden.

Fragen zur fünften Vorlesungseinheit

Wie wandelt man einen NFA in einen regulären Ausdruck um?

Wie wandelt man einen regulären Ausdruck in einen NFA um?

Wie konstruiert man den Automaten für die
Komplementsprache?
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Das Pumping-Lemma

Wie beweist man, dass eine Sprache L nicht regulär ist?

Idee: Man versucht auszunutzen, dass eine reguläre Sprache von
einem Automat mit endlich vielen Zuständen akzeptiert werden
muss. Das bedeutet auch: wenn ein Wort x ∈ L ausreichend lang
ist – nämlich mindestens so viele Zeichen lang ist wie es Zustände
im Automaten gibt – so besucht man damit beim Durchlauf durch
den Automaten mindestens einen Zustand z zweimal
(Taubenschlag Prinzip).
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Das Pumping-Lemma

u

v

w
z

Die dadurch entstehende Schleife kann nun mehrfach (oder gar
nicht) durchlaufen werden, dadurch wird das Wort x = uvw
“aufgepumpt” und man stellt fest, dass uv2w , uv3w , . . . sowie uw
ebenfalls in L liegen müssen.

Bemerkung: Es gilt v i = v . . . v︸ ︷︷ ︸
i-mal

.
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Das Pumping-Lemma

Außerdem kann man für u, v , w folgende Eigenschaften verlangen,
wobei n die Anzahl der Zustände des Automaten ist.

1 |v | ≥ 1: Die Schleife ist auf jeden Fall nicht trivial und enthält
zumindest einen Übergang.

2 |uv | ≤ n: Spätestens nach n Alphabetsymbolen wird der
Zustand z das zweite Mal erreicht.

Die Idee bei dieser Einschränkung ist, dass man
”
die erste“ Schleife

im Automaten identifiziert, die vollendet wird.
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Das Pumping-Lemma

Pumping-Lemma, uvw -Theorem (Satz)

Sei L eine reguläre Sprache. Dann gibt es eine Zahl n, so dass sich
alle Wörter x ∈ L mit |x | ≥ n zerlegen lassen in x = uvw , so dass
folgende Eigenschaften erfüllt sind:

1 |v | ≥ 1,

2 |uv | ≤ n und

3 für alle i = 0, 1, 2, . . . gilt: uv iw ∈ L.

Dabei ist n die Anzahl der Zustände eines Automaten, der L
erkennt. Dieses Lemma spricht jedoch nicht über Automaten,
sondern nur über die Eigenschaften der Sprache. Daher ist es dazu
geeignet, Aussagen über Nicht-Regularität zu machen.
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Das Pumping-Lemma

Wie kann man das Pumping-Lemma dazu nutzen, um zu zeigen,
dass eine Sprache nicht regulär ist?

Aussage des Pumping-Lemmas mit logischen Operatoren:

L regulär
→ ∃n ∀x ∈ L, |x | ≥ n ∃u, v ,w , x = uvw ∀i (uv iw ∈ L)

Das ist logisch äquivalent zu

∀n ∃x ∈ L, |x | ≥ n ∀u, v ,w , x = uvw ∃i (uv iw 6∈ L)
→ L ist nicht regulär

A→ B ≡ ¬B → ¬A und ¬∀x∃yF ≡ ∃x∀y¬F .
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Das Pumping-Lemma

Pumping-Lemma (alternative Formulierung)

Sei L eine Sprache. Angenommen, wir können für jede Zahl n ein
Wort x ∈ L mit |x | ≥ n wählen, so dass folgendes gilt: für alle
Zerlegungen x = uvw mit

1 |v | ≥ 1,

2 |uv | ≤ n

gibt es eine Zahl i mit uv iw 6∈ L. Dann ist L nicht regulär.

D.h., wir müssen zeigen, dass es für jedes n (für jede mögliche
Anzahl von Zuständen) ein Wort gibt, das mindestens so lang wie
n ist und das keine “pumpbare” Zerlegung hat.
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Pumping-Lemma

“Kochrezept” für das Pumping-Lemma

Gegeben sei eine Sprache L (Beispiel: {akbk | k ≥ 0}). Wir wollen
zeigen, dass sie nicht regulär ist.

1 Nehme eine beliebige Zahl n an. Diese Zahl darf nicht frei
gewählt werden.

2 Wähle ein Wort x ∈ L mit |x | ≥ n. Damit das Wort auch
wirklich mindestens die Länge n hat, empfiehlt es sich, dass n
(beispielsweise als Exponent) im Wort auftaucht.

Beispiel: x = anbn
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Pumping-Lemma

“Kochrezept” für das Pumping-Lemma

3 Betrachte nun alle möglichen Zerlegungen x = uvw mit den
Einschränkungen |v | ≥ 1 und |uv | ≤ n.

Beispiel: hier gibt es nur eine mögliche Zerlegung u = aj ,
v = a`, w = ambn mit j + `+ m = n und ` ≥ 1.

4 Wähle für jede dieser Zerlegungen ein i (das kann jedes Mal
ein anderes i sein), so dass uv iw 6∈ L. (In vielen Fällen sind
i = 0 und i = 2 eine gute Wahl.)

Beispiel: wähle i = 2, dann gilt uv2w = aj+2`+mbn 6∈ L, da
j + 2`+ m 6= n.
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Pumping-Lemma

Als weiteres Beispiel betrachten wir das Adventure, Level 2.
Wiederholung der Regeln:

Die Schatz-Regel

Man muss mindestens zwei Schätze finden.

Die Drachen-Regel

Unmittelbar nach der Begegnung mit einem Drachen muss man in
einen Fluss springen, da uns der Drache in Brand stecken wird.
Dies gilt nicht mehr, sobald man ein Schwert besitzt, mit dem man
den Drachen vorher töten kann.

Neue Tür-Regel

Die Schlüssel sind magisch und verschwinden sofort, nachdem eine
Tür mit ihnen geöffnet wurde. Sobald man eine Tür durchschritten
hat, schließt sie sich sofort wieder.
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Pumping-Lemma

51 2 3 4M

Wir betrachten folgende Sprache AM :

AM = {w | w entspricht einem Pfad durch das oben

angegebene Adventure, d.h., w ∈ T (M), und

erfüllt alle Regeln für Level 2}
= {A2LkTm | k ≥ m ≥ 1 }

L = Schlüssel T = Tür A = Schatz
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Pumping-Lemma

Wir zeigen nun, dass AM nicht regulär ist.

1 Gegeben sei eine beliebige Zahl n.
2 Wir wählen als Wort x = A2LnT n ∈ AM .
3 Sei nun x = uvw eine beliebige Zerlegung von x mit |v | ≥ 1

und |uv | ≤ n. Dann enthält v nur Schätze (A) oder Schlüssel
(L) (aber keine Türen T ).

4 Wir machen nun folgende Fallunterscheidung:

v enthält zumindest einen Schatz: dann enthält uv0w
höchstens noch einen Schatz und kann nicht in AM

liegen, da die Schatz-Regel verletzt ist. (i = 2 ist hier
auch möglich.)
v enthält zumindest einen Schlüssel: dann enthält uv0w
weniger als n Schlüssel und kann nicht in AM liegen, da
es für jede der n Türen vorher mindestens einen Schlüssel
geben muss.
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Pumping-Lemma

Falsche Anwendung des Pumping-Lemmas

“Wenn L die Pumping-Eigenschaft erfüllt (d.h., es gibt ein n, so
dass alle Wörter länger als n pumpbar sind), dann ist L regulär.”
Dieses Argument ist nicht korrekt.

Es gibt nicht-reguläre Sprachen, die trotzdem die
Pumping-Eigenschaft erfüllen.
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Beispiel für nicht-reguläre Sprache mit der
Pumping-Eigenschaft

L = {akbmcm | k ,m ≥ 0} ∪ {bic j | i , j ≥ 0}.

L erfüllt die Pumping-Eigenschaft: Sei n ∈ N und ein Wort
w ∈ L mit |x | > n beliebig gegeben. Führe eine
Fallunterscheidung danach durch, ob x mit a beginnt. Falls ja,
wähle u = ε, v = a, w ist der Rest des Wortes, dann ist
uv iw ∈ {akbmcm | k ,m ≥ 0}. Anderenfalls wähle u = ε,
v = b, falls x mit b beginnt, sonst v = c und w is der Rest
des Wortes. Dann ist uv iw ∈ {bic j | i , h ≥ 0}.
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Beispiel für nicht-reguläre Sprache mit der
Pumping-Eigenschaft

L = {akbmcm | k ,m ≥ 0} ∪ {bic j | i , j ≥ 0}.

Aber L ist nicht regulär. (Argumentation mit Hilfe von
Abschluss regulärer Sprachen unter Schnitt:
L ∩ L(a(b | c)∗) = {abmcm | m ≥ 0} und für diese Sprache
kann man mit dem Pumping-Lemma zeigen, dass sie nicht
regulär ist.)
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Äquivalenzrelationen und Minimalautomat

Minimalautomat

Wir beschäftigen uns nun mit folgenden Fragen:

Gibt es zu jeder regulären Sprache immer den kleinsten
deterministischen/nicht-deterministischen Automat?

Kann man direkt aus der Sprache die Anzahl der Zustände des
minimalen Automaten ablesen?

Wie bestimmt man den minimalen Automat?
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Äquivalenzrelationen und Minimalautomat

Wir betrachten
folgenden
Automaten M:

2 4

61

3 5

a

a

bb

a

a

a, b

b

b

b

a

Feststellung: für die Zustände 4, 5 gilt

mit einem Wort, das ein a enthält, landet man von dort aus
immer im Zustand 6 (Endzustand)

mit einem Wort, das kein a enthält, landet man von dort aus
immer im Zustand 4 bzw. 5 (kein Endzustand)

Daraus folgt: 4 und 5 sind erkennungsäquivalent und können zu
einem Zustand verschmolzen werden.
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Äquivalenzrelationen und Minimalautomat

Ebenso: die Zustände 2 und 3 sind erkennungsäquivalent

Entstehender Automat M ′:

b
2/3 4/51 a, b

a, b

a

6

b

a

Jetzt sind keine Zustände mehr erkennungsäquivalent und sie
können daher nicht weiter verschmolzen werden  der Automat
M ′ ist minimal für diese Sprache.
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Äquivalenzrelationen und Minimalautomat

Erkennungsäquivalenz (Definition)

Gegeben sei ein DFA M. Zwei Zustände z1, z2 heißen
erkennungsäquivalent genau dann, wenn für jedes Wort w ∈ Σ∗

gilt:
δ̂(z1,w) ∈ E ⇐⇒ δ̂(z2,w) ∈ E .
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Äquivalenzrelationen und Minimalautomat

Was ist eine Äquivalenzrelation?

Wir beginnen zunächst mit der Definition einer Relation:

Relation

Eine (zweistellige) Relation R auf einer Menge M ist eine
Teilmenge R ⊆ M ×M.
Statt (m1,m2) ∈ R schreibt man manchmal auch m1 R m2.
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Äquivalenzrelationen und Minimalautomat

Äquivalenzrelation

Eine Äquivalenzrelation R auf einer Menge M ist eine Relation
R ⊆ M ×M, die folgende Eigenschaften erfüllt:

R ist reflexiv, d.h., es gilt (m,m) ∈ R für alle m ∈ M.

R ist symmetrisch, d.h., falls (m1,m2) ∈ R, so auch
(m2,m1) ∈ R.

R ist transitiv, d.h., aus (m1,m2) ∈ R und (m2,m3) ∈ R folgt
(m1,m3) ∈ R.

Typische Beispiele für Äquivalenzrelationen auf natürlichen Zahlen:
Gleichheit, Gleichheit modulo k , . . .
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Äquivalenzrelationen und Minimalautomat

Äquivalenzklasse

Sei R eine Äquivalenzrelation auf M und m ∈ M. Die
Äquivalenzklasse [m]R von m ist folgende Menge:

[m]R = {n ∈ M | (n,m) ∈ R}

Manchmal schreibt man auch nur [m], wenn klar ist, welche
Relation gemeint ist.

Sebastian Küpper Automaten und Formale Sprachen 193
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Äquivalenzrelationen und Minimalautomat

Eigenschaften von Äquivalenzklassen

Sei R eine Äquivalenzrelation auf M und m1,m2 ∈ M.
Dann gilt entweder

[m1]R = [m2]R

oder
[m1]R ∩ [m2]R = ∅.

Außerdem gilt:

M =
⋃

m∈M
[m]R .

D.h., zwei Äquivalenzklassen sind entweder gleich oder vollständig
disjunkt. Außerdem überdecken sie M vollständig.
Man sagt auch: die Äquivalenzklassen bilden eine Partition von M.
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Äquivalenzrelationen und Minimalautomat

Jedem Wort x ∈ Σ∗ kann man in einem deterministischen Automat
einen eindeutigen Zustand z = δ̂(z0, x) zuordnen. Daher kann die
Definition der Erkennungsäquivalenz auf Wörter aus Σ∗ und
Sprachen (anstatt Automaten) ausgedehnt werden.

Myhill-Nerode-Äquivalenz (Definition)

Gegeben sei eine Sprache L und Wörter x , y ∈ Σ∗.
Wir definieren eine Äquivalenzrelation RL mit x RL y genau dann
wenn

für alle z ∈ Σ∗ gilt (xz ∈ L ⇐⇒ yz ∈ L).

Das ist gleichbedeutend damit, dass δ̂(z0, x) und δ̂(z0, y)
erkennungsäquivalent sind, und zwar für einen beliebigen
Automaten M, der L akzeptiert.
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Äquivalenzrelationen und Minimalautomat

Beispiel 1 für Myhill-Nerode-Äquivalenz:

Sprache L = {w ∈ {a, b}∗ | #a(w) gerade}

Es gibt folgende Äquivalenzklassen:

[ε] = {w ∈ {a, b}∗ | #a(w) gerade} = L
(Äquivalenzklasse von ε)

[a] = {w ∈ {a, b}∗ | #a(w) ungerade} = {a, b}∗\L
(Äquivalenzklasse von a)

Beispiel: ε und aa sind äquivalent, denn

wird an beide ein Wort mit gerade vielen a’s angehängt, so
bleiben sie in der Sprache

wird an beide ein Wort mit ungerade vielen a’s angehängt, so
fallen sie aus der Sprache heraus

Sebastian Küpper Automaten und Formale Sprachen 196
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Äquivalenzrelationen und Minimalautomat

L = {w ∈ {a, b}∗ | #a(w) gerade}

Automat:

b
a

a

b

g u
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Äquivalenzrelationen und Minimalautomat

Beispiel 2 für Myhill-Nerode-Äquivalenz:

Sprache
L = {w ∈ {a, b, c}∗ | das Teilwort abc kommt in w nicht vor}

Es gibt folgende Äquivalenzklassen:

[ε] = {w ∈ {a, b, c}∗ |
w endet nicht auf a oder ab und enthält abc nicht}

[a] = {w ∈ {a, b, c}∗ | w endet auf a und enthält abc nicht}
[ab] = {w ∈ {a, b, c}∗ |
w endet auf ab und enthält abc nicht}

[abc] = {w ∈ {a, b, c}∗ | w enthält abc} (Fangzustand)

Beispiel: a und ab sind nicht äquivalent, denn wird an beide ein c
angehängt, so ist ac noch in der Sprache, abc ist es aber nicht.
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Äquivalenzrelationen und Minimalautomat

L = {w ∈ {a, b, c}∗ | das Teilwort abc kommt in w nicht vor}

Automat:

a

a

ε fab

b c

a

b, c a a, b, c

c

b
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Äquivalenzrelationen und Minimalautomat

Myhill-Nerode-Äquivalenz und Regularität (Satz)

Eine Sprache L ⊆ Σ∗ ist genau dann regulär, wenn RL endlich viele
Äquivalenzklassen hat.
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Äquivalenzrelationen und Minimalautomat

RL hat endlich viele Äquivalenzklassen ⇒ L regulär:

Wir nehmen zunächst an, dass RL endlich viele Äquivalenzklassen
hat und konstruieren einen endlichen Automaten
M = (Z ,Σ, δ, z0,E ) für L, der wie folgt definiert ist:

Z = {[w ]RL
| w ∈ Σ∗} (Menge der Äquivalenzklassen)

z0 = [ε]RL

E = {[w ]RL
| w ∈ L}

δ([w ]RL
, a) = [wa]RL
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Äquivalenzrelationen und Minimalautomat

L regulär ⇒ RL hat endlich viele Äquivalenzklassen:

Sei nun M ein DFA mit T (M) = L. Dann definieren wir eine
Äquivalenzrelation RM mit

x RM y ⇐⇒ δ̂(z0, x) = δ̂(z0, y) für x , y ∈ Σ∗.

Die Anzahl der Äquivalenzklassen von RM ist gleich der Anzahl der
Zustände von M, d.h., sie ist endlich.
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Äquivalenzrelationen und Minimalautomat

Man kann zeigen, dass aus x RM y immer x RL y folgt: dazu
nehmen wir ein beliebiges z ∈ Σ∗. Dann gilt nämlich

xz ∈ L ⇐⇒ δ̂(z0, xz) ∈ E ⇐⇒ δ̂(δ̂(z0, x), z) ∈ E

⇐⇒ δ̂(δ̂(z0, y), z) ∈ E ⇐⇒ δ̂(z0, yz) ∈ E ⇐⇒ yz ∈ L.

Also setzt RM höchstens so viel Elemente in Beziehung wie RL und
hat damit mehr (oder gleich viele) Äquivalenzklassen wie RL.
Daraus folgt aber, dass RL nur endlich viele Äquivalenzklassen hat.
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Äquivalenzrelationen und Minimalautomat

Man kann den obigen Satz dazu nutzen, um zu zeigen, dass ein
Sprache nicht regulär ist. Dazu muss man nur unendlich viele
Wörter aus Σ∗ aufzählen und zeigen, dass sie in verschiedenen
Äquivalenzklassen sind.

Beispiel 3 für Myhill-Nerode-Äquivalenz:

Sprache L = {akbk | k ≥ 0}

Betrachte die Wörter a, aa, aaa, . . . , ai , . . .

Es gilt: ¬(ai RL aj) für i 6= j , denn aibi ∈ L und ajbi 6∈ L.
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Kochrezept für Myhill-Nerode-Beweise

Um den Satz von Myhill-Nerode zu verwenden, um zu beweisen,
dass eine Sprache L nicht regulär ist, geht man wie folgt vor:

Identifiziere eine unendliche Klasse an Wörtern w1,w2, ..., die
jeweils eine eigene Äquivalenzklasse repräsentieren.

Zeige für alle i , j : [wi ] = [wj ]⇒ i = j .

Es ist nicht notwendig, alle Äquivalenzklassen zu identifizieren oder
für jedes Wort in Σ∗ anzugeben, in welcher Äquivalenzklasse es
liegt. Es reicht, unendlich viele Wörter zu identifizieren, die
paarweise nicht äquivalent sind.
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Äquivalenzrelationen und Minimalautomat

Wir verwenden Myhill-Nerode-Äquivalenz nun um zwei zuvor mit
dem Pumping-Lemma untersuchte Sprachen zu analysieren:

Beispiel 4 für Myhill-Nerode-Äquivalenz (Adventure):

Sprache L = {A2LkTm | k ≥ m ≥ 1}

Betrachte die Wörter AA, AAL, AALL, . . . , AALi , . . .

Es gilt: ¬(AALi RL AALj) für i 6= j . O.B.d.A sei i > j , dann
AALiT i ∈ L und AALjT i 6∈ L.
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Äquivalenzrelationen und Minimalautomat

Wir verwenden Myhill-Nerode-Äquivalenz nun um zwei zuvor mit
dem Pumping-Lemma untersuchte Sprachen zu analysieren:

Beispiel 5 für Myhill-Nerode-Äquivalenz (nicht reguläre Sprache
mit Pumping-Eigenschaft):

Sprache

L = {akbmcm | k ,m ≥ 0} ∪ {bic j | i , j ≥ 0}.

Betrachte die Wörter a, ab, abb, . . . , abi , . . .

Es gilt: ¬(abi RL abj) für i 6= j . Sei i 6= j , dann abic i ∈ L und
abjc i 6∈ L.
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Think-Pair-Share: Nicht-Regularität

Betrachten Sie die (nicht-reguläre) Sprache

L = {anbm | n < m}.

Zeigen Sie, wahlweise mit dem Pumping-Lemma (das ist in diesem
Fall möglich) oder Myhill-Nerode-Äquivalenzklassen, dass L nicht
regulär ist.
Erarbeiten Sie zunächst vier Minuten in Einzelarbeit eine Lösung.
Anschließend tauschen Sie sich für weitere vier Minuten mit ihrem
Sitznachbarn aus. Schlussendlich besprechen wir die Lösung im
Plenum.
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Fragestellungen zu dieser Vorlesungseinheit

Zum Ende einer jeden Vorlesungseinheit betrachten wir im Regelfall
drei Fragestellungen, die mithilfe der in dieser Einheit besprochenen
Inhalte beantwortet werden sollen. In der darauffolgenden Einheit
können zu Beginn mögliche Antworten gesammelt werden.

Fragen zur sechsten Vorlesungseinheit

Wie kann man mit Hilfe des Pumping Lemmas für reguläre
Sprachen zeigen, dass eine Sprache nicht regulär ist?

Wie kann man mit Hilfe der Myhill-Nerode-Äquivalenz zeigen,
dass eine Sprache nicht regulär ist?

Wie kann man mit Hilfe der Myhill-Nerode-Äquivalenz zeigen,
dass eine Sprache regulär ist?
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Äquivalenzrelationen und Minimalautomat

Der DFA, der aus den Äquivalenzklassen einer regulären Sprache L
konstruiert werden kann, ist der (eindeutige) minimale
deterministische Automat für L. Wie kann man ihn aus einem,
nicht notwendigerweise minimalen, DFA erhalten, ohne die
Äquivalenzklassen zu konstruieren?

Lösung: wir starten mit dem DFA und verschmelzen alle
erkennungsäquivalenten Zustände.

Dabei legen wir zunächst fest, welche Zustände auf jeden Fall nicht
erkennungsäquivalent sind (die Endzustände und
Nicht-Endzustände) und finden weitere nicht
erkennungsäquivalente Zustände.
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Äquivalenzrelationen und Minimalautomat

Algorithmus Minimalautomat

Eingabe: DFA M (Zustände, die vom Startzustand aus nicht
erreichbar sind, sind bereits entfernt)
Ausgabe: Mengen von erkennungsäquivalenten Zuständen

1 Stelle eine Tabelle aller Zustandspaare {z , z ′} mit z 6= z ′ auf.

2 Markiere alle Paare {z , z ′} mit z ∈ E und z ′ 6∈ E (oder
umgekehrt)
(z , z ′ sind sicherlich nicht erkennungsäquivalent.)
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Äquivalenzrelationen und Minimalautomat

Algorithmus Minimalautomat

3 Für jedes noch unmarkierte Paar {z , z ′} und jedes a ∈ Σ
teste, ob {δ(z , a), δ(z ′, a)} bereits markiert ist. Wenn ja:
markiere auch {z , z ′}.
(Von z , z ′ gibt es Übergänge zu nicht erkennungsäquivalenten
Zuständen, sie können daher nicht erkennungsäquivalent sein.)

4 Wiederhole den vorherigen Schritt, bis sich keine Änderung in
der Tabelle mehr ergibt.

5 Für alle jetzt noch unmarkierten Paare {z , z ′} gilt: z und z ′

sind erkennungsäquivalent.
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Äquivalenzrelationen und Minimalautomat

Durchführung des Minimierungs-Algorithmus am Beispiel des
folgenden Automaten:

2 4

61

3 5

a

a

bb

a

a

a, b

b

b

b

a

2
3
4
5
6

1 2 3 4 5

Erstelle eine Tabelle aller Zustandspaare
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Äquivalenzrelationen und Minimalautomat

Durchführung des Minimierungs-Algorithmus am Beispiel des
folgenden Automaten:

2 4

61

3 5

a

a

bb

a

a

a, b

b

b

b

a

2
3
4
5
6 1 1 1 1 1

1 2 3 4 5

(1) Markiere Paare von Endzuständen und Nicht-Endzuständen
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Äquivalenzrelationen und Minimalautomat

Durchführung des Minimierungs-Algorithmus am Beispiel des
folgenden Automaten:

2 4

61

3 5

a

a

bb

a

a

a, b

b

b

b

a

2
3
4 2
5
6 1 1 1 1 1

1 2 3 4 5

(2) Markiere {2, 4} wegen δ(2, a) = 1, δ(4, a) = 6 und {1, 6}
markiert
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Äquivalenzrelationen und Minimalautomat

Durchführung des Minimierungs-Algorithmus am Beispiel des
folgenden Automaten:

2 4

61

3 5

a

a

bb

a

a

a, b

b

b

b

a

2
3
4 2
5 3
6 1 1 1 1 1

1 2 3 4 5

(3) Markiere {3, 5} wegen δ(3, a) = 1, δ(5, a) = 6 und {1, 6}
markiert
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Äquivalenzrelationen und Minimalautomat

Durchführung des Minimierungs-Algorithmus am Beispiel des
folgenden Automaten:

2 4

61

3 5

a

a

bb

a

a

a, b

b

b

b

a

2
3
4 2
5 4 3
6 1 1 1 1 1

1 2 3 4 5

(4) Markiere {2, 5} wegen δ(2, a) = 1, δ(5, a) = 6 und {1, 6}
markiert
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Äquivalenzrelationen und Minimalautomat

Durchführung des Minimierungs-Algorithmus am Beispiel des
folgenden Automaten:

2 4

61

3 5

a

a

bb

a

a

a, b

b

b

b

a

2
3
4 2 5
5 4 3
6 1 1 1 1 1

1 2 3 4 5

(5) Markiere {3, 4} wegen δ(3, a) = 1, δ(4, a) = 6 und {1, 6}
markiert
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Äquivalenzrelationen und Minimalautomat

Durchführung des Minimierungs-Algorithmus am Beispiel des
folgenden Automaten:

2 4

61

3 5

a

a

bb

a

a

a, b

b

b

b

a

2
3
4 2 5
5 6 4 3
6 1 1 1 1 1

1 2 3 4 5

(6) Markiere {1, 5} wegen δ(1, a) = 3, δ(5, a) = 6 und {3, 6}
markiert
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Äquivalenzrelationen und Minimalautomat

Durchführung des Minimierungs-Algorithmus am Beispiel des
folgenden Automaten:

2 4

61

3 5

a

a

bb

a

a

a, b

b

b

b

a

2
3
4 7 2 5
5 6 4 3
6 1 1 1 1 1

1 2 3 4 5

(7) Markiere {1, 4} wegen δ(1, a) = 3, δ(4, a) = 6 und {3, 6}
markiert
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Äquivalenzrelationen und Minimalautomat

Durchführung des Minimierungs-Algorithmus am Beispiel des
folgenden Automaten:

2 4

61

3 5

a

a

bb

a

a

a, b

b

b

b

a

2
3 8
4 7 2 5
5 6 4 3
6 1 1 1 1 1

1 2 3 4 5

(8) Markiere {1, 3} wegen δ(1, b) = 2, δ(3, b) = 5 und {2, 5}
markiert
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Äquivalenzrelationen und Minimalautomat

Durchführung des Minimierungs-Algorithmus am Beispiel des
folgenden Automaten:

2 4

61

3 5

a

a

bb

a

a

a, b

b

b

b

a

2 9
3 8
4 7 2 5
5 6 4 3
6 1 1 1 1 1

1 2 3 4 5

(9) Markiere {1, 2} wegen δ(1, b) = 2, δ(2, b) = 4 und {2, 4}
markiert
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Organisatorisches Einführung Chomsky-Hierarchie Reguläre Sprachen Kontextfreie Sprachen

Äquivalenzrelationen und Minimalautomat

Durchführung des Minimierungs-Algorithmus am Beispiel des
folgenden Automaten:

2 4

61

3 5

a

a

bb

a

a

a, b

b

b

b

a

2 9
3 8
4 7 2 5
5 6 4 3
6 1 1 1 1 1

1 2 3 4 5

Die verbleibenden Zustandspaare {2, 3} und {4, 5} können nicht
mehr markiert werden  sie sind erkennungsäquivalent und
können verschmolzen werden.
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Äquivalenzrelationen und Minimalautomat

Hinweise für die Durchführung des Minimierungs-Algorithmus:

Die Tabelle möglichst so aufstellen, dass jedes Paar nur genau
einmal vorkommt! Also bei Zustandsmenge {1, . . . , n}:

2, . . . , n vertikal und 1, . . . , n− 1 horizontal notieren.

Bitte angeben, welche Zustände in welcher Reihenfolge und
warum markiert wurden!

(Im Buch von Schöning werden nur Sternchen (∗) verwendet,
aber daraus werden bei der Korrektur die Reihenfolge und die
Gründe für die Markierung nicht ersichtlich.)
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Think-Pair-Share: Minimalautomat

Minimieren Sie den folgenden Automaten über dem Alphabet
{a, b, c}. Geben Sie außerdem die
Myhill-Nerode-Äquivalenzrelation auf dem Automaten an.
Beachten Sie, dass Sie hierzu das Ergebnis der Minimierung
verwenden können.

1 2

3

4

5

a

b, c

a

b, c

a

b, c

a, b, c

a, b, c

Erarbeiten Sie zunächst sechs Minuten in Einzelarbeit eine Lösung.
Anschließend tauschen Sie sich für weitere sechs Minuten mit
ihrem Sitznachbarn aus. Schlussendlich besprechen wir die Lösung
im Plenum.
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Lösung der Think-Pair-Share-Aufgabe

2 2
3 3 2
4 1 1 1
5 3 2 1

1 2 3 4

Demzufolge ist die Myhill-Nerode-Äquivalenzrelation durch die
folgenden Äquivalenzklassen gegeben:

[ε] = {1}, [a] = {2}, [b] = {3, 5}, [aa] = {4}.
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Äquivalenzrelationen und Minimalautomat

Für nicht-deterministische Automaten kann man folgende
Aussagen treffen:

Es gibt nicht den minimalen NFA, sondern es kann mehrere
geben.

Folgende zwei minimale NFAs erkennen L((0|1)∗1) und haben
zwei Zustände. (Mit nur einem Zustand kann diese Sprache
nicht erkannt werden.)

1 2

0, 1

1

0

1 2

1

0

1
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Äquivalenzrelationen und Minimalautomat

Gegeben ein DFA M. Dann hat ein minimaler NFA, der T (M)
erkennt, immer höchstens so viel Zustände wie M. (Denn M
selbst ist schon ein NFA.)

Außerdem: der minimale NFA kann exponentiell kleiner sein
als der minimale DFA.

Siehe Beispielsprachen:

Lk = {x ∈ {0, 1}∗ | |x | ≥ k , das k-letzte Zeichen von x ist 0}.
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Entscheidbarkeit

Wir diskutieren nun, ob es Verfahren gibt, um die folgenden
Fragestellungen bzw. Probleme für reguläre Sprachen zu
entscheiden. Dabei nehmen wir an, dass reguläre Sprachen als
DFAs, NFAs, Grammatiken oder reguläre Ausdrücke gegeben sind.

Probleme

Wortproblem: Gegeben eine reguläre Sprache L und w ∈ Σ∗.
Gilt w ∈ L?

Leerheitsproblem: Gegeben eine reguläre Sprache L. Gilt
L = ∅?
Endlichkeitsproblem: Gegeben eine reguläre Sprache L. Ist L
endlich?
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Entscheidbarkeit

Probleme (Fortsetzung)

Schnittproblem: Gegeben zwei reguläre Sprachen L1, L2. Gilt
L1 ∩ L2 = ∅?
Inklusionsproblem: Gegeben zwei reguläre Sprachen L1, L2.
Gilt L1 ⊆ L2?

Äquivalenzproblem: Gegeben zwei reguläre Sprachen L1, L2.
Gilt L1 = L2?
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Entscheidbarkeit

Wortproblem (w ∈ L?)

Gegeben sind eine reguläre Sprache L und ein Wort w ∈ Σ∗.

Lösung: Bestimme einen DFA M für L und verfolge die
Zustandsübergänge von M, wie durch w vorgegeben.
Endzustand wird erreicht  w ∈ L
Nicht-Endzustand wird erreicht  w 6∈ L
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Entscheidbarkeit

Leerheitsproblem (L = ∅?)

Gegeben ist eine reguläre Sprache L.

Lösung: Bestimme einen NFA M für L.
L = ∅
⇐⇒ es gibt keinen Pfad von einem Start- zu einem Endzustand.
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Entscheidbarkeit

Endlichkeitsproblem (Ist L endlich?)

Gegeben ist eine reguläre Sprache L.

Lösung: Bestimme einen NFA M für L.
L ist unendlich
⇐⇒ in M gibt es unendlich viele Pfade von einem Start- zu

einem Endzustand
⇐⇒ es gibt einen erreichbaren Zyklus in M, von dem aus

wiederum ein Endzustand erreichbar ist.
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Entscheidbarkeit

Schnittproblem (L1 ∩ L2 = ∅?)

Gegeben sind reguläre Sprachen L1, L2.

Lösung: Bestimme NFAs M1, M2 für L1, L2 und bilde das
Kreuzprodukt von M1, M2. Wende dann den Leerheitstest auf das
Kreuzprodukt an.
(Siehe auch den Abschnitt über Abschlusseigenschaften

Schnitt regulärer Sprachen .)
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Entscheidbarkeit

Inklusionsproblem (L1 ⊆ L2?)

Gegeben sind reguläre Sprachen L1, L2.

Lösung: Es gilt L1 ⊆ L2 genau dann, wenn L1 ∩ L2 = ∅. Da Schnitt
und Komplement konstruktiv bestimmbar sind und ein
Leerheitstest existiert, kann damit das Inklusionsproblem gelöst
werden.

Anmerkung: für dieses Problem gibt es auch effizientere Methoden,
bei denen die Komplementierung von L2 – für die die Konstruktion
eines deterministischen Automaten erforderlich ist – vermieden
wird.
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Entscheidbarkeit

Äquivalenzproblem (L1 = L2?)

Gegeben sind reguläre Sprachen L1, L2.

Lösung: Es gilt L1 = L2 genau dann, wenn L1 ⊆ L2 und L1 ⊇ L2.
Das Inklusionsproblem ist – wie wir vorher gesehen haben – lösbar.

Eine andere Methode: Bestimme jeweils zu L1 und L2 die
minimalen DFAs M1 und M2. Da der minimale DFA eindeutig ist,
muss jetzt nur noch gezeigt werden, dass M1 und M2 strukturell
gleich sind, d.h., es gibt eine Umbenennung der Zustände, die M1

in M2 überführt. Man sagt auch: M1 und M2 sind isomorph.
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Entscheidbarkeit

Effizienzgesichtspunkte:
Je nachdem, in welcher Darstellung eine Sprache L gegeben ist,
kann die Komplexität der oben beschriebenen Verfahren sehr
unterschiedlich ausfallen.

Beispiel Äquivalenzproblem:

L1, L2 gegeben als DFAs  Komplexität O(n2)
(d.h., quadratisch viele Schritte in der Größe der Eingabe)

L1, L2 gegeben als Grammatiken, reguläre Ausdrücke oder
NFAs  Komplexität NP-hart
Das bedeutet unter anderem: es ist nicht bekannt, ob dieses
Problem in polynomieller Zeit lösbar ist. (Mehr zur
Komplexitätsklasse NP und verwandten Fragestellungen in der
Vorlesung “Berechenbarkeit und Komplexität”.)
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Anwendung: Verifikation

Mit Hilfe von Sprachen bzw. den dazugehörigen endlichen
Automaten kann man oft alle Abläufe eines Systems beschreiben
(zumindest falls das System nur endlich viele Zustände hat).

Sei also LSys die Menge aller Systemabläufe und LSpec die
Spezifikation, d.h., die Menge aller korrekten Systemabläufe. Wir
wollen zeigen, dass

LSys ⊆ LSpec

Das kann man mit den eingeführten Verfahren machen, wenn beide
Sprachen durch Automaten gegeben sind. Diesen Vorgang nennt
man auch (System-)Verifikation.
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Anwendung: Verifikation

Ein System kann dabei ein Programm, ein Prozess oder ein
verteiltes System (bestehend aus mehreren Prozessen) sein.

Beispiele für Verifikation:

Zeige, dass alle Pfade eines Adventures mindestens einen
Schatz enthalten.

Zeige, dass in einem Programm niemals eine Division durch 0
auftritt.

Zeige, dass in einem System von nebenläufig arbeitenden
Prozessen der wechselseitige Ausschluss nicht verletzt wird.
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Anwendung: Verifikation

Ein abschließendes ausführliches Beispiel:

Wir betrachten zwei Prozesse P1, P2, die auf eine gemeinsame
Ressource (Drucker, Datei, . . . ) zugreifen wollen.

Jeder Prozess hat einen sogenannten kritischen Bereich, in
dem auf die Ressource zugegriffen wird. Es darf sich jeweils
nur ein Prozess im kritischen Bereich befinden.

Es stehen gemeinsame Variable zur Verfügung, über die sich
die Prozesse synchronisieren können. Diese Variablen sind
jedoch keine Semaphoren, d.h., eine atomare Operation, bei
der gleichzeitig gelesen und geschrieben wird, ist nicht
möglich.

Wir möchten zeigen, dass der wechselseitige Ausschluss
gewährleistet ist und dass gewisse Fairnessbedingungen (jeder
Prozess kommt irgendwann an die Reihe) eingehalten werden.
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Anwendung: Verifikation

Was hat das mit formalen Sprachen zu tun?

Die Menge aller Abläufe der Prozesse wird durch einen
endlichen Automaten beschrieben. Insbesondere gibt es
Automaten für jeden Prozess und einen Automaten für die
Abläufe des Gesamtsystems, der durch ein Kreuzprodukt
erzeugt wird.

Wir möchten zeigen, dass ein System Sys eine Spezifikation
Spec erfüllt. Sei LSys die Menge aller möglichen Abläufe des
Systems und LSpec die Menge aller Abläufe, die Spec erfüllen.

Dann ist zu zeigen: LSys ⊆ LSpec .

Und wenn beide Sprachen regulär sind, dann gibt es dafür ein
effektives Verfahren!
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Anwendung: Verifikation

Versuch 1: Beide Prozesse P1, P2 verwenden eine gemeinsame
Boolesche Variable f, die mit false initialisiert wird.

Programmcode für P1, P2

while true do

1: if (f = false?) then do

begin

2: f := true;

3: [Betrete krit. Bereich];

4: [Verlasse krit. Bereich];

5: f := false

end

endif

enddo
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Anwendung: Verifikation

Wir verwenden folgendes Alphabet, bestehend aus den
Programm-Befehlen und den Abfragen der Booleschen Variablen:

Σ = {(f := true)i , (f := false)i , (f = true?)i ,

(f = false?)i | i ∈ {1, 2}}
(Synchronisation von Prozess i mit Variable f)

∪ {BkBi , VkBi | i ∈ {1, 2}}
(Prozess i betritt/verlässt kritischen Bereich).

Der Index i ∈ {1, 2} gibt an, ob die jeweilige Aktion vom ersten
oder vom zweiten Prozess ausgeführt wird.

Sebastian Küpper Automaten und Formale Sprachen 233
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Anwendung: Verifikation

Beschreibung der Abläufe eines Prozesses i als endlicher Automat:

1

3

4

2

5

(f = false?)i

VkBi

(f := false)i

(f = true?)i

(f := true)i

BkBi

∆i

∆i ∆i

∆i

∆i

Pi

mit ∆i =
{(f := true)j , (f := false)j , (f = true?)j , (f = false?)j , BkBj , VkBj}
wobei j = 2, falls i = 1, und j = 1, falls i = 2.
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Anwendung: Verifikation

Bemerkungen:

Bedeutung der Zustände 1, 2, 3, 4, 5: diese entsprechen den
mit Labels markierten Programmzeilen

Bedeutung der Schleifen mit Alphabetsymbolen aus ∆i : da
wir später das Kreuzprodukt bilden werden, um mehrere
Automaten zu synchronisieren, dürfen Übergänge anderer
Automaten, die den Prozess i nicht betreffen, nicht
ausgeschlossen werden. Sie werden einfach “mitgehört” und
haben keinen Einfluss auf die Zustandsübergänge.
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Anwendung: Verifikation

Beschreibung der Booleschen Variable f durch einen Automaten:

1

2

(f = false?)1
(f = false?)2

(f := false)1
(f := false)2

(f := true)1
(f := true)2

(f := false)1
(f := false)2

(f = true?)1
(f = true?)2

(f := true)1
(f := true)2

∆f

∆f

F

mit ∆f = {BkB1, VkB1, BkB2, VkB2}.
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Anwendung: Verifikation

Die Sprache aller Abläufe des Gesamtsystems ist
T (P1) ∩ T (P2) ∩ T (F ).

Der Automat WA, der alle Abläufe beschreibt, die den
wechselseitigen Ausschluss erfüllen (beide Prozesse sind nicht
gleichzeitig im kritischen Bereich) sieht folgendermaßen aus:

2 1 3

BkB1

VkB1

Σ\{BkB1, BkB2}

VkB2

BkB2

WA

Σ\{VkB1, BkB2} Σ\{BkB1, VkB2}

Damit ist zu zeigen T (P1) ∩ T (P2) ∩ T (F ) ⊆ T (WA).
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Anwendung: Verifikation

Strategie : Kreuzprodukt der Automaten P1, P2, F bilden;
Automat WA komplementieren und dann wiederum das
Kreuzprodukt bilden; die Sprachen sind ineinander enthalten, genau
dann, wenn der entstehende Automat die leere Sprache akzeptiert.
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Anwendung: Verifikation

Die entstehende Sprache ist nicht leer! Es gibt also Abläufe, die die
Bedingung des wechselseitigen Ausschluss verletzen.

Einer davon ist:

(f = false?)2 (f = false?)1 (f := true)2 BkB2 (f := true)1 BkB1.

Grund für die Verletzung des wechselseitigen Ausschlusses: Es gibt
keine atomare Schreib- und Leseoperation. Daher können beide
Prozesse nacheinander die Variable auslesen, anschließend setzen
beide die Variable und betreten den kritischen Bereich.

Der Algorithmus ist also falsch!
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Anwendung: Verifikation

Versuch 2: Wir betrachten nun das Verfahren zum wechselseitigen
Ausschluss von Lamport.

Dabei betrachten wir: zwei Prozesse P1, P2 mit unterschiedlichem
Programmcode und zwei Boolesche Variable f1, f2 (initialisiert mit
false).
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Anwendung: Verifikation

Prozess P1

while true do

1: f1 := true; (#)

2: while (f2 = true?) do

skip

od;

3: [Betrete krit. Bereich];

4: [Verlasse krit. Bereich];

5: f1 := false

od;

skip: Null-Operation (hat keine Auswirkungen)
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Anwendung: Verifikation

Prozess P2

while true do

1: f2 := true; (#)

2: if (f1 = true?) then do

begin

3: f2 := false;

4: while (f1 = true?) do skip od;

goto 1

end;

5: [Betrete krit. Bereich];

6: [Verlasse krit. Bereich];

7: f2 := false

od;
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Anwendung: Verifikation

In diesem Fall betrachten wir folgendes Alphabet Σ:

Σ = {(f1 := true)1, (f1 := false)1,

(f1 = true?)2, (f1 = false?)2,

(f2 := true)2, (f2 := false)2,

(f2 = true?)1, (f2 = false?)1,

BkB1, VkB1, BkB2, VkB2}.
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Anwendung: Verifikation

Automat für den Prozess P1:

5

2 3

4

∆1

∆1

1
(f1 := true)1

VkB1(f1 := false)1

(f2 = true?)1

(f2 = false?)1

∆1

∆1∆1

BkB1

P1

Dabei gilt für die “mitgehörten” Alphabetsymbole:

∆1 = {(f2 := true)2, (f2 := false)2, (f1 = true?)2,

(f1 = false?)2, BkB2, VkB2}
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Anwendung: Verifikation

Automat für den Prozess P2:

1 2 3

4

5

(f2 := true)2

(f1 = true?)2

6

(f1 = false?)2

(f1 = true?)2

(f1 = false?)2

(f2 := false)2

∆2

∆2

∆2∆2

∆2

7

∆2

VkB2 BkB2

(f2 := false)2

P2

∆2 = {(f1 := true)1, (f1 := false)2, (f2 = true?)1,

(f2 = false?)1, BkB1, VkB1}

Sebastian Küpper Automaten und Formale Sprachen 245
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Anwendung: Verifikation

Automaten für die beiden Variablen:

1

2

1

2

(f1 = false?)2 (f1 := false)1

(f1 := true)1 (f1 := false)1

(f1 := true)1(f1 = true?)2

∆f1

∆f1

∆f2

(f2 := false)2

(f2 := false)2(f2 := true)2

(f2 := true)2(f2 = true?)1

∆f2

(f2 = false?)1

F1 F2

∆f1 = {(f2 := true)2, (f2 := false)2, (f2 = true?)1,

(f2 = false?)1, BkB1, BkB2, VkB1, VkB2}

Analog für ∆f2.
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Anwendung: Verifikation

In diesem Fall ist der wechselseitige Ausschluss erfüllt, d.h., es gilt
T (P1) ∩ T (P2) ∩ T (F1) ∩ T (F2) ⊆ T (WA).
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Anwendung: Verifikation

Neben dem wechselseitigen Ausschluss soll noch folgende
Fairness-Bedingung für jeden Prozess i überprüft werden:

(Gi ) “Sobald Prozess i seine Bereitschaft bekundet hat,
den kritischen Bereich zu betreten, indem er die
Anweisung (#) ausführt, kann der andere Prozess j
nicht zweimal hintereinander den kritischen Bereich
betreten, ohne dass Prozess i zwischendurch den
kritischen Bereich betritt.”
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Anwendung: Verifikation

Automat NG 1, der genau die Abläufe erkennt, die (G1) nicht
erfüllen:

1 32 4

Σ Σ
NG 1

Σ\{BkB1, BkB2}Σ\{BkB1, BkB2}

BkB2 BkB2(f1 := true)1

Wir wollen zeigen, dass
T (P1) ∩ T (P2) ∩ T (F1) ∩ T (F2) ∩ T (NG1) = ∅ gilt.
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Anwendung: Verifikation

Fairness ist erfüllt für Prozess 1
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Anwendung: Verifikation

Fairness ist nicht erfüllt für Prozess 2:

Der erste Ablauf, der die Fairness verletzt, entspricht:

(f2 := true)2 (f1 := true)1 (f1 = true?)2 (f2 := false)2
(f2 = false?)1 BkB1 VkB1 (f1 := false)1 (f1 := true)1
(f2 = false?)1 BkB1
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Anwendung: Verifikation

Zusammenfassung:

Wir haben mit Hilfe von endlichen Automaten zwei Protokolle
modelliert, die wechselseitigen Ausschluss realisieren sollen.

Mit Hilfe der Lösungsverfahren für das Inklusions- bzw.
Schnittproblem haben wir überprüft, ob diese Protokolle
tatsächlich wechselseitigen Ausschluss und Fairness realisieren.

Das bedeutet: die vorgestellten Verfahren können zur
Programmverifikation eingesetzt werden.

Bemerkung: Bei realen Programmen hat man allerdings noch
damit zu kämpfen, dass der Zustandsraum eines Programms oft
unendlich ist. Damit wird vieles unentscheidbar und muss durch
approximative Verfahren gelöst werden.
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Ausblick

Im Laufe der verbleibenden Vorlesungseinheiten werden wir uns
den kontextfreien Sprachen zuwenden:

Wir werden ein effizienteres Verfahren zur Entscheidung des
Wortproblems kennenlernen.

Analog zum Pumping-Lemma für reguläre Sprachen
betrachten wir das Pumping-Lemma für kontextfreie
Sprachen, mit dem gezeigt werden kann, dass eine Sprache
nicht kontextfrei ist.

Wir untersuchen, unter welchen Operatoren kontextfreie
Sprachen abgeschlossen sind.

Analog zu DFAs und NFAs werden wir Sprachakzeptoren für
kontextfreie Sprachen definieren, die so genannten
Kellerautomaten.
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Fragestellungen zu dieser Vorlesungseinheit

Zum Ende einer jeden Vorlesungseinheit betrachten wir im Regelfall
drei Fragestellungen, die mithilfe der in dieser Einheit besprochenen
Inhalte beantwortet werden sollen. In der darauffolgenden Einheit
können zu Beginn mögliche Antworten gesammelt werden.

Fragen zur siebten Vorlesungseinheit

Wie kann man einen DFA minimieren?

Wie stellt man fest ob die Sprache, die ein NFA akzeptiert,
leer ist?

Wie stellt man fest ob zwei NFAs die gleiche Sprache
akzeptieren?
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Kontextfreie Sprachen

Wir behandeln nun die kontextfreien oder Typ-2-Sprachen.

Wiederholung: Produktionen kontextfreier Grammatiken

Bei kontextfreien Grammatiken haben alle Produktionen die Form
A→ w , wobei A ∈ V (d.h., A ist eine Variable) und w ∈ (V ∪Σ)∗.

Betrachtete Beispielgrammatiken:

Grammatik, die korrekt geklammerte arithmetische Ausdrücke
erzeugt

Grammatik, die Sätze der natürlichen Sprache erzeugt

Ein weiteres Beispiel: die Sprache L = {akbk | k ≥ 0} ist
kontextfrei.
Produktionen: S → ε | T , T → ab | aTb
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Kontextfreie Sprachen

Anwendungen kontextfreier Sprachen

Hauptanwendung: Beschreibung der Syntax von
Programmiersprachen

Viele der hier besprochenen Techniken sind daher interessant für
den Einsatz im Compilerbau.

Bemerkung: Bisher ist es noch niemandem gelungen eine
vollständige Grammatik aller korrekten natürlichsprachigen Sätze
zu bilden. Frage: Was ist überhaupt ein korrekter Satz?
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Kontextfreie Sprachen

Es ist unter Linguisten umstritten, ob es eine kontextfreie
Grammatik geben kann, die eine natürliche Sprache erzeugt. Ein
Gegenargument beispielsweise für schweizer Deutsch ist, dass es
Verben gibt, die zwei Nominalphrasen verschiedenen Typs (in
diesem Fall: Akkusativobjekte und Dativobjekte) benötigen und
eine Satzordnung möglich ist, in der beispielsweise alle
Akkusativobjekte gruppiert vor alle Dativobjekte und diese
wiederum vor alle zugehörigen Verben gestellt werden.
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Kontextfreie Sprachen

Inhalt des Abschnitts “Kontextfreie Sprachen”

Normalformen – wichtig für die Anwendung bestimmter
Verfahren/Techniken ist es, eine Grammatik in eine bestimmte
Normalform zu bringen

Wortproblem – ein Algorithmus, um das Wortproblem zu
lösen (CYK-Algorithmus)

Pumping-Lemma für kontextfreie Sprachen

Abschlusseigenschaften – die kontextfreien Sprachen verhalten
sich hier nicht ganz so gutartig wie die regulären Sprachen

Kellerautomaten – das Automatenmodell zu kontextfreien
Sprachen
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Normalformen

Wir beschäftigen uns zunächst noch einmal mit der
“ε-Sonderregelung”:

Die Definition für kontextfreie Grammatiken (mit
ε-Sonderregelung) fordert, dass S auf keiner rechten Seite
auftauchen darf, wenn S → ε als Produktion vorkommt. Außerdem
dürfen keine weiteren Produktionen der Form A→ ε auftauchen.

Was passiert, wenn man diese Bedingungen für kontextfreie
Grammatiken aufhebt und beliebige Regeln der Form A→ ε
erlaubt? Kann es dann passieren, dass man eine nicht-kontextfreie
Sprache erzeugt?

Antwort: nein
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Normalformen

ε-freie Grammatiken (Satz)

Gegeben sei eine Grammatik G = (V ,Σ,P,S) mit Produktionen
der Form A→ w , w ∈ (V ∪ Σ)∗ und ε 6∈ L(G ).
Dann gibt es eine Grammatik G ′ = (V ,Σ,P,S) mit Produktionen
der Form A→ w , w ∈ (V ∪ Σ)+ und L(G ) = L(G ′).

Das bedeutet, dass Grammatiken, bei denen auf der linken Seite
einer Produktionsregel stets genau eine Variable steht, auch wenn
sie nicht kontextsensitiv sind (also ε-Ableitungen, die der
ε-Sonderregel nicht genügen, enthalten), stets kontextfreie
Sprachen erzeugen.
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Normalformen

Verfahren zur Entfernung von ε-Produktionen:

1 Bestimme die Variablenmenge V1 ⊆ V mit
V1 = {A ∈ V | A⇒∗ ε}, d.h., die Menge aller Variablen, aus
denen sich das leere Wort ableiten lässt.

2 Füge für jede Produktion der Form B → xAy mit A ∈ V1,
x , y ∈ (V ∪ Σ)∗ eine Produktion B → xy zur
Produktionenmenge hinzu. (Diese Produktion “simuliert” das
Löschen von A.)
Wiederhole diesen Schritt solange, bis keine neuen Regeln
mehr entstehen. (Achtung: für die rechte Seite einer
Produktion gibt es evtl. mehrere Möglichkeiten, sie in xAy
aufzuspalten.)

3 Entferne alle Produktionen der Form A→ ε.
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Normalformen

Beispiel: ε-Produktionen entfernen
Sei G = (V ,Σ,P, S), wobei V = {S ,X ,Y ,Z}, Σ = {a, b} und P
enthält folgende Produktionen:

S → XZ

X → aYb | ε
Y → bXa | bb

Z → ε | aSa

Bemerkung: Für diese Grammatik G gilt ε ∈ L(G ). Durch die
Umwandlung entsteht eine Grammatik G ′ mit L(G ′) = L(G )\{ε}.
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Normalformen

Bemerkung:

Weil wir jede Grammatik, die “fast” kontextfrei ist, aber das leere
Wort als rechte Seite enthält, in eine kontextfreie Grammatik
umwandeln können, werden wir im Folgenden, um zu zeigen, dass
eine Sprache kontextfrei ist, Grammatiken verwenden, bei denen
beliebige Wörter als rechte Seiten zugelassen sind, auch das leere
Wort.

Manchmal ist es in Konstruktionen und Beweisen trotzdem
praktisch davon auszugehen, dass ε nicht als rechte Seite
vorkommt (außer als S → ε, siehe ε-Sonderregel). Daher gilt
weiterhin: Ist eine Grammatik kontextfrei, bedeutet das, dass alle
ε-Ableitungen der ε-Sonderregel genügen.
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Normalformen

Wir betrachten nun eine weitere nützliche Normalform.

Chomsky-Normalform (Definition)

Eine kontextfreie Grammatik G mit ε 6∈ L(G ) ist in
Chomsky-Normalform (kurz: CNF), falls alle Produktionen eine der
folgenden zwei Formen haben:

A→ BC A→ a

Dabei sind A,B,C ∈ V Variablen und a ∈ Σ ein Alphabetsymbol.
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Normalformen

Umwandlung in Chomsky-Normalform (Satz)

Zu jeder kontextfreien Grammatik G mit ε 6∈ L(G ) gibt es eine
Grammatik G ′ in Chomsky-Normalform mit L(G ) = L(G ′).

Die Chomsky-Normalform ist besonders nützlich, weil Ableitungen
in solchen Grammatiken die Form eines Binärbaums annehmen.
Wir werden dies verwenden, um das Wortproblem für kontextfreie
Sprachen effizient zu beantworten und um zu beweisen, dass eine
Sprache nicht kontextfrei ist.
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Normalformen

Verfahren zur Umwandlung in Chomsky-Normalform:

0 (Falls die Grammatik nicht kontextfrei, ist aber jede
Produktionsregel auf der linken Seite nur eine Variable
enthält: ε-Produktionen entfernen ε-Produktionen entfernen )

1 Kettenproduktionen entfernen (A→ B)

2 Alphabetsymbole aus den rechten Seiten entfernen

3 Lange rechte Seiten aufteilen
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Organisatorisches Einführung Chomsky-Hierarchie Reguläre Sprachen Kontextfreie Sprachen

Normalformen

Verfahren zur Umwandlung in Chomsky-Normalform:

1 Entferne alle Kettenproduktionen der Form A→ B. Hierfür
unterscheidet man zwei Fälle:

1. Fall: Eine Kettenproduktion liegt auf einem Zyklus
A1 → A2 → · · · → Ak → A1 von Produktionen. In diesem Fall
werden alle Variablen A1, . . . ,Ak durch eine einzige Variable A
ersetzt und die Kettenproduktionen entfernt. Für jede
Produktion Ai → w , 1 ≤ i ≤ k , w /∈ {A1, . . .Ak} fügen wir
eine Produktion A→ w hinzu und jedes Vorkommen eines Ai ,
1 ≤ i ≤ k auf einer rechten Seite wird durch A ersetzt.
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Normalformen

2. Fall: Es existiert kein Zyklus. In diesem Fall kann man die
Variablen durchnummerieren: A1, . . . ,Ak , so dass Ai → Aj nur
gilt, falls i < j (topologische Sortierung). Man geht nun von
den höheren zu den niedrigeren Indizes (i = k−1, . . . , 1) und
ersetzt Ai → Aj durch

Ai → x1 | · · · | xn,

falls die Regeln mit Aj auf der linken Seite folgende Form
haben:

Aj → x1 | · · · | xn

(Einführen von “Shortcuts”)
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Normalformen

2 Falls eine Regel A→ w Terminalzeichen in w enthält und
|w | > 1 gilt, so wird jedes Terminalzeichen a in w durch eine
neue Variable Ua ersetzt. Außerdem werden Produktionen
Ua → a hinzugefügt. Dadurch befinden sich nur noch
Variablen auf der rechten Seite.

3 Im letzten Schritt werden Produktionen der Form
A→ B1 . . .Bk eliminiert: führe neue Variable C1, . . . ,Ck−2
ein, entferne die ursprüngliche Regel und ersetze sie durch:

A → B1C1

C1 → B2C2

...

Ck−2 → Bk−1Bk
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Normalformen

Beispiel: Wir wandeln folgende Grammatik G in
Chomsky-Normalform um. Dazu muss sie zunächst ε-frei gemacht
werden.

G = ({S ,A}, {a, b, c},P, S)

mit folgender Produktionenmenge P:

S → aAb

A → S | aaSc | ε
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Normalformen

Entfernung von ε-Produktionen:

G = ({S ,A}, {a, b, c},P, S)

mit folgender Produktionenmenge P:

S → aAb | ab

A → S | aaSc
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Normalformen

Entfernung von Kettenproduktionen:

G = ({S ,A}, {a, b, c},P, S)

mit folgender Produktionenmenge P:

S → aAb | ab

A → aAb | ab | aaSc
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Normalformen

Entfernung von Terminalsymbolen aus den rechten Seiten:

G = ({S ,A,Ua,Ub,Uc}, {a, b, c},P, S)

mit folgender Produktionenmenge P:

S → UaAUb | UaUb

A → UaAUb | UaUb | UaUaSUc

Ua → a

Ub → b

Uc → c
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Normalformen

Zu lange rechte Seiten aufspalten:

G = ({S ,A,Ua,Ub,Uc ,C1,C2,C3}, {a, b, c},P,S)

mit folgender Produktionenmenge P:

S → UaC1 | UaUb

A → UaC1 | UaUb | UaC2

Ua → a

Ub → b

Uc → c

C1 → AUb

C2 → UaC3

C3 → SUc
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Think-Pair-Share: Chomsky-Normalform

Wandeln Sie Schritt für Schritt die folgende Grammatik in die
Chomsky-Normalform um:

G = ({S ,A,B}, {a, b, c},P, S)

mit folgender Produktionenmenge P:

S → AB | B

A → ab | aAb

B → c | cB

Erarbeiten Sie zunächst vier Minuten in Einzelarbeit eine Lösung.
Anschließend tauschen Sie sich für weitere vier Minuten mit ihrem
Sitznachbarn aus. Schlussendlich besprechen wir die Lösung im
Plenum.
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Lösungsvorschlag zu Think-Pair-Share:
Chomsky-Normalform

G = ({S ,A,B,Ua,Ub,Uc ,C1}, {a, b, c},P, S)

mit folgender Produktionenmenge P:

S → AB | c | UcB

A → UaUb | UaC1

B → c | UcB

Ua → a

Ub → b

Uc → c

C1 → AUb
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Der CYK-Algorithmus

Wir kennen bereits ein Verfahren, mit dem man das Wortproblem
für G lösen kann, wobei G eine Typ-1-, Typ-2- oder
Typ-3-Grammatik sein kann. (Im Wesentlichen: Aufzählen aller
Wörter bis zu einer bestimmten Länge.)

Da dieses Verfahren jedoch exponentielle Laufzeit (in der Länge
des Wortes) haben kann, betrachten wir hier ein anderes Verfahren
für kontextfreie Grammatiken: den CYK-Algorithmus (entwickelt
von Cocke, Younger, Kasami).

Voraussetzung: die Grammatik ist in Chomsky-Normalform
gegeben. (Alle Regeln haben die Form A→ a oder A→ BC .)
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Der CYK-Algorithmus

Idee: Gegeben sei ein Wort x ∈ Σ∗. Wir wollen feststellen, aus
welchen Variablen es abgeleitet worden sein könnte.

Möglichkeit 1: x = a ∈ Σ, d.h., x besteht aus einem einzigen
Alphabetsymbol. Dann kann w nur aus Variablen A abgeleitet
worden sein, für die es eine Produktion A→ a gibt.

Möglichkeit 2: x = a1 . . . an mit n ≥ 2. In diesem Fall gilt:
Zunächst muss eine Produktion A→ BC angewandt werden,
dann muss ein Teil a1 . . . ak des Wortes aus B und der andere
Teil ak+1 . . . an aus C abgeleitet werden. (1 ≤ k < n)
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Der CYK-Algorithmus

Möglichkeit 2 lässt sich schematisch folgendermaßen darstellen:

A

B C

a1 . . . ak ak+1 . . . an
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Der CYK-Algorithmus

Es ist jedoch nicht klar, wo das Wort x geteilt werden muss, d.h.,
wie groß der Index k ist!

Daher: Probiere alle möglichen k’s durch. Das heißt:

Gegeben ein Wort x = a1 . . . an. Überprüfe für alle k mit
1 ≤ k < n:

Bestimme alle Variablen V1, aus denen sich a1 . . . ak ableiten
lässt.

Bestimme alle Variablen V2, aus denen sich ak+1 . . . an
ableiten lässt.

Stelle fest, ob es Variablen A,B,C gibt mit (A→ BC ) ∈ P,
B ∈ V1 und C ∈ V2. In diesem Fall gilt, dass sich x aus A
ableiten lässt.
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Der CYK-Algorithmus

Um Mehraufwand zu vermeiden: verwende Methoden der
dynamischen Programmierung, das heißt:

berechne zuerst alle Variablen, aus denen sich Teilwörter der
Länge 1 ableiten lassen,

berechne dann alle Variablen, aus denen sich Teilwörter der
Länge 2 ableiten lassen,

. . .

zuletzt berechne alle Variablen, aus denen sich x ableiten
lässt. Falls sich das Axiom S unter diesen Variablen befindet,
so liegt x in der von der Grammatik erzeugten Sprache.

Sebastian Küpper Automaten und Formale Sprachen 281
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Der CYK-Algorithmus

Notation: Wir bezeichnen mit xi ,j das Teilwort von x , das an der
Stelle i beginnt und die Länge j hat.

x = a1 . . . an  xi ,j = ai . . . ai+j−1.

Damit sieht das vorherige Bild folgendermaßen aus:

A

B C

x1,k xk+1,n−k
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Der CYK-Algorithmus

Wir bezeichnen mit Ti ,j die Menge aller Variablen, aus denen sich
xi ,j herleiten lässt.

Ti ,j lässt sich folgendermaßen bestimmen:

Falls j = 1, dann

Ti ,j = {A | (A→ xi ,j) ∈ P}

Falls j > 1, dann

Ti ,j= {A | (A→ BC ) ∈ P

und es gibt k < j mit B ∈ Ti ,k und C ∈ Ti+k,j−k}
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Der CYK-Algorithmus

Praktische Ausführung des CYK-Algorithmus:
Wir tragen die Variablenmengen Ti ,j (von oben nach unten) in
folgende Tabelle ein:

a1 a2 an−1 an

j = 1

j = n − 1

j = n

. . .

. . .

T1,n

T1,n−1T2,n−1

. . .. . .. . .

. . . . . . . . . . . .

Tn−1,2. . .. . .T2,2

T1,1 T2,1 Tn−1,1 Tn,1. . . . . .

T1,2j = 2
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Der CYK-Algorithmus

Folgendermaßen lässt sich veranschaulichen, welche
Variablenmenge welches Teilwort ableitet:

j = 6

j = 5

j = 4

j = 3

j = 2

j = 1 T1,1

a1

T1,2 T2,2

T2,1

a2 a3

T3,1

T3,2 T4,2

T4,1

a4 a5

T5,2

T6,1

a6

T1,6

T5,1

T1,3 T2,3 T3,3 T4,3

T1,4 T2,4 T3,4

T1,5 T2,5
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Der CYK-Algorithmus

a1 a2

j = 1

j = 2

j = 5

j = 6

j = 3

j = 4

a6a5a3 a4

T1,6

T1,5

T6,1

x = a1a2a3a4a5 | a6

(A→ BC ) ∈ P,
B ∈ T1,5, C ∈ T6,1 ⇒ A ∈ T1,6
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Der CYK-Algorithmus

a1 a2

j = 1

j = 2

j = 5

j = 6

j = 3

j = 4

a6a5a3 a4

T1,6

T1,4

T5,2 x = a1a2a3a4 | a5a6

(A→ BC ) ∈ P,
B ∈ T1,4, C ∈ T5,2 ⇒ A ∈ T1,6
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Der CYK-Algorithmus

a1 a2

j = 1

j = 2

j = 5

j = 6

j = 3

j = 4

a6a5a3 a4

T1,6

T1,3 T4,3

x = a1a2a3 | a4a5a6

(A→ BC ) ∈ P,
B ∈ T1,3, C ∈ T4,3 ⇒ A ∈ T1,6
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Der CYK-Algorithmus

a1 a2

j = 1

j = 2

j = 5

j = 6

j = 3

j = 4

a6a5a3 a4

T1,6

T1,2

T3,4

x = a1a2 | a3a4a5a6

(A→ BC ) ∈ P,
B ∈ T1,2, C ∈ T3,4 ⇒ A ∈ T1,6
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Der CYK-Algorithmus

a1 a2

j = 1

j = 2

j = 5

j = 6

j = 3

j = 4

a6a5a3 a4

T1,6

T1,1

T2,5

x = a1 | a2a3a4a5a6

(A→ BC ) ∈ P,
B ∈ T1,1, C ∈ T2,5 ⇒ A ∈ T1,6
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Der CYK-Algorithmus

Beispiel: Betrachte eine Grammatik mit folgenden Produktionen:

S → AD | FG

D → SE | BC

E → BC

F → AF | a

G → BG | CG | b

A → a

B → b

C → c

Frage: Sei x = aabcbc . Gilt x ∈ L?
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Der CYK-Algorithmus

a a b c b c
j = 1 A,F A,F B,G C B,G C
j = 2 F S D,E G D,E
j = 3 S S G
j = 4 S
j = 5 S D
j = 6 S
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Think-Pair-Share: Der CYK-Algorithmus

Wir betrachten eine Grammatik

G = ({S ,A,B}, {a, b, c},P, S)

für die Sprache L = {akbkc j | k ≥ 0, j ≥ 1} mit folgenden
Produktionen:
mit folgender Produktionenmenge P:

S → AB | B

A → ab | aAb

B → c | cB

Untersuchen Sie mithilfe des CYK-Algorithmus, ob x = abcc ∈ L.
Erarbeiten Sie zunächst vier Minuten in Einzelarbeit eine Lösung.
Anschließend tauschen Sie sich für weitere vier Minuten mit ihrem
Sitznachbarn aus. Schlussendlich besprechen wir die Lösung im
Plenum.
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Lösungsvorschlag zu Think-Pair-Share: Der
CYK-Algorithmus

Wir formen die Grammatik in Chomsky-Normalform um (vgl.
vorherige Think-Pair-Share-Aufgabe) und berechnen:

a b c c
j = 1 Ua Ub Uc , S ,B Uc ,S ,B
j = 2 A − S ,B
j = 3 S −
j = 4 S
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Der CYK-Algorithmus

Komplexität des CYK-Algorithmus

Sei n = |x | die Länge des Wortes, das untersucht wird. Die Größe
der Grammatik wird als konstant angesehen. Dann gilt:

O(n2) Tabellenfelder müssen ausgefüllt werden.

Für das Ausfüllen jedes Tabellenfeldes müssen bis zu O(n)
andere Felder betrachtet werden.

(Für T1,n müssen beispielsweise die Felder T1,n−1,Tn,1 und
T1,n−2,Tn−1,2 und . . . und T1,1,T2,n−1 betrachtet werden.
Insgesamt n − 1 Paare von Feldern.)

Daher ergibt sich insgesamt als Zeitkomplexität: O(n3).

Die Zeitkomplexität ist polynomiell, aber für das Parsen großer
Programme nicht mehr geeignet. Dafür gibt es spezielle Methoden
für bestimmte kontextfreie Grammatiken (Stichwort: LR(k)).
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Fragestellungen zu dieser Vorlesungseinheit

Zum Ende einer jeden Vorlesungseinheit betrachten wir im Regelfall
drei Fragestellungen, die mithilfe der in dieser Einheit besprochenen
Inhalte beantwortet werden sollen. In der darauffolgenden Einheit
können zu Beginn mögliche Antworten gesammelt werden.

Fragen zur achten Vorlesungseinheit

Wie überführt man eine Grammatik, bei denen die linke Seite
einer jeden Überführungsregel eine einzelne Variable ist, in
Chomsky-Normalform?

Wie findet man für eine kontextfreie Grammatik G in CNF
effizient heraus, ob ein gegebenes Wort w in L(G ) liegt?

Angenommen der CYK-Algorithmus wurde auf das Wort
w = abcabc und die Grammatik G angewandt, welche
Bedeutung hat dann der Eintrag in der zweiten Zeile, dritte
Spalte in der Tabelle?
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Pumping-Lemma

Weitgehend analog zu regulären Sprachen kann man nun ein
Pumping-Lemma für kontextfreie Sprachen zeigen.

Die für reguläre Sprachen und endliche Automaten geltende
Aussage

Jedes ausreichend lange Wort durchläuft einen Zustand des
Automaten zweimal.

wird dabei ersetzt durch

Auf einem Pfad des Syntaxbaums, der die Ableitung eines
ausreichend langen Wortes durch eine kontextfreie Grammatik
darstellt, kommt eine Variable mindestens zweimal vor.
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Pumping-Lemma

Was bedeutet hier “ausreichend langes Wort”?

Die Beantwortung dieser Frage hängt davon ab, in welcher Form
sich die Grammatik befindet. Wir nehmen an, sie befindet sich in
Chomsky-Normalform.

Dann gilt: Syntaxbäume sind (bis auf die unterste Schicht der
Blätter) immer Binärbäume (aufgrund der Produktionen der Form
A→ BC ). Und für Binärbäume gilt:

Länge von Pfaden in Binärbäumen (Lemma)

Sei B ein Binärbaum (d.h., jeder Knoten in B hat entweder null
oder zwei Kinder) mit mindestens 2k Blättern.
Dann hat B einen von der Wurzel ausgehenden Pfad, der aus
mindestens k Kanten und k + 1 Knoten besteht.

Sebastian Küpper Automaten und Formale Sprachen 294
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Pumping-Lemma

Das bedeutet:

Sei k die Anzahl von Variablen in G (k = |V |). Für ein Wort
z ∈ L mit |z | ≥ 2k hat dann der zugehörige Syntaxbaum
mindestens 2k Blätter.

Das bedeutet auch, dass der obere Teil des Syntaxbaums (bei
dem die Blätter abgeschnitten sind) mindestens einen Pfad
mit k + 1 Knoten hat.

Auf diesem Pfad, der nur innere Knoten enthält, muss eine
Variable – nennen wir sie A – mindestens zweimal vorkommen.
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Pumping-Lemma

Syntaxbaum für ein Wort z mit |z | ≥ n = 2k

n ist hier die “Konstante des Pumping-Lemmas”

S

Binärbaum

Wort z

Ebene der Blätter
(letzter Ableitungsschritt)

Sebastian Küpper Automaten und Formale Sprachen 296
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Pumping-Lemma

Es gibt einen Pfad mit mindestens k + 1 inneren Knoten.

S

Wort z

Sebastian Küpper Automaten und Formale Sprachen 296
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Pumping-Lemma

Auf diesem Pfad gibt es eine Variable, die zweimal auftaucht, bei-
spielsweise A.

A

A

S

Wort z
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Pumping-Lemma

Das Wort z wird nun in fünf Teilwörter u, v , w , x , y aufgespalten:

w wird aus dem unteren A abgeleitet: A⇒∗ w

vwx wird aus dem oberen A abgeleitet: A⇒∗ vwx

u v w x y

S

A

A
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Pumping-Lemma

Damit erhält man drei ineinander enthaltene Teil-Syntaxbäume, die
man neu zusammenstecken kann.

u v w x y

S

A

A
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Pumping-Lemma

Durch Weglassen des mittleren Teilbaums erhält man einen Syntax-
baum für uwy . Damit gilt: uwy ∈ L.

u y

w

S

A
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Pumping-Lemma

Durch Verdoppeln des mittleren Teilbaums erhält man einen Syn-
taxbaum für uv2wx2y . Damit gilt: uv2wx2y ∈ L.

u y

v w x

v x

S

A

A

A
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Pumping-Lemma

Außerdem kann man für v , w , x folgende Eigenschaften verlangen:

|vwx | ≤ n = 2k :

Wir können annehmen, dass wir das am weitesten unten liegende
Doppelvorkommen gewählt haben, d.h., das Doppelvorkommen mit
der größten Tiefe. Das kann dadurch erreicht werden, dass einer
der Pfade maximaler Länge von unten nach oben verfolgt wird.
Demnach ist der Abstand des oberen A zur Blattebene höchstens k
und der darunter hängende Binärbaum hat höchstens 2k Blätter.

u v w x y

S

A

A

Sebastian Küpper Automaten und Formale Sprachen 297
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Pumping-Lemma

|vx | ≥ 1:

Seien B,C die beiden Kinder des oberen A. Dann geht das untere
A entweder aus B oder C hervor. Die jeweils andere Variable muss
– da die Grammatik in Chomsky-Normalform ist – ein nicht-leeres
Wort ableiten.
Und dieses Wort ist ein Teilwort von v bzw. von x .

u v w x y

S

A

A
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Das Pumping-Lemma

Pumping-Lemma, uvwxy -Theorem (Satz)

Sei L eine kontextfreie Sprache. Dann gibt es eine Zahl n, so dass
sich alle Wörter z ∈ L mit |z | ≥ n zerlegen lassen in z = uvwxy , so
das folgende Eigenschaften erfüllt sind:

1 |vx | ≥ 1,

2 |vwx | ≤ n und

3 für alle i = 0, 1, 2, . . . gilt: uv iwx iy ∈ L.

Dabei geht n = 2k aus der Anzahl k der Variablen einer
kontextfreien Grammatik für L hervor.
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Das Pumping-Lemma

Wie bereits beim Pumping-Lemma für reguläre Sprachen kann das
Pumping-Lemma für kontextfreie Sprachen dazu genutzt werden,
zu zeigen, dass eine Sprache nicht kontextfrei ist, indem wir die
Aussage negieren. Also, wenn

Für alle Zahlen n ∈ N0

ein Wort z ∈ L existiert, so dass

für alle Zerlegungen z = uvwxy mit |vx | ≥ 1, |vwx | ≤ n

ein i ∈ N0 exitiert, so dass uv iwx iy /∈ L

dann ist L nicht kontextfrei.
Anmerkung: Wie auch beim Pumping-Lemma für reguläre
Sprachen gilt die Implikation nur in die angegebene Richtung,
wenn die Pumping-Eigenschaft für eine Sprache L erfüllt ist, muss
L nicht zwingend kontextfrei sein.
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Pumping-Lemma

Anwendung des Pumping-Lemmas: wir zeigen, dass die Sprache
L = {ambmcm | m ≥ 1} nicht kontextfrei ist.

1 Wir nehmen eine beliebige Zahl n an.

2 Wir wählen ein Wort z ∈ L mit |z | ≥ n. In diesem Fall eignet
sich z = anbncn.

3 Wir betrachten nun alle möglichen Zerlegungen z = uvwxy
mit den Einschränkungen |vx | ≥ 1 und |vwx | ≤ n.

Wegen |vwx | ≤ n gilt, dass vx nicht aus a’s, b’s und c ’s
bestehen kann, denn es kann sich nicht über den gesamten
b-Block erstrecken.
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Pumping-Lemma

4 Wir wählen für alle diese möglichen Zerlegungen i = 2 und
betrachten uv2wx2y . Wegen der obigen Überlegungen sind
nun ein oder zwei Alphabetsymbole gepumpt worden,
mindestens eines jedoch nicht.

Damit ist klar, dass uv2wx2y nicht in L liegen kann, denn
jedes Wort in L hat gleich viele a’s, b’c und c ’s.
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Pumping-Lemma

Als weiteres Beispiel betrachten wir das Adventure, Level 3, und
zeigen, dass die Menge aller zulässigen Pfade eines Adventures
nicht notwendigerweise kontextfrei sein muss.

Wiederholung der Regeln:

Die Schatz-Regel

Man muss mindestens zwei Schätze finden.
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Pumping-Lemma

Neue Drachen-Regel

Auch Schwerter werden durch das Drachenblut unbenutzbar,
sobald man einen Drachen damit getötet hat. Außerdem werden
Drachen sofort wieder “ersetzt”.
Es gibt jedoch immer noch die Option, ein Schwert nicht zu
benutzen und nach der Begegnung mit dem Drachen in den Fluss
zu springen.

Neue Tür-Regel

Die Schlüssel sind magisch und verschwinden sofort, nachdem eine
Tür mit ihnen geöffnet wurde. Sobald man eine Tür durchschritten
hat, schließt sie sich sofort wieder.
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Pumping-Lemma

5 6 71 2 3 4

M

Wir betrachten folgende Sprache AM :

AM = {w | w entspricht einem Pfad durch das oben

angegebene Adventure, d.h., w ∈ T (M), und

erfüllt alle Regeln für Level 3}
= { LkW `TmDnA2 | k ≥ m ≥ 1, ` ≥ n ≥ 1 }

L=Schlüssel W =Schwert T =Tür D=Drache A=Schatz
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Pumping-Lemma

Wir zeigen nun, dass AM nicht kontextfrei ist.

1 Gegeben sei eine beliebige Zahl n.

2 Wir wählen als Wort z = LnW nT nDnA2 ∈ AM .

3 Sei nun z = uvwxy eine beliebige Zerlegung von x mit
|vx | ≥ 1 und |vwx | ≤ n.

Dann kann vx nicht gleichzeitig Schlüssel und Türen und
nicht gleichzeitig Schwerter und Drachen enthalten.
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Pumping-Lemma

4 Wir machen nun folgende Fallunterscheidung:

vx enthält zumindest einen Schatz: dann enthält uv0wx0y
höchstens noch einen Schatz und kann nicht in AM liegen, da
die Schatz-Regel verletzt ist.
vx enthält zumindest einen Schlüssel: dann enthält uv0wx0y
weniger als n Schlüssel, aber immer noch n Türen und kann
nicht in AM liegen.
vx enthält zumindest ein Schwert: dann enthält uv0wx0y
weniger als n Schwerter, aber immer noch n Drachen und kann
nicht in AM liegen.
vx enthält zumindest eine Tür: dann enthält uv2wx2y mehr als
n Türen, aber immer nur noch n Schlüssel und kann nicht in
AM liegen.
vx enthält zumindest einen Drachen: dann enthält uv2wx2y
mehr als n Drachen, aber immer nur noch n Schwerter und
kann nicht in AM liegen.
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Pumping-Lemma

Da wir damit jeden Fall behandelt haben, folgt daraus, dass AM

nicht kontextfrei ist.

Nebenbemerkung: Folgende Sprachen mit vertauschten Blöcken
sind allerdings kontextfrei.

{ LkTmW `DnA2 | k ≥ m ≥ 1, ` ≥ n ≥ 1 }
{ LkW `DnTmA2 | k ≥ m ≥ 1, ` ≥ n ≥ 1 }

Übungsaufgabe: Kontextfreie Grammatiken für diese Sprachen
angeben.
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Think-Pair-Share: Pumping-Lemma

Wir betrachten die folgende Sprache:

L = {anbmc l | n ≥ m ≥ l}

Zeigen Sie mithilfe des Pumping-Lemmas für kontextfreie
Sprachen, dass L nicht kontextfrei ist. Wählen Sie für ein gegebenes
n ∈ N0 ein passendes Wort z , das mindestens die Länge n hat, und
nehmen Sie eine passende Fallunterscheidung für alle möglichen
Zerlegungen z = uvwxy vor, so dass |vx | ≥ 1 und |vwx | ≤ n.
Erarbeiten Sie zunächst fünf Minuten in Einzelarbeit eine Lösung.
Anschließend tauschen Sie sich für weitere fünf Minuten mit ihrem
Sitznachbarn aus. Schlussendlich besprechen wir die Lösung im
Plenum.
Hinweis: Bei günstiger Wahl von z kann es sinnvoll sein, eine
Fallunterscheidung danach durchzuführen, ob vx ein a enthält oder
nicht.
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Lösungsvorschlag zu Think-Pair-Share: Pumping-Lemma

Es sei ein n ∈ N0 beliebig gegeben. Wir wählen z = anbncn und
zerlegen z = uvwxy mit |vx | ≥ 1, |vwx | ≤ n. Wir führen eine
Fallunterscheidung danach durch, ob v ein a enthält oder nicht.
Falls vx ein a enthält, enthält vwx wegen |vwx | ≤ n kein c , also
enthält uwy maximal n − 1 as und n cs, also ist uwy /∈ L.
Falls vx kein a enthält, enthält v oder x mindestens ein b oder ein
c , da |vx | ≥ 1. Also enthält uv2wx2y weiterhin n as aber
mindestens n + 1 bs oder mindestens n + 1 cs. In beiden Fällen ist
uv2wx2y /∈ L.
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Pumping-Lemma

Man kann auch für folgende Sprachen zeigen, dass sie nicht
kontextfrei sind:

L1 = {0p | p ist Primzahl}
L2 = {0n | n ist Quadratzahl}
L3 = {02n | n ≥ 0}

Bemerkung: Man kann zeigen, dass eine kontextfreie Sprache über
einem einelementigen Alphabet immer regulär ist. Daher reicht es,
nachzuweisen, dass die obigen Sprachen nicht regulär sind.
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Abschlusseigenschaften

Abgeschlossenheit

Die kontextfreien Sprachen sind abgeschlossen unter:

Vereinigung (L1, L2 kontextfrei ⇒ L1 ∪ L2 kontextfrei)

Produkt/Konkatenation (L1, L2 kontextfrei ⇒ L1L2

kontextfrei)

Stern-Operation (L kontextfrei ⇒ L∗ kontextfrei)

Die kontextfreien Sprachen sind nicht abgeschlossen unter:

Schnitt

Komplement
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Abschlusseigenschaften

Abschluss unter Vereinigung

Wenn L1 und L2 kontextfreie Sprachen sind, dann ist auch L1 ∪ L2

kontextfrei.

Begründung: Gegeben zwei kontextfreie Grammatiken

G1 = (V1,Σ,P1,S1), G2 = (V2,Σ,P2,S2)

(mit V1 ∩ V2 = ∅) für L1, L2, so ist mit der neuen Variable
S /∈ V1 ∪ V2:

G = (V1 ∪ V2 ∪ {S},Σ,P1 ∪ P2 ∪ {S → S1, S → S2},S)

eine kontextfreie Grammatik für L1 ∪ L2. (Ggf. müssen
ε-Ableitungen noch von S1 / S2 nach S vorgezogen werden.)
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Abschlusseigenschaften

Abschluss unter Produkt/Konkatenation

Wenn L1 und L2 kontextfreie Sprachen sind, dann ist auch L1L2

kontextfrei.

Begründung: Gegeben zwei kontextfreie Grammatiken

G1 = (V1,Σ,P1,S1), G2 = (V2,Σ,P2,S2)

(mit V1 ∩ V2 = ∅) für L1, L2, so ist

G = (V1 ∪ V2 ∪ {S},Σ,P1 ∪ P2 ∪ {S → S1S2}, S)

eine kontextfreie Grammatik für L1L2. (Ggf. müssen ε-Ableitungen
noch von S1 / S2 nach S vorgezogen werden.)
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Abschlusseigenschaften

Abschluss unter der Stern-Operation

Wenn L eine kontextfreie Sprache ist, dann ist auch L∗ kontextfrei.

Begründung: Gegeben sei eine kontextfreie Grammatiken

G1 = (V1,Σ,P1, S1)

für L. Dann ist

G = (V1 ∪ {S},Σ,P1 ∪ {S → ε, S → S1S}, S)

eine kontextfreie Grammatik für L∗. (Ggf. muss eine ε-Ableitungen
von S1 noch entfernt werden.)
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Abschlusseigenschaften

Kein Abschluss unter Schnitt

Wenn L1 und L2 kontextfreie Sprachen sind, dann ist L1 ∩ L2 nicht
notwendigerweise kontextfrei.

Gegenbeispiel: Die Sprachen

L1 = {ajbkck | j ≥ 0, k ≥ 0}
L2 = {akbkc j | j ≥ 0, k ≥ 0}

sind beide kontextfrei. Für ihren Schnitt gilt jedoch

L1 ∩ L2 = {akbkck | k ≥ 0}

und diese Sprache ist – wie mit dem Pumping-Lemma gezeigt
wurde – nicht kontextfrei.
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Abschlusseigenschaften

Kein Abschluss unter Komplement

Wenn L eine kontextfreie Sprache ist, dann ist L = Σ∗\L nicht
notwendigerweise kontextfrei.

Begründung: Nehmen wir an, die kontextfreien Sprachen wären

unter Komplement abgeschlossen. Wegen L1 ∩ L2 = L1 ∪ L2 wären
sie dann auch unter Schnitt abgeschlossen, was aber nicht der Fall
ist. D.h., wir erhalten einen Widerspruch.
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Kontextfreie Sprachen und XML

Wir betrachten eine wichtige Anwendung kontextfreier Sprachen:
Document Type Definitions (DTDs), mit Hilfe derer die Struktur
von XML-Dokumenten beschrieben werden kann.

XML (eXtensible Markup Language)

XML ist eine generische Markup-Sprache, die als Standard für die
Erstellung von maschinen- und menschen-lesbaren Dokumenten
verwendet wird. XML definiert dabei die Regeln für den Aufbau
solcher Dokumente.

Für einen bestimmten Typ von Dokumenten, d.h., für eine
spezifische Markup-Sprache muss dabei zunächst festgelegt
werden, welcher Aufbau und welche Datenstrukturierungen zulässig
sind. Dies geschieht mit Hilfe sogenannter DTDs (Document Type
Definitions).
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Beispiel (aus Hopcroft, Motwani, Ullman): Anwendungsspezifische
Sprache für eine PC-Datenbank. Folgendes Dokument ist in dieser
Sprache beschrieben:

<PCS>

<PC>

<MODEL>Notebook 5000</MODEL>

<PRICE>EUR 410</PRICE>

<PROCESSOR>

<MANF>Intel</MANF>

<MODEL>Core i3</MODEL>

<SPEED>1.7 GHz</SPEED>

</PROCESSOR>

<RAM>4 GB</RAM>

<DISK><HARDDISK>

<MANF>Seagate</MANF>

<MODEL>SATA</MODEL>

<SIZE>500 GB</SIZE>

</HARDDISK></DISK>

<DISK><DVD>

<SPEED>16x</SPEED>

</DVD></DISK>

</PC>

<PC>

...

</PC>

</PCS>
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Fragen:

Wie viele PCs können in einer solchen Datei aufgeführt
werden? Beliebig viele? Ist auch eine Datei mit überhaupt
keinem PC zulässig?

Welche Einträge braucht man, um einen PC zu beschreiben?
Muss der Preis immer angegeben werden?

Kann ein PC mehrere Prozessoren haben? Oder mehrere
Festplatten?

Allgemein: Was ist überhaupt ein zulässiges Dokument?

Sebastian Küpper Automaten und Formale Sprachen 320
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Die Frage, welche Dokumente überhaupt zulässig sind, kann durch
das Betrachten der DTD (mit Namen PcSpecs) beantwortet
werden:

<!DOCTYPE PcSpecs [

<!ELEMENT PCS (PC*)>

<!ELEMENT PC (MODEL, PRICE, PROCESSOR, RAM, DISK+)>

<!ELEMENT MODEL (#PCDATA)>

<!ELEMENT PRICE (#PCDATA)>

<!ELEMENT PROCESSOR (MANF, MODEL, SPEED)>

<!ELEMENT MANF (#PCDATA)>

<!ELEMENT MODEL (#PCDATA)>

<!ELEMENT SPEED (#PCDATA)>

<!ELEMENT RAM (#PCDATA)>
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<!ELEMENT DISK (HARDDISK | CD | DVD)>

<!ELEMENT HARDDISK (MANF, MODEL, SIZE)>

<!ELEMENT SIZE (#PCDATA)>

<!ELEMENT CD (SPEED)>

<!ELEMENT DVD (SPEED)>

]>
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Bedeutung der DTD-Einträge:

Die erste Zeile (gekennzeichnet mit DOCTYPE) enthält den
Namen der DTD (PcSpecs).

Alle anderen Zeilen enthalten Regeln (bzw. Mengen von
Regeln) einer kontextfreien Grammatik.

Alle groß geschriebenen Wörter (PCS, PC, MODEL, etc.)
beziehen sich auf Variablen der Grammatik. #PCDATA steht für
Text, der keine XML-Tags der Form <..> .. </..>

beinhaltet.
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Regelformat:

Die Beschreibung einer Regel beginnt mit dem Schlüsselwort
!ELEMENT.

Anschließend folgt die linke Seite, bestehend aus einer
Variablen A.

Die rechte Seite ist ein regulärer Ausdruck α. Daher steht eine
DTD-Regel nicht für eine kontextfreie Regel, sondern für eine
(unendliche) Menge von kontextfreien Regeln, die alle die
Form A→ w haben, wobei w ∈ L(α).

Ein XML-Dokument ist zulässig, wenn es durch diese kontexfreien
Regeln erzeugt werden kann.
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Syntax der regulären Ausdrücke: die regulären Ausdrücke auf der
rechten Seite einer Regel werden durch folgende Operatoren
dargestellt.

| – Vereinigung, entspricht dem Operator | bei regulären
Ausdrücken.

, – Konkatenation/Produkt

Drei Varianten des Operators zur Hüllenbildung:
* – Stern-Operation, null oder mehr Vorkommen
+ – Stern-Operation unter Ausschluss des leeren Wortes:
mindestens ein Vorkommen ((r)+ = (r)∗r)
? – null oder ein Vorkommen ((r)? = (r | ε))
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Beispiel:

<!ELEMENT PC (MODEL, PRICE, PROCESSOR, RAM, DISK+)>

steht für alle Regeln der Form PC→ w , wobei
w ∈ L(MODEL PRICE PROCESSOR RAM (DISK)+).

Dazu gehören folgende Regeln:

PC → MODEL PRICE PROCESSOR RAM DISK

PC → MODEL PRICE PROCESSOR RAM DISK DISK

. . .

Das bedeutet: eine PC-Beschreibung muss eine oder mehrere
Einträge für Disks (Festplatten, CD-Laufwerke, etc.) haben.
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Eine DTD-Grammatik kann schematisch in eine herkömmliche
kontextfreie Grammatik übersetzt werden. Beispielsweise kann die
Regel

<!ELEMENT PC (MODEL, PRICE, PROCESSOR, RAM, DISK+)>

übersetzt werden nach:

PC → MODEL PRICE PROCESSOR RAM DISKS

DISKS → DISK

DISKS → DISKS DISK
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Weitere Bemerkungen:

Zum eindeutigen Parsen werden um jede der ursprünglichen
Variablen A noch Tags <A>...</A> gelegt.

Das Aufbauen eines Syntaxbaums aus einem XML-Dokument
wird automatisch von Funktionen einer XML-Library erledigt.
Hierzu muss der Benutzer keinen eigenen Code schreiben.

In der Praxis benutzte DTDs enthalten noch weitere Einträge,
beispielsweise für Attribute, Verweise auf externe Dokumente,
etc.
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Fragestellungen zu dieser Vorlesungseinheit

Zum Ende einer jeden Vorlesungseinheit betrachten wir im Regelfall
drei Fragestellungen, die mithilfe der in dieser Einheit besprochenen
Inhalte beantwortet werden sollen. In der darauffolgenden Einheit
können zu Beginn mögliche Antworten gesammelt werden.

Fragen zur neunten Vorlesungseinheit

Welche Rolle spielt die Chomsky-Normalform beim
Pumping-Lemma für kontextfreie Sprachen?

Wie zeigt man mithilfe des Pumping-Lemmas, dass eine
Sprache nicht kontextfrei ist?

Wie kann man einsehen, dass kontextfreie Sprachen nicht
unter Schnitt abgeschlossen sind?

Sebastian Küpper Automaten und Formale Sprachen 329
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Was ist ein geeignetes Automatenmodell für kontextfreie Sprachen?

Analog zu regulären Sprachen suchen wir hier ein
Automatenmodell für kontextfreie Sprachen.

Antwort: Kellerautomaten (englisch: push-down automata)

Automaten, die mit einem zusätzlichen Keller (englisch: stack)
ausgestattet sind.

Sebastian Küpper Automaten und Formale Sprachen 330
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Nutzen eines solchen Automatenmodells

Manche Konstruktionen und Verfahren lassen sich besser mit Hilfe
des Automatenmodells durchführen (anstatt auf Grammatiken).
Dazu gehört:

das Wortproblem (wir werden herausfinden, dass das
Wortproblem unter bestimmten Umständen effizienter als in
Zeit O(n3) gelöst werden kann)

Abschlusseigenschaften (Abschluss von kontextfreien Sprachen
unter Schnitt mit regulären Sprachen lässt sich gut mit
Kellerautomaten zeigen)
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Wir betrachten die Sprache

L = {a1a2 . . . an$an . . . a2a1 | ai ∈ ∆}
= {w$wR | w ∈ ∆∗}

mit Σ = ∆ ∪ {$} für ein Alphabet ∆. Dabei steht wR für die
Umkehrung des Wortes w (zum Beispiel: (abc)R = cba).

Ein endlicher Automat kann diese Sprache deshalb nicht erkennen,
weil er sich keine beliebig langen Wörter der Form a1a2 . . . an
“merken” kann. Er müsste sich aber solche Wörter merken, um die
Übereinstimmung mit dem Wortteil nach dem $ zu überprüfen.
Übungsaufgabe: Zeigen Sie mit Hilfe von
Myhill-Nerode-Äquivalenz, dass L nicht regulär ist.
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Um ein Automatenmodell für kontextfreie Sprachen zu erhalten,

führen wir daher einen Keller oder Pushdown-Speicher ein, auf
dem sich eine beliebig lange Sequenz von Zeichen befinden
darf.

Beim Einlesen eines neuen Zeichens darf das oberste Zeichen
des Kellers gelesen und folgendermaßen verändert werden:

entweder bleibt der Keller unverändert oder
das oberste Zeichen des Kellers wird entfernt und evtl.
durch eine Sequenz von anderen Zeichen ersetzt.

An anderen Stellen darf der Keller nicht gelesen oder
verändert werden.
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Schematische Darstellung eines Kellerautomaten:

e i n g a b e

A

B

C

#

Keller

Kellerbodenzeichen

Kellerautomat
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Sei ∆ = {a, b, c , d} und

L = {a1a2 . . . an$an . . . a2a1 | ai ∈ ∆}.

Ein Kellerautomat erkennt diese Sprache folgendermaßen:

Ein Wort w wird von links nach rechts eingelesen.

Der Automat hat zwei Zustände:

Zustand 1: Ersten Teil des Wortes speichern.

Zustand 2: Zweiten Teil des Wortes überprüfen.
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Zustand 1:

Solange $ noch nicht erreicht ist: jedes eingelesene Symbol
wird als Großbuchstabe auf den Keller gelegt
(a A, b  B, . . . ).

Wenn $ eingelesen wird: Keller bleibt unverändert und
Automat wechselt in Zustand 2.
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Zustand 2:

Für jedes neu eingelesene Zeichen wird überprüft, ob der
passende Großbuchstabe auf dem Keller liegt. Dieser wird
dann entfernt.

Falls irgendwann keine Übereinstimmung festgestellt wird:
Kellerautomat blockiert und das Wort wird nicht akzeptiert.

Falls immer Übereinstimmung herrscht: auch das
Kellerbodenzeichen # wird entfernt und der Automat
akzeptiert mit leerem Keller.
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Simulation

Kellerautomat
Zustand 1

c a d $ d a c aa

#
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Simulation

Kellerautomat
Zustand 1

a d $ d a c a

#

a c

A
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Kellerautomaten

Simulation

Kellerautomat
Zustand 1

d $ d a c a

#

a

A

c a

C
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Kellerautomaten

Simulation

Kellerautomat
Zustand 1

$ d a c a

#

a

A

c da

C

A

Sebastian Küpper Automaten und Formale Sprachen 338
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Kellerautomaten

Simulation

d a c a

#

a

A

c a

C

A

d $

Kellerautomat
Zustand 1

D
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Simulation

a c a

#

a

A

c a

C

A

d d$

Kellerautomat
Zustand 2

D
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Simulation

c a

#

a

A

c a

C

d $

Kellerautomat
Zustand 2

ad

A
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Simulation

a

#

a

A

c a d $

Kellerautomat
Zustand 2

d a c

C

Sebastian Küpper Automaten und Formale Sprachen 338
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Kellerautomaten

Simulation

#

a c a d $

Kellerautomat
Zustand 2

d a

A

c a
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Kellerautomaten

Simulation

a c a d $

Kellerautomat
Zustand 2

d a c

#

a
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Kellerautomaten

Simulation

a c a d $

Kellerautomat

d a c a

Zustand 2
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Kellerautomat (Definition)

Ein (nichtdeterministischer) Kellerautomat M ist ein 6-Tupel
M = (Z ,Σ, Γ, δ, z0,#), wobei

Z die Menge der Zustände,

Σ das Eingabealphabet (mit Z ∩ Σ = ∅),

Γ das Kelleralphabet,

z0 ∈ Z der Startzustand,

δ : Z × (Σ∪ {ε})× Γ→ Pe(Z × Γ∗) die Überführungsfunktion
und

# ∈ Γ das unterste Kellerzeichen oder Kellerbodenzeichen ist.
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Bemerkungen zu Kellerautomaten:

Z , Σ müssen wiederum endliche Mengen sein.

Pe(Z × Γ∗) bezeichnet die Menge aller endlichen Teilmengen
von Z × Γ∗.

Abkürzung: KA (Kellerautomat) oder PDA (pushdown
automaton).
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Wir betrachten die Überführungsfunktion

δ : Z × (Σ ∪ {ε})× Γ→ Pe(Z × Γ∗)

Falls (z ′,B1 . . .Bk) ∈ δ(z , a,A), so bedeutet das:

wenn im Zustand z das Eingabesymbol a gelesen wird
und das Zeichen A als oberstes auf dem Keller liegt, dann
wird A vom Keller entfernt und durch B1 . . .Bk ersetzt
(B1 liegt zuoberst) und der Automat geht in den Zustand
z ′ über.

Es kann auch a = ε gelten. In diesem Fall wird kein
Eingabesymbol eingelesen.
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Wir betrachten verschiedene Fälle von Werten der
Überführungsfunktion δ:

(z ′, ε) ∈ δ(z , a,A)

Zeichen a wird gelesen

Zustand ändert sich von z nach z ′

Symbol A wird vom Keller entfernt:

A
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(z ′,B) ∈ δ(z , a,A)

Zeichen a wird gelesen

Zustand ändert sich von z nach z ′

Symbol A auf dem Keller wird
durch B ersetzt:

A B
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(z ′,A) ∈ δ(z , a,A)

Zeichen a wird gelesen

Zustand ändert sich von z nach z ′

Symbol A bleibt auf dem Keller:

AA
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(z ′,BA) ∈ δ(z , a,A)

Zeichen a wird gelesen

Zustand ändert sich von z nach z ′

Symbol B wird neu auf den Kel-
ler gelegt:

B

AA
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(z ′,B1 . . .Bk) ∈ δ(z , a,A)

Zeichen a wird gelesen

Zustand ändert sich von z nach z ′

Symbol A wird durch mehrere
neue Symbole ersetzt:

A

. . .

B1

Bk
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Zu Beginn einer jeden Berechnung enthält der Keller genau
das Kellerbodenzeichen #.

Der Keller ist nicht beschränkt und kann beliebig wachsen. Es
gibt unendlich viele mögliche Kellerinhalte, das unterscheidet
Kellerautomaten von endlichen Automaten.

Die von uns betrachteten Kellerautomaten akzeptieren immer
mit leerem Keller (in diesem Fall gibt es auch keine
Übergangsmöglichkeiten mehr). Es gibt aber auch andere
Varianten von Kellerautomaten, die mit Endzustand
akzeptieren.
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Kellerautomat für die Sprache
L = {a1a2 . . . an$an . . . a2a1 | ai ∈ {a, b}}:

M = ({z1, z2}, {a, b, $}, {#,A,B}, δ, z1,#),

wobei δ folgendermaßen definiert ist (wir schreiben
(z , a,A)→ (z ′, x), falls (z ′, x) ∈ δ(z , a,A)):

(z1, a,#) → (z1,A#) (z1, a,A) → (z1,AA) (z1, a,B) → (z1,AB)
(z1, b,#) → (z1,B#) (z1, b,A) → (z1,BA) (z1, b,B) → (z1,BB)
(z1, $,#) → (z2,#) (z1, $,A) → (z2,A) (z1, $,B) → (z2,B)
(z2, a,A) → (z2, ε) (z2, b,B) → (z2, ε) (z2, ε,#) → (z2, ε)
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Konfiguration (Definition)

Eine Konfiguration eines Kellerautomaten ist gegeben durch ein
Tripel

k ∈ Z × Σ∗ × Γ∗.

Bedeutung der Komponenten von k = (z ,w , γ) ∈ Z × Σ∗ × Γ∗:

z ∈ Z ist der aktuelle Zustand des Kellerautomaten.

w ∈ Σ∗ ist der noch zu lesende Teil der Eingabe.

γ ∈ Γ∗ ist der aktuelle Kellerinhalt. Dabei steht das oberste
Kellerzeichen ganz links.
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Übergänge zwischen Konfigurationen ergeben sich aus der
Überführungsfunktion δ:

Konfigurationsübergänge (Definition)

Es gilt
(z , aw ,Aγ) ` (z ′,w ,B1 . . .Bkγ),

falls (z ′,B1 . . .Bk) ∈ δ(z , a,A), und es gilt

(z ,w ,Aγ) ` (z ′,w ,B1 . . .Bkγ),

falls (z ′,B1 . . .Bk) ∈ δ(z , ε,A).

Im ersten Fall wird ein Zeichen der Eingabe gelesen, im zweiten
jedoch nicht.
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Wir definieren `∗ als die reflexive and transitive Hülle von `.

Damit kann jetzt die von einem Kellerautomaten akzeptierte
Sprache definiert werden:

Akzeptierte Sprache (Definition)

Sei M = (Z ,Σ, Γ, δ, z0,#) ein Kellerautomat. Dann ist die von M
akzeptierte Sprache:

N(M) = {x ∈ Σ∗ | (z0, x ,#) `∗ (z , ε, ε) für ein z ∈ Z}.

Das heißt die akzeptierte Sprache enthält alle Wörter, mit Hilfe
derer es möglich ist, den Keller vollständig zu leeren. Da
Kellerautomaten jedoch nicht-deterministisch sind, kann es auch
Berechnungen für dieses Wort geben, die den Keller nicht leeren.
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Kellerautomaten

Ein weiteres Beispiel: ein Kellerautomat für die Sprache

L = {a1a2 . . . anan . . . a2a1 | ai ∈ {a, b}}.

Idee: anstatt auf das Zeichen $ zu warten, kann sich der Automat
nicht-deterministisch entscheiden, in den Zustand z2 (= Keller
abbauen) überzugehen, sobald das aktuelle Zeichen auf dem Band
mit dem Zeichen auf dem Keller übereinstimmt (oder wenn der
Keller leer ist).
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Kellerautomaten

Veränderte Überführungsfunktion δ (3. Zeile ist geändert):

(z1, a,#) → (z1,A#) (z1, a,A) → (z1,AA) (z1, a,B) → (z1,AB)
(z1, b,#) → (z1,B#) (z1, b,A) → (z1,BA) (z1, b,B) → (z1,BB)
(z1, ε,#) → (z2,#) (z1, a,A) → (z2, ε) (z1, b,B) → (z2, ε)
(z2, a,A) → (z2, ε) (z2, b,B) → (z2, ε) (z2, ε,#) → (z2, ε)

Anmerkung: dieser Kellerautomat nutzt (im Gegensatz zum
vorherigen) Nichtdeterminismus, d.h., eine Konfiguration kann
mehrere mögliche Nachfolger haben. (Und möglicherweise enden
einige Konfigurationsfolgen als Sackgassen und führen nicht dazu,
dass der Keller geleert wird.)

Beispiel: Kellerautomat erhält die Eingabe aabbaa.
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Kellerautomaten

(z1, aabba,#) ` (z1, abbaa,A#) ` (z1bbaa,AA#)

` (z1, baa,BAA#) ` (z2, baa,BAA#)

An dieser Stelle haben wir uns nichtdeterministisch entscheiden, in
den Zustand z2 zu wechseln, denn wir haben die Mitte des Wortes
erreicht. Das kann ein Kellerautomat natürlich nicht ersehen, es
gibt also noch eine Reihe weiterer möglicher Folgekonfigurationen,
nur mit einem Wechsel zu Zustand z2 an dieser Stelle können wir
aber sicherstellen, dass der Kellerautomat den leeren Keller am
Ende der Eingabe erreicht, sie also akzeptiert.

· · · ` (z2, aa,AA#) ` (z1, a,A#) ` (z1, ε,#) ` (z1, ε, ε)
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Think-Pair-Share: Kellerautomaten

Betrachten Sie den Kellerautomaten
M = ({z1, z2}, {a, b}, {A,B,#}, δ, z1,#) mit folgender
Überführungsfunktion:

(z1, a,#) → (z1,A#) (z1, a,A) → (z1,AA) (z1, b,A) → (z2,B)
(z2, b,B) → (z2, ε) (z2, b,A) → (z2,B) (z2, ε,#) → (z2, ε)

Welche Sprache akzeptiert M? Erarbeiten Sie zunächst fünf
Minuten in Einzelarbeit eine Lösung. Anschließend tauschen Sie
sich für weitere fünf Minuten mit ihrem Sitznachbarn aus.
Schlussendlich besprechen wir die Lösung im Plenum.
Hinweis: Es kann hilfreich sein, den Kellerautomaten auf einigen
Eingaben zu simulieren.
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Lösungsvorschlag zu Think-Pair-Share: Kellerautomaten

Die Sprache ist
L = {anb2n | n > 0}
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Deterministisch kontextfreie Sprachen

Wir betrachten nun eine Unterklasse von Kellerautomaten, die
dazu verwendet werden können, Sprachen deterministisch und
damit effizient zu erkennen.

Deterministischer Kellerautomat (Definition)

En deterministischer Kellerautomat M ist ein 7-Tupel
M = (Z ,Σ, Γ, δ, z0,#,E ), wobei

(Z ,Σ, Γ, δ, z0,#) ein Kellerautomat ist,

E ⊆ Z eine Menge von Endzuständen ist und

die Überführungsfunktion δ deterministisch ist, das heißt: für
alle z ∈ Z , a ∈ Σ und A ∈ Γ gilt:

|δ(z , a,A)|+ |δ(z , ε,A)| ≤ 1.
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Deterministisch kontextfreie Sprachen

Unterschiede zwischen Kellerautomaten und deterministischen
Kellerautomaten:

Deterministische Kellerautomaten haben eine Menge von
Endzuständen und akzeptieren mit Endzustand – und nicht
mit leerem Keller.

(Bei deterministischen Kellerautomaten ist dies ein
Unterschied, für nicht-deterministische Kellerautomaten sind
beide Akzeptanzmöglichkeiten gleichwertig.)

Für jeden Zustand z und jedes Kellersymbol A gilt:

entweder gibt es höchstens einen ε-Übergang
oder es gibt für jedes Alphabetsymbol höchstens einen
Übergang.
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Deterministisch kontextfreie Sprachen

Konfigurationen und Übergänge zwischen Konfiguration bleiben
gleich definiert. Konfigurationsfolgen werden jedoch zu linearen
Ketten, d.h., es gibt immer höchstens eine Folgekonfiguration.

Diese Tatsache kann für die effiziente Lösung des Wortproblems
ausgenutzt werden.
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Deterministisch kontextfreie Sprachen

Akzeptierte Sprache bei det. Kellerautomaten (Definition)

Sei M(Z ,Σ, Γ, δ, z0,#,E ) ein deterministischer Kellerautomat.
Dann ist die von M akzeptierte Sprache:

D(M) = {x ∈ Σ∗ | (z0, x ,#) `∗ (z , ε, γ) für ein z ∈ E , γ ∈ Γ∗}.

Vergleiche dies mit der Definition für nicht-deterministische
Kellerautomaten! Bei deterministischen Kellerautomaten ist
folgendes anders:

Der erreichte Zustand z muss ein Endzustand sein.

Es darf ein Kellerinhalt γ übrigbleiben.
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Deterministisch kontextfreie Sprachen

Deterministisch kontextfreie Sprachen

Eine Sprache heißt deterministisch kontextfrei genau dann, wenn
sie von einem deterministischen Kellerautomaten akzeptiert wird.

Beispiele:

Die Sprache L = {a1a2 . . . an$an . . . a2a1 | ai ∈ ∆} ist
deterministisch kontextfrei. (Siehe den entsprechenden
Kellerautomaten.)

Die Sprache L = {a1a2 . . . anan . . . a2a1 | ai ∈ ∆} ist jedoch
nicht deterministisch kontextfrei. (Ohne Beweis.)
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Deterministisch kontextfreie Sprachen

Weitere Bemerkungen:

Effizienz: Mit Hilfe von deterministischen Kellerautomaten hat
man jetzt ein Verfahren zur Lösung des Wortproblems, das die
Komplexität O(n) hat. (n ist die Länge des Wortes.)

Dazu lässt man einfach den Automaten auf dem Wort
arbeiten und überprüft, ob man in einen Endzustand gelangt.

Deterministisch kontextfreie Grammatiken: Da die Syntax von
Sprachen einfacher mit Hilfe von Grammatiken als mit Hilfe
von Kellerautomaten definiert werden kann, ist es notwendig,
die zu deterministischen Kellerautomaten passende Klasse von
deterministisch kontextfreien Grammatiken zu definieren.

Da dies nicht ganz trivial ist, gibt es hierzu mehrere Ansätze.
Der bekannteste davon sind die sogenannten
LR(k)-Grammatiken (siehe Compilerbau und Syntaxanalyse).
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Deterministisch kontextfreie Sprachen

Die Abschlusseigenschaften bei deterministisch kontextfreien
Sprachen sehen etwas anders aus als bei kontextfreien Sprachen.

Abschluss unter Komplement

Wenn L eine deterministisch kontextfreie Sprache ist, dann ist auch
L = Σ∗\L deterministisch kontextfrei.

(Ohne Beweis)
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Deterministisch kontextfreie Sprachen

Kein Abschluss unter Schnitt

Wenn L1 und L2 deterministisch kontextfreie Sprachen sind, dann
ist L1 ∩ L2 nicht notwendigerweise deterministisch kontextfrei.

Begründung: Die Beispiel-Sprachen aus dem Argument, dass die
kontextfreien Sprachen unter Schnitt nicht abgeschlossen sind, sind
sogar deterministisch kontextfrei, ihr Schnitt jedoch noch nicht
einmal kontextfrei:

L1 = {ajbkck | j ≥ 0, k ≥ 0}
L2 = {akbkc j | j ≥ 0, k ≥ 0}
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Deterministisch kontextfreie Sprachen

Kein Abschluss unter Vereinigung

Wenn L1 und L2 deterministisch kontextfreie Sprachen sind, dann
ist L1 ∪ L2 nicht notwendigerweise deterministisch kontextfrei.

Begründung: Aus dem Abschluss unter Vereinigung und
Komplement würde auch der Abschluss unter Schnitt folgen

(wegen L1 ∩ L2 = L1 ∪ L2).
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Deterministisch kontextfreie Sprachen

Deterministisch kontextfreie Sprachen sind unter Schnitt mit
regulären Sprachen abgeschlossen.

Abschluss unter Schnitt mit regulären Sprachen

Sei L eine deterministisch kontextfreie Sprache und R eine reguläre
Sprache. Dann gilt, dass L ∩ R eine deterministisch kontextfreie
Sprache ist.
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Deterministisch kontextfreie Sprachen

Beweisidee:
Konstruktion eines Kellerautomaten M ′ für L ∩ R aus einem
deterministischen Kellerautomaten M = (Z1,Σ, Γ, δ1, z

1
0 ,#,E1) für

L und einem deterministischen endlichen Automaten
A = (Z2,Σ, δ2, z

2
0 ,E2) für R:

M ′ = (Z1 × Z2,Σ, Γ, δ
′, (z1

0 , z
2
0 ),#,E1 × E2)

mit

((z ′1, z
′
2),B1 . . .Bk) ∈ δ((z1, z2), a,A), falls

(z ′1,B1 . . .Bk) ∈ δ1(z1, a,A) und δ2(z2, a) = z ′2
((z ′1, z2),B1 . . .Bk) ∈ δ((z1, z2), ε,A), falls
(z ′1,B1 . . .Bk) ∈ δ1(z1, ε,A)

(Analog der Kreuzprodukt-Konstruktion für endliche Automaten.)
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Nochmal Abschlusseigenschaften

Mit einer ähnlichen Technik und unter Ausnutzung der Tatsache,
dass für allgemeine (nicht-deterministische) Kellerautomaten die
Akzeptanz mit leerem Keller analog zur Akzeptanz mit Endzustand
ist, lässt sich auch folgendes zeigen:

Abschluss unter Schnitt mit regulären Sprachen

Sei L eine kontextfreie Sprache und R eine reguläre Sprache. Dann
gilt, dass L ∩ R eine kontextfreie Sprache ist.
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Nochmal Abschlusseigenschaften

Zusammenfassung Abschlusseigenschaften:

Abgeschlossen
unter R

eg
u

lä
re

S
pr

.

D
et

.
kf

r.
S

pr
.

K
fr

.
S

pr
ac

h
en

Vereinigung 3 7 3

Konkatenation 3 7 3

Kleene-Stern 3 7 3

Schnitt 3 7 7

Schnitt mit reg. Spr. 3 3 3

Komplement 3 3 7
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Fragestellungen zu dieser Vorlesungseinheit

Zum Ende einer jeden Vorlesungseinheit betrachten wir im Regelfall
drei Fragestellungen, die mithilfe der in dieser Einheit besprochenen
Inhalte beantwortet werden sollen. In der darauffolgenden Einheit
können zu Beginn mögliche Antworten gesammelt werden.

Fragen zur zehnten Vorlesungseinheit

Wovon ist der Übergang eines Kellerautomaten abhängig?

Wann akzeptiert ein nichtdeterministischer Kellerautomat ein
Wort, wann ein deterministischer?

Wie zeigt man, dass deterministisch kontextfreie Sprachen
unter Schnitt mit regulären Sprachen abgeschlossen sind?
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Kellerautomaten

Wir müssen nun noch zeigen, dass man mit Kellerautomaten
wirklich genau die kontextfreien Sprachen akzeptieren kann.

Kontextfreie Grammatiken → Kellerautomaten (Satz)

Zu jeder kontextfreien Grammatik G gibt es einen Kellerautomaten
M mit L(G ) = N(M).
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Kellerautomaten

Beweisidee:

1 Verwende den Keller zur Simulation der Grammatik. Leite ein
Wort der Sprache auf dem Keller ab (nicht-deterministisches
Raten) und überprüfe dann, ob dieses Wort mit dem Wort in
der Eingabe übereinstimmt.

2 Problem: der Keller darf nicht beliebig verwendet werden, man
kann immer nur das oberste Kellersymbol ersetzen.

Lösung: Entferne die bereits fertig abgeleiteten Teile des
Wortes auf dem Keller, indem sie mit der Eingabe verglichen
und bei Übereinstimmung weggenommen werden.

3 Damit kann man erreichen, dass immer wieder eine Variable
zuoberst auf dem Keller liegt und abgeleitet werden kann.
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Kellerautomaten

Formaler:
sei G = (V ,Σ,P, S) eine kontextfreie Grammatik. Dann definieren
wir einen Kellerautomaten

M = ({z},Σ,V ∪ Σ, δ, z ,S)

mit einem Zustand z und Kelleralphabet V ∪ Σ. Das Startsymbol
S ist das Kellerbodenzeichen.

Überführungsfunktion δ:

Für jede Regel (A→ α) ∈ P mit α ∈ (V ∪ Σ)∗ nehme (z , α)
in die Menge δ(z , ε,A) auf.
(Ableitungsschritt auf dem Keller ohne Lesen der Eingabe)

Außerdem nehme (z , ε) in δ(z , a, a) auf.
(Vergleichen von Kellerinhalt und Eingabe)
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Kellerautomaten

Wir betrachten folgende kontextfreie Grammatik mit dem
zweielementigen Alphabet Σ = {[, ]}, die korrekte
Klammerstrukturen erzeugt:

S → [S ]S | ε

Aufgabe: wandle diese Grammatik in einen Kellerautomaten um
und akzeptiere damit das Wort [ [ ] ] [ ].
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Kellerautomaten

Kellerautomat für Beispiel-Grammatik:

M = ({z},Σ, {S} ∪ Σ, δ, z , S)

mit folgender Überführungsfunktion δ:

(z , ε,S) → (z , [S ]S)
(z , ε,S) → (z , ε)
(z , [ , [ ) → (z , ε)
(z , ] , ] ) → (z , ε)
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Kellerautomaten

Simulation des KA auf dem Wort [ [ ] ] [ ]

[ ] ] [ ]

Kellerautomat

Konfiguration:

[

Zustand z

(z , [ [ ] ] [ ], S)

S
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Kellerautomaten

Simulation des KA auf dem Wort [ [ ] ] [ ]

[ ] ] [ ]

Kellerautomat

Konfiguration:

Zustand z

(z , [ [ ] ] [ ], [S ]S)

S

]

S

[

[
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Kellerautomaten

Simulation des KA auf dem Wort [ [ ] ] [ ]

[ ] ] [ ]

Kellerautomat

Konfiguration:

Zustand z

S

]

[

(z , [ ] ] [ ], S ]S)

S
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Kellerautomaten

Simulation des KA auf dem Wort [ [ ] ] [ ]

] ] [ ]

Kellerautomat

Konfiguration:

Zustand z

S

]

[

S

]

S

(z , [ ] ] [ ], [S ]S ]S)

[

[
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Kellerautomaten

Simulation des KA auf dem Wort [ [ ] ] [ ]

[ ] [ ]

Kellerautomat

Konfiguration:

Zustand z

[

S

]

S

(z , ] ] [ ], S ]S ]S)

]

]

S
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Kellerautomaten

Simulation des KA auf dem Wort [ [ ] ] [ ]

[ ] [ ]

Kellerautomat

Konfiguration:

Zustand z

[

S

]

S

]

]

(z , ] ] [ ], ]S ]S)
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Kellerautomaten

Simulation des KA auf dem Wort [ [ ] ] [ ]

[ [ ]

Kellerautomat

Konfiguration:

Zustand z

[

S

]

] ]

S

(z , ] [ ], S ]S)
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Kellerautomaten

Simulation des KA auf dem Wort [ [ ] ] [ ]

[ [ ]

Kellerautomat

Konfiguration:

Zustand z

[

S

]

(z , ] [ ], ]S)

]

]
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Kellerautomaten

Simulation des KA auf dem Wort [ [ ] ] [ ]

[ [ ]

Kellerautomat

Konfiguration:

Zustand z

[ ] ]

S

(z , [ ], S)
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Kellerautomaten

Simulation des KA auf dem Wort [ [ ] ] [ ]

[ ]

Kellerautomat

Konfiguration:

Zustand z

[ ] ]

]

S

S

[

[

(z , [ ], [S ]S)
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Kellerautomaten

Simulation des KA auf dem Wort [ [ ] ] [ ]

[ ]

Kellerautomat

Konfiguration:

Zustand z

[ ] ]

]

S

[

(z , ], S ]S)

S
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Kellerautomaten

Simulation des KA auf dem Wort [ [ ] ] [ ]

[

Kellerautomat

Konfiguration:

Zustand z

[ ] ]

S

[

(z , ], ]S)

]

]
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Kellerautomaten

Simulation des KA auf dem Wort [ [ ] ] [ ]

[

Kellerautomat

Konfiguration:

Zustand z

[ ] ] [

(z , ε, S)

S

]

Sebastian Küpper Automaten und Formale Sprachen 376
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Kellerautomaten

Simulation des KA auf dem Wort [ [ ] ] [ ]

[

Kellerautomat

Konfiguration:

Zustand z

[ ] ] [ ]

(z , ε, ε)
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Think-Pair-Share: Transformation von Grammatik in
Kellerautomat

Wandeln Sie die folgende Grammatik in einen Kellerautomaten um:

G = ({S ,A}, {a, b, c},P, S)

mit folgender Produktionenmenge P:

S → aAb | ab

A → S | aaSc

Erarbeiten Sie zunächst vier Minuten in Einzelarbeit eine Lösung.
Anschließend tauschen Sie sich für weitere vier Minuten mit ihrem
Sitznachbarn aus. Schlussendlich besprechen wir die Lösung im
Plenum.
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Lösungsvorschlag zu Think-Pair-Share: Transformation von
Grammatik in Kellerautomat

M = ({z}, {a, b, c}, {S ,A, a, b, c , }, δ, z ,S)

(z , ε,S) → (z , aAb)
(z , ε,S) → (z , ab)
(z , ε,A) → (z , S)
(z , ε,A) → (z , aaSc)
(z , ε,S) → (z , ε)
(z , a, a) → (z , ε)
(z , b, b) → (z , ε)
(z , c , c) → (z , ε)

Sebastian Küpper Automaten und Formale Sprachen 378
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Kellerautomaten

Nun geht es darum zu zeigen, dass es zu jedem Kellerautomaten
eine entsprechende kontextfreie Grammatik gibt. (Das ist die
schwierigere Richtung.)

Kellerautomaten → Kontextfreie Grammatiken (Satz)

Zu jedem Kellerautomaten M gibt es eine kontextfreie Grammatik
G mit N(M) = L(G ).
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Kellerautomaten

Beweisidee:

1 Wir wollen beschreiben, welche Wörter man durch Abbauen
eines bestimmten Kellersymbols akzeptieren kann. Die vom
Automaten akzeptierte Sprache besteht nämlich aus allen
Wörtern, die man durch Abbauen von # erzeugen kann.

Abbauen bedeutet: zwischendurch dürfen weitere Symbole auf
den Keller gelegt werden, aber zuletzt muss der Keller um
dieses eine Symbol kürzer geworden sein.

2 Die zu erstellende kontextfreie Gram-
matik besitzt Variablen der Form (z1,A, z2) mit der Bedeutung:

Aus (z1,A, z2) kann man genau die Wörter ableiten,
die der Kellerautomat einliest, wenn er im Zustand
z1 startet, A vom Keller abbaut und im Zustand z2
aufhört.
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Kellerautomaten

Erstes Unterschreiten
der ursprünglichen
Kellerhöhe
(KA im Zustand z2)

Eingelesene
Eingabesymbole

abgeleitet werden)
(kann aus (z1,A, z2)
Eingelesenes Teilwort

(KA im Zustand z1)
auf dem Keller

A liegt

Höhe
des Kellers

Zwischendurch kann A durch ein anderes Symbol ersetzt werden.
Die ursprüngliche Kellerhöhe wird jedoch nicht unterschritten.
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Kellerautomaten

Bedeutung der Nicht-Terminale (z1,A, z2):

(z1,A, z2)⇒∗ x ⇐⇒ (z1, x ,A) `∗ (z2, ε, ε)

Gegeben sei ein Kellerautomat M = (Z ,Σ, Γ, δ, z0,#). Wir
definieren eine Grammatik G = (V ,Σ,P,S) wie folgt:

Variable: V = {S} ∪ Z × Γ× Z (Eigene Startvariable und
Variablen der Form (z1,A, z2))
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Kellerautomaten

Produktionen folgender Form:

S → (z0,#, z) für alle z ∈ Z

(Entfernen des Kellerbodenzeichens)

(z ,A, z ′) → a falls (z ′, ε) ∈ δ(z , a,A)

(Symbol A kann – bei Einlesen

von a – sofort entfernt werden)

(z ,A, z ′) → a(z1,B1, z2)(z2,B2, z3) . . . (zk ,Bk , z
′)

falls (z1,B1 . . .Bk) ∈ δ(z , a,A), z ′, z2, . . . , zk ∈ Z

(Symbol A wird bei Einlesen von a durch B1 . . .Bk

ersetzt, diese müssen über Zwischenzustände

z1, . . . , zk entfernt werden)
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Kellerautomaten

Produktionen folgender Form:

(z ,A, z ′) → a(z1,B1, z2)(z2,B2, z3) . . . (zk ,Bk , z
′)

Die Idee ist hier die folgende: Wenn das Symbol A auf dem Keller
entfernt und durch die Symbole B1 . . .Bk ersetzt wird, ist es
notwendig, B1 . . .Bk durch weitere Transitionen abzubauen. Dabei
werden irgendwelche Zwischenzustände z2 . . . zk erreicht, bevor
schlussendlich Bk abgebaut und der Zustand z ′ erreicht wird. Es
gibt daher eine Überführungsregel für jede mögliche Wahl von
z2 . . . zk .
Wenn man ein Wort ableiten möchte, muss man also bei der
Simulation eines Schrittes des Kellerautomaten bereits

”
raten“,

welche Zwischenzustände bei der Elimination der neuen
Kellerzeichen erreicht werden.
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Kellerautomaten

Beispiel: Wir betrachten den Kellerautomaten

M = ({z1, z2}, {a, b}, {A,#}, δ, z1,#)

mit folgender Überführungsfunktion δ:

(z1, ε,#) → (z2, ε)

(z1, a,#) → (z1,AA)

(z1, a,A) → (z1,AAA)

(z1, b,A) → (z2, ε)

(z2, b,A) → (z2, ε)

Es gilt: N(M) = {anb2n | n ≥ 0}.

Aufgabe: Umwandlung von M in eine kontextfreie Grammatik.
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Kellerautomaten

Kontextfreie Grammatik für den Beispiel-Kellerautomaten:

G = (V ,Σ,P,S)

mit folgender Variablenmenge

V = {S , (z1,#, z1), (z1,#, z2), (z2,#, z1), (z2,#, z2),

(z1,A, z1), (z1,A, z2), (z2,A, z1), (z2,A, z2)}

. . .
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Kellerautomaten

. . . und mit folgender Produktionenmenge P:

S → (z1,#, z1) | (z1,#, z2)

(z1,#, z2) → ε

(z1,A, z2) → b

(z2,A, z2) → b

(z1,#, z1) → a(z1,A, z)(z ,A, z1)

(z1,#, z2) → a(z1,A, z)(z ,A, z2)

(z1,A, z1) → a(z1,A, z)(z ,A, z ′)(z ′,A, z1)

(z1,A, z2) → a(z1,A, z)(z ,A, z ′)(z ′,A, z2)

z , z ′ ∈ {z1, z2} können jeweils beliebig gewählt werden.
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Kellerautomaten

Beispiel-Ableitung des Wortes aabbbb:

S ⇒ (z1,#, z2)

⇒ a(z1,A, z2)(z2,A, z2)

⇒ aa(z1,A, z2)(z2,A, z2)(z2,A, z2)(z2,A, z2)

⇒ aab(z2,A, z2)(z2,A, z2)(z2,A, z2)

⇒ aabb(z2,A, z2)(z2,A, z2)

⇒ aabbb(z2,A, z2)

⇒ aabbbb
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Kellerautomaten

Bemerkung zu den Umwandlungen “Kontextfreie Grammatik ↔
Kellerautomat”:

Zu jedem Kellerautomaten gibt es immer einen äquivalenten
Kellerautomaten mit nur einem Zustand.

Dazu wandelt man ihn in eine kontextfreie Grammatik um und
dann wieder zurück in einen Kellerautomaten. Es wird
ausgenutzt, dass bei der Umwandlung in Kellerautomaten
immer nur Automaten mit einem Zustand konstruiert werden.
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Entscheidbarkeit

Wir betrachten nun noch Probleme für kontextfreie Sprachen und
stellen fest, ob sie entscheidbar sind, d.h., ob es entsprechende
Verfahren zu ihrer Lösung gibt.

Folgende Probleme sind für kontextfreie Sprachen (repräsentiert
durch eine kontextfreie Grammatik oder einen Kellerautomaten)
entscheidbar:

Wortproblem bei kontextfreien Sprachen ist entscheidbar

Wortproblem: Gegeben eine kontextfreie Sprache L und
w ∈ Σ∗. Gilt w ∈ L?

Mit dem CYK-Algorithmus in O(|w |3) Zeit.
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Entscheidbarkeit

Leerheitsproblem bei kontextfreien Sprachen ist entscheidbar

Leerheitsproblem: Gegeben eine kontextfreie Sprache L. Gilt
L = ∅?
Bestimme alle produktiven Variablen, d.h., alle Variablen A,
für die es ein x ∈ Σ∗ gibt mit A⇒∗ x (siehe Übungsaufgabe).
Die Sprache L ist leer, genau dann wenn das Startsymbol S
nicht produktiv ist.
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Entscheidbarkeit

Endlichkeitsproblem bei kontextfreien Sprachen ist entscheidbar

Endlichkeitsproblem: Gegeben eine kontextfreie Sprache L. Ist
L endlich?

Wir gehen davon aus, dass die Grammatik in CNF gegeben ist
(sonst überführen wir sie in CNF).

1 Entferne alle nicht produktiven oder nicht erreichbaren
Variablen aus der Grammatik (vgl. Übungen)

2 Ermittle für jede Variable, welche Variablen in einem oder
mehr Schritten ableitbar sind (Fixpunktiteration analog zur
Bestimmung erreichbarer Variablen)

3 Gibt es eine Variable, die von sich selbst aus abgeleitet werden
kann, ist die Sprache unendlich, sonst endlich (vgl.
Pumping-Lemma für kontextfreie Sprachen: Ist eine Variable
von sich selbst aus erreichbar, kann man an dieser Variable
pumpen).
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Entscheidbarkeit

Folgende Probleme sind für kontextfreie Sprachen nicht
entscheidbar, d.h., man kann zeigen, dass es kein entsprechendes
Verfahren gibt:

Unentscheidbare Probleme bei kontextfreien Sprachen

Äquivalenzproblem: Gegeben zwei kontextfreie Sprachen L1,
L2. Gilt L1 = L2?

Schnittproblem: Gegeben zwei kontextfreie Sprachen L1, L2.
Gilt L1 ∩ L2 = ∅?

Bemerkung: In der Vorlesung “Berechenbarkeit und Komplexität”
wird es darum gehen, wie man solche Unentscheidbarkeitsresultate
zeigen kann.
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Entscheidbarkeit

Schnittproblem mit regulären Sprachen ist entscheidbar

Das Schnittproblem ist jedoch entscheidbar, wenn von einer der
beiden Sprachen L1, L2 bekannt ist, dass sie regulär ist und sie als
endlicher Automat gegeben ist.

Entscheidungsverfahren:

1 In diesem Fall kann ein Kellerautomat M konstruiert werden
(Konstruktion siehe weiter oben), der L1 ∩ L2 akzeptiert.

2 Der Kellerautomat M kann dann in eine kontextfreie
Grammatik G umgewandelt werden.

3 Durch Bestimmung der produktiven Variablen von G kann
dann ermittelt werden, ob S nicht-produktiv ist und damit, ob
L1 ∩ L2 leer ist.
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Entscheidbarkeit

Folgende Probleme sind für deterministisch kontextfreie Sprachen
(repräsentiert durch einen deterministischen Kellerautomaten)
entscheidbar:

Entscheidbarkeit bei deterministisch kontextfreien Sprachen

Wortproblem: Gegeben eine deterministisch kontextfreie
Sprache L und w ∈ Σ∗. Gilt w ∈ L?

Mit einem deterministischen Kellerautomaten in O(|w |) Zeit.

Leerheitsproblem: Gegeben eine deterministisch kontextfreie
Sprache L. Gilt L = ∅?
Siehe das entsprechende Entscheidungsverfahren für
kontextfreie Sprachen.
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Entscheidbarkeit

Entscheidbarkeit bei deterministisch kontextfreien Sprachen

Endlichkeitsproblem: Gegeben eine kontextfreie Sprache L. Ist
L endlich?

Siehe das entsprechende Entscheidungsverfahren für
kontextfreie Sprachen.

Äquivalenzproblem: Gegeben zwei deterministisch kontextfreie
Sprachen L1, L2. Gilt L1 = L2?

War lange offen und die Entscheidbarkeit wurde erst 1997 von
Sénizergues gezeigt.
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Entscheidbarkeit

Folgende Problem ist für deterministisch kontextfreie Sprachen
nicht entscheidbar, d.h., man kann zeigen, dass es kein
entsprechendes Verfahren gibt:

Unentscheidbarkeit bei deterministisch kontextfreien Sprachen

Schnittproblem: Gegeben zwei deterministisch kontextfreie
Sprachen L1, L2. Gilt L1 ∩ L2 = ∅?

Wie bei kontextfreien Sprachen ist dieses Problem jedoch
entscheidbar, wenn eine der beiden Sprachen regulär ist.
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Entscheidbarkeit

Zusammenfassung Entscheidbarkeit:

Problem
entscheidbar R

eg
u

lä
re

S
pr

.

D
et

.
kf

r.
S

pr
.

K
fr

.
S

pr
ac

h
en

Wortproblem 3 3 3

Leerheit 3 3 3

Endlichkeit 3 3 3

Schnittproblem 3 7 7

Schnittp. mit reg. Spr. 3 3 3

Äquivalenz 3 3 7
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Entscheidbarkeit

Wir betrachten als eine Anwendung von Kellerautomaten das
Adventure-Problem, Level 2.

Die Schatz-Regel

Man muss mindestens zwei Schätze finden.

Die Drachen-Regel

Unmittelbar nach der Begegnung mit einem Drachen muss man in
einen Fluss springen, da uns der Drache in Brand stecken wird.
Dies gilt nicht mehr, sobald man ein Schwert besitzt, mit dem man
den Drachen vorher töten kann.

Neue Tür-Regel

Die Schlüssel sind magisch und verschwinden sofort, nachdem eine
Tür mit ihnen geöffnet wurde. Sobald man eine Tür durchschritten
hat, schließt sie sich sofort wieder.
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Entscheidbarkeit

Es gilt:

Die Schatz- und die Drachen-Regel sowie die Menge aller
möglichen Pfade im Adventure können durch endliche
Automaten A, D, M beschrieben werden.

Es gibt einen Kellerautomaten T (siehe nächste Folie), der
alle Wörter akzeptiert, die die neue Tür-Regel erfüllen.

Idee: Lege Schlüssel (L) auf den Keller und entferne sie
wieder, sobald eine Tür (T ) in der Eingabe auftaucht.
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Entscheidbarkeit

(Nicht-deterministischer) Kellerautomat für die Tür-Regel:

T = ({z0}, {D,B,T ,W ,A,F , L}, {#, L}, δ, z0,#),

mit folgendem δ:

(z0, L,#) → (z0, L#)

(z0, a,#) → (z0,#), für a ∈ {D,B,W ,A,F}
(z0, L, L) → (z0, LL)

(z0,T , L) → (z0, ε)

(z0, a, L) → (z0, L), für a ∈ {D,B,W ,A,F}
(z0, ε,X ) → (z0, ε), für X ∈ {L,#}

Die letzte Regel dient dazu, den Keller am Ende zu leeren, um mit
leerem Keller zu akzeptieren. Sie kann auch in Sackgassen führen.
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Entscheidbarkeit

Es gibt auch einen deterministischen Kellerautomaten für die
Sprache aller Wörter, die die Tür-Regel erfüllen:

T = ({z0}, {D,B,T ,W ,A,F , L}, {#, L}, δ, z0,#, {z0}),

mit folgendem δ:

(z0, L,#) → (z0, L#)

(z0, a,#) → (z0,#), für a ∈ {D,B,W ,A,F}
(z0, L, L) → (z0, LL)

(z0,T , L) → (z0, ε)

(z0, a, L) → (z0, L), für a ∈ {D,B,W ,A,F}
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Entscheidbarkeit

Verfahren zur Lösung des Adventure-Problems (Level 2):

1 Kreuzprodukt der endlichen Automaten, A, D, M bilden. Der
entstehende Automat heißt ADM und akzeptiert
T (A) ∩ T (D) ∩ T (M).

2 Kreuzprodukt des Kellerautomaten T mit dem endlichen
Automaten ADM bilden (siehe Abschluss von kontextfreien
Sprachen unter Schnitt mit regulären Sprachen). Daraus
entsteht ein Kellerautomat TADM.

3 Kellerautomat TADM in eine kontextfreie Grammatik G
umwandeln und überprüfen, ob das Startsymbol S produktiv
ist. Genau in diesem Fall gibt es eine Lösung. Aufbauend auf
dem Verfahren zur Überprüfung der Produktivität kann man
eine solche Lösung auch explizit angeben.
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Fragestellungen zu dieser Vorlesungseinheit

Zum Ende einer jeden Vorlesungseinheit betrachten wir im Regelfall
drei Fragestellungen, die mithilfe der in dieser Einheit besprochenen
Inhalte beantwortet werden sollen. In der darauffolgenden Einheit
können zu Beginn mögliche Antworten gesammelt werden.

Fragen zur elften Vorlesungseinheit

Wie transformiert man einen Kellerautomaten in eine
kontextfreie Grammatik?

Wie transformiert man eine kontextfreie Grammatik in einen
Kellerautomaten?

Wie entscheidet man das Schnittproblem zwischen
kontextfreien und regulären Sprachen?
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Zusammenfassung

Typ-2-Sprachen
kontextfreie Sprachen

Typ-3-Sprachen
reguläre Sprachen

kontextsensitive Sprachen
Typ-1-Sprachen

semi-entscheidbare Sprachen
Typ-0-Sprachen

Menge aller Sprachen
Wir haben uns bis jetzt mit
den untersten beiden Stufen
der Chomsky-Hierarchie
beschäftigt: den regulären
und kontextfreien Sprachen.

Mit den weiter oben
befindlichen Stufen
beschäftigt sich die Vorlesung
“Berechenbarkeit und
Komplexität”. Inbesondere
geht es darin um die Frage,
was berechenbar und was
nicht mehr berechenbar ist.

Sebastian Küpper Automaten und Formale Sprachen 405
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Weiterer Ablauf

Im Moodle werden alle Fragen zur Vorlesungseinheit zur Wahl
gestellt. Diejenigen Fragen, die die meisten Stimmen erhalten,
werden in der kommenden Vorlesungseinheit beantwortet.
In der darauffolgenden Woche wird die Vorlesung durch Christine
Mika vertreten und als Fragestunde fungieren, bitte senden Sie
zeitig Ihre Fragen per E-Mail an Christine Mika.
Das Tutorium wird bis zum Vorlesungsende wie gewohnt im
Wechsel Donnerstags und Freitags stattfinden.
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