) Sebastian Kiipper
Ubungsleitung: Christina Mika

Das heutige Programm:

@ Organisatorisches

Vorstellung

o Ablauf der Vorlesung und der Ubungen
o Priifung & Klausur

o Literatur & Folien

e Einfiihrung und Motivation: “"Automaten und Formale
Sprachen”

@ Inhalt der Vorlesung

_ Organisatorisches Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontextfreie Sprachen
Wer sind wir?

@ Raum LF 261

o E-Mail: sebastian.kuepper@uni-due.de

@ Raum LF 261

@ christine.mika@uni-due.de

Web-Seite: www.ti.inf.uni-due.de/teaching/ss2017/afs/

B L L
Vorlesungstermine

Termin:
@ Dienstag, 12:15-13:45 Uhr im Raum LX 1203

_ Gl e e E e S e Sl AT [Sle DR st
Termine der Ubungsgruppen

Ubungsgruppen:
Gruppe || Tag | Uhrzeit Raum Sprache
1 Di | 8:00 - 10:00 | LE 120 | Englisch
2 Di | 16:00 — 18:00 | LE 103 | Deutsch
3 Mi | 10:00 — 12:00 | LE 120 | Deutsch
4 Do | 10:00 — 12:00 | LK 051 | Deutsch
5 Fr | 8:00 —10:00 | LC 137 | Deutsch
6 Fr | 10:00 — 12:00 | LC 137 | Deutsch

_ @uniEmenidies Eni s e e Resik Sprdy et
Hinweise zu den Ubungen

@ Die Ubungen beginnen in der dritten Vorlesungswoche am
Dienstag, den 2. Mai.

o Bitte versuchen Sie, sich moglichst gleichmaBig auf die
Ubungen zu verteilen.

@ Besuchen Sie die Ubungen! Diesen Stoff kann man nur durch
regelmaBiges Uben erlernen. Auswendiglernen hilft nicht
besonders viel.

o Die Ubungsblitter (in Deutsch und Englisch) werden jeweils
am Dienstag der Vorwoche ins Netz gestellt. Das erste
Ubungsblatt wird am 25.4. bereitgestellt.

_ @uniEmenidies Eni s e e Resik Sprdy et
Hinweise zu den Ubungen

@ Abgabe der gelosten Aufgaben bis Dienstag der folgenden
Woche, 8:00 Uhr.

@ Einwurf in den Briefkasten neben dem Raum LF 259 oder
Abgabe per Moodle.

@ Bitte geben Sie auf Ihrer Losung deutlich die Vorlesung, Ihren
Namen, lhre Matrikelnummer und lhre Gruppennummer an.

@ Sie diirfen in Paaren abgeben. Bei Abgaben in Paaren sollte
die Abgabe nur ein Mal eingerecht, aber mit beiden Namen
versehen werden.

Hinweise zu den Ubungen

Wir verwenden Moodle, um:

o die Aufgabenblatter zur Verfligung zu stellen,
e die Hausaufgaben elektronisch (nur PDF!) abzugeben und
@ um Diskussionsforen bereitzustellen.

Moodle-Plattform an der Universitat Duisburg-Essen:
http://moodle.uni-due.de/ (siehe auch Link auf der Webseite)

Bitte legen Sie dort einen Zugang an (falls noch nicht vorhanden)
und tragen Sie sich in den Kurs “Automaten und Formale
Sprachen 2017" (Sommersemester 2017 —
Ingenieurwissenschaften — Informatik und Angewandte
Kognitionswissenschaft) ein. Bitte mit Uni-Kennung anmelden!

Tutorium

In diesem Semester wird es ein Tutorium geben, das wechselweise
in Deutsch und in Englisch von Christina Mika gehalten wird. In
dem Tutorium konnen Fragen zur Vorlesung besprochen werden;
wenn allerdings im Vorfeld keine Fragen an Christina Mika
gesendet werden (per Moodle-Forum oder per Mail), dann entfillt
der jeweilige Termin ersatzlos. Das Tutorium findet an den
folgenden Terminen statt:

© Donnerstag, 14:00-16:00 (Deutsch, in geraden

Kalenderwochen)

@ Freitag, 14:00-16:00 (Englisch, in ungeraden Kalenderwochen)
Erstmals findet das Tutorium am 4. Mai statt.

_ Gl e e E e S e Sl AT [Sle DR st
Priifung

Es gibt mehrere Moglichkeiten, die Vorlesung priifen zu lassen . ..

o Klausur (fiir BAlI & ISE & Nebenfach-Studierende).
Termin: 22. August 2017, 8:30 Uhr
e Miindliche Priifung (fiir BAls, die diese Vorlesung miindlich

priifen lassen; Alternative: miindliche Priifung in
“Rechnernetze und Sicherheit")

Voraussichtlicher Termin: 21.-25. August 2017

Im Allgemeinen findet diese miindliche Priifung als
Kombipriifung/Modulpriifung gemeinsam mit
“Berechenbarkeit und Komplexitat" statt. Es gibt Ausnahmen
fiir Studierende, die im Sommersemester beginnen und beide
Vorlesungen in groBerem Abstand horen.

Anmeldung iiber das Priifungsamt

Priifung

Hinweise:

@ Die Vorlesung heiBt “Automaten und Formale Sprachen”.
Das Modul, das "Automaten und Formale Sprachen” &
“Berechenbarkeit und Komplexitat” umfasst, heiBt
“Theoretische Informatik”.

e Fiir ISE tragt die Vorlesung nach der alten Priifungsordnung
alleine den Namen "Theoretische Informatik™.

_ Gl e e E e S e Sl AT [Sle DR st
Priifung

Wenn Sie 50% der Ubungspunkte erzielt haben, so erhalten Sie
einen Bonus fiir die Priifung. (Fiir das Vorrechnen in der Ubung
gibt es 10 Extrapunkte.)

Auswirkung: Verbesserung um eine Notenstufe; z.B. von 2,3 auf
2,0.

Bonuspunkte aus dem SS 2016 (oder friiher) gelten nicht mehr!
Fiir die miindliche Modulpriifung “Theoretische Informatik”
(Kombipriifung) ist es erforderlich, den Bonus fiir jede der beiden
Vorlesungen (“Automaten und Formale Sprachen” &

“Berechenbarkeit & Komplexitdt”) zu erzielen, um eine bessere
Note zu erhalten.

Der Bonus ist keine Voraussetzung fiir die Teilnahme an einer
Priifung.

_ Organisatorisches Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontextfreie Sprachen
LuDi - Lern- und Diskussionszentrum

Zur Unterstiitzung in der Studieneingangsphase bietet das LuDi
einen Raum zum gemeinsamen Lernen und Nachfragen, betreut
durch studentische Tutoren hoherer Semester. Im LuDi erhalten Sie
Hausaufgabenhilfe, kdnnen Fragestellungen aus Vorlesungen
diskutieren und sich gemeinsam in der Klausurphase vorbereiten.
Es gibt ein LuDi zu Informatik-nahen Veranstaltungen im LF 031
zu den folgenden Zeiten:

o Montag 11-14 Uhr
e Mittwoch 12-16 Uhr
o Freitag 11-14 Uhr

Zu allen weiteren Zeiten steht das LuDi als Arbeitsraum zur
Verfligung.

LuDi - Lern- und Diskussionszentrum

Weitere Informationen finden Sie unter der URL
https://www.uni-due.de/iw/de/studium/ludi-inko sowie in
der Facebook-Gruppe des LuDi: http://bit.1ly/LuDi-INKO.

Ein analoges Angebot existiert auch fiir Mathematik-nahe
Veranstaltungen, immer Montags bis Freitags von 10-18 Uhr im
BC 520.

Literatur

Die Vorlesung basiert im wesentlichen auf folgendem Buch:

@ Uwe Schoning: Theoretische Informatik — kurzgefaBt.
Spektrum, 2008. (5. Auflage)

Weitere relevante Biicher:

@ Neuauflage eines alten Klassikers:
Hopcroft, Motwani, Ullman: Introduction to Automata
Theory, Languages, and Computation, Addison-Wesley, 2001.

o Auf Deutsch: Hopcroft, Motwani, Ullman: Einfiihrung in die
Automatentheorie, Formale Sprachen und
Komplexitatstheorie, Pearson, 2002.

@ Vossen, Witt: Grundkurs Theoretische Informatik, vieweg,
2006.

@ Asteroth, Baier: Theoretische Informatik, Pearson, 2003.

Literatur

Uwe Schoning

Introduction to
Automata Theory,
Languages, and Computation

Eia

Theoretische Informatik
— kurz gefasst

5. Auflage

s
X
)
=
<
<=
o
bl
E i
=
-
(¥
w
o —
v
]
=

_ Organisatorisches Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontextfreie Sprachen
Literatur

Gottiried Vossen
Kurt-Uleich ‘Witt

Grundkurs
Theoretische
Informatik

Literatur

%7 Alexander Asteroth
| J| Christel Baier

Theoretische
Informatik

| e Einfiihrung in Berechenbarkei
| Komplexitt und formale Sprachen
| mit 101 Beispielen

Folien

Folien werden
o auf der Webseite bereitgestellt

o regelmiaBig aktualisiert

Die Folien basieren auf den Folien aus dem letzten Jahr. Die
behandelten Inhalte werden sich im Vergleich zur vorherigen
Veranstaltung nicht wesentlich dndern.

Sie kdnnen daher bei Bedarf auf die Folien des Vorjahrs zuriickgreifen
(www.ti.inf.uni-due.de/teaching/ss2016/afs/downloads/).

Unter
www.ti.inf.uni-due.de/teaching/ss2014/afs/downloads/
gibt es auch eine englische Ubersetzung der Folien aus dem

Jahr 2014.

~ Organisatorisches Einfilhrung Chomsky-Hierarchie Regulire Sprachen Kontextfreie Sprachen
Adventure-Problem

Zum Aufwadrmen: wir betrachten das sogenannte
Adventure-Problem, bei dem ein Abenteurer/eine Abenteurerin
einen Weg durch ein Adventure finden muss.

(Spater wird dann erklart, was das eigentlich mit theoretischer
Informatik zu tun hat.)

Adventure-Problem

Adventures bestehen aus Graphen bzw. Automaten, die mit
folgenden Symbolen markiert sind:

= @ Torbogen: ﬁ
@ Drachen: %

o Tir: I]
@ Schwert:

@ Schliissel: O

@ Schatz: @

MY
@ Fluss: 2= A—v

{ﬁmiﬁ %ﬂ”“*ﬁ”@%
Y s ﬁ

)
I /
i

- Organisatorisches Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontextfreie Sprachen
Adventure-Problem (Level 1)

Natiirlich gibt es bestimmte Regeln, die bei einem erfolgreichen
Abenteuer zu beachten sind:

Man muss mindestens zwei Schatze finden.

Durch eine Tiir kann man nur gehen, wenn man zuvor einen
Schliissel gefunden hat. (Dieser Schliissel darf aber dann beliebig
oft verwendet werden.)

- Organisatorisches Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontextfreie Sprachen
Adventure-Problem (Level 1)

Die Drachen-Regel

Unmittelbar nach der Begegnung mit einem Drachen muss man in
einen Fluss springen, da uns der Drache in Brand stecken wird.
Dies gilt nicht mehr, sobald man ein Schwert besitzt, mit dem man
den Drachen vorher téten kann.

Bemerkung: Drachen, Schétze und Schliissel werden “nachgefiillt”,
sobald man das entsprechende Feld verlassen hat.

Gesucht ist der kiirzeste Weg, von einem Anfangszustand zu einem
Endzustand, der alle diese Bedingungen erfiillt:

- Organisatorisches Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontextfreie Sprachen
Adventure-Problem (Level 2)

Die Schliissel sind magisch und verschwinden sofort, nachdem eine
Tir mit ihnen gedffnet wurde. Sobald man eine Tiir durchschritten
hat, schlieBt sie sich sofort wieder.

Adventure-Problem (Level 3)

Auch Schwerter werden durch das Drachenblut unbenutzbar,
sobald man einen Drachen damit getotet hat. AuBerdem werden
Drachen sofort wieder “ersetzt”.

Es gibt jedoch immer noch die Option, ein Schwert nicht zu
benutzen und nach der Begegnung mit dem Drachen in den Fluss
Zu springen.

AuBerdem bleibt die neue Tiir-Regel bestehen.

- Organisatorisches Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontextfreie Sprachen
Adventure-Problem (Level 4)

Der magische Torbogen kann nur passiert werden, wenn man
keinen Schliissel besitzt.

Ein Fluss kann nur passiert werden, wenn man kein Schwert besitzt
(weil man sonst ertrinkt!).

Das Wegwerfen von Schliisseln oder Schwertern ist nicht erlaubt.

~ Organisatorisches Einfilhrung Chomsky-Hierarchie Regulire Sprachen Kontextfreie Sprachen
Think-Pair-Share

Wir werden nun eine kleine Aufgabe bearbeiten und dazu das
Verfahren Think-Pair-Share verwenden. Wir werden Aufgaben
dieser Art regelmiaBig durchfiihren, da sie dazu beitragen konnen,
einen groBeren Lernerfolg zu erzielen.

Sie erhalten gleich eine Aufgabenstellung, die zunichst jeder fiir
sich bearbeiten sollte. Nach drei Minuten beginnt die
Paararbeitsphase, in der Sie lhre Ergebnisse mit lhrem Sitzpartner
besprechen. Nach weiteren vier Minuten bitte ich Sie, lhre
Ergebnisse dem Plenum vorzustellen. Gibt es Fragen zu dem
Vorgehen?

Bitte suchen Sie sich ein Level (1, 2, 3 oder 4) aus und ermitteln
Sie den kiirzesten Pfad von einem Start- zu einem Endzustand, der
alle Adventure-Regeln des Levels erfiillt.

Level 1: Man muss mindestens zwei Schatze finden. Bevor man

eine Tiir durchqueren kann, muss man mindestens einen Schliissel
auflesen. Nach einer Begegnung mit einem Drachen muss man
unmittelbar in einen Fluss springen, auBer man hat irgendwann

vorher ein Schwert aufgelesen.

Level 2: Schliissel n@ﬁj@
verschwinden beim Einsatz an N %g(-

einer Tir; man muss also vor 7\%‘% i Mﬁ@%
Passieren der n-ten Tiir T @

@U
bereits mindestens n Schlissel 42 \é ﬁ\./ =
)
)

gesammelt haben.
@ —H—09

Level 3: Zusatzlich kann jedes Schwert nur einmal verwendet
werden um einen Drachen zu toten.

Level 4: Ein Torbogen kann nur passiert werden, wenn man keinen
Schliissel besitzt und ein Fluss nur passiert werden, wenn man kein
Schwert besitzt.

- Organisatorisches Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontextfreie Sprachen
Adventure-Problem (Level 1)

Fragen (Level 1)
@ Gibt es in dem Beispiel eine Lésung?
~~ Jal Die kiirzeste Losung ist
1,2,3,1,2,4,10,4,5,6,4,5,6,4,11,12 (Lange 16).
@ Gibt es ein allgemeines Losungsverfahren, das — gegeben ein

Adventure in Form eines Automaten — immer bestimmen
kann, ob es eine Losung gibt?

~ Jal Wir werden dieses Verfahren noch kennenlernen.

Um das Verfahren implementieren zu kdonnen, bendtigen wir
auch formale Beschreibungen der Regeln (Tiir-Regel,
Drachen-Regel, Schatz-Regel).

Adventure-Problem (Level 2)

@ Gibt es in dem Beispiel eine Lésung?

~> Jal Die kiirzeste Losung ist 1, 2, 3, 1, 2, 4, 10, 4, 7, 8, 9,
4,7,8,9, 4,11, 12. (Lange 18)

@ Gibt es ein allgemeines Losungsverfahren?
~> Jal Wir werden dieses Verfahren noch kennenlernen.
@ Warum ist das Problem jetzt schwieriger?

~> Wir haben jetzt durch die Schliissel eine Art Zahler
eingefiihrt.

e e e e e el ek e o e ek e
Adventure-Problem (Level 3)

Fragen (Level 3)

@ Gibt es in dem Beispiel eine Lésung?
~» Jal Die kiirzeste Lésung ist 1, 2, 3, 1, 2, 4, 10, 4,7, 8, 9,
4,7,8,9, 4,11, 12. (Lange 18)

@ Gibt es ein allgemeines Losungsverfahren?
~» Ja!l Dieses Problem ist “gerade noch” lésbar. Eine genaue
Laufzeit kann nicht angegeben werden. (Mogliche Losungen
werden in der Vorlesung voraussichtlich nicht behandelt.)

@ Warum wird das Problem schwieriger?

~» Durch die Schwerter haben wir einen weiteren Zihler
hinzubekommen. Weitere Zahler (d.h., drei oder mehr)
machen das Problem nicht wesentlich schwieriger.

Adventure-Problem (Level 4)

@ Gibt es in dem Beispiel eine Lésung?
~~ Jal Die kiirzeste Losung ist 1, 2, 3, 1, 2, 4, 10, 4, 7, 8, 9,
4,10, 4,5, 6, 4, 11, 12. (Lange 19)

@ Gibt es ein allgemeines Losungsverfahren?
~> Nein! Es handelt sich hier um ein sogenanntes
unentscheidbares Problem. Wir werden in der Vorlesung

“Berechenbarkeit und Komplexitat” beweisen, dass es
tatsachlich kein Lésungsverfahren gibt.

Adventure-Problem (Level 4)

@ Warum wird das Problem schwieriger?

~~ Wir haben jetzt nicht nur zwei Zahler, sondern kdnnen
diese auch auf Null testen. Damit hat unser Modell bereits
eine Machtigkeit, bei der viele Problemstellungen
unentscheidbar werden.

Man beachte: Computer-Programme sind mindestens so
machtig, denn es ist ganz einfach zwei Zahler einzufiihren und
ebenso sind Null-Tests moglich!

_ CunissaniEes B e e Resth Sprdy i desn
Adventure-Problem und Formale Sprachen

(Formale) Sprachen
Sprachen = Mengen von Wortern

Im Beispiel: Menge aller Pfade in einem Adventure; Menge aller
zuldssigen Pfade in einem Adventure; Menge aller Pfade, die die
Tiir-Regel erfiillen (unabhangig vom Adventure), . ..

Im Allgemeinen: Mengen von Wortern, die bestimmten
Bedingungen geniigen (zum Beispiel: Menge aller korrekt
geklammerten arithmetischen Ausdriicke; Menge aller syntaktisch
korrekter Java-Programme; ...)

Adventure-Problem und Formale Sprachen

Automaten und Formale Sprachen
Sprachen enthalten im Allgemeinen unendliche viele Worter.

Daher: Man benétigt endliche Beschreibungen fiir unendliche
Sprachen.

Mogliche endliche Beschreibungen sind Automaten (wie im
Beispiel), Grammatiken (dhnlich zu Grammatiken fiir natiirliche
Sprachen) oder reguldre Ausdriicke.

Es gibt auch Beschreibungen in Worten (Tiir-Regel, etc.), aber
diese miissen — damit sie eindeutig sind und mechanisch
weiterverarbeitet werden konnen — formalisiert werden.

Adventure-Problem und Formale Sprachen

Typische Fragen in diessm Zusammenhang sind:
@ Ist eine bestimmte Sprache L leer oder enthilt sie ein Wort?
L=0?
@ Ist ein gegebenes Wort w in der Sprache? w € L?
@ Sind zwei Sprachen ineinander enthalten? L; C [5?

Wir betrachten verschiedene Algorithmen, die solche Fragen
beantworten konnen.

_ CunissaniEes B e e Resth Sprdy i desn
Adventure-Problem und Formale Sprachen

Die einzelnen Level des Adventures entsprechen in etwa folgenden
Sprachklassen:

@ Level 1 — reguldre Sprachen
@ Level 2 — kontextfreie Sprachen

@ (Level 3 — Petri-Netz-Sprachen)
Stattdessen: wir behandeln kontextsensitiven Sprachen

o Level 4 — Chomsky-0-Sprachen (semi-entscheidbare
Sprachen)

Kontextsensitive und semi-entscheidbare Sprachen werden im
Detail erst in der Nachfolgervorlesung “Berechenbarkeit und
Komplexitdt” behandelt.

_ Organisatorisches _Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontextfreie Sprachen
Vom Nutzen der theoretischen Informatik

e Wie kann man unendliche Strukturen (Sprachen) durch
endliche Beschreibungen (Automaten, Grammatiken)
erfassen?

@ Es geht um die Fragen: Was ist berechenbar? Wie sehen die
dazugehorigen Algorithmen aus? Was sind wirklich harte
Probleme?

@ Es gibt zahlreiche Anwendungen, beispielsweise in folgenden
Gebieten:

o Suchen in Texten (reguldre Ausdriicke)

o Syntax von (Programmier-)Sprachen und Compilerbau
o Systemverhalten modellieren

o Programmuverifikation

_ CunissaniEes B e e Resth Sprdy i desn
Inhalt der Vorlesung

Automatentheorie und Formale Sprachen

@ Sprachen, Grammatiken und Automaten

@ Chomsky-Hierarchie (verschiedene Klassen von Sprachen)
@ Reguldre Sprachen, kontextfreie Sprachen
°

Wie kann man zeigen, dass eine Sprache nicht zu einer
bestimmten Sprachklasse gehort? (Pumping-Lemma)

Wortproblem (Gehért ein Wort zu einer bestimmten Sprache?)

@ Abschlusseigenschaften (Ist der Schnitt zweier regulérer
Sprachen wieder reguldr?)

Notation: Mengen und Funktionen

Menge M von Elementen, wird beschrieben als Aufzdhlung
M ={0,2,4,6,8,...}
oder als Menge von Elementen mit einer bestimmten Eigenschaft
M = {n| n € Ng und n gerade}.

Allgemeines Format:
M = {x| P(x)}

(M ist Menge aller Elemente x, die die Eigenschaft P erfiillen.)

_ CunissaniEes B e e Resth Sprdy i desn
Notation: Mengen und Funktionen

Bemerkungen:

@ Die Elemente einer Menge sind ungeordnet, d.h., ihre
Ordnung spielt keine Rolle. Beispielsweise gilt:

{1,2,3} ={1,3,2} ={2,1,3} = {2,3,1} = {3,1,2} = {3,2,1}

@ Ein Element kann nicht “mehrfach” in einer Menge auftreten.
Es ist entweder in der Menge, oder es ist nicht in der Menge.
Beispielsweise gilt:

{1,2,3} #{1,2,3,4} = {1,2,3,4,4}

Notation: Mengen und Funktionen

Wir schreiben a € M, falls ein Element a in der Menge M
enthalten ist.

Fiir eine Menge M gibt |M| die Anzahl ihrer Elemente an. I

Wir schreiben A C B, falls jedes Element von A auch in B
enthalten ist. Die Relation C heiBt auch Inklusion.

Mit () oder {} bezeichnet man die leere Menge. Sie enthélt keine
Elemente und ist Teilmenge jeder anderen Menge.

e e e e e el ek e o e ek e
Notation: Mengen und Funktionen

Die Vereinigung zweier Mengen A, B ist die Menge M, die die
Elemente enthalt, die in A oder B vorkommen. Man schreibt dafiir
AU B.

AUB = {x | x € A oder x € B}

Der Schnitt zweier Mengen A, B ist die Menge M, die die Element
enthalt, die sowohl in A als auch in B vorkommen. Man schreibt
dafiir AN B.

ANB={x|xe€Aund x € B}

Notation: Mengen und Funktionen

Seien A, B zwei Menge. Die Menge A x B ist die Menge aller
Paare (a, b), wobei das erste Element des Paars aus A, das zweite
aus B kommt.

AxB={(ab)|acAbec B}

Beispiel:
{1,2} x{3,4,5} = {(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)}
Es gilt: |A x B| = |A| - |B| (fiir endliche Menge A, B).

Notation: Mengen und Funktionen

Bemerkungen:

@ Wir betrachten nicht nur Paare, sondern auch sogenannte
Tupel, bestehend aus mehreren Elementen. Ein Tupel
(a1,-..,an) bestehend aus n Elementen heiBt auch n-Tupel.

@ In einem Tupel sind die Element geordnet! Beispielsweise gilt:
(1,2,3) #(1,3,2) € Ng x Ng x Ny

@ Ein Element kann “mehrfach” in einem Tupel auftreten. Tupel
unterschiedlicher Lange sind immer verschieden.
Beispielsweise:

(17 2’ 3’ 4) # (17 27 37 47 4)

Merke: Runde Klammern (,) und geschweifte Klammern {, }
stehen fiir ganz verschiedene mathematische Objekte!

Notation: Mengen und Funktionen

Sei M eine Menge. Die Menge P(M) ist die Menge aller
Teilmengen von M.

P(M) = {A| AC M}

Beispiel:
P({1,2,3}) = {0, {1}, {2}, {3}, {1,2},{1,3},{2,3},{1,2,3}}.
Es gilt: [P(M)| = 2/MI (fiir eine endliche Menge M).

Notation: Mengen und Funktionen

frA — B
a — f(a)

Die Funktion f bildet ein Element a € A auf ein Element f(a) € B
ab. Dabei ist A der Definitionsbereich und B der Wertebereich.

Beispiel (Quadratfunktion):

f:7Z —No, f(n)=n?
ety =39, -2—-4-1—-10—~0,1—12—43—09,...

Dabei ist Ny die Menge der natiirlichen Zahlen (mit der Null) und
Z die Menge der ganzen Zahlen.

Fragestellungen zu dieser Vorlesungseinheit

Zum Ende einer jeden Vorlesungseinheit betrachten wir im
Regelfall drei Fragestellungen, die mithilfe der in dieser Einheit
besprochenen Inhalte beantwortet werden sollen. In der
darauffolgenden Einheit kdnnen zu Beginn mdgliche Antworten
gesammelt werden. Diese Antworten werden nur in der Vorlesung
besprochen und nicht online verfiigbar gemacht.

Fragen zur ersten Vorlesungseinheit

@ Was sind typische Fragestellungen die wir im Zusammenhang
mit formalen Sprachen beantworten wollen und was bedeuten
diese Fragestellungen in Bezug auf das Adventure-Beispiel?

@ Wie werden Mengen, Tupel und Funktionen notiert?
e Was bedeuten die Operatoren €, |-|, C, U, N, x, P?

Worter

Wort

Sei X ein Alphabet, d.h., eine endliche Menge von Zeichen. Dann
bezeichnet man mit * die Menge aller Worter, d.h., die Menge
aller (endlichen) Zeichenketten mit Zeichen aus X.

Das leere Wort (das Wort der Lange 0) wird mit £ bezeichnet.
Die Menge aller nicht-leeren Worter iiber ¥ wird mit X+
bezeichnet.

Mit |w| bezeichnen wir die Lange des Wortes w.

Beispiel: Sei ¥ = {a, b, c}. Dann sind mdogliche Warter aus X*:

€,a, b, aa, ab, bc, bbbab, . ..

Ein anderes mogliches Alphabet ¥ (mit den Zeichen “Drache”,
“Schliissel”, ...) haben wir im vorigen Beispiel kennengelernt.

 Organisatorisches Einfilhrung Chomsky-Hierarchie Regulire Sprachen Kontextfreie Sprachen
Sprachen

Sei ¥ ein Alphabet.
Eine (formale) Sprache L iiber X ist eine beliebige Teilmenge
von X* (L C X*).

Beispiel: sei ¥ = {(,),+, —, *, /, a}, so kdnnen wir die Sprache
EXPR der korrekt geklammerten Ausdriicke definieren. Es gilt
beispielsweise:

@ (a—a)*xa+a/(at+a)—a € EXPR

e (((a))) € EXPR

o ((a+)—a(¢ EXPR

Beispielsprachen

Alphabete und Sprachen:

;= {(7)’+a_7*7/’a}
Ly = EXPR = {w € X} | w ist ein arithmetischer Ausdruck}

e YX>=A{a,...,2,4,i0,6,B,.,,,:...}
L, = Grammatikalisch korrekte deutsche Satze

@ 23 = beliebig
L3 =0, Ly = {e}

@ Typische Sprachen iiber dem Alphabet ¥4 = {a, b, c}:
o Ly ={w € X} | w enthilt aba als Teilwort}
o Ly ={a"b" | ne Ny}
o Lg={a"b"c" | ne Ny}
(wobei x" = x...x)
=

n-mal

Sl L e S R L R R RS e T AR B e e R
Grammatiken (Einfiihrung)

Grammatiken in der Informatik sind — dhnlich wie Grammatiken fiir
natiirliche Sprachen — ein Mittel, um alle syntaktisch korrekten
Sétze (hier: Worter) einer Sprache zu erzeugen.

Beispiel: Vereinfachte Grammatik zur Erzeugung
natiirlichsprachiger Satze

(Satz) — (Subjekt)(Pradikat) (Objekt)
(Subjekt) — (Artikel) (Attribut) (Substantiv)
(Artikel) — ¢
(Artikel) — der
(Artikel) — die
(Artikel) — das
(Attribut) — €

Sl L e S R L R R RS e T AR B e e R
Grammatiken (Einfiihrung)

(Attribut) — (Adjektiv)
(Attribut) — (Adjektiv) (Attribut)
(Adjektiv) — kleine
(Adjektiv) — bissige
(Adjektiv) — groBe
(Substantiv) — Hund
(Substantiv) — Katze
(Pradikat) — jagt
(Objekt) — (Artikel) (Attribut) (Substantiv)

@ In spitzen Klammern: Variable, Nicht-Terminale

@ Ohne spitze Klammern: Terminale

Sl L e S R L R R RS e T AR B e e R
Grammatiken (Einfiihrung)

Gehort folgender Satz zu der Sprache, die von der Grammatik
erzeugt wird?

der kleine bissige Hund jagt die groBe Katze

Grammatiken (Einfiihrung)

(Satz)
(An@tﬁbst) (Artikel) (Attr.) (Subst.)
<A4 (Attr.) (Adi)
(Ad))

der kleine bissige Hund jagt die groBe Katze

Dieser Baum ist der “Beweis” dafiir, dass der Satz in der Sprache
vorkommt. Man nennt ihn Syntaxbaum.

Sl L e S R L R R RS e T AR B e e R
Grammatiken (Einfiihrung)

Mit Hilfe dieser (endlichen) Grammatik ist es moglich, unendlich
viele Satze zu erzeugen:

der Hund jagt die kleine kleine kleine ... Katze

Das heiBt, die zu der Grammatik gehérende Sprache (man sagt
auch: die von der Grammatik erzeugte Sprache) ist unendlich.

Sl L e S R L R R RS e T AR B e e R
Grammatiken (Definition)

Grammatiken besitzen Regeln der Form
linke Seite — rechte Seite

Sowohl auf der linken als auch auf auf der rechten Seite kdnnen
zwei Typen von Symbolen vorkommen:

@ Nicht-Terminale (die Variablen, aus denen noch weitere
Wortbestandteile abgeleitet werden sollen)

@ Terminale (die “eigentlichen” Symbole)

Im vorherigen Beispiel: auf der linken Seite befindet sich immer
genau ein Nicht-Terminal (kontextfreie Grammatik).

Es gibt aber allgemeinere Grammatiken. (Es gibt sogar
Grammatiken, die auf Baumen und Graphen statt auf Wortern
arbeiten. Diese werden in der Vorlesung jedoch nicht behandelt.)

Sl L e S R L R R RS e T AR B e e R
Grammatiken (Definition)

Definition (Grammatik)
Eine Grammatik G ist ein 4-Tupel G = (V, X, P, S), das folgende
Bedingungen erfiillt:

@ V ist eine endliche Menge von Nicht-Terminalen bzw.
Variablen

@ Y ist das endliche Alphabet bzw. die Menge der
Terminal(symbol)e. (Es muss gelten: VNYX =, d.h., kein
Zeichen ist gleichzeitig Terminal und Nicht-Terminal.)

@ P ist eine endliche Menge von Regeln bzw. Produktionen mit
PC(VUX)T x (VUXI)*
@ S € V ist die Startvariable bzw. das Axiom.

Sl L e S R L R R RS e T AR B e e R
Grammatiken (Definition)

Wie sehen Produktionen aus?
Eine Produktion aus P ist ein Paar (¢, r) von Woértern iiber V U X,
das zumeist £ — r geschrieben wird. Dabei gilt:
@ Sowohl 7 als auch r bestehen aus Variablen und
Terminalsymbolen.

@ / darf nicht leer sein. (Eine Regel muss immer zumindest ein
Zeichen ersetzen.)

Konventionen:

@ Variablen (Elemente aus V) werden mit GroBbuchstaben
bezeichnet: A, B, C, ..., S, T, ...

@ Terminalsymbole (Elemente aus) werden mit
Kleinbuchstaben dargestellt: a, b, c, ...

Grammatiken (Beispiel)

G =(V,%,P,S) mit
o V={S5B,C}
e ¥ ={a,b,c}
e P={S—aSBC,S — aBC,CB — BC,aB — ab,
bB — bb,bC — bc, cC — cc}

Sl L e S R L R R RS e T AR B e e R
Grammatiken (Ableitungen)

Wie werden die Produktionen eingesetzt, um Worter aus der
Startvariable S zu erzeugen?

|dee: Wenn die Grammatik eine Produktion ¢ — r enthalt, dirfen
wir £ durch r ersetzen.

Beispiel:
Produktion: CB — BC

Ableitungsschritt: aab CB Bcca = aab BC Bcca
N~~~ T
X 0 y X r y

Grammatiken (Ableitungen)

Sei G = (V,X,P,S) eine Grammatik und seien u,v € (V UX)*.
Es gilt:

u=¢ v (u geht unter G unmittelbar iiber in v),

falls u, v folgende Form haben:

u=xtly v = xry,

wobei x,y € (VUZX)* und ¢ — r eine Regel in P ist.

Sl L e S R L R R RS e T AR B e e R
Grammatiken (Ableitungen)

Konventionen:

o Worter aus (V U X)* werden mit Kleinbuchstaben (aus der
hinteren Hélfte des Alphabets) bezeichnet: u, v, w, x, y, z,

@ Die Konkatenation zweier Worter u, v wird mit uv bezeichnet.
Es gilt ve = ev = v, d.h., das leere Wort ¢ ist das neutrale
Element der Konkatenation.

@ Statt u = ¢ v schreibt man auch u = v, wenn klar ist, um
welche Grammatik es sich handelt.

Grammatiken (Ableitungen)

Eine Folge von Wartern wo, wi, wa, ..., w, € (VUX)* mit wo = S
und
Wo =G W1 =G W2 =G "+ =G Wp

heiBt Ableitung von w, (aus S). Dabei darf w, sowohl Terminale
als auch Variablen enthalten und heift Satzform.

Man schreibt in diesem Fall auch wy = w,, wobei =, die
reflexive und transitive Hiille von = ist.

Grammatiken und Sprachen

Die von einer Grammatik G = (V, X, S, P) erzeugte Sprache ist

L(G)={weX|S=% w)

In anderen Worten:
@ Die von G erzeugte Sprache besteht genau aus den
Satzformen, die nur Terminalsymbole enthalten.

@ Oder: genau die Worter, die in mehreren Schritten aus S
abgeleitet werden und nur aus Terminalen bestehen, gehdren

zu L(G).

e T et el T ik e o e ek e
Grammatiken und Sprachen

Die vorherige Beispielgrammatik G erzeugt die Sprache
L(G)={a"b"c" | n>1}.

Dabeiist 8" = a...a.
——
n-mal

Die Behauptung, dass G wirklich diese Sprache erzeugt, ist nicht
einfach nachzuweisen.

Grammatiken und Sprachen

Bemerkung: Ableiten ist kein deterministischer, sondern ein
nichtdeterministischer Prozess. Fiir ein u € (V U X)* kann es
entweder gar kein, ein oder mehrere v geben mit u =¢ v.

In anderen Worten: = ist keine Funktion.

Dieser Nichtdeterminismus kann durch zwei verschiedene Effekte
verursacht werden . ..

Grammatiken und Sprachen

@ Eine Regel ist an zwei verschiedenen Stellen anwendbar.
Beispiel-Grammatik:

aaaSBBCCBC

aaaSBCBCBC
aaaSBCBBCC

@ Zwei verschiedene Regeln sind anwendbar (entweder an der
gleichen Stelle — wie unten abgebildet — oder an verschiedenen
Stellen):

Beispiel-Grammatik:

aSBC

aBC

e T et el T ik e o e ek e
Grammatiken und Sprachen

Weitere Bemerkungen:

@ Es kann beliebig lange Pfade geben, die nie zu einem Wort
aus Terminalsymbolen fiihren:

S = aSBC = aaSBCBC = aaaSBCBCBC = ...

@ Manchmal kénnen Pfade in einer Sackgasse enden, d.h.,
obwohl noch Variablen in einer Satzform vorkommen, ist keine
Regel mehr anwendbar.

S = aSBC = aaBCBC = aabCBC = aabcBC #

e T et el T ik e o e ek e
Grammatiken und Sprachen

Wir werden oft die folgende kiirzere Schreibweise benutzen (die
sogenannte Backus-Naur-Form).

Wenn es Regeln

u— wp

u— wp
gibt, schreiben wir auch

u—wy|-| wy

_ CuniEsanEes Eni s Gty iieety Reatk Sprdy e desn
Think-Pair-Share: Grammatiken und Sprachen

Betrachten Sie die folgende Grammatik:
G=({S,A B}, {ab},P,9S)

mit den folgenden Regeln:

S aA|bB
A— aA| bA|a
B s aB|bB|b

Geben Sie ein Wort minimaler Lange an, das von der Grammatik
erzeugt wird und iiberlegen Sie sich, welche Sprache von der
Grammatik erzeugt wird. Uberlegen Sie zunichst zwei Minuten in
Einzelarbeit eine Losung. AnschlieBend tauschen Sie sich fiir
weitere zwei Minuten mit ihrem Sitznachbarn aus. Schlussendlich
besprechen wir die Losung im Plenum.

e T et el T ik e o e ek e
Grammatiken und Sprachen

y - {?%,Tw,ﬂ, @,M,ﬁ}

Durch eine Tiir kann man nur gehen, wenn man zuvor einen
Schliissel gefunden hat. (Dieser Schliissel darf aber dann beliebig
oft verwendet werden.)

G1 = ({K,N,X},%,P1,N), wobei Py aus den folgende
Produktionen besteht:

N = XN | oK | ¢
Ko xk | LKook
X o= || s | 8| £

~ cbastian Kiipper Automaten und Formale Sprachen 73

e T et el T ik e o e ek e
Grammatiken und Sprachen

—{?%T . ﬁ}

Die Schliissel sind magisch und verschwinden sofort, nachdem eine
Tiir mit ihnen gedffnet wurde. Sobald man eine Tiir durchschritten
hat, schlieBt sie sich sofort wieder.

G, = ({S,X},Z, P2,S), wobei P, aus den folgende Produktionen
besteht:

S XS|ow 51 |ou 5556

Chomsky-Hierarchie

Wir klassifizieren nun Grammatiken nach der Form ihrer Regeln:

Jede Grammatik ist vom Typ 0. (Keine Einschréankung der Regeln.)

Fiir alle Regeln ¢ — r gilt: |¢| < |r|]. (Man sagt auch, die
Grammatik ist monoton oder kontextsensitiv.)

Eine Typ-1-Grammatik ist vom Typ 2 oder kontextfrei, wenn fiir
alle Regeln ¢ — r gilt, dass ¢ € V/, d.h., £ ist eine einzelne Variable.

D.h., es sind nur Regeln der Form A — rmit Ae V, r e (VUXL)*
erlaubt.

_ CuniEsanEes Eni s Gty iieety Reatk Sprdy e desn
Chomsky-Hierarchie

Typ 3 — Chomsky-3
Eine Typ-2-Grammatik ist vom Typ 3 oder regular, falls zusatzlich

gilt: r€ XUXV, d.h., die rechten Seiten von Regeln sind entweder
einzelne Terminale oder ein Terminal gefolgt von einer Variablen.

D.h., es sind nur Regeln der Form A — aB und A — a mit
A, BeV, ae X erlaubt.

Typ-i-Sprache

Eine Sprache L C X* heit vom Typ i (i € {0,1,2,3}), falls es eine
Typ-i-Grammatik G gibt mit L(G) = L (d.h., L wird von G
erzeugt.)

Solche Sprachen nennt man dann auch semi-entscheidbar bzw.

rekursiv aufzahlbar (Typ 0), kontextsensitiv (Typ 1), kontextfrei
(Typ 2) oder regular (Typ 3).

_ CuniEsanEes Eni s Gty iieety Reatk Sprdy e desn
Chomsky-Hierarchie

e-Sonderregelung (Teil 1)

Bei Typ-1-Grammatiken (und damit auch bei reguldren und
kontextfreien Grammatiken) ist die Regel S — € zunachst nicht
zugelassen, wegen |S| =1 £ 0 = |¢|]. Das bedeutet aber: das leere
Wort kann nicht abgeleitet werden!

Wir modifizieren daher die Grammatik-Definition fiir
Typ-1-Grammatiken leicht und erlauben S — ¢, falls S das
Startsymbol ist und auf keiner rechten Seite vorkommt. Diese
Bedingung heiBt e-Sonderregelung.

_ CuniEsanEes Eni s Gty iieety Reatk Sprdy e desn
Chomsky-Hierarchie

e-Sonderregelung (Teil 2)

Bei kontextfreien und reguldren Grammatiken (Typ 2, Typ 3)
andert sich die Ausdrucksmachtigkeit nicht, wenn man beliebige
Produktionen der Form A — ¢ erlaubt:

Durch geeignete Umformungen kann man eine Grammatik die bis
auf e-Ableitungen regular (kontextfrei) ist, in eine regulare
(kontextfreie) Grammatik transformieren, die die e-Sonderregel
erfiillen. Eine solche Konstruktion existiert im Allgemeinen nicht
fiir alle Typ-1-Grammatiken.

_ CuniEsanEes Eni s Gty iieety Reatk Sprdy e desn
Chomsky-Hierarchie

Bemerkungen:

@ Woher kommt der Begriff “kontextsensitiv"’?

Bei kontextfreien Sprachen gibt es Regeln der Form A — x,
wobei x € (X U V)*. Das bedeutet: A kann — unabhingig vom
Kontext — durch x ersetzt werden.

Bei den machtigeren kontextsensitiven Sprachen sind dagegen
Regeln der Form uAv — uxv mdglich, mit der Bedeutung: A
kann nur in bestimmten Kontexten durch x ersetzt werden.

_ CuniEsanEes Eni s Gty iieety Reatk Sprdy e desn
Chomsky-Hierarchie

Jede Typ-i-Grammatik ist

eine Typ-(i—1)-Grammatik
(fir i € {1,2,3}) ~ die
entsprechenden Mengen von

Typ-0-Sprachen
semi-entscheidbare Sprachen

Sprachen sind ineinander
enthalten.

AuBerdem: die Inklusionen
sind echt, d.h., es gibt fiir
Jedes femne o Typ-2-Sprachen
Typ-(i—1)-Sprache, die keine kontextfreie Sprachen
Typ-i-Sprache ist. (Zum
Beispiel eine kontextfreie
Sprache, die nicht regular ist.)
Das werden wir spater zeigen.

Typ-3-Sprachen
reguldre Sprachen

_ CuniEsanEes Eni s Gty iieety Reatk Sprdy e desn
Chomsky-Hierarchie

Bemerkungen:

@ Fiir eine Sprache der Chomsky-Hierarchie gibt es immer
mehrere Grammatiken, die diese Sprache erzeugen.

@ Eine Sprache, die durch eine Grammatik vom Typ i erzeugt
wird, hat Typ k fiir alle kK < i. Sie kann in manchen Fillen
aber auch Typ j mit j > i haben.

Beispielsweise erzeugt die Grammatik G mit den
Produktionen S — X | ¢, X — aXa | aa die Sprache

L(G) = {a" | n € Ny, n gerade}.

Die Grammatik G ist vom Typ 2, aber nicht vom Typ 3. Die
Sprache L(G) hat sowohl Typ 2 als auch Typ 3.

_ CuniEsanEes Eni s Gty iieety Reatk Sprdy e desn
Chomsky-Hierarchie

Kontextfreie Grammatik G, (Typ 2)

S—>Xle
X — aXa| aa

Fragestellungen zu dieser Vorlesungseinheit

Zum Ende einer jeden Vorlesungseinheit betrachten wir im Regelfall
drei Fragestellungen, die mithilfe der in dieser Einheit besprochenen
Inhalte beantwortet werden sollen. In der darauffolgenden Einheit
konnen zu Beginn mogliche Antworten gesammelt werden.

Fragen zur zweiten Vorlesungseinheit

@ Was sind Grammatiken und Sprachen und wie hingen diese
beiden Begriffe zusammen?

@ Wie sind die vier Hierarchie-Ebenen der Chomsky-Hierarchie
definiert; wann ist eine Grammatik und wann ist eine Sprache
vom Chomsky Typ i/, i € {0,1,2,3}?

@ Was bedeutet es, dass ein Wort von einer Grammatik erzeugt
wird und wie wird in dieser Hinsicht mit Nichtdeterminismus
der Ableitung umgegangen?

_ CuniEsanEes Eni s Gty iieety Reatk Sprdy e desn
Wortproblem

Gegeben eine Grammatik G (von beliebigem Typ) und ein Wort
w € X*. Entscheide, ob w € L(G).

Das Wortproblem ist entscheidbar fiir Typ-1-Sprachen (und damit
auch fiir reguldre und kontextfreie Sprachen). Das heiBt: es gibt ein
Verfahren, das entscheidet, ob w € L(G) gilt.

e T et el T ik e o e ek e
Wortproblem fiir Typ-1-Sprachen

Algorithmus zum Lésen des Wortproblems fiir Typ-1-Sprachen:
gibt “true” aus genau dann, wenn w € L(G).

input (G, w)
T :={S}
repeat
T =T
T:=T U{ul|ul <|w|und ' = u, firein v € T'}
until (w € T) or (T = T')
return (w € T)

e T et el T ik e o e ek e
Wortproblem fiir Typ-1-Sprachen

Wir konnen die Korrektheit des Algorithmus wie folgt einsehen:

o Da die Grammatik vom Typ 1 ist, kdnnen bei einer Ableitung
eines Wortes (der Lange groBer 1) nur Worter entstehen, die
langer oder gleich lang sind.

@ Also miissen Worter, die die Lange des gesuchten Wortes w
ibersteigen, nicht weiter exploriert werden — sie kdnnen auf
keinen Fall mehr zu w abgeleitet werden.

@ Daher gilt: Wann immer der Algorithmus ,,false” ausgibt, ist
w ¢ L(G). Offensichtlich gilt auch w € L(G) wann immer der
Algorithmus ,true” ausgibt, da in diesem Fall eine
Ableitungsfolge S = w gefunden wurde.

Es bleibt zu zeigen, dass der Algorithmus auch tatsdchlich
terminiert, da aber nur endlich viele Wérter u mit |u] < |w|
existieren (sowohl X als auch V sind endlich), lasst sich das leicht
einsehen.

e T et el T ik e o e ek e
Wortproblem fiir Typ-1-Sprachen

Beispiel:
e Grammatik G: S — aX | bX, X = cS | d
o Wort w = acbdc
@ Entstehende Folge von Mengen von Satzformen:
o 7={S}
Q T ={S,aX,bX}
©Q T ={S5,aX,bX,acS, ad, bcS, bd}
Q T ={S5,aX,bX,acS, ad, bcS, bd, acaX, acbX, bcaX, bcbX}
Q@ T ={S5,aX,bX,acS,ad, bcS, bd, acaX, acbX, bcaX, bcbX,
acac$S, acad, acbcS, acbd, bcacS, bcad, bebcS, bebd'}
Nach dem fiinften Schritt bricht der Algorithmus ab, da nur
noch Worter entstehen, die langer als w sind.
Es gilt: w ¢ T, daraus folgt w & L(G).

e T et el T ik e o e ek e
Syntaxbaume und Eindeutigkeit

Wir beschranken uns im Folgenden auf kontextfreie Grammatiken.

Wir betrachten folgende (eindeutige) Beispiel-Grammatik zur
Erzeugung von korrekt geklammerten arithmetischen Ausdriicken:

G={E,T,F},{(,),a,+,%},P,E)

mit folgender Produktionenmenge P (in abkiirzender
Backus-Naur-Form):

E - T|E+T
T — F|TxF
F — al(E)

Think-Pair-Share: Eindeutigkeit

G={E,T,F},{(,),a+,%},P,E)

E — T|E+T
T — F|TxF
F — al|(E)

Zeigen Sie, dass der Ausdruck a* (a+ a) mit G ableitbar ist.
Erarbeiten Sie zundchst drei Minuten in Einzelarbeit eine Losung.
AnschlieBend tauschen Sie sich fiir weitere drei Minuten mit ihrem

Sitznachbarn aus. Schlussendlich besprechen wir die Losung im
Plenum.

e T et el T ik e o e ek e
Syntaxbaume und Eindeutigkeit

Fiir die meisten Worter der von G erzeugten Sprache gibt es
mehrere mogliche Ableitungen:

E=T=TxF=F«xF—axF=ax(E)
= ax(E+T)=ax(T+T)=ax(F+T)
=ax(a+T)=ax(a+F)=ax(a+a)

E=T=TxF=Tx(E)—>Tx(E+T)
=Tx(E+F)=Tx*x(E+a)=Tx(T+a)
=Tx(F+a)=Tx(a+a)=Fx(a+a)=ax(a+a)

Die erste Ableitung ist eine sogenannte Linksableitung (immer so
weit links wie moglich ableiten), die zweite eine Rechtsableitung
(so weit rechts wie moglich ableiten).

Syntaxbaume und Eindeutigkeit

Wir bilden nun aus beiden Ableitungen den Syntaxbaum, indem
wir
o Die Wurzel des Baums mit der Startvariable der Grammatik
beschriften.

o Bei jeder Regelanwendung der Form A — z zu A |z| Kinder
hinzufiigen, die mit den Zeichen von z beschriftet sind.
Syntaxbaume lassen sich fiir alle Ableitungen von kontextfreien

Grammatiken aufbauen.

Syntaxbaume und Eindeutigkeit

Dabei erhalten wir in beiden

Fallen den gleichen Syntaxbaum. ‘E

Man sagt, eine Gran'w.m_atlk ist /7‘-\
eindeutig, wenn es fiir jedes Wort T % F

in der erzeugten Sprache genau \ I~
einen Syntaxbaum gibt F (E)
<= es gibt fiir jedes Wort | I
genau eine Linksableitung a ‘E + 7‘-
<= es gibt fiir jedes Wort T F
genau eine Rechtsableitung. ,__ |
Ansonsten heiBt die Grammatik \ ?
mehrdeutig. a

Endliche Automaten

In diesem Abschnitt beschaftigen wir uns mit regularen Sprachen,
aber zunidchst unter einem anderen Blickwinkel. Statt
Typ-3-Grammatiken betrachten wir zustandsbasierte
Automatenmodelle, die man auch als “Spracherzeuger” bzw.
"Sprachakzeptierer” betrachten kann.

/,z_v\
@
a b

Deterministische endliche Automaten

Ein (deterministischer) endlicher Automat M ist ein 5-Tupel
M = (Z,%,6, zo, E), wobei

@ Z die Menge der Zustande,

e ¥ das Eingabealphabet (mit ZN X = 0),
@ zg € Z der Startzustand,

e E C Z die Menge der Endzustinde und

©0: Zx¥ — Zdie Uberfiihrungsfunktion (oder
Ubergangsfunktion) ist.

Z, > miissen endliche Mengen sein.

Abkiirzung: DFA (deterministic finite automaton)

_ Organisatorisches Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontextfreie Sprachen
Deterministische endliche Automaten

Graphische Notation:

Zustand: O Startzustand: @ Endzustand: @
Ubergang 6(1,a) = 2: @—a>@

Deterministische endliche Automaten

Vorstellung von einer Maschine, die sich in endlich vielen
Zustanden befinden kann, die eine Eingabe (von links nach rechts)
liest und signalisiert, sobald die Eingabe akzeptiert ist.

el i|n|g|la|b|e

Signal fiir

Automat mit
endlich vielen 4@ Endzustand
Zustanden

_ Organisatorisches Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontextfreie Sprachen
Deterministische endliche Automaten

Analogie zum Fahrkartenautomat: ein Fahrkartenautomat kann
sich in folgenden Zustidnden befinden:

@ Keine Eingabe

o Fahrtziel ausgewahlt

@ Geld eingegeben

o Fahrkarte wurde ausgegeben
(Das ist eine vereinfachte Darstellung, da ein Fahrkartenautomat
auch mitzdhlen muss, wieviel Geld bereits eingeworfen wurde.
Dafiir wiirde man jedoch (idealisiert, unter Missachtung der

maximalen Kapazitat eines Fahrkartenautomaten) unendlich viele
Zustande bendtigen.)

_ Organisatorisches Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontextfreie Sprachen
Deterministische endliche Automaten

Die bisherige Ubergangsfunktion ¢ liest nur ein Zeichen auf einmal
ein. Wir verallgemeinern sie daher zu einer Ubergangsfunktion ¢,
die die Ubergdnge fiir ganze Worter ermittelt.

Zu einem gegebenen DFA M = (Z, %, 0, zp, E) definieren wir eine
Funktion §: Z x ¥* — Z induktiv wie folgt:

5(z,e
5(z,ax) = 68(6(z,a),x)

= Z

mtzeZ xe2X*und ae .

Deterministische endliche Automaten

Die einem DFA M akzeptierte Sprache ist

T(M)={x e X*|d(z,x) € E}.

In anderen Worten:

Die Sprache kann man dadurch erhalten, indem man allen Pfaden
vom Anfangszustand zu einem Endzustand folgt und dabei alle
Zeichen auf den Ubergingen aufsammelt.

_ Organisatorisches Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontextfreie Sprachen
Deterministische endliche Automaten

Beispiel 1: Wir suchen einen endlichen Automaten, der folgende
Sprache L akzeptiert:

L={w e {a,b}" | #a(w) gerade}.
Dabei ist #,(w) die Anzahl der a's in w.

Bedeutung der Zustande:
— gerade Anzahl a's; u -
ungerade Anzahl a's

Deterministische endliche Automaten

Beispiel 2: Wir suchen einen endlichen Automaten, der folgende
Sprache L akzeptiert:

L={w € {a,b,c}" | das Teilwort abc kommt in w nicht vor}.

Bedeutung der Zustande:

€ — kein Prafix von abc gelesen; a — letztes gelesenes Zeichen war
ein a; ab — zuletzt ab gelesen; f — abc kam im bereits gelesenen
Wort vor (Fangzustand, Fehlerzustand)

 Organisatorisches Einfilhrung - Chomsky-Hierarchie Reguldre Sprachen Kontextfreie Sprachen
Think-Pair-Share: DFA

Geben Sie einen DFA fiir die Sprache
L={w € {a, b, c} | auf jedes a folgt ein b}

an.

Erarbeiten Sie zunachst drei Minuten in Einzelarbeit eine Losung.
AnschlieBend tauschen Sie sich fiir weitere drei Minuten mit ihrem
Sitznachbarn aus. Schlussendlich besprechen wir die Losung im
Plenum.

Fragestellungen zu dieser Vorlesungseinheit

Zum Ende einer jeden Vorlesungseinheit betrachten wir im Regelfall
drei Fragestellungen, die mithilfe der in dieser Einheit besprochenen
Inhalte beantwortet werden sollen. In der darauffolgenden Einheit
konnen zu Beginn mogliche Antworten gesammelt werden.

Fragen zur dritten Vorlesungseinheit

@ Wie kann man fiir eine beliebige Typ-1 Grammatik G
entscheiden, ob ein Wort w von G erzeugt wird, also ob
w € L(G) gilt?

@ Was sind Syntaxbaume fiir kontextfreie Grammatiken und wie
hangen diese mit dem Begriff der Eindeutigkeit (einer
Grammatik) zusammen?

@ Was ist ein deterministischer endlicher Automat?

Deterministische endliche Automaten

Jede von einem endlichen Automaten akzeptierte Sprache ist
regular.

Beweisidee: Ein endlicher Automat M = (Z, %, 9, zp, E) wird in
eine Grammatik G = (V, X, P, S) umgewandelt, wobei V = Z,
S = z5 und P folgende Produktionen enthilt:

falls §(z1,a) =z, danngilt (z1 — az) e P

Falls zusatzlich z, € E, dann gilt (z; — a) € P.

AuBerdem gilt (zo —) € P, falls zp € E.

Deterministische endliche Automaten

Bemerkungen:

@ Bei der Konstruktion kann die Regel zyp — ¢ hinzugefiigt
werden und die Variable zg gleichzeitig auf einer rechten Seite
auftreten, was eigentlich ein VerstoB gegen die
e-Sonderregelung ist. Bei reguldren (und auch kontextfreien
Grammatiken) kann die Grammatik jedoch immer so
umgeformt werden, dass die Bedingungen der
e-Sonderregelung wieder erfiillt sind.

o Es gilt auch die umgekehrte Aussage: jede regulire Sprache
kann von einem endlichen Automaten akzeptiert werden.
(Dazu spater mehr.)

_ Organisatorisches Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontextfreie Sprachen
Nichtdeterministische endliche Automaten

Im Gegensatz zu Grammatiken gibt es bei DFAs keine
nichtdeterministischen Effekte. Das heiBt, sobald das nachste
Zeichen eingelesen wurde, ist klar, welcher Zustand der
Folgezustand ist.

Aber: In vielen Fallen ist es natiirlicher, wenn man auch
nichtdeterministische Ubergange zuldsst. Das fiihrt auch oft zu
kleineren Automaten.

2 2)
(3

_ Organisatorisches Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontextfreie Sprachen
Nichtdeterministische endliche Automaten

Definition: Nichtdeterministischer endlicher Automat
Ein nichtdeterministischer endlicher Automat M ist ein 5-Tupel
M= (Z,%,6,S, E), wobei
@ Z die Menge der Zustande,
¥ das Eingabealphabet (mit ZNX = (),
S C Z die Menge der Startzustande,
E C Z die Menge der Endzustinde und

6: Zxx —P(Z)die Uberfiihrungsfunktion (oder
Ubergangsfunktion) ist.

Z, > miissen endliche Mengen sein.

Abkiirzung: NFA (nondeterministic finite automaton)

Nichtdeterministische endliche Automaten

Dabei ist P(Z) die Potenzmenge von Z, d.h., die Menge aller
Teilmengen von Z. (Diese Menge wird manchmal auch mit 24
bezeichnet.)

Beispiel: §(1,a) = {2,3}

e
@<@

Nichtdeterministische endliche Automaten

Die Ubergangsfunktion & kann wieder zu einer
Mehr-Schritt-Ubergangsfunktion erweitert werden:

Zu einem gegebenen NFA M = (Z,%,4, S, E) definieren wir eine
Funktion 0: P(Z) x ¥* — P(Z) induktiv wie folgt:

6(2',e) = Z
0(Z',ax) = | 3(5(z,a),%)
zeZ'

mitZ/CZ xeX*undacX.

Nichtdeterministische endliche Automaten

Die einem NFA M akzeptierte Sprache ist

T(M) ={x e X* | §(S,x) N E # 0}.

In anderen Worten: ein Wort w wird akzeptiert, genau dann wenn
es einen Pfad von einem Anfangszustand zu einem Endzustand
gibt, dessen Uberginge mit den Zeichen von w markiert sind. (Es
konnte auch mehrere solche Pfade geben.)

Nichtdeterministische endliche Automaten

Beispiel 1: bei nicht-deterministischen Automaten darf auch
8(z,a) = 0 fiir ein a € X gelten, das heiBt, es muss nicht fiir jedes
Alphabetsymbol immer einen Ubergang geben und der sogenannte
“Fangzustand” kann weggelassen werden.

Nichtdeterministische endliche Automaten

Beispiel 2: gesucht ist ein nicht-deterministischer Automat, der die
Sprache

L={w e {a,b,c}" | das Teilwort abc kommt in w vor}

akzeptiert.
//i\‘ b c
ONER O
)
a, b, c a b, c

Dieser Automat entscheidet zu einem bestimmten Zeitpunkt
nicht-deterministisch, dass jetzt das Teilwort abc beginnt.

Nichtdeterministische endliche Automaten

Andere Interpretation: jedes Mal, wenn eine nicht-deterministische
Verzweigung moglich ist, werden mehrere “Paralleluniversen”
erzeugt, in denen verschiedene Kopien der Maschine die
verschiedenen moglichen Pfade erkunden. Das Wort wird
akzeptiert, wenn es in einem dieser Paralleluniversen akzeptiert
wird.

Nichtdeterministische endliche Automaten

Es gibt auch nichtdeterministische Automaten mit sogenannten
e-Kanten (spontante Uberginge, bei denen kein Alphabetsymbol
eingelesen wird). Diese werden jedoch in der Vorlesung im
Allgemeinen nicht benutzt.

O——®

Neue Ubergangsfunktion: 6: Z x (XU {e}) = P(2)
Im Beispiel: §(1,¢) = {2}.

_ Organisatorisches Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontextfreie Sprachen
Nichtdeterministische endliche Automaten

Neue Mehr-Schritt-Ubergangsfunktion: §: P(Z) x £* — P(Z).
Dq‘bei diirfen zwischen dem Einlesen der Zeichen beliebig viele
e-Ubergdnge gemacht werden.

OO0 0RO 080080

5({1}, ab) = {6,7,8}

e e el e o e el e e
Think-Pair-Share: e-Uberginge

Zeigen Sie:

Jeder NFA mit e-Ubergéngen kann in einen NFA ohne e-Uberginge
umgewandelt werden, ohne die Anzahl der Zustande zu erhdhen.

Erarbeiten Sie zunichst vier Minuten in Einzelarbeit eine Losung.
AnschlieBend tauschen Sie sich fiir weitere vier Minuten mit ihrem
Sitznachbarn aus. Schlussendlich besprechen wir die Losung im
Plenum. Es reicht, wenn Sie die notwendige Konstruktion angeben.

e e el e o e el e e
Losungsvorschlag zur Think-Pair-Share-Aufgabe

Beweisidee:

o Fiir jeden Ubergang 6(z,a) 3 2’ so dass es einen e-Ubergang
von z’ zu einem Zustand z” gibt, fiige z” zu §(z, a) hinzu.

o Wiederhole diesen Schritt, bis sich hierdurch keine Anderung
mehr ergibt.

o Fiir alle Startzustinde, die einen e-Ubergang zu einem
Zustand z haben, fiige z zu der Startzustandsmenge hinzu.

o Entferne alle e-Uberginge

B A S Rl e e e
NFAs, DFAs und regulare Grammatiken

Jede von einem NFA akzeptierbare Sprache ist auch von einem
DFA akzeptierbar.

Ildee: Wir lassen die verschiedenen “Paralleluniversen” von einem
Automaten simulieren. Dieser merkt sich, in welchen Zustianden er
sich gerade befindet.

Das heiBt, die Zustinde dieses Automaten sind Mengen von
Zustédnden des urspriinglichen Automaten. Man nennt diese
Konstruktion daher auch Potenzmengenkonstruktion.

B A S Rl e e e
NFAs, DFAs und regulare Grammatiken

Potenzmengenkonstruktion:

Gegeben sei ein nicht-deterministischer endlicher Automat
M= (Z,%,6,S, E). Daraus konstruieren wir einen
deterministischen endlichen Automaten M’ = (Z,%,¢', z5, E') mit:

zZ = P2
§(Z',a) = §(Z,a), ZCcZ
z =S

E = {ZCZ|ZNE#0}

Dabei entspricht der Zustand Z’ = () einem Fangzustand.

Beispiel zur Potenzmengenkonstruktion

Wir betrachten folgendes Beispiel fiir einen NFA (welche Sprache
akzeptiert der NFA?):

@ c
b

Wir wollen nun mithilfe der Potenzmengenkonstruktion diesen
Automaten in einen DFA umwandeln.

Hierzu werden wir den Automaten ausgehend vom Startzustand
konstruieren, auf diese Weise kénnen wir nicht erreichbare
Zustande auslassen.

Automaten und Formale Sprachen

120

Der Startzustand

Der Startzustand ist die Menge aller Startzustinde des NFA, in
diesem Fall {1,2}. Der Zustand ist ein Endzustand, weil 2 ein

Endzustand ist.

Uberginge vom Startzustand aus

Mit einem a erreichen wir von Zustand 1 aus Zustand 2,
wohingegen kein Ubergang a-Ubergang von Zustand 2 aus
existiert. Von Zustand 1 aus kann man mit b oder ¢ kann man den
Zustand 3 erreichen, von Zustand 2 aus den Zustand 2 oder den
Zustand 3. Insgesamt kann man von {1, 2} also mit b, ¢ den
Zustand {2, 3} erreichen.

Automaten und Formale Sprachen 122

Uberginge von {2}, {2,3} aus

Die Uberginge von Zustand {2} sind unmittelbar ablesbar: Es gibt
keinen Ubergang mit a, es wird also () erreicht, mit b und ¢ kénnen
Zustdnde 2 und 3 erreicht werden. Von Zustand {2, 3} aus kann
mit a der Zustand {3} erreicht werden, da von 3 mit a ein
Ubergang zu 3 méglich ist und weitere a-Uberginge in 2 und 3
nicht existieren. Mit b, c ist ein Ubergang zu {2,3} moglich, da
von 2 aus b, c-Uberginge zu 2 und 3 existieren.

Automaten und Formale Sprachen 123

Uberginge von {3}, 0 aus

Die Ubergsnge von Zustand {3} sind unmittelbar ablesbar: Fiir alle
Eingabezeichen erreicht man wieder Zustand {3}. Fiir () gilt hier
und in jedem anderen Fall: Fiir jedes Alphabetsymbol bleibt man
im Zustand (.

 Organisatorisches Einfilhrung - Chomsky-Hierarchie Reguldre Sprachen Kontextfreie Sprachen
Nicht erreichbare Zustande

Durch diese Konstruktion haben wir alle erreichbaren Zustiande des
Potenzmengenautomaten erzeugt. Allerdings gibt es auch einige
nicht erreichbare Zustande, die wir auf diese Weise nicht erzeugt
haben (und in aller Regel auch nicht erzeugen wollen):

{1},{1,3},4{1,2,3}.

B A S Rl e e e
NFAs, DFAs und regulare Grammatiken

Bemerkungen zur Potenzmengenkonstruktion:

Wegen |P(Z)| = 214! hat der DFA exponentiell mehr Zustinde als
der dazugehorige NFA. Evtl. kann er aber noch verkleinert werden
(z.B. durch Entfernen nicht-erreichbarer Zustinde).

In vielen Fallen ist der kleinste DFA, der eine Sprache akzeptiert,
tatsichlich exponentiell groBer als der kleinste NFA. Ein Beispiel
hierfiir ist die folgende Sprache:

Ly = {x € {0,1}" | |x| > k,das k-letzte Zeichen von x ist 0}

Ly wird durch einen NFA mit k + 1 Zustanden erkannt und man
kann zeigen, dass der kleinste DFA, der L, erkennt, mindestens 2k
Zustande haben muss.

B A S Rl e e e
NFAs, DFAs und regulare Grammatiken

Wir kénnen nun
@ NFAs in DFAs umwandeln
@ DFAs in reguldre Grammatiken umwandeln

Es fehlt noch die Richtung “reguldre Grammatik — NFA”, dann
haben wir die Aquivalenz aller dieser Formalismen gezeigt.

reguldre

/Grammatik \

DFA NFA

e e el e o e el e e
NFAs, DFAs und regulare Grammatiken

Zu jeder reguldren Grammatik G gibt es einen NFA M mit
L(G) = T(M).

B A S Rl e e e
NFAs, DFAs und regulare Grammatiken

Umwandlung reguldre Grammatik — NFA:

Gegeben sei eine reguldre Grammatik G = (V, X, P, S), die die
e-Sonderregelung erfiillt. Wir erstellen einen NFA
M= (Z,%,4,S' E) mit

Z = VU{X}, X¢V

s = {s}

£ _ { {S,X} falls (S—¢e)eP
{X} falls (S —¢) ¢ P

0(A,a) falls (A—aB)eP

0(A,a) falls (A—a)e P

X W
m m

B A S Rl e e e
NFAs, DFAs und regulare Grammatiken

Zwischenzusammenfassung

Wir haben verschiedene Modelle zur Beschreibung regularer
Sprachen kennengelernt:

@ Reguldre Grammatiken: Schaffen die Verbindung zur
Chomsky-Hierarchie. Werden zur Erzeugung von Sprachen
eingesetzt. Sind weniger gut dazu geeignet, um zu
entscheiden, ob sich ein bestimmtes Wort in der Sprache
befindet.

e NFAs: Erlauben oft kleine, kompakte Darstellungen von
Sprachen. Sind, wegen ihres Nichtdeterminismus, genauso wie
Grammatiken weniger gut fiir die Lésung des Wortproblems
geeignet. Besitzen aber eine intuitive graphische Notation.

B A S Rl e e e
NFAs, DFAs und regulare Grammatiken

Zwischenzusammenfassung

Wir haben verschiedene Modelle zur Beschreibung regularer
Sprachen kennengelernt:

@ DFAs: Kénnen gegeniiber dquivalenten NFAs exponentiell
groBer werden. Sobald man jedoch einen DFA gegeben hat,
erlaubt dieser eine effiziente Losung des Wortproblems
(einfach den Ubergingen des Automaten nachlaufen und
iberpriifen, ob ein Endzustand erreicht wird).

Alle Modelle bendtigen jedoch relativ viel Schreibaufwand und
Platz fiir die Notation. Gesucht wird also eine kompaktere
Reprasentation: sogenannte reguldre Ausdriicke.

Regulare Ausdriicke

Ein reguldrer Ausdruck « ist von einer der folgenden Formen:

e e af
°c o (alB)
@ amitae X o (a)*

wobei «, S reguldre Ausdriicke sind.

Bemerkung: Statt («B) wird oft auch (o + /3) geschrieben.

Regulare Ausdriicke

Nach der Festlegung der Syntax reguldrer Ausdriicke, miissen wir
auch deren Bedeutung festlegen, d.h., welcher reguldre Ausdruck
steht fiir welche Sprache?

o L(D)=10 o L(apf) = L(a)L(B), wobei
° L({-:) { } L1L2 = {W1W2 | wy € L1, Wy € Lz} fur
zwei Sprachen L, Lo.

o L(a]f) = L(e) U L(B)

o L((a)*) = (L())*, wobei
={w1...w, | n€No,w; € L} fiir
eine Sprache L

Regulare Ausdriicke

Bemerkungen zum %-Operator: L* = {wy...w, | n € No,w; € L}

@ Dieser Operator wird oft Kleenesche Hiille genannt. Nur durch
ihn kann man unendliche Sprachen erzeugen.

o L* enthalt immer das leere Wort ¢ (siehe Definition).

@ Beispiel fiir die Anwendung des x-Operators:
L ={a, bb, cc}
el L* =

{e,a, bb, cc, aa, abb, acc, bba, bbbb, bbcc, cca, ccbb, cccc, ... }

Alle Kombinationen beliebiger Lange sind mdglich.

e e el e o e el e e
Regulare Ausdriicke

Beispiele fiir regulare Ausdriicke iiber dem Alphabet ¥ = {a, b}.

Beispiel 1: Sprache aller Woérter, die mit a beginnen und mit bb
enden

o = a(alb)*bb
Beispiel 2: Sprache aller Woérter, die das Teilwort aba enthalten.
a = (a|b)*aba(a|b)*
Beispiel 3: Sprache aller Worter, die gerade viele a's enthalten.
a = (b*ab*a)*b* oder a=(b|ab*a)"

Fragestellungen zu dieser Vorlesungseinheit

Zum Ende einer jeden Vorlesungseinheit betrachten wir im Regelfall
drei Fragestellungen, die mithilfe der in dieser Einheit besprochenen
Inhalte beantwortet werden sollen. In der darauffolgenden Einheit
konnen zu Beginn mogliche Antworten gesammelt werden.

@ Was unterscheidet NFA und DFA?

@ Wie transformiert man einen NFA in einen dquivalenten DFA?

@ Wie bildet man reguldre Ausdriicke?

- Organisatorfaches’ Einfihming ChomskyHisrarchie | Regulare prachen) Kontextirefe Sprachen T
Regulare Ausdriicke

Zu jedem reguldren Ausdruck gibt es einen NFA M mit
L) = T(M).

Regulare Ausdriicke

Beweis durch Induktion iiber den Aufbau von 7.

Fir v =0, v =&, 7 = a gibt es offensichtlich entsprechende
Automaten.

Sei nun v = a3. Dann gibt es Automaten M,, Mg mit
T(My) = L(a) und T(Mg) = L(/3). Wir schalten diese Automaten
nun wie folgt hintereinander zu einem Automaten M:

@ M hat als Zustiande die Vereinigung beider Zustandsmengen,
die gleichen Startzustidnde wie M,, und die gleichen
Endzustande wie Mg. (Falls € € L(«), so sind auch die
Startzustande von Mg Startzustinde von M.)

o Alle Uberginge von M, bzw. Mp bleiben erhalten.

o Alle Zustinde, die einen Ubergang zu einem Endzustand von
M, haben, erhalten zusatzlich genauso beschriftete
Uberginge zu allen Startzustinden von Mg.

- Organisatorfaches’ Einfihming ChomskyHisrarchie | Regulare prachen) Kontextirefe Sprachen T
Regulare Ausdriicke

neuI

Es gilt T(M) = T(M,)T(Mg) = L(a)L(B)

e e el e o e el e e
Regulare Ausdriicke

Sei nun v = (a | B). Dann gibt es Automaten M, Mz mit
T(My) = L(a) und T(Mg) = L(/). Wir bauen nun aus diesen
zwei Automaten einen Vereinigungsautomaten M:

@ M hat als Zustiande die Vereinigung beider Zustandsmengen.
Ebenso ergeben sich die Startzustdnde als Vereinigung der
Startzustandsmengen und die Endzusténde als Vereinigung
der Endzustandsmengen.

o Alle Uberginge von M, bzw. Mz bleiben erhalten.

- Organisatorfaches’ Einfihming ChomskyHisrarchie | Regulare prachen) Kontextirefe Sprachen T
Regulare Ausdriicke

Es gilt T(M) = T(M,) U
T(Ms) = L(a) U L(B)

Regulare Ausdriicke

Sei nun v = (a)*. Dann gibt es einen Automaten M, mit
T(M,) = L(«). Wir bauen aus diesem Automaten nun wie folgt
einen Automaten M:

o Alle Zustinde, Start- und Endzustinde sowie Uberginge
bleiben erhalten.

o Zusitzlich erhalten alle Zustinde, die einen Ubergang zu
einem Endzustand von M, haben, genauso beschriftete
Ubergange zu allen Startzustinden von M, (Riickkopplung).

e Falls e ¢ T(M,), so gibt es einen weiteren Zustand, der
sowohl Start- als auch Endzustand ist. (Damit auch das leere
Wort erkannt wird.)

- Organisatorfaches’ Einfihming ChomskyHisrarchie | Regulare prachen) Kontextirefe Sprachen T
Regulare Ausdriicke

~0

evtl. zusatzl. Zustand

Es gilt T(M) = (T(M,))* = (L())*.

- Organisatorfaches’ Einfihming ChomskyHisrarchie | Regulare prachen) Kontextirefe Sprachen T
Regulare Ausdriicke

Zu jedem NFA M gibt es einen reguldren Ausdruck ~ mit
T(M) = L(7).

Regulare Ausdriicke

Wir verwenden das folgende Zustandseliminations-Verfahren, das
einen NFA M in einen reguldren Ausdruck verwandelt. Dabei erhilt
man als Zwischenzustinde Automaten, deren Uberginge nicht mit

Alphabetsymbolen, sondern mit reguldren Ausdriicken beschriftet
sind.

Zunachst fithren wir einen neuen Startzustand und einen neuen
Endzustand ein und verbinden die bisherigen Start- bzw.
Endzustande mit den neuen Zustinden durch e-Kanten.

Regulare Ausdriicke

Transformations-Regeln: Zwei parallel verlaufende Uberginge mit
den Beschriftungen a1 und ap kénnen zu einer einzigen mit der
Beschriftung (a1 | a2) verschmolzen werden (Regel V).

CO Lyl

Gleiches gilt im Fall, wenn ein Zustand zwei Schleifen besitzt.

a1|a2

> Y

Qa

e e el e o e el e e
Regulare Ausdriicke

Schleifen werden entfernt, indem man ihre Beschriftung o (mit
einem x* versehen) mit auf die nachfolgenden Kanten setzt.
(Regel S).

Nur zuldssig, wenn es sich dabei um die einzige Schleife des
Zustands handelt.

Regulare Ausdriicke

Ein Zustand z wird eliminiert, indem man die Zustdnde, von denen
aus Kanten nach z hineinfiihren, und Zustdnde, in die Kanten

von z aus hineinfiihren, geeignet miteinander verbindet (Regel E).

Hierbei ergibt jedes Paar von eingehender und ausgehender Kante

eine neue Kante.

(a1B1)

(amf3n)

e e el e o e el e e
Regulare Ausdriicke

Die Anwendung von Regel E ist nur zul3ssig, wenn:
@ sich keine Schleife am zu entfernenden Zustand befindet und

@ es mindestens eine nach z hineinfiihrende und eine aus z
herausfiihrende Kante gibt.

Regulare Ausdriicke

Sobald keine Regel mehr anwendbar ist, haben wir im Allgemeinen
folgende Situation (plus evtl. zusatzliche Sackgassen):

AC v C

Dann ist v der gesuchte reguldre Ausdruck.

Falls es keine Kante zwischen Anfangs- und Endzustand gibt:
v=0.

Regulare Ausdriicke

Beispiel: Umwandlung des folgenden nicht-deterministischen
Automaten in einen reguldaren Ausdruck

Ergebnis: (ealeb)(b*ab)*b*ac

Regulare Ausdriicke

Wozu sind reguldre Ausdriicke in der Praxis niitzlich?

@ Suchen und Ersetzen in Editoren

e Pattern-Matching und Verarbeitung groBer Texte und
Datenmengen, z.B., beim Data-Mining
(Tools: Stream-Editor grep, sed, awk, perl, ...)

o Ubersetzung von Programmiersprachen:
Lexikalische Analyse — Umwandlung einer Folge von Zeichen
(das Programm) in eine Folge von Tokens, in der bereits die
Schliisselworter, Bezeichner, Daten, etc. identifiziert sind.
(Tools: 1lex, flex, ...)

Abschlusseigenschaften

Abgeschlossenheit (Definition)

Gegeben sei eine Menge M und ein bindrer Operator

R: Mx M— M.

Man sagt, eine Menge M’ C M ist unter ® abgeschlossen, wenn
fiir zwei beliebige Elemente my, my € M’ gilt: my @ mp € M.

Wir betrachten hier Abschlusseigenschaften fiir die Menge aller
reguldrer Sprachen. Die interessante Frage ist:

Falls LL L, reguldr sind, sind dann auch Ly U Ly, L1 N Ly,
Lily, L1 = X*\L; (Komplement) und L} regular?

Kurze Antwort: Die reguldren Sprachen sind unter allen diesen
Operationen abgeschlossen.

Abschlusseigenschaften

Sie sind vor allem dann interessant, wenn sie konstruktiv
verwirklicht werden konnen, das heiBt, wenn man — gegeben
Automaten fiir L; und Ly — auch einen Automaten beispielsweise
fiir den Schnitt von L7 und L, konstruieren kann.

Damit hat man dann mit Automaten eine Datenstruktur fiir
unendliche Sprachen, die man maschinell weiterverarbeiten kann.

e e el e o e el e e
Abschlusseigenschaften

Wenn L; und Ly reguldre Sprachen sind, dann ist auch L; U L,
regular.

Begriindung: den (nicht-deterministischen) Automaten fiir L3 U Lp
kann man mit denselben Methoden bauen wie den Automaten fiir
L(«|B) bei der Umwandlung von reguldren Ausdriicken in NFAs.

Organisatorisches Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontextfreie Sprachen

Think-Pair-Share: Abschlusseigenschaften

Abschluss unter Komplement

Wenn L eine regulire Sprache ist, dann ist auch L = ¥*\L regulr.

Bemerkung: bei Bildung des Komplements muss immer festgelegt
werden, beziiglich welcher Obermenge das Komplement gebildet
werden soll. Hier ist das die Menge ¥* aller Worter iiber dem
Alphabet X, das gerade betrachtet wird.

Wir untersuchen nun, wieso diese Abschlusseigenschaft erfiillt ist.
Sei dazu ein DFA M = (Z,%, 6, z9, E) fiir L gegeben. Wie kann
man auf dieser Grundlage einen DFA M’ konstruieren, der die
Komplementsprache X* \ L akzeptiert?

Erarbeiten Sie zunichst fiinf Minuten in Einzelarbeit eine Losung.
AnschlieBend tauschen Sie sich fiir weitere fiinf Minuten mit ihrem
Sitznachbarn aus. Schlussendlich besprechen wir die Losung im
Plenum. Es reicht, wenn Sie die Konstruktion angeben.

Sebastian Kiipper Automaten und Formale Sprachen

e e el e o e el e e
Losungsvorschlag zur Think-Pair-Share-Aufgabe

Begriindung: Aus einem DFA M = (Z, %, 6, zo, E) fiir L gewinnt
man leicht einen DFA M’ fiir L indem man die End- und
Nicht-Endzusténde vertauscht. D.h. M = (Z, %, 6, zp, Z\E).
Dann gilt: 3
we Ll < i(z,w) € E < i(z,w) € Z\E <= w & L.

e e el e o e el e e
Abschlusseigenschaften

Wenn L; und L; reguldre Sprachen sind, dann ist auch L;L,
regular.

Begriindung: den (nicht-deterministischen) Automaten fiir L; L
kann man mit denselben Methoden bauen wie den Automaten fiir
L(apB) bei der Umwandlung von reguldren Ausdriicken in NFAs.

Abschlusseigenschaften

Wenn L eine reguldre Sprache ist, dann ist auch L* regular. I

Begriindung: den (nicht-deterministischen) Automaten fiir L* kann
man mit denselben Methoden bauen wie den Automaten fiir
L((«)*) bei der Umwandlung von reguldren Ausdriicken in NFAs.

e e el e o e el e e
Abschlusseigenschaften

Wenn Ly und L, reguldre Sprachen sind, dann ist auch L3 N Ly
regular.

Begriindung 1: Es gilt L1 N Ly = L1 U Ly und wir wissen bereits,
dass reguldre Sprachen und Komplement und Vereinigung
abgeschlossen sind.

Abschlusseigenschaften

Begriindung 2: Es gibt noch eine andere direktere Konstruktion fiir
den Schnitt. Dabei werden die zwei Automaten fiir L1 und L,
miteinander synchronisiert und quasi “parallelgeschaltet”. Dies
erfolgt durch das Bilden des Kreuzprodukts.

Seien M1 = (Zl, Z, 51, 51, El), M2 = (ZQ, Z, (52, 52, E2) NFAs mit
T(M1) = Ly und T(M,) = L. Dann akzeptiert folgender Automat
M die Sprache L1 N Ly:

M = (Zl X 22,2,5, 51 X 52, E1 X E2),

wobei §((z1,22),a) = {(2],2) | z; € d1(z1,a), 2z € d2(22, a))}.
M akzeptiert ein Wort w genau dann, wenn sowohl Mj als auch
M, das Wort w akzeptieren.

Abschlusseigenschaften

Beispiel fiir ein Kreuzprodukt: bilde das Kreuzprodukt der
folgenden zwei Automaten:

R

a, b

Abschlusseigenschaften

Wir betrachten eine Anwendung des Kreuzprodukts auf
Adventures. Wiederholung der Regeln fiir Level 1:

Man muss mindestens zwei Schitze finden. '

Durch eine Tiir kann man nur gehen, wenn man zuvor einen
Schliissel gefunden hat. (Dieser Schliissel darf aber dann beliebig
oft verwendet werden.)

Abschlusseigenschaften

Unmittelbar nach der Begegnung mit einem Drachen muss man in
einen Fluss springen, da uns der Drache in Brand stecken wird.
Dies gilt nicht mehr, sobald man ein Schwert besitzt, mit dem man
den Drachen vorher téten kann.

Alphabetsymbole:
e Torbogen (B): ﬁ
@ Drachen (D): B Tor (T) I]

e Tiir (T):

e Schwert (W): Jﬂ-
e Schliissel (L): O

@ Schatz (A): @

@ Fluss (F): “2A

Abschlusseigenschaften

Man kann diese Regeln durch folgende endliche Automaten
beschreiben:

8&8

r Z\{o—w

@CF:

T\

|-

Abschlusseigenschaften

Gegeben sei ein Automat M, der eine Adventure-Karte beschreibt.
Sei
e Ly = T(M) die Sprache aller Pfade durch M von einem
Anfangs- zu einem Endzustand,
@ Lo = T(A) die Menge aller Pfade, die die Schatz-Regel

erfiillen,

@ Lt = T(T) die Menge aller Pfade, die die Tiir-Regel erfiillen
und

e Lp = T(D) die Menge aller Pfade, die die Drachen-Regel
erfiillen.

AuBerdem sei Ay die Menge aller Pfade durch die
Adventure-Karte, die alle Bedingungen erfiillen. Offensichtlich gilt:

Av=LuynNnLaNnLrNilp

Abschlusseigenschaften

Damit haben wir ein Verfahren, um das Adventure-Problem
(Level 1) zu I6sen, d.h., um zu iiberpriifen, ob ein Adventure eine
Lésung hat:

@ Bilde nacheinander das Kreuzprodukt der vier Automaten M,
A, T, D (das Kreuzprodukt ist assoziativ und daher die
Reihenfolge gleichgiiltig).

@ Uberpriife, ob der dadurch entstehende Automat mindestens
ein Wort akzeptiert, d.h., ob es einen Pfad von einem
Anfangs- zu einem Endzustand gibt.

Dies kann automatisch erfolgen, beispielsweise mit dem Tool Grail

zur Manipulation endlicher Automaten:

http://www3.cs.stonybrook.edu/
“algorith/implement/grail/implement.shtml

Abschlusseigenschaften

Kiirzeste Losungen, ermittelt mit Grail (Befehle fmcross, fmenum):

> fmcross a.aut < t.aut > at.aut

> fmcross at.aut < d.aut > atd.aut

> fmcross m.aut < atd.aut > loesung.aut
> fmenum loesung.aut

DFWDWLDTATTATBF

DFWDWLDTATTAWLBF

DFWDWLDTAWLTATBF

DFWDWLDLDTATTATBF

Abschlusseigenschaften

T (9

DFWDWLDTATTATBF =

Abschlusseigenschaften

TS

; tﬁ{@ L
zfm%; \&U@

BDFLTDFWBLBATAD =
Tl sa8m0u Eﬁ;‘%‘“&mﬁﬁw -1 55 - B

Ausblick

@ Wie kann man zeigen, dass eine Sprache nicht regular ist?
Beispiel: Die Sprache {a"b"c" | n > 1}, die bereits als Beispiel
auftauchte, scheint nicht reguldr zu sein. Wie kann man das
zeigen?

@ Wenn eine Sprache regular ist, wie groB ist dann der kleinste
Automat, der die Sprache akzeptiert? Gibt es iiberhaupt den
kleinsten Automaten?

Fragestellungen zu dieser Vorlesungseinheit

Zum Ende einer jeden Vorlesungseinheit betrachten wir im Regelfall
drei Fragestellungen, die mithilfe der in dieser Einheit besprochenen
Inhalte beantwortet werden sollen. In der darauffolgenden Einheit
kdnnen zu Beginn mogliche Antworten gesammelt werden.
Fragen zur fiinften Vorlesungseinheit
@ Wie wandelt man einen NFA in einen reguldren Ausdruck um?
@ Wie wandelt man einen reguldren Ausdruck in einen NFA um?

@ Wie konstruiert man den Automaten fiir die
Komplementsprache?

e e el e o e el e e
Das Pumping-Lemma

Wie beweist man, dass eine Sprache L nicht regular ist? J

Idee: Man versucht auszunutzen, dass eine reguldre Sprache von
einem Automat mit endlich vielen Zustanden akzeptiert werden
muss. Das bedeutet auch: wenn ein Wort x € L ausreichend lang
ist — ndmlich mindestens so viele Zeichen lang ist wie es Zustdnde
im Automaten gibt — so besucht man damit beim Durchlauf durch
den Automaten mindestens einen Zustand z zweimal
(Taubenschlag Prinzip).

e e el e o e el e e
Das Pumping-Lemma

Die dadurch entstehende Schleife kann nun mehrfach (oder gar
nicht) durchlaufen werden, dadurch wird das Wort x = uvw
“aufgepumpt” und man stellt fest, dass uv?w, uv3w, ...sowie uw

ebenfalls in L liegen miissen.

Bemerkung: Es gilt vi =v...v.
N——

i-mal

Das Pumping-Lemma

AuBerdem kann man fiir u, v, w folgende Eigenschaften verlangen,
wobei n die Anzahl der Zustinde des Automaten ist.

© |v| > 1: Die Schleife ist auf jeden Fall nicht trivial und enthélt
zumindest einen Ubergang.

@ |uv| < n: Spétestens nach n Alphabetsymbolen wird der
Zustand z das zweite Mal erreicht.

Die Idee bei dieser Einschrankung ist, dass man , die erste” Schleife
im Automaten identifiziert, die vollendet wird.

Das Pumping-Lemma

Pumping-Lemma, uvw-Theorem (Satz)

Sei L eine reguldre Sprache. Dann gibt es eine Zahl n, so dass sich
alle Worter x € L mit |x| > n zerlegen lassen in x = uvw, so dass
folgende Eigenschaften erfiillt sind:

Q |v|>1,
@ |uv| < n und
Q firalle i =0,1,2,... gilt: uv'w € L.

Dabei ist n die Anzahl der Zustande eines Automaten, der L
erkennt. Dieses Lemma spricht jedoch nicht {iber Automaten,
sondern nur iiber die Eigenschaften der Sprache. Daher ist es dazu
geeignet, Aussagen iiber Nicht-Regularitdt zu machen.

Das Pumping-Lemma

Wie kann man das Pumping-Lemma dazu nutzen, um zu zeigen,
dass eine Sprache nicht regular ist?

Aussage des Pumping-Lemmas mit logischen Operatoren:

L regular
— 3n YxeLlx|>n3uv,w,x=uw Vi (u'wel)

Das ist logisch dquivalent zu

Vn IxeLl|x|>n Yuv,w,x=uw Fi (u'w¢glL)
— L ist nicht regular

A — B=-B — —-A und —Vx3dyF = IxVy—F.

Das Pumping-Lemma

Sei L eine Sprache. Angenommen, wir konnen fiir jede Zahl n ein
Wort x € L mit |x| > n wahlen, so dass folgendes gilt: fiir alle
Zerlegungen x = uvw mit

Q |v|>1,
Q |uv|<n

gibt es eine Zahl i mit uv/w ¢ L. Dann ist L nicht regular.

D.h., wir missen zeigen, dass es fiir jedes n (fiir jede mogliche
Anzahl von Zustinden) ein Wort gibt, das mindestens so lang wie
n ist und das keine “pumpbare” Zerlegung hat.

Pumping-Lemma

Gegeben sei eine Sprache L (Beispiel: {akb | k > 0}). Wir wollen
zeigen, dass sie nicht regular ist.
@ Nehme eine beliebige Zahl n an. Diese Zahl darf nicht frei
gewahlt werden.
@ Wihle ein Wort x € L mit |x| > n. Damit das Wort auch
wirklich mindestens die Lange n hat, empfiehlt es sich, dass n
(beispielsweise als Exponent) im Wort auftaucht.

Beispiel: x = a"b"

Pumping-Lemma

© Betrachte nun alle moglichen Zerlegungen x = uvw mit den
Einschrankungen |v| > 1 und |uv| < n.

Beispiel: hier gibt es nur eine mdgliche Zerlegung u = &/,
v=al, w=a"b"mitj+ ¢+ m=nund {>1.

@ Wihle fiir jede dieser Zerlegungen ein i (das kann jedes Mal
ein anderes i sein), so dass uv'w ¢ L. (In vielen Féllen sind
i =0 und i = 2 eine gute Wahl.)
Beispiel: wahle i = 2, dann gilt uv?w = &1T2Empn & [da
J+20+m#n.

Pumping-Lemma

Als weiteres Beispiel betrachten wir das Adventure, Level 2.
Wiederholung der Regeln:

Man muss mindestens zwei Schitze finden.

Unmittelbar nach der Begegnung mit einem Drachen muss man in
einen Fluss springen, da uns der Drache in Brand stecken wird.
Dies gilt nicht mehr, sobald man ein Schwert besitzt, mit dem man
den Drachen vorher toten kann.

Die Schliissel sind magisch und verschwinden sofort, nachdem eine
Tir mit ihnen gedffnet wurde. Sobald man eine Tiir durchschritten
hat, schlieBt sie sich sofort wieder.

Pumping-Lemma

@“@”@wﬁﬂ
“ F

Wir betrachten folgende Sprache Ay:

Aym = {w | w entspricht einem Pfad durch das oben
angegebene Adventure, d.h., w € T(M), und
erfiillt alle Regeln fiir Level 2}
= {A2LfT™ | k>m>1}

L = Schliissel T = Tir A = Schatz

Pumping-Lemma

Wir zeigen nun, dass Ay nicht regular ist.

@ Gegeben sei eine beliebige Zahl n.

@ Wir wihlen als Wort x = A2L"T" € Ap.

© Sei nun x = uvw eine beliebige Zerlegung von x mit |v| > 1
und |uv| < n. Dann enthilt v nur Schitze (A) oder Schliissel
(L) (aber keine Tiiren T).

© Wir machen nun folgende Fallunterscheidung:

o v enthilt zumindest einen Schatz: dann enthilt uv®w
héchstens noch einen Schatz und kann nicht in Ay
liegen, da die Schatz-Regel verletzt ist. (i = 2 ist hier
auch maglich.)

o v enthilt zumindest einen Schliissel: dann enthilt uv®w
weniger als n Schlissel und kann nicht in Ay liegen, da
es fiir jede der n Tiiren vorher mindestens einen Schliissel
geben muss.

Pumping-Lemma

Falsche Anwendung des Pumping-Lemmas

“Wenn L die Pumping-Eigenschaft erfiillt (d.h., es gibt ein n, so
dass alle Worter langer als n pumpbar sind), dann ist L regular.”
Dieses Argument ist nicht korrekt.

Es gibt nicht-reguldre Sprachen, die trotzdem die
Pumping-Eigenschaft erfiillen.

Beispiel fiir nicht-regulare Sprache mit der
Pumping-Eigenschaft

L={a"b"c™ | k,m>0}U{bc|i j>0}

o L erfiillt die Pumping-Eigenschaft: Sei n € N und ein Wort
w € L mit |x| > n beliebig gegeben. Fiihre eine
Fallunterscheidung danach durch, ob x mit a beginnt. Falls ja,
wahle u = ¢, v = a, w ist der Rest des Wortes, dann ist
w'w € {a"b™c™ | k,m > 0}. Anderenfalls wihle u = ¢,
v = b, falls x mit b beginnt, sonst v = ¢ und w is der Rest
des Wortes. Dann ist uv'w € {b'c/ | i, h > 0}.

Beispiel fiir nicht-regulare Sprache mit der
Pumping-Eigenschaft

L={abmc™ | k,m>0}U{b'c | i j>0}.

@ Aber L ist nicht reguldr. (Argumentation mit Hilfe von
Abschluss regularer Sprachen unter Schnitt:
LnL(a(b]|c)*)={ab™c™ | m> 0} und fiir diese Sprache
kann man mit dem Pumping-Lemma zeigen, dass sie nicht
regular ist.)

Aquivalenzrelationen und Minimalautomat

Wir beschéftigen uns nun mit folgenden Fragen:

o Gibt es zu jeder reguldren Sprache immer den kleinsten
deterministischen /nicht-deterministischen Automat?

@ Kann man direkt aus der Sprache die Anzahl der Zustinde des
minimalen Automaten ablesen?

@ Wie bestimmt man den minimalen Automat?

Aquivalenzrelationen und Minimalautomat

()
b
Wir betrachten

a
folgenden b b 3 a,b

Automaten M: a
b

Feststellung: fiir die Zustande 4, 5 gilt

@ mit einem Wort, das ein a enthilt, landet man von dort aus
immer im Zustand 6 (Endzustand)

@ mit einem Wort, das kein a enthalt, landet man von dort aus
immer im Zustand 4 bzw. 5 (kein Endzustand)

Daraus folgt: 4 und 5 sind erkennungsiquivalent und kdnnen zu
einem Zustand verschmolzen werden.

Aquivalenzrelationen und Minimalautomat

Ebenso: die Zustidnde 2 und 3 sind erkennungsiquivalent

Entstehender Automat M’:

@v@ : B OB

b

Jetzt sind keine Zustdnde mehr erkennungsdquivalent und sie
konnen daher nicht weiter verschmolzen werden ~~ der Automat
M’ ist minimal fiir diese Sprache.

e e el e o e el e e
Aquivalenzrelationen und Minimalautomat

Gegeben sei ein DFA M. Zwei Zustinde z1, z heien
erkennungsaquivalent genau dann, wenn fiir jedes Wort w € ¥*
gilt:

5(z1,w) € E <= (2, w) € E.

e e el e o e el e e
Aquivalenzrelationen und Minimalautomat

Was ist eine Aquivalenzrelation?

Wir beginnen zunichst mit der Definition einer Relation:

Eine (zweistellige) Relation R auf einer Menge M ist eine
Teilmenge R C M x M.
Statt (m1, m2) € R schreibt man manchmal auch m; R my.

Aquivalenzrelationen und Minimalautomat

Eine Aquivalenzrelation R auf einer Menge M ist eine Relation
R C M x M, die folgende Eigenschaften erfiillt:

e R ist reflexiv, d.h., es gilt (m, m) € R fiir alle m € M.

@ R ist symmetrisch, d.h., falls (m1, m) € R, so auch
(m2,m1) € R.

@ R ist transitiv, d.h., aus (my, m2) € R und (my, m3) € R folgt
(m1,m3) € R.

Typische Beispiele fiir Aquivalenzrelationen auf natiirlichen Zahlen:
Gleichheit, Gleichheit modulo k, ...

Aquivalenzrelationen und Minimalautomat

Sei R eine Aquivalenzrelation auf M und m € M. Die
Aquivalenzklasse [m]g von m ist folgende Menge:

[mr={ne M| (n,m)e R}

Manchmal schreibt man auch nur [m], wenn klar ist, welche
Relation gemeint ist.

Aquivalenzrelationen und Minimalautomat

Sei R eine Aquivalenzrelation auf M und my, my € M.
Dann gilt entweder
[mi]r = [m2]r
oder
[m1]r N [m2]r = 0.

AuBerdem gilt:

M= [mlr.

meM

D.h., zwei Aquivalenzklassen sind entweder gleich oder vollstindig
disjunkt. AuBerdem iiberdecken sie M vollstandig.
Man sagt auch: die Aquivalenzklassen bilden eine Partition von M.

e e el e o e el e e
Aquivalenzrelationen und Minimalautomat

Jedem Wort x € ¥* kann man in einem deterministischen Automat
einen eindeutigen Zustand z = d(zp, x) zuordnen. Daher kann die
Definition der Erkennungsaquivalenz auf Worter aus ©* und

Sprachen (anstatt Automaten) ausgedehnt werden.

Myhill-Nerode-Aquivalenz (Definition)
Gegeben sei eine Sprache L und Woérter x,y € ¥*.
Wir definieren eine Aquivalenzrelation R; mit x R; y genau dann
wenn
firalleze X gilt (xz€ L < yz e L).

Das ist gleichbedeutend damit, dass §(zo, x) und 8(zo, y)
erkennungsiquivalent sind, und zwar fiir einen beliebigen
Automaten M, der L akzeptiert.

e e el e o e el e e
Aquivalenzrelationen und Minimalautomat

Beispiel 1 fiir Myhill-Nerode-Aquivalenz:
Sprache L = {w € {a, b}* | #a(w) gerade}
Es gibt folgende Aquivalenzklassen:

o [e] = {w € {a,b}" | #a(w) gerade} = L
(Aquivalenzklasse von ¢)

o [a] = {w € {a, b}* | #a(w) ungerade} = {a, b}*\L
(Aquivalenzklasse von a)

Beispiel: € und aa sind dquivalent, denn

@ wird an beide ein Wort mit gerade vielen a's angehidngt, so
bleiben sie in der Sprache

@ wird an beide ein Wort mit ungerade vielen a's angehangt, so
fallen sie aus der Sprache heraus

Aquivalenzrelationen und Minimalautomat

L={w e {a,b}*" | #.(w) gerade}
Automat:
a
N0
O

b b

e e el e o e el e e
Aquivalenzrelationen und Minimalautomat

Beispiel 2 fiir Myhill-Nerode-Aquivalenz:
Sprache
L={w e {a,b,c}*| das Teilwort abc kommt in w nicht vor}
Es gibt folgende Aquivalenzklassen:
o [e]={we{a b, c}*|
w endet nicht auf a oder ab und enthilt abc nicht}
o [a] ={w € {a,b,c}*| w endet auf a und enthilt abc nicht}
e [ab] ={w € {a, b,c}* |
w endet auf ab und enthilt abc nicht}
e [abc] = {w € {a,b,c}* | w enthélt abc} (Fangzustand)

Beispiel: a und ab sind nicht dquivalent, denn wird an beide ein ¢
angehangt, so ist ac noch in der Sprache, abc ist es aber nicht.

Aquivalenzrelationen und Minimalautomat

L={w e {a,b,c}*| das Teilwort abc kommt in w nicht vor}

Automat:

e e el e o e el e e
Aquivalenzrelationen und Minimalautomat

Eine Sprache L C ¥* ist genau dann reguldr, wenn R; endlich viele
Aquivalenzklassen hat.

Aquivalenzrelationen und Minimalautomat

R, hat endlich viele Aquivalenzklassen = L regulir:

Wir nehmen zunichst an, dass R; endlich viele Aquivalenzklassen
hat und konstruieren einen endlichen Automaten
M= (Z,%,9,z, E) fiir L, der wie folgt definiert ist:

Z = {[wlg, | w€ Z*} (Menge der Aquivalenzklassen)

20 = [5]RL
E = {lwlg |wel}
6([W]Rua) = [Wa]RL

Aquivalenzrelationen und Minimalautomat

L reguldr = R, hat endlich viele Aquivalenzklassen:

Sei nun M ein DFA mit T(M) = L. Dann definieren wir eine
Aquivalenzrelation Ry mit

xRyy <= 8(z0,%) = d(z0,y) fiir x,y € *.

Die Anzahl der Aquivalenzklassen von Ry ist gleich der Anzahl der
Zustdnde von M, d.h., sie ist endlich.

e e el e o e el e e
Aquivalenzrelationen und Minimalautomat

Man kann zeigen, dass aus x Ry y immer x R, y folgt: dazu
nehmen wir ein beliebiges z € ¥*. Dann gilt ndmlich

xz €l < §(z,xz) € E < §(8(z0,x),2) € E

— §(8(z0,y),2) € E < b(z0,yz) €E < yze L.

Also setzt Ry hochstens so viel Elemente in Beziehung wie R; und
hat damit mehr (oder gleich viele) Aquivalenzklassen wie R;.
Daraus folgt aber, dass R, nur endlich viele Aquivalenzklassen hat.

Aquivalenzrelationen und Minimalautomat

Man kann den obigen Satz dazu nutzen, um zu zeigen, dass ein
Sprache nicht reguldr ist. Dazu muss man nur unendlich viele
Worter aus X* aufzdhlen und zeigen, dass sie in verschiedenen
Aquivalenzklassen sind.
Beispiel 3 fiir Myhill-Nerode-Aquivalenz:

Sprache L = {a*b* | k > 0}
Betrachte die Worter a, aa, aaa, ..., a', ...
Es gilt: —(a' R, &) fiir i # j, denn a'b’ € L und @b’ ¢ L.

e e el e o e el e e
Kochrezept fiir Myhill-Nerode-Beweise

Um den Satz von Myhill-Nerode zu verwenden, um zu beweisen,
dass eine Sprache L nicht reguldr ist, geht man wie folgt vor:

o ldentifiziere eine unendliche Klasse an Wartern wy, wo, ..., die
jeweils eine eigene Aquivalenzklasse reprasentieren.
o Zeige fiir alle i, j: [wi] = [wj] = i =.
Es ist nicht notwendig, alle Aquivalenzklassen zu identifizieren oder
fiir jedes Wort in ©* anzugeben, in welcher Aquivalenzklasse es

liegt. Es reicht, unendlich viele Worter zu identifizieren, die
paarweise nicht dquivalent sind.

Aquivalenzrelationen und Minimalautomat

Wir verwenden Myhill-Nerode-Aquivalenz nun um zwei zuvor mit
dem Pumping-Lemma untersuchte Sprachen zu analysieren:
Beispiel 4 fiir Myhill-Nerode-Aquivalenz (Adventure):

Sprache L = {A2LKT™ | k > m > 1}
Betrachte die Worter AA, AAL, AALL, ..., AAL, ...

Es gilt: ~(AAL' R, AALY) fiir i # j. O.B.d.A sei i > j, dann
AAL'T € L und AALUT! & L.

Aquivalenzrelationen und Minimalautomat

Wir verwenden Myhill-Nerode-Aquivalenz nun um zwei zuvor mit
dem Pumping-Lemma untersuchte Sprachen zu analysieren:

Beispiel 5 fiir Myhill-Nerode-Aquivalenz (nicht regulire Sprache
mit Pumping-Eigenschaft):
Sprache

L={a"b"c™ | k,m>0}U{b c|i j>0}

Betrachte die Woérter a, ab, abb, ..., ab', ...
Es gilt: —(ab' Ry ab/) fiir i # j. Sei i # j, dann ab'c’ € L und
abic' ¢ L.

B A S Rl e e e
Think-Pair-Share: Nicht-Regularitat

Betrachten Sie die (nicht-reguldre) Sprache
L={a"b" | n < m}.

Zeigen Sie, wahlweise mit dem Pumping-Lemma (das ist in diesem
Fall méglich) oder Myhill-Nerode-Aquivalenzklassen, dass L nicht
regular ist.

Erarbeiten Sie zunachst vier Minuten in Einzelarbeit eine Losung.
AnschlieBend tauschen Sie sich fiir weitere vier Minuten mit ihrem
Sitznachbarn aus. Schlussendlich besprechen wir die Losung im
Plenum.

Fragestellungen zu dieser Vorlesungseinheit

Zum Ende einer jeden Vorlesungseinheit betrachten wir im Regelfall
drei Fragestellungen, die mithilfe der in dieser Einheit besprochenen
Inhalte beantwortet werden sollen. In der darauffolgenden Einheit
konnen zu Beginn mogliche Antworten gesammelt werden.

Fragen zur sechsten Vorlesungseinheit
@ Wie kann man mit Hilfe des Pumping Lemmas fiir regulare
Sprachen zeigen, dass eine Sprache nicht regular ist?

e Wie kann man mit Hilfe der Myhill-Nerode-Aquivalenz zeigen,
dass eine Sprache nicht regular ist?

e Wie kann man mit Hilfe der Myhill-Nerode-Aquivalenz zeigen,
dass eine Sprache regular ist?

Aquivalenzrelationen und Minimalautomat

Der DFA, der aus den Aquivalenzklassen einer reguliren Sprache L
konstruiert werden kann, ist der (eindeutige) minimale
deterministische Automat fiir L. Wie kann man ihn aus einem,
nicht notwendigerweise minimalen, DFA erhalten, ohne die
Aquivalenzklassen zu konstruieren?

Losung: wir starten mit dem DFA und verschmelzen alle
erkennungsaquivalenten Zustande.

Dabei legen wir zunichst fest, welche Zustande auf jeden Fall nicht
erkennungsaquivalent sind (die Endzusténde und
Nicht-Endzustdnde) und finden weitere nicht
erkennungsaquivalente Zustande.

Aquivalenzrelationen und Minimalautomat

Eingabe: DFA M (Zustinde, die vom Startzustand aus nicht
erreichbar sind, sind bereits entfernt)
Ausgabe: Mengen von erkennungsdquivalenten Zustdnden
© Stelle eine Tabelle aller Zustandspaare {z,z'} mit z # 2z’ auf.
@ Markiere alle Paare {z,z'} mit z € E und z' ¢ E (oder
umgekehrt)
(z, Z’ sind sicherlich nicht erkennungsiquivalent.)

Aquivalenzrelationen und Minimalautomat

Algorithmus Minimalautomat

© Fiir jedes noch unmarkierte Paar {z,Z'} und jedes a € &
teste, ob {4(z, a),d(Z’,a)} bereits markiert ist. Wenn ja:
markiere auch {z,z'}.
(Von z, 7' gibt es Uberginge zu nicht erkennungsiquivalenten
Zustanden, sie kdnnen daher nicht erkennungséquivalent sein.)

@ Wiederhole den vorherigen Schritt, bis sich keine Anderung in
der Tabelle mehr ergibt.

@ Fiir alle jetzt noch unmarkierten Paare {z, 7'} gilt: z und 2’
sind erkennungsaquivalent.

Aquivalenzrelationen und Minimalautomat

Durchfiihrung des Minimierungs-Algorithmus am Beispiel des
folgenden Automaten:

bﬁ a

a

. b Qa,b |
- 123 4 5

Erstelle eine Tabelle aller Zustandspaare

SO WN

Aquivalenzrelationen und Minimalautomat

Durchfiihrung des Minimierungs-Algorithmus am Beispiel des
folgenden Automaten:

SO WN

N[=
W[
NP

: b Qa,b I
1
a

(1) Markiere Paare von Endzustanden und Nicht-Endzustanden

ol =

Aquivalenzrelationen und Minimalautomat

Durchfiihrung des Minimierungs-Algorithmus am Beispiel des
folgenden Automaten:

OB WD
N

N| —
W

: b Qa,b 1
1
a

(2) Markiere {2,4} wegen §(2,a) =1, §(4,a) =6 und {1,6}
markiert

Iy

o1 =

Aquivalenzrelationen und Minimalautomat

Durchfiihrung des Minimierungs-Algorithmus am Beispiel des
folgenden Automaten:

OB WD
N

N| —
Wl W

: b Qa,b 1
1
a

(3) Markiere {3,5} wegen §(3,a) =1, §(5,a) =6 und {1,6}
markiert

Iy

o1 =

Aquivalenzrelationen und Minimalautomat

Durchfiihrung des Minimierungs-Algorithmus am Beispiel des
folgenden Automaten:

OB WD

N BN
W| =W

: b Qa,b 1
a a 1

(4) Markiere {2,5} wegen §(2,a) =1, §(5,a) =6 und {1,6}
markiert

Iy

o1 =

Aquivalenzrelationen und Minimalautomat

Durchfiihrung des Minimierungs-Algorithmus am Beispiel des
folgenden Automaten:

OB WD

N BN
Wl Wl o

: b Qa,b 1
a a 1

(5) Markiere {3,4} wegen 6(3,a) =1, §(4,a) =6 und {1,6}
markiert

Iy

o1 =

Aquivalenzrelationen und Minimalautomat

Durchfiihrung des Minimierungs-Algorithmus am Beispiel des
folgenden Automaten:

OB WD

—_

(@)}
N BN
Wl Wl o

L Qa,b
a a 1

(6) Markiere {1,5} wegen 6(1,a) =3, §(5,a) =6 und {3,6}
markiert

I

o1 =

Aquivalenzrelationen und Minimalautomat

Durchfiihrung des Minimierungs-Algorithmus am Beispiel des
folgenden Automaten:

OB WD

| = o] ~
N | o
w| | w| o

b
b /(9— a
: b 3 a,b
a a

(7) Markiere {1,4} wegen 6(1,a) =3, §(4,a) =6 und {3,6}
markiert

I

o1 =

Aquivalenzrelationen und Minimalautomat

Durchfiihrung des Minimierungs-Algorithmus am Beispiel des
folgenden Automaten:

(8) Markiere {1,3} wegen 6(1,b) =2, §(3,b) =5 und {2,5}
markiert

2
b 3[8
b ; a 471215
a 506[4]3
. 0 bga’b611111
) - 1 2 3 4 5

Aquivalenzrelationen und Minimalautomat

Durchfiihrung des Minimierungs-Algorithmus am Beispiel des
folgenden Automaten:

(9) Markiere {1,2} wegen 6(1, b) =2, §(2,b) = 4 und {2,4}
markiert

29
b 3[8
b ; a 471215
a 506[4]3
. 0 bga’b611111
) - 1 2 3 4 5

Aquivalenzrelationen und Minimalautomat

Durchfiihrung des Minimierungs-Algorithmus am Beispiel des
folgenden Automaten:

SOl BWN
| = O ~| ool©O

N &N
W Wl ol

NI

b
b ‘)2}— a
a b 3 a, b
a
a a

Die verbleibenden Zustandspaare {2,3} und {4,5} kdnnen nicht
mehr markiert werden ~~ sie sind erkennungsaquivalent und
konnen verschmolzen werden.

o1l =

Aquivalenzrelationen und Minimalautomat

Hinweise fiir die Durchfiihrung des Minimierungs-Algorithmus:

@ Die Tabelle moglichst so aufstellen, dass jedes Paar nur genau
einmal vorkommt! Also bei Zustandsmenge {1,...,n}:

2,...,nvertikal und 1,...,n— 1 horizontal notieren.

o Bitte angeben, welche Zustinde in welcher Reihenfolge und
warum markiert wurden!
(Im Buch von Schéning werden nur Sternchen () verwendet,
aber daraus werden bei der Korrektur die Reihenfolge und die
Griinde fiir die Markierung nicht ersichtlich.)

Think-Pair-Share: Minimalautomat

Minimieren Sie den folgenden Automaten iiber dem Alphabet
{a, b, c}. Geben Sie auBerdem die
Myhill-Nerode-Aquivalenzrelation auf dem Automaten an.
Beachten Sie, dass Sie hierzu das Ergebnis der Minimierung
verwenden konnen.

4 | Da,b,c

Erarbeiten Sie zundchst sechs Minuten in Einzelarbeit eine Lésung.
AnschlieBend tauschen Sie sich fiir weitere sechs Minuten mit
ihrem Sitznachbarn aus. Schlussendlich besprechen wir die Lésung
im Plenum.

Automaten und Formale Sprachen 215

- Organisatorfaches’ Einfihming ChomskyHisrarchie | Regulare prachen) Kontextirefe Sprachen T
Losung der Think-Pair-Share-Aufgabe

2 [2
3[3]2
4111
5[3]2 1]
1 2 3 4

Demzufolge ist die Myhill-Nerode-Aquivalenzrelation durch die
folgenden Aquivalenzklassen gegeben:

[e] = {1}, [a] = {2}, [b] = {3,5}, [aa] = {4}.

Aquivalenzrelationen und Minimalautomat

Fiir nicht-deterministische Automaten kann man folgende
Aussagen treffen:
@ Es gibt nicht den minimalen NFA, sondern es kann mehrere

geben.
Folgende zwei minimale NFAs erkennen L((0]1)*1) und haben
zwei Zustinde. (Mit nur einem Zustand kann diese Sprache

nicht erkannt werden.
0,1

)
0 1
B 58
0

Aquivalenzrelationen und Minimalautomat

@ Gegeben ein DFA M. Dann hat ein minimaler NFA, der T (M)
erkennt, immer hochstens so viel Zustinde wie M. (Denn M
selbst ist schon ein NFA.)

AuBerdem: der minimale NFA kann exponentiell kleiner sein
als der minimale DFA.

Siehe Beispielsprachen:

Ly = {x €{0,1}" | |x| > k,das k-letzte Zeichen von x ist 0}.

 Organisatorisches Einfilhrung - Chomsky-Hierarchie Reguldre Sprachen Kontextfreie Sprachen
Entscheidbarkeit

Wir diskutieren nun, ob es Verfahren gibt, um die folgenden
Fragestellungen bzw. Probleme fiir reguldre Sprachen zu
entscheiden. Dabei nehmen wir an, dass reguldre Sprachen als
DFAs, NFAs, Grammatiken oder regulare Ausdriicke gegeben sind.

Probleme

@ Wortproblem: Gegeben eine reguldre Sprache L und w € ©*.
Gilt w € L7

@ Leerheitsproblem: Gegeben eine reguldre Sprache L. Gilt
L=

o Endlichkeitsproblem: Gegeben eine reguldre Sprache L. Ist L
endlich?

Entscheidbarkeit

@ Schnittproblem: Gegeben zwei reguldre Sprachen Ly, L;. Gilt
LinNLly, =07

@ Inklusionsproblem: Gegeben zwei reguldre Sprachen Ly, L;.
Gilt L1 C Ly?

o Aquivalenzproblem: Gegeben zwei regulire Sprachen Ly, Ly.
Gilt L1 = Ly?

Entscheidbarkeit

Gegeben sind eine reguldre Sprache L und ein Wort w € X*.

Losung: Bestimme einen DFA M fiir L und verfolge die
Zustandsiibergiange von M, wie durch w vorgegeben.
Endzustand wird erreicht ~~ w € L

Nicht-Endzustand wird erreicht ~» w & L

 Organisatorisches Einfilhrung - Chomsky-Hierarchie Reguldre Sprachen Kontextfreie Sprachen
Entscheidbarkeit

Gegeben ist eine reguldre Sprache L.

Losung: Bestimme einen NFA M fiir L.
L=1
<= es gibt keinen Pfad von einem Start- zu einem Endzustand.

Entscheidbarkeit

Gegeben ist eine reguldre Sprache L.

Losung: Bestimme einen NFA M fiir L.

L ist unendlich

<= in M gibt es unendlich viele Pfade von einem Start- zu
einem Endzustand

<= es gibt einen erreichbaren Zyklus in M, von dem aus
wiederum ein Endzustand erreichbar ist.

Entscheidbarkeit

Gegeben sind reguldre Sprachen Lg, L».

Losung: Bestimme NFAs My, M fiir Ly, Ly und bilde das
Kreuzprodukt von My, M,. Wende dann den Leerheitstest auf das
Kreuzprodukt an.

(Siehe auch den Abschnitt iiber Abschlusseigenschaften

» Schnitt reguldrer Sprachen)

Entscheidbarkeit

Gegeben sind regulare Sprachen Ly, L».

Losung: Es gilt L; C L, genau dann, wenn L N Ly = (). Da Schnitt
und Komplement konstruktiv bestimmbar sind und ein
Leerheitstest existiert, kann damit das Inklusionsproblem gelost
werden.

Anmerkung: fiir dieses Problem gibt es auch effizientere Methoden,
bei denen die Komplementierung von Ly — fiir die die Konstruktion
eines deterministischen Automaten erforderlich ist — vermieden
wird.

 Organisatorisches Einfilhrung - Chomsky-Hierarchie Reguldre Sprachen Kontextfreie Sprachen
Entscheidbarkeit

Gegeben sind reguldre Sprachen Li, L».

Losung: Es gilt L1 = Ly genau dann, wenn L; C Ly und Ly D Lo.
Das Inklusionsproblem ist — wie wir vorher gesehen haben — I&sbar.

Eine andere Methode: Bestimme jeweils zu L; und L, die
minimalen DFAs M; und M,. Da der minimale DFA eindeutig ist,
muss jetzt nur noch gezeigt werden, dass My und My strukturell
gleich sind, d.h., es gibt eine Umbenennung der Zustande, die M;
in M, iiberfiihrt. Man sagt auch: M; und M, sind isomorph.

 Organisatorisches Einfilhrung - Chomsky-Hierarchie Reguldre Sprachen Kontextfreie Sprachen
Entscheidbarkeit

Effizienzgesichtspunkte:

Je nachdem, in welcher Darstellung eine Sprache L gegeben ist,
kann die Komplexitat der oben beschriebenen Verfahren sehr
unterschiedlich ausfallen.

Beispiel Aquivalenzproblem:

o L1, L, gegeben als DFAs ~ Komplexitit O(n?)
(d.h., quadratisch viele Schritte in der GroBe der Eingabe)

@ L3, L, gegeben als Grammatiken, reguldre Ausdriicke oder
NFAs ~~ Komplexitat NP-hart
Das bedeutet unter anderem: es ist nicht bekannt, ob dieses
Problem in polynomieller Zeit lésbar ist. (Mehr zur
Komplexitatsklasse NP und verwandten Fragestellungen in der
Vorlesung “Berechenbarkeit und Komplexitat”.)

Anwendung: Verifikation

Mit Hilfe von Sprachen bzw. den dazugehdrigen endlichen
Automaten kann man oft alle Abldufe eines Systems beschreiben
(zumindest falls das System nur endlich viele Zustdnde hat).

Sei also Lsys die Menge aller Systemabldufe und Lgpec die
Spezifikation, d.h., die Menge aller korrekten Systemabldufe. Wir
wollen zeigen, dass

LSys - LSpec

Das kann man mit den eingefiihrten Verfahren machen, wenn beide
Sprachen durch Automaten gegeben sind. Diesen Vorgang nennt
man auch (System-)Verifikation.

e e el e o e el e e
Anwendung: Verifikation

Ein System kann dabei ein Programm, ein Prozess oder ein
verteiltes System (bestehend aus mehreren Prozessen) sein.

Beispiele fiir Verifikation:

@ Zeige, dass alle Pfade eines Adventures mindestens einen
Schatz enthalten.

@ Zeige, dass in einem Programm niemals eine Division durch 0
auftritt.

@ Zeige, dass in einem System von nebenldufig arbeitenden
Prozessen der wechselseitige Ausschluss nicht verletzt wird.

Anwendung: Verifikation

Ein abschlieBendes ausfiihrliches Beispiel:

@ Wir betrachten zwei Prozesse P;, P,, die auf eine gemeinsame
Ressource (Drucker, Datei, . ..) zugreifen wollen.

@ Jeder Prozess hat einen sogenannten kritischen Bereich, in
dem auf die Ressource zugegriffen wird. Es darf sich jeweils
nur ein Prozess im kritischen Bereich befinden.

@ Es stehen gemeinsame Variable zur Verfiigung, iiber die sich
die Prozesse synchronisieren kénnen. Diese Variablen sind
jedoch keine Semaphoren, d.h., eine atomare Operation, bei
der gleichzeitig gelesen und geschrieben wird, ist nicht
moglich.

Wir mochten zeigen, dass der wechselseitige Ausschluss
gewihrleistet ist und dass gewisse Fairnessbedingungen (jeder
Prozess kommt irgendwann an die Reihe) eingehalten werden.

Anwendung: Verifikation

Was hat das mit formalen Sprachen zu tun?

@ Die Menge aller Abldufe der Prozesse wird durch einen
endlichen Automaten beschrieben. Insbesondere gibt es
Automaten fiir jeden Prozess und einen Automaten fiir die
Ablaufe des Gesamtsystems, der durch ein Kreuzprodukt
erzeugt wird.

@ Wir mochten zeigen, dass ein System Sys eine Spezifikation
Spec erfiillt. Sei Lsys die Menge aller moglichen Abliufe des
Systems und Lspec die Menge aller Ablaufe, die Spec erfiillen.

Dann ist zu zeigen: Lsys C Lgpec-
Und wenn beide Sprachen regular sind, dann gibt es dafiir ein
effektives Verfahren!

Anwendung: Verifikation

Versuch 1: Beide Prozesse P;, P> verwenden eine gemeinsame
Boolesche Variable f, die mit false initialisiert wird.

while true do
1: if (f = false?) then do
begin
2: f := true;
3: [Betrete krit. Bereich];
4. [Verlasse krit. Bereich];
5: f := false
end
endif
enddo

Anwendung: Verifikation

Wir verwenden folgendes Alphabet, bestehend aus den
Programm-Befehlen und den Abfragen der Booleschen Variablen:

Y = {(f:=true), (f :=false), (f = true?),,
(f =false?); | i€ {1,2}}
(Synchronisation von Prozess i mit Variable f)
U {BkB;,VkB, | i € {1,2}}
(Prozess i betritt/verldsst kritischen Bereich).

Der Index i € {1,2} gibt an, ob die jeweilige Aktion vom ersten
oder vom zweiten Prozess ausgefiihrt wird.

e e el e o e el e e
Anwendung: Verifikation

Beschreibung der Abldufe eines Prozesses i als endlicher Automat:

(f = true?);

mit A; =
{(f := true);, (f := false);, (f = true?),, (f = false?);, BkB;, VkB;}
wobei j =2, falls i =1, und j =1, falls i = 2.

Anwendung: Verifikation

Bemerkungen:

@ Bedeutung der Zustdnde 1, 2, 3, 4, 5: diese entsprechen den
mit Labels markierten Programmzeilen

@ Bedeutung der Schleifen mit Alphabetsymbolen aus A;: da
wir spater das Kreuzprodukt bilden werden, um mehrere
Automaten zu synchronisieren, diirfen Uberginge anderer
Automaten, die den Prozess i nicht betreffen, nicht
ausgeschlossen werden. Sie werden einfach “mitgehort” und
haben keinen Einfluss auf die Zustandsiibergédnge.

Anwendung: Verifikation

Beschreibung der Booleschen Variable £ durch einen Automaten:

Af
= false?); (f := false),
= false?) '@‘ f := false),

(f := true), (f := false),
(f := true), (f := false),

= true? = true);
g = Erue?g; 'g‘ g = J‘Eruegz

As

mit As = {BkBy, VkB;, BkBy, VkBs}.

Anwendung: Verifikation

Die Sprache aller Ablaufe des Gesamtsystems ist
T(PL)NT(P)NT(F).
Der Automat WA, der alle Abldufe beschreibt, die den

wechselseitigen Ausschluss erfiillen (beide Prozesse sind nicht
gleichzeitig im kritischen Bereich) sieht folgendermaBen aus:

BKB, VKB,
¥\ {VkBy, BkB,} '@.@.@‘ ¥\ {BkBy, VkB,}
VKB, BkB,

Z\{BkBl, BB, }

Damit ist zu zeigen T(P1) N T(P2) N T(F) C T(WA).

e e el e o e el e e
Anwendung: Verifikation

Strategie : Kreuzprodukt der Automaten Py, P, F bilden;
Automat WA komplementieren und dann wiederum das
Kreuzprodukt bilden; die Sprachen sind ineinander enthalten, genau
dann, wenn der entstehende Automat die leere Sprache akzeptiert.

e e el e o e el e e
Anwendung: Verifikation

Die entstehende Sprache ist nicht leer! Es gibt also Abliufe, die die
Bedingung des wechselseitigen Ausschluss verletzen.

Einer davon ist:
f = false?), (f = false?), (f := true), BkB, (f := true), BkB;.
2 1 2 1

Grund fiir die Verletzung des wechselseitigen Ausschlusses: Es gibt
keine atomare Schreib- und Leseoperation. Daher konnen beide
Prozesse nacheinander die Variable auslesen, anschlieBend setzen
beide die Variable und betreten den kritischen Bereich.

Der Algorithmus ist also falsch!

Anwendung: Verifikation

Versuch 2: Wir betrachten nun das Verfahren zum wechselseitigen
Ausschluss von Lamport.

Dabei betrachten wir: zwei Prozesse P;, P> mit unterschiedlichem

Programmcode und zwei Boolesche Variable £1, £2 (initialisiert mit
false).

Anwendung: Verifikation

while true do
1: f1 := true; @#)
2: while (f2 = true?) do

skip
od;

3: [Betrete krit. Bereich];
[Verlasse krit. Bereich];
5: f1 := false

od;

o

skip: Null-Operation (hat keine Auswirkungen)

Anwendung: Verifikation

while true do
1: f2 := true; (#)
2: if (f1 = true?) then do

begin
83 f2 := false;
4: while (f1 = true?) do skip od;
goto 1
end;

5: [Betrete krit. Bereich];
[Verlasse krit. Bereich];
7: £2 := false

od;

()]

e e el e o e el e e
Anwendung: Verifikation

In diesem Fall betrachten wir folgendes Alphabet :

Y = {(f1:=true),,(f1:= false),
(f1 = true?),, (f1 = false?),,
(f2 := true),, (2 := false),,
(f2 = true?);, (f2 = false?),,
BkB1, VkBy, BkBy, VKB, }.

Anwendung: Verifikation

Automat fiir den Prozess Ps:
A A A
(f1 := true); %(fQ = false?);

@)
(f2 = true?), BB

(f1 := false), ® VKB, %

?1 Ay

Dabei gilt fiir die “mitgehdrten” Alphabetsymbole:

A1 = {(f2:=true),, (2 := false),, (f1 = true?),,
(£1 = false?),, BkBy, VkB,}

Anwendung: Verifikation

Automat fiir den Prozess P»:

(f1 = true?),

@)) A
4, (£f2 := false),

(£2 := true), %(fl = true?), © A,

(f1 = false?),

(f2 := false), (f1 = false?),
@) ®

A A,

Ay = {(f1:=true);,(f1:= false),, (£2 = true?);,
(f2 = false?);,BkBy, VkB; }

Anwendung: Verifikation

Automaten fiir die beiden Variablen:

Agy JAVS
(f1 = false?), .6‘ (f1:= false), (f2 = false?), .5‘ (f2 := false),

(£f1 := true), (f1:= false), (£2 := true), (£2 := false),
(f1 = true?), .@‘ (£1 := true), (£2 = true?), .@‘ (£2 := true),
Af1 AfZ
Agy = {(£f2:= true),, (f2 := false),, (f2 = true?),,

(£2 = false?),, BkBy, BkBy, VkBy, VkB, }

Analog fiir Ags.

e e el e o e el e e
Anwendung: Verifikation

In diesem Fall ist der wechselseitige Ausschluss erfiillt, d.h., es gilt
T(P)NT(P)NT(F)NT(F) C T(WA).

Anwendung: Verifikation

Neben dem wechselseitigen Ausschluss soll noch folgende
Fairness-Bedingung fiir jeden Prozess i iiberpriift werden:

(Gj) “Sobald Prozess i seine Bereitschaft bekundet hat,
den kritischen Bereich zu betreten, indem er die
Anweisung (#) ausfiihrt, kann der andere Prozess j
nicht zweimal hintereinander den kritischen Bereich
betreten, ohne dass Prozess i zwischendurch den
kritischen Bereich betritt.”

Anwendung: Verifikation

Automat NGy, der genau die Abldufe erkennt, die (Gy) nicht

erfiillen:

r r

48 (f1:= true), % BkB, @ BkB, %

Y\{BkB;,BkB,} X\{BKkBj, BkB,}

Wir wollen zeigen, dass
T(P)NT(P)NT(F)NT(FR)N T(NG) =0 gilt.

- Organisatorfaches’ Einfihming ChomskyHisrarchie | Regulare prachen) Kontextirefe Sprachen T
Anwendung: Verifikation

Fairness ist erfillt fiir Prozess 1

e e el e o e el e e
Anwendung: Verifikation

Fairness ist nicht erfiillt fiir Prozess 2:
Der erste Ablauf, der die Fairness verletzt, entspricht:
(f2:= true), (f1:=true); (f1=true?), (f2:=false),

(f2 = false?); BkB; VkB; (f1:=false); (f1:=true),
(f2 = false?); BkB;

Anwendung: Verifikation

Zusammenfassung:

@ Wir haben mit Hilfe von endlichen Automaten zwei Protokolle
modelliert, die wechselseitigen Ausschluss realisieren sollen.

e Mit Hilfe der Losungsverfahren fiir das Inklusions- bzw.
Schnittproblem haben wir iiberpriift, ob diese Protokolle
tatsachlich wechselseitigen Ausschluss und Fairness realisieren.

Das bedeutet: die vorgestellten Verfahren kénnen zur
Programmuverifikation eingesetzt werden.

Bemerkung: Bei realen Programmen hat man allerdings noch
damit zu kdmpfen, dass der Zustandsraum eines Programms oft
unendlich ist. Damit wird vieles unentscheidbar und muss durch
approximative Verfahren gelost werden.

 Organisatorisches Einfilhrung - Chomsky-Hierarchie Reguldre Sprachen Kontextfreie Sprachen
Ausblick

Im Laufe der verbleibenden Vorlesungseinheiten werden wir uns
den kontextfreien Sprachen zuwenden:

o Wir werden ein effizienteres Verfahren zur Entscheidung des
Wortproblems kennenlernen.

@ Analog zum Pumping-Lemma fiir reguldre Sprachen
betrachten wir das Pumping-Lemma fiir kontextfreie
Sprachen, mit dem gezeigt werden kann, dass eine Sprache
nicht kontextfrei ist.

@ Wir untersuchen, unter welchen Operatoren kontextfreie
Sprachen abgeschlossen sind.

@ Analog zu DFAs und NFAs werden wir Sprachakzeptoren fiir
kontextfreie Sprachen definieren, die so genannten
Kellerautomaten.

Fragestellungen zu dieser Vorlesungseinheit

Zum Ende einer jeden Vorlesungseinheit betrachten wir im Regelfall
drei Fragestellungen, die mithilfe der in dieser Einheit besprochenen
Inhalte beantwortet werden sollen. In der darauffolgenden Einheit
kénnen zu Beginn mogliche Antworten gesammelt werden.

Fragen zur siebten Vorlesungseinheit
@ Wie kann man einen DFA minimieren?

@ Wie stellt man fest ob die Sprache, die ein NFA akzeptiert,
leer ist?

@ Wie stellt man fest ob zwei NFAs die gleiche Sprache
akzeptieren?

Kontextfreie Sprachen

Wir behandeln nun die kontextfreien oder Typ-2-Sprachen.

Bei kontextfreien Grammatiken haben alle Produktionen die Form
A — w, wobei A € V (d.h., Aist eine Variable) und w € (VUX)*.

Betrachtete Beispielgrammatiken:

o Grammatik, die korrekt geklammerte arithmetische Ausdriicke
erzeugt

o Grammatik, die Satze der natiirlichen Sprache erzeugt

Ein weiteres Beispiel: die Sprache L = {akb¥ | k > 0} ist
kontextfrei.
Produktionen: S — ¢ | T, T — ab|aTb

Kontextfreie Sprachen

Hauptanwendung: Beschreibung der Syntax von
Programmiersprachen

Viele der hier besprochenen Techniken sind daher interessant fiir
den Einsatz im Compilerbau.

Bemerkung: Bisher ist es noch niemandem gelungen eine
vollstindige Grammatik aller korrekten natiirlichsprachigen Sitze
zu bilden. Frage: Was ist iiberhaupt ein korrekter Satz?

Kontextfreie Sprachen

Es ist unter Linguisten umstritten, ob es eine kontextfreie
Grammatik geben kann, die eine natiirliche Sprache erzeugt. Ein
Gegenargument beispielsweise fiir schweizer Deutsch ist, dass es
Verben gibt, die zwei Nominalphrasen verschiedenen Typs (in
diesem Fall: Akkusativobjekte und Dativobjekte) bendtigen und
eine Satzordnung moglich ist, in der beispielsweise alle
Akkusativobjekte gruppiert vor alle Dativobjekte und diese
wiederum vor alle zugehorigen Verben gestellt werden.

_ CniEs s En T e e Resih Sprdy e resn
Kontextfreie Sprachen

Inhalt des Abschnitts “Kontextfreie Sprachen”

@ Normalformen — wichtig fiir die Anwendung bestimmter
Verfahren/Techniken ist es, eine Grammatik in eine bestimmte
Normalform zu bringen

@ Wortproblem — ein Algorithmus, um das Wortproblem zu
l6sen (CYK-Algorithmus)

@ Pumping-Lemma fiir kontextfreie Sprachen

@ Abschlusseigenschaften — die kontextfreien Sprachen verhalten
sich hier nicht ganz so gutartig wie die reguldren Sprachen

o Kellerautomaten — das Automatenmodell zu kontextfreien
Sprachen

Normalformen

Wir beschéftigen uns zunichst noch einmal mit der
“e-Sonderregelung’:

Die Definition fiir kontextfreie Grammatiken (mit
e-Sonderregelung) fordert, dass S auf keiner rechten Seite
auftauchen darf, wenn S — ¢ als Produktion vorkommt. AuBerdem
diirfen keine weiteren Produktionen der Form A — ¢ auftauchen.

Was passiert, wenn man diese Bedingungen fiir kontextfreie
Grammatiken aufhebt und beliebige Regeln der Form A — ¢
erlaubt? Kann es dann passieren, dass man eine nicht-kontextfreie
Sprache erzeugt?

Antwort: nein

Normalformen

e-freie Grammatiken (Satz)

Gegeben sei eine Grammatik G = (V, X, P, S) mit Produktionen
der Form A — w, w € (VUX)* und ¢ & L(G).

Dann gibt es eine Grammatik G’ = (V, X, P, S) mit Produktionen
der Form A — w, w € (VUX)" und L(G) = L(G).

Das bedeutet, dass Grammatiken, bei denen auf der linken Seite
einer Produktionsregel stets genau eine Variable steht, auch wenn
sie nicht kontextsensitiv sind (also e-Ableitungen, die der
e-Sonderregel nicht geniigen, enthalten), stets kontextfreie
Sprachen erzeugen.

Normalformen

Verfahren zur Entfernung von e-Produktionen:

@ Bestimme die Variablenmenge Vi C V mit
Vi={Ae V]|A="*¢}, d.h, die Menge aller Variablen, aus
denen sich das leere Wort ableiten lasst.

@ Fiige fiir jede Produktion der Form B — xAy mit A € V4,
x,y € (VUZX)* eine Produktion B — xy zur
Produktionenmenge hinzu. (Diese Produktion “simuliert” das
Loschen von A.)

Wiederhole diesen Schritt solange, bis keine neuen Regeln
mehr entstehen. (Achtung: fiir die rechte Seite einer
Produktion gibt es evtl. mehrere Moglichkeiten, sie in xAy
aufzuspalten.)

@ Entferne alle Produktionen der Form A — «.

Normalformen

Beispiel: e-Produktionen entfernen
Sei G=(V,X,P,S), wobei V={S5,X,Y,Z}, X ={a,b} und P
enthilt folgende Produktionen:

S+ XZ

X —aYb|e
Y — bXa | bb
Z —¢c|aSa

Bemerkung: Fiir diese Grammatik G gilt ¢ € L(G). Durch die
Umwandlung entsteht eine Grammatik G’ mit L(G’) = L(G)\{e}.

Normalformen

Bemerkung:

Weil wir jede Grammatik, die “fast” kontextfrei ist, aber das leere
Wort als rechte Seite enthilt, in eine kontextfreie Grammatik
umwandeln kdnnen, werden wir im Folgenden, um zu zeigen, dass
eine Sprache kontextfrei ist, Grammatiken verwenden, bei denen
beliebige Worter als rechte Seiten zugelassen sind, auch das leere
Wort.

Manchmal ist es in Konstruktionen und Beweisen trotzdem
praktisch davon auszugehen, dass ¢ nicht als rechte Seite
vorkommt (auBer als S — ¢, siehe e-Sonderregel). Daher gilt
weiterhin: Ist eine Grammatik kontextfrei, bedeutet das, dass alle
e-Ableitungen der e-Sonderregel geniigen.

Normalformen

Wir betrachten nun eine weitere niitzliche Normalform.

Eine kontextfreie Grammatik G mit € & L(G) ist in
Chomsky-Normalform (kurz: CNF), falls alle Produktionen eine der
folgenden zwei Formen haben:

A— BC A— a

Dabei sind A, B, C € V Variablen und a € ¥ ein Alphabetsymbol.

Normalformen

Zu jeder kontextfreien Grammatik G mit € ¢ L(G) gibt es eine
Grammatik G’ in Chomsky-Normalform mit L(G) = L(G’).

Die Chomsky-Normalform ist besonders niitzlich, weil Ableitungen
in solchen Grammatiken die Form eines Bindrbaums annehmen.
Wir werden dies verwenden, um das Wortproblem fiir kontextfreie
Sprachen effizient zu beantworten und um zu beweisen, dass eine
Sprache nicht kontextfrei ist.

Normalformen

Verfahren zur Umwandlung in Chomsky-Normalform:

O (Falls die Grammatik nicht kontextfrei, ist aber jede
Produktionsregel auf der linken Seite nur eine Variable

enthélt: e-Produktionen entfernen @EIEIEEIEEETED)

@ Kettenproduktionen entfernen (A — B)
@ Alphabetsymbole aus den rechten Seiten entfernen

© Lange rechte Seiten aufteilen

Normalformen

Verfahren zur Umwandlung in Chomsky-Normalform:

@ Entferne alle Kettenproduktionen der Form A — B. Hierfiir
unterscheidet man zwei Falle:

1. Fall: Eine Kettenproduktion liegt auf einem Zyklus

A1 — Ay — -+ — Ax — A7 von Produktionen. In diesem Fall
werden alle Variablen A, ..., A durch eine einzige Variable A
ersetzt und die Kettenproduktionen entfernt. Fiir jede
Produktion A; — w, 1 < i < k, w ¢ {A;1,... Ak} figen wir
eine Produktion A — w hinzu und jedes Vorkommen eines A;,
1 < j < k auf einer rechten Seite wird durch A ersetzt.

Normalformen

2. Fall: Es existiert kein Zyklus. In diesem Fall kann man die
Variablen durchnummerieren: Ay, ..., Ay, so dass A; — A; nur
gilt, falls i < j (topologische Sortierung). Man geht nun von
den hoheren zu den niedrigeren Indizes (i = k—1,...,1) und
ersetzt A; — A; durch

A,'—>X1|--~|Xn,

falls die Regeln mit A; auf der linken Seite folgende Form
haben:
Aj—>X1 | |Xn

(Einfiihren von “Shortcuts")

Normalformen

@ Falls eine Regel A — w Terminalzeichen in w enthilt und
|w| > 1 gilt, so wird jedes Terminalzeichen a in w durch eine
neue Variable U, ersetzt. AuBerdem werden Produktionen
U, — a hinzugefiigt. Dadurch befinden sich nur noch
Variablen auf der rechten Seite.

© Im letzten Schritt werden Produktionen der Form
A — Bs ... By eliminiert: fiihre neue Variable Cy, ..., Ci_»
ein, entferne die urspriingliche Regel und ersetze sie durch:

A — BlCl
C1 — B2C2

Ck—2 — Bi_1Bx

Normalformen

Beispiel: Wir wandeln folgende Grammatik G in
Chomsky-Normalform um. Dazu muss sie zunichst e-frei gemacht

werden.
G =({S,A},{a,b,c},P,S)
mit folgender Produktionenmenge P:

S — aAb
A — SlaaSc|e

Normalformen

Entfernung von e-Produktionen:
G =({S,A},{a,b,c},P,S)
mit folgender Produktionenmenge P:

S — aAb|ab
A — S]aaSc

Normalformen

Entfernung von Kettenproduktionen:
G =({S,A},{a,b,c},P,S)
mit folgender Produktionenmenge P:

S — aAb|ab
A — aAb|ab| aaSc

Normalformen

Entfernung von Terminalsymbolen aus den rechten Seiten:

G = ({57 A7 Ua7 Uba UC}) {aa ba C}J PJ 5)
mit folgender Produktionenmenge P:
U.AUp | UaUp | UsU,SUC
a

b

C

=
L 41

Normalformen

Zu lange rechte Seiten aufspalten:

G = ({S7A7 Ua’ Ub7 UC7 C17 C2a C3}a {37 ba C}7 P7 5)

mit folgender Produktionenmenge P:

S

A
U,
Up
Uc
G
G
G

1

A

U.Cy | UsUs

UsCo | UsUs | UaGo
a

b

C

AU,

U.Cs

SU.

_ CniEs s En T e e Resih Sprdy e resn
Think-Pair-Share: Chomsky-Normalform

Wandeln Sie Schritt fiir Schritt die folgende Grammatik in die
Chomsky-Normalform um:

G = ({S,A,B},{a,b,c},P,S)

mit folgender Produktionenmenge P:

S — AB|B
A — ab|aAb
B — c|cB

Erarbeiten Sie zunadchst vier Minuten in Einzelarbeit eine Lsung.
AnschlieBend tauschen Sie sich fiir weitere vier Minuten mit ihrem
Sitznachbarn aus. Schlussendlich besprechen wir die Losung im
Plenum.

Losungsvorschlag zu Think-Pair-Share:
Chomsky-Normalform

G=({S,A B, Uy, Up,Uc, Ci},{a, b,c},P,S)

mit folgender Produktionenmenge P:

S — AB|c|UB
A = UUp | UG
B — c|UB

U, — a

U — b

U — c¢

G — AU

e e e e Tk e ol kot el b
Der CYK-Algorithmus

Wir kennen bereits ein Verfahren, mit dem man das Wortproblem
fiir G 16sen kann, wobei G eine Typ-1-, Typ-2- oder
Typ-3-Grammatik sein kann. (Im Wesentlichen: Aufzihlen aller
Worter bis zu einer bestimmten Lange.)

Da dieses Verfahren jedoch exponentielle Laufzeit (in der Lénge
des Wortes) haben kann, betrachten wir hier ein anderes Verfahren
fiir kontextfreie Grammatiken: den CYK-Algorithmus (entwickelt
von Cocke, Younger, Kasami).

Voraussetzung: die Grammatik ist in Chomsky-Normalform
gegeben. (Alle Regeln haben die Form A — a oder A — BC.)

e e e e Tk e ol kot el b
Der CYK-Algorithmus

Idee: Gegeben sei ein Wort x € ¥*. Wir wollen feststellen, aus
welchen Variablen es abgeleitet worden sein kdnnte.

@ Moglichkeit 1: x = a € ¥, d.h., x besteht aus einem einzigen
Alphabetsymbol. Dann kann w nur aus Variablen A abgeleitet
worden sein, fiir die es eine Produktion A — a gibt.

o Moglichkeit 2: x = ay...a, mit n > 2. In diesem Fall gilt:
Zunichst muss eine Produktion A — BC angewandt werden,
dann muss ein Teil a; ... ax des Wortes aus B und der andere
Teil ag41...an aus C abgeleitet werden. (1 < k < n)

Sl L e S R L S R e TSR L O E e SR E R
Der CYK-Algorithmus

Moglichkeit 2 l3sst sich schematisch folgendermaBen darstellen:

A

RN

B C

dai...dg dk+1-.-dp

e e e e Tk e ol kot el b
Der CYK-Algorithmus

Es ist jedoch nicht klar, wo das Wort x geteilt werden muss, d.h.,
wie groB der Index k ist!

Daher: Probiere alle méglichen k's durch. Das heiBt:

Gegeben ein Wort x = ay ... a,. Uberpriife fiir alle k mit
1<k<n:
@ Bestimme alle Variablen V4, aus denen sich aj ... a, ableiten
lasst.
@ Bestimme alle Variablen V5, aus denen sich ax,1...a,
ableiten l3sst.
@ Stelle fest, ob es Variablen A, B, C gibt mit (A — BC) € P,
B € Vi und C € V,. In diesem Fall gilt, dass sich x aus A
ableiten l3sst.

e e e e Tk e ol kot el b
Der CYK-Algorithmus

Um Mehraufwand zu vermeiden: verwende Methoden der
dynamischen Programmierung, das heiBt:
@ berechne zuerst alle Variablen, aus denen sich Teilworter der
Lange 1 ableiten lassen,
@ berechne dann alle Variablen, aus denen sich Teilworter der
Lange 2 ableiten lassen,
° ...

@ zuletzt berechne alle Variablen, aus denen sich x ableiten
l3sst. Falls sich das Axiom S unter diesen Variablen befindet,
so liegt x in der von der Grammatik erzeugten Sprache.

Der CYK-Algorithmus

Notation: Wir bezeichnen mit x;; das Teilwort von x, das an der
Stelle / beginnt und die Lange j hat.

X =4a3aj...4an ~ Xij = dj-.-ajitj—1-

Damit sieht das vorherige Bild folgendermaBen aus:

A
B C
X1,k Xk+1,n—k

e e e e Tk e ol kot el b
Der CYK-Algorithmus

Wir bezeichnen mit T;; die Menge aller Variablen, aus denen sich
x; j herleiten |asst.

T; j lasst sich folgendermaBen bestimmen:
e Falls j =1, dann
T;J:{Al(A—)X,'J) € P}
e Falls j > 1, dann

T,'JZ{A|(A—)BC)E P
und es gibt k < jmit Be Tj,und C € Tiyyj«}

e e e e Tk e ol kot el b
Der CYK-Algorithmus

Praktische Ausfiihrung des CYK-Algorithmus:
Wir tragen die Variablenmengen T;; (von oben nach unten) in
folgende Tabelle ein:

ai a ce dp—1 ap
j = 1 Tl,l Tg’l e . Tn—l,l Tn,l
j = 2 T172 T272 . . Tn_1,2

J=n—=1 |Ti,1Trn1

j =n Tl’,,

e e e e Tk e ol kot el b
Der CYK-Algorithmus

FolgendermaBen l3sst sich veranschaulichen, welche
Variablenmenge welches Teilwort ableitet:

| ' ' Lt
1 I I 1
noay oan ar 1 as : asa : as : rode 1
" " 1 ! ! : 1 "
j=1 | Taoy Tax o Taa b Tax 2 Tsaoo) Ten2
"no_-- " 1 4 /’/ /’ [
1 1 1 - - - P
1 " I e e
. | " r e Pie -
Jj=2 | T2 v Tzt Tsz- Tap .~ Tso -
1 Ll IS L. — -
1 | e s
h h - "
. \ | .
Jj=3 | Tz T3 Tzz .- Taz .
| 1 - ,
I 1 e -
| 1 -
. | i
J=4 |\ Twa « Tas" Tsa .
1 [-
h .
1 /,
.) .
Jj=5 | Tis Tas -
1 ’
1 P
1 ,’
. 1
Jj=6 | Tie .
1

Sl L e S R L S R e TSR L O E e SR E R
Der CYK-Algorithmus

ay as as as as dae

j=1
ji=2 X = a1a2a3a4as | ae

j=3 (A— BC) e P,
j=4 BeTis, CeTe1 = Ac Tip

Der CYK-Algorithmus

ay as as as as dae

ji=1
ji=2 X = ajarazas | asae

j=3 (A— BC) e P,
j=4 BeTia CeTso= A€ Tip
j=5

Sl L e S R L S R e TSR L O E e SR E R
Der CYK-Algorithmus

ay as as as as dae

X = a1a2a3 | asasae

J (A—BC)e P,

B e T173, Ce T473 = Ac T175

Sl L e S R L S R e TSR L O E e SR E R
Der CYK-Algorithmus

ay a a3 as as ap

j=1

ji=2 . X = ajay | azasasae

j=3 (A— BC) e P,

j=4 . B e T172,C€ T374:>A€ T175
j=5

i-o [

Sl L e S R L S R e TSR L O E e SR E R
Der CYK-Algorithmus

ay as as as as dae

- [

ji=2 X = a1 | axazasasap

j=3 (A—)BC)EP,

j=4 B e T171,C€ T275:>A€ T175

e e e e Tk e ol kot el b
Der CYK-Algorithmus

Beispiel: Betrachte eine Grammatik mit folgenden Produktionen:

AD | FG
SE | BC
BC

AF | a
BG | CG | b
a

b

Cc

WO TmOn
N 2

0

Frage: Sei x = aabcbc. Gilt x € L?

Der CYK-Algorithmus

C

B,G

D,E

C

D,E

D

AF|AF]|B,G

F
S

S
S

j=1

j=2
j=3
j=4
Jj=5
j=26

_ CniEs s En T e e Resih Sprdy e resn
Think-Pair-Share: Der CYK-Algorithmus

Wir betrachten eine Grammatik
G = ({57 A’ B}’ {37 b7 C}? P? 5)

fiir die Sprache L = {a*b*c/ | k > 0,j > 1} mit folgenden
Produktionen:
mit folgender Produktionenmenge P:

S — AB|B
A — ab|aAb
B — c|cB

Untersuchen Sie mithilfe des CYK-Algorithmus, ob x = abcc € L.
Erarbeiten Sie zunidchst vier Minuten in Einzelarbeit eine Losung.
AnschlieBend tauschen Sie sich fiir weitere vier Minuten mit ihrem
Sitznachbarn aus. Schlussendlich besprechen wir die Losung im
Plenum.

Losungsvorschlag zu Think-Pair-Share: Der
CYK-Algorithmus

Wir formen die Grammatik in Chomsky-Normalform um (vgl.
vorherige Think-Pair-Share-Aufgabe) und berechnen:

a b c c
j=1Us;| Uy | UsS5B | U;,S,B |
j=2| A | — S,B
j=31S5 | -
j=4|S

e e e e Tk e ol kot el b
Der CYK-Algorithmus

Komplexitat des CYK-Algorithmus
Sei n = |x| die Lange des Wortes, das untersucht wird. Die GroBe
der Grammatik wird als konstant angesehen. Dann gilt:

o O(n?) Tabellenfelder miissen ausgefiillt werden.

e Fiir das Ausfiillen jedes Tabellenfeldes miissen bis zu O(n)
andere Felder betrachtet werden.

(Fir Ty, miissen beispielsweise die Felder T; ,—1, Tp1 und
T1,n—2, Th—12 und ...und Ty 1, T2 ,—1 betrachtet werden.
Insgesamt n — 1 Paare von Feldern.)

Daher ergibt sich insgesamt als Zeitkomplexitit: O(n).

Die Zeitkomplexitat ist polynomiell, aber fiir das Parsen groBer
Programme nicht mehr geeignet. Dafiir gibt es spezielle Methoden
fir bestimmte kontextfreie Grammatiken (Stichwort: LR(k)).

Organisatorisches Einfiihrung Chomsky-Hierarchie Reguldre Sprachen Kontextfreie Sprachen

Fragestellungen zu dieser Vorlesungseinheit

Zum Ende einer jeden Vorlesungseinheit betrachten wir im Regelfall
drei Fragestellungen, die mithilfe der in dieser Einheit besprochenen
Inhalte beantwortet werden sollen. In der darauffolgenden Einheit
konnen zu Beginn mogliche Antworten gesammelt werden.

Fragen zur achten Vorlesungseinheit

@ Wie iiberfiihrt man eine Grammatik, bei denen die linke Seite
einer jeden Uberfiihrungsregel eine einzelne Variable ist, in
Chomsky-Normalform?

@ Wie findet man fiir eine kontextfreie Grammatik G in CNF
effizient heraus, ob ein gegebenes Wort w in L(G) liegt?

@ Angenommen der CYK-Algorithmus wurde auf das Wort
w = abcabc und die Grammatik G angewandt, welche
Bedeutung hat dann der Eintrag in der zweiten Zeile, dritte
Spalte in der Tabelle?

Sebastian Kiipper Automaten und Formale Sprachen

292

e e e e Tk e ol kot el b
Pumping-Lemma

Weitgehend analog zu reguldren Sprachen kann man nun ein
Pumping-Lemma fiir kontextfreie Sprachen zeigen.

Die fiir reguldre Sprachen und endliche Automaten geltende
Aussage

Jedes ausreichend lange Wort durchlauft einen Zustand des
Automaten zweimal.

wird dabei ersetzt durch

Auf einem Pfad des Syntaxbaums, der die Ableitung eines
ausreichend langen Wortes durch eine kontextfreie Grammatik
darstellt, kommt eine Variable mindestens zweimal vor.

e e e e Tk e ol kot el b
Pumping-Lemma

Was bedeutet hier “ausreichend langes Wort”?

Die Beantwortung dieser Frage hangt davon ab, in welcher Form
sich die Grammatik befindet. Wir nehmen an, sie befindet sich in
Chomsky-Normalform.

Dann gilt: Syntaxbdume sind (bis auf die unterste Schicht der
Blatter) immer Bindrbaume (aufgrund der Produktionen der Form
A — BC). Und fiir Bindrbaume gilt:

Lange von Pfaden in Bindrbdumen (Lemma)

Sei B ein Bindarbaum (d.h., jeder Knoten in B hat entweder null
oder zwei Kinder) mit mindestens 2% Blittern.

Dann hat B einen von der Wurzel ausgehenden Pfad, der aus
mindestens k Kanten und k + 1 Knoten besteht.

Pumping-Lemma

Das bedeutet:

@ Sei k die Anzahl von Variablen in G (k = |V/|). Fiir ein Wort
z € L mit |z| > 2K hat dann der zugehérige Syntaxbaum
mindestens 2% Blitter.

@ Das bedeutet auch, dass der obere Teil des Syntaxbaums (bei
dem die Blatter abgeschnitten sind) mindestens einen Pfad
mit k + 1 Knoten hat.

o Auf diesem Pfad, der nur innere Knoten enthilt, muss eine
Variable — nennen wir sie A — mindestens zweimal vorkommen.

Sl L e S R L S R e TSR L O E e SR E R
Pumping-Lemma

Syntaxbaum fiir ein Wort z mit |z| > n = 2k
n ist hier die “Konstante des Pumping-Lemmas”

Binarbaum

| Ebene der Blatter
(letzter Ableitungsschritt)

Wort z

Sl L e S R L S R e TSR L O E e SR E R
Pumping-Lemma

Es gibt einen Pfad mit mindestens k + 1 inneren Knoten.

Wort z

Sl L e S R L S R e TSR L O E e SR E R
Pumping-Lemma

Auf diesem Pfad gibt es eine Variable, die zweimal auftaucht, bei-
spielsweise A.

Sl L e S R L S R e TSR L O E e SR E R
Pumping-Lemma

Das Wort z wird nun in fiinf Teilworter u, v, w, x, y aufgespalten:
@ w wird aus dem unteren A abgeleitet: A =* w

@ vwx wird aus dem oberen A abgeleitet: A =* vwx

S

Sl L e S R L S R e TSR L O E e SR E R
Pumping-Lemma

Damit erhdlt man drei ineinander enthaltene Teil-Syntaxbaume, die
man neu zusammenstecken kann.

Sl L e S R L S R e TSR L O E e SR E R
Pumping-Lemma

Durch Weglassen des mittleren Teilbaums erhalt man einen Syntax-
baum fiir uwy. Damit gilt: uwy € L.

Pumping-Lemma

Durch Verdoppeln des mittleren Teilbaums erhdlt man einen Syn-
taxbaum fiir uv2wx2y. Damit gilt: uv?wx?y € L.

Pumping-Lemma

AuBerdem kann man fiir v, w, x folgende Eigenschaften verlangen:
lvwx| < n = 2k

Wir konnen annehmen, dass wir das am weitesten unten liegende
Doppelvorkommen gewahlt haben, d.h., das Doppelvorkommen mit
der groBten Tiefe. Das kann dadurch erreicht werden, dass einer
der Pfade maximaler Lange von unten nach oben verfolgt wird.
Demnach ist der Abstand des oberen A zur Blattebene hochstens k
und der darunter hingende Binidrbaum hat hochstens 2% Blitter.

Automaten und Formale Sprachen 297

Sl L e S R L S R e TSR L O E e SR E R
Pumping-Lemma

lvx| > 1:

Seien B, C die beiden Kinder des oberen A. Dann geht das untere
A entweder aus B oder C hervor. Die jeweils andere Variable muss
— da die Grammatik in Chomsky-Normalform ist — ein nicht-leeres

Wort ableiten.
Und dieses Wort ist ein Teilwort von v bzw. von x.

S

Das Pumping-Lemma

Sei L eine kontextfreie Sprache. Dann gibt es eine Zahl n, so dass
sich alle Worter z € L mit |z| > n zerlegen lassen in z = uvwxy, so
das folgende Eigenschaften erfiillt sind:

Q |w|>1,
Q |vwx| < n und
Q firalle i =0,1,2,... gilt: uv'wx'y € L.

Dabei geht n = 2 aus der Anzahl k der Variablen einer
kontextfreien Grammatik fiir L hervor.

Das Pumping-Lemma

Wie bereits beim Pumping-Lemma fiir reguldre Sprachen kann das
Pumping-Lemma fiir kontextfreie Sprachen dazu genutzt werden,
zu zeigen, dass eine Sprache nicht kontextfrei ist, indem wir die
Aussage negieren. Also, wenn

o Fiir alle Zahlen n € Ny

o ein Wort z € L existiert, so dass

o fiir alle Zerlegungen z = uvwxy mit |vx| > 1, |vwx| < n

e ein i € Ny exitiert, so dass uv/wx'y ¢ L
dann ist L nicht kontextfrei.
Anmerkung: Wie auch beim Pumping-Lemma fiir regulare
Sprachen gilt die Implikation nur in die angegebene Richtung,
wenn die Pumping-Eigenschaft fiir eine Sprache L erfiillt ist, muss
L nicht zwingend kontextfrei sein.

Pumping-Lemma

Anwendung des Pumping-Lemmas: wir zeigen, dass die Sprache
L={amb™c™ | m > 1} nicht kontextfrei ist.

@ Wir nehmen eine beliebige Zahl n an.

@ Wir wahlen ein Wort z € L mit |z| > n. In diesem Fall eignet
sich z = a"b"c".

© Wir betrachten nun alle méglichen Zerlegungen z = uvwxy
mit den Einschrankungen |vx| > 1 und |vwx| < n.
Wegen |vwx| < n gilt, dass vx nicht aus a's, b's und c's

bestehen kann, denn es kann sich nicht iiber den gesamten
b-Block erstrecken.

Pumping-Lemma

@ Wir wihlen fiir alle diese moglichen Zerlegungen i = 2 und
betrachten uvZwx?y. Wegen der obigen Uberlegungen sind
nun ein oder zwei Alphabetsymbole gepumpt worden,
mindestens eines jedoch nicht.

Damit ist klar, dass uv2wx2y nicht in L liegen kann, denn
jedes Wort in L hat gleich viele a's, b'c und c's.

Sl L e S R L S R e TSR L O E e SR E R
Pumping-Lemma

Als weiteres Beispiel betrachten wir das Adventure, Level 3, und
zeigen, dass die Menge aller zuldssigen Pfade eines Adventures
nicht notwendigerweise kontextfrei sein muss.

Wiederholung der Regeln:

Man muss mindestens zwei Schitze finden. '

Pumping-Lemma

Auch Schwerter werden durch das Drachenblut unbenutzbar,

sobald man einen Drachen damit getotet hat. AuBerdem werden
Drachen sofort wieder “ersetzt”.

Es gibt jedoch immer noch die Option, ein Schwert nicht zu

benutzen und nach der Begegnung mit dem Drachen in den Fluss
zu springen.

Die Schliissel sind magisch und verschwinden sofort, nachdem eine

Tiir mit ihnen gedffnet wurde. Sobald man eine Tiir durchschritten
hat, schlieBt sie sich sofort wieder.

Pumping-Lemma

iy - oS SFox Fo N0
ey

Wir betrachten folgende Sprache Ay:

Aym = {w | w entspricht einem Pfad durch das oben
angegebene Adventure, d.h., w € T(M), und
erfiillt alle Regeln fiir Level 3}
= {L"W'T™D"A? | k>m>1,0>n>1}

L=Schlissel W=Schwert T=Tir D=Drache A=Schatz

Pumping-Lemma

Wir zeigen nun, dass Aps nicht kontextfrei ist.

@ Gegeben sei eine beliebige Zahl n.
@ Wir wihlen als Wort z = L"W"T"D"A? € Ap.

© Sei nun z = uvwxy eine beliebige Zerlegung von x mit
|vx| > 1 und |vwx| < n.

Dann kann vx nicht gleichzeitig Schliissel und Tiiren und
nicht gleichzeitig Schwerter und Drachen enthalten.

Pumping-Lemma

@ Wir machen nun folgende Fallunterscheidung:

o vx enthilt zumindest einen Schatz: dann enthilt uv®wxPy
hochstens noch einen Schatz und kann nicht in Ay liegen, da
die Schatz-Regel verletzt ist.

o vx enthilt zumindest einen Schliissel: dann enthilt uv®wx®y
weniger als n Schliissel, aber immer noch n Tiiren und kann
nicht in Ay liegen.

o vx enthilt zumindest ein Schwert: dann enthilt uv®wxy
weniger als n Schwerter, aber immer noch n Drachen und kann
nicht in Ay liegen.

o vx enthilt zumindest eine Tiir: dann enthilt uv?wx?y mehr als
n Tiiren, aber immer nur noch n Schliissel und kann nicht in
A liegen.

o vx enthilt zumindest einen Drachen: dann enthilt uv?wx?y
mehr als n Drachen, aber immer nur noch n Schwerter und
kann nicht in Ay liegen.

Pumping-Lemma

Da wir damit jeden Fall behandelt haben, folgt daraus, dass A
nicht kontextfrei ist.

Nebenbemerkung: Folgende Sprachen mit vertauschten Blocken
sind allerdings kontextfrei.

o {LKT"W!D"A%2 | k>m>14>n>1}

o {LKW!D"TmA? | k>m>1,4>n>1}

Ubungsaufgabe: Kontextfreie Grammatiken fiir diese Sprachen
angeben.

e e e e Tk e ol kot el b
Think-Pair-Share: Pumping-Lemma

Wir betrachten die folgende Sprache:

L={a"b"c | n>m>1}

Zeigen Sie mithilfe des Pumping-Lemmas fiir kontextfreie
Sprachen, dass L nicht kontextfrei ist. W3hlen Sie fiir ein gegebenes
n € Np ein passendes Wort z, das mindestens die Lange n hat, und
nehmen Sie eine passende Fallunterscheidung fiir alle moglichen
Zerlegungen z = uvwxy vor, so dass |vx| > 1 und |vwx| < n.
Erarbeiten Sie zunachst fiinf Minuten in Einzelarbeit eine Losung.
AnschlieBend tauschen Sie sich fiir weitere fiinf Minuten mit ihrem
Sitznachbarn aus. Schlussendlich besprechen wir die Losung im
Plenum.

Hinweis: Bei giinstiger Wahl von z kann es sinnvoll sein, eine
Fallunterscheidung danach durchzufiihren, ob vx ein a enthilt oder
nicht.

e e e e Tk e ol kot el b
Losungsvorschlag zu Think-Pair-Share: Pumping-Lemma

Es sei ein n € Ny beliebig gegeben. Wir wahlen z = a"b"c” und
zerlegen z = uvwxy mit |vx| > 1, [vwx| < n. Wir fiihren eine
Fallunterscheidung danach durch, ob v ein a enthilt oder nicht.
Falls vx ein a enthilt, enthilt vwx wegen |vwx| < n kein ¢, also
enthalt uwy maximal n —1 as und n cs, also ist uwy ¢ L.

Falls vx kein a enthilt, enthdlt v oder x mindestens ein b oder ein
¢, da |vx| > 1. Also enthélt uv?wx?y weiterhin n as aber
mindestens n+ 1 bs oder mindestens n+ 1 cs. In beiden Féllen ist
u?wx?y & L.

e e e e Tk e ol kot el b
Pumping-Lemma

Man kann auch fiir folgende Sprachen zeigen, dass sie nicht
kontextfrei sind:

Ly = {0 | pist Primzahl}
L, = {0"| nist Quadratzahl}
L3 = {0°|n>0}

Bemerkung: Man kann zeigen, dass eine kontextfreie Sprache iiber
einem einelementigen Alphabet immer regular ist. Daher reicht es,
nachzuweisen, dass die obigen Sprachen nicht reguldr sind.

Abschlusseigenschaften

Die kontextfreien Sprachen sind abgeschlossen unter:
e Vereinigung (L1, Ly kontextfrei = Lj U L, kontextfrei)

@ Produkt/Konkatenation (L1, Lo kontextfrei = LiLp
kontextfrei)

@ Stern-Operation (L kontextfrei = L* kontextfrei)
Die kontextfreien Sprachen sind nicht abgeschlossen unter:
@ Schnitt

o Komplement

Abschlusseigenschaften

Wenn L; und Ly kontextfreie Sprachen sind, dann ist auch L; U L,
kontextfrei.

Begriindung: Gegeben zwei kontextfreie Grammatiken
G1=(V1,X,P1,51), G=(Va, %, P2, 5)

(mit Vi N Vo =0) fir Ly, Ly, so ist mit der neuen Variable
S ¢ ViU Vo

G=(V1UVQU{S},Z,P1UP2U{5—>51,S—>52}75)

eine kontextfreie Grammatik fiir L3 U Lp. (Ggf. miissen
e-Ableitungen noch von S; / Sz nach S vorgezogen werden.)

Abschlusseigenschaften

Wenn Ly und L, kontextfreie Sprachen sind, dann ist auch LiL,
kontextfrei.

Begriindung: Gegeben zwei kontextfreie Grammatiken
G =(W,%,P1,5), G=(Vo,X, P2, 5)
(mit Vi N Vo =0) fiir Ly, Ly, so ist
G=(VUWU{S}HL L, PLUP,U{S — 55},9S)

eine kontextfreie Grammatik fiir L;L,. (Ggf. miissen e-Ableitungen
noch von S; / S, nach S vorgezogen werden.)

Abschlusseigenschaften

Wenn L eine kontextfreie Sprache ist, dann ist auch L* kontextfrei. I

Begriindung: Gegeben sei eine kontextfreie Grammatiken

Gl = (V].)z) P]_,S]_)
fir L. Dann ist
G = (V1 @) {S},):, P U {S —e,5— 515},5)

eine kontextfreie Grammatik fiir L*. (Ggf. muss eine e-Ableitungen
von S1 noch entfernt werden.)

Abschlusseigenschaften

Kein Abschluss unter Schnitt

Wenn Ly und L, kontextfreie Sprachen sind, dann ist L; N Ly nicht
notwendigerweise kontextfrei.

Gegenbeispiel: Die Sprachen

Ly = {dbkck|j>0k>0}
L, = {a“b“cd|j>0k>0}

sind beide kontextfrei. Fiir ihren Schnitt gilt jedoch
LN Ly ={akbkck | k >0}

und diese Sprache ist — wie mit dem Pumping-Lemma gezeigt
wurde — nicht kontextfrei.

Abschlusseigenschaften

Kein Abschluss unter Komplement

Wenn L eine kontextfreie Sprache ist, dann ist L= Y*\L nicht
notwendigerweise kontextfrei.

Begriindung: Nehmen wir an, die kontextfreien Sprachen waren

unter Komplement abgeschlossen. Wegen L1 N Ly = L; UL, wiren
sie dann auch unter Schnitt abgeschlossen, was aber nicht der Fall
ist. D.h., wir erhalten einen Widerspruch.

_ CniEs s En T e e Resih Sprdy e resn
Kontextfreie Sprachen und XML

Wir betrachten eine wichtige Anwendung kontextfreier Sprachen:
Document Type Definitions (DTDs), mit Hilfe derer die Struktur
von XML-Dokumenten beschrieben werden kann.

XML (eXtensible Markup Language)

XML ist eine generische Markup-Sprache, die als Standard fiir die
Erstellung von maschinen- und menschen-lesbaren Dokumenten
verwendet wird. XML definiert dabei die Regeln fiir den Aufbau
solcher Dokumente.

Fiir einen bestimmten Typ von Dokumenten, d.h., fiir eine
spezifische Markup-Sprache muss dabei zunichst festgelegt
werden, welcher Aufbau und welche Datenstrukturierungen zuldssig
sind. Dies geschieht mit Hilfe sogenannter DTDs (Document Type
Definitions).

_ CniEs s En T e e Resih Sprdy e resn
Kontextfreie Sprachen und XML

Beispiel (aus Hopcroft, Motwani, Ullman): Anwendungsspezifische
Sprache fiir eine PC-Datenbank. Folgendes Dokument ist in dieser

Sprache beschrieben:

<PCS>
<PC>
<MODEL>Notebook 5000</MODEL>
<PRICE>EUR 410</PRICE>
<PROCESSOR>
<MANF>Intel</MANF>
<MODEL>Core i3</MODEL>
<SPEED>1.7 GHz</SPEED>
</PROCESSOR>
<RAM>4 GB</RAM>

<DISK><HARDDISK>
<MANF>Seagate</MANF>
<MODEL>SATA</MODEL>
<SIZE>500 GB</SIZE>
</HARDDISK></DISK>
<DISK><DVD>
<SPEED>16x</SPEED>
</DVD></DISK>
</PC>
<PC>
</PC>
</PCS>

Automaten und Formale Sprachen

319

Kontextfreie Sprachen und XML

Fragen:

@ Wie viele PCs kdnnen in einer solchen Datei aufgefiihrt
werden? Beliebig viele? Ist auch eine Datei mit iiberhaupt
keinem PC zul3ssig?

@ Welche Eintrage braucht man, um einen PC zu beschreiben?
Muss der Preis immer angegeben werden?

@ Kann ein PC mehrere Prozessoren haben? Oder mehrere
Festplatten?

Allgemein: Was ist iiberhaupt ein zuldssiges Dokument?

_ CniEs s En T e e Resih Sprdy e resn
Kontextfreie Sprachen und XML

Die Frage, welche Dokumente liberhaupt zul3ssig sind, kann durch
das Betrachten der DTD (mit Namen PcSpecs) beantwortet
werden:

<!DOCTYPE PcSpecs [

<IELEMENT PCS (PCx)>

<IELEMENT PC (MODEL, PRICE, PROCESSOR, RAM, DISK+)>
<!ELEMENT MODEL (#PCDATA)>

<!ELEMENT PRICE (#PCDATA)>

<!ELEMENT PROCESSOR (MANF, MODEL, SPEED)>

<!ELEMENT MANF (#PCDATA)>

<!ELEMENT MODEL (#PCDATA)>

<!ELEMENT SPEED (#PCDATA)>

<!ELEMENT RAM (#PCDATA)>

_ CniEs s En T e e Resih Sprdy e resn
Kontextfreie Sprachen und XML

<!ELEMENT DISK (HARDDISK | CD | DVD)>
<!ELEMENT HARDDISK (MANF, MODEL, SIZE)>
<IELEMENT SIZE (#PCDATA)>

<!ELEMENT CD (SPEED)>

<!ELEMENT DVD (SPEED)>

1>

_ CniEs s En T e e Resih Sprdy e resn
Kontextfreie Sprachen und XML

Bedeutung der DTD-Eintrage:

@ Die erste Zeile (gekennzeichnet mit DOCTYPE) enthdlt den
Namen der DTD (PcSpecs).

@ Alle anderen Zeilen enthalten Regeln (bzw. Mengen von
Regeln) einer kontextfreien Grammatik.

@ Alle groB geschriebenen Wérter (PCS, PC, MODEL, etc.)
beziehen sich auf Variablen der Grammatik. #PCDATA steht fiir
Text, der keine XML-Tags der Form <..> .. </..>
beinhaltet.

_ CniEs s En T e e Resih Sprdy e resn
Kontextfreie Sprachen und XML

Regelformat:

@ Die Beschreibung einer Regel beginnt mit dem Schliisselwort
'ELEMENT.

@ AnschlieBend folgt die linke Seite, bestehend aus einer
Variablen A.

@ Die rechte Seite ist ein reguldrer Ausdruck a.. Daher steht eine
DTD-Regel nicht fiir eine kontextfreie Regel, sondern fiir eine
(unendliche) Menge von kontextfreien Regeln, die alle die
Form A — w haben, wobei w € L(a).

Ein XML-Dokument ist zuldssig, wenn es durch diese kontexfreien
Regeln erzeugt werden kann.

Kontextfreie Sprachen und XML

Syntax der reguldren Ausdriicke: die reguldren Ausdriicke auf der
rechten Seite einer Regel werden durch folgende Operatoren
dargestellt.

@ | — Vereinigung, entspricht dem Operator | bei regularen
Ausdriicken.

e , — Konkatenation/Produkt

@ Drei Varianten des Operators zur Hiillenbildung:
* — Stern-Operation, null oder mehr Vorkommen
+ — Stern-Operation unter Ausschluss des leeren Wortes:
mindestens ein Vorkommen ((r)™ = (r)*r)
? — null oder ein Vorkommen ((r)? = (r | €))

_ CniEs s En T e e Resih Sprdy e resn
Kontextfreie Sprachen und XML

Beispiel:

<!ELEMENT PC (MODEL, PRICE, PROCESSOR, RAM, DISK+)> J

steht fiir alle Regeln der Form PC — w, wobei
w € L(MODEL PRICE PROCESSOR RAM (DISK)%).

Dazu gehoren folgende Regeln:

PC — MODEL PRICE PROCESSOR RAM DISK
PC — MODEL PRICE PROCESSOR RAM DISK DISK

Das bedeutet: eine PC-Beschreibung muss eine oder mehrere
Eintrage fiir Disks (Festplatten, CD-Laufwerke, etc.) haben.

_ CniEs s En T e e Resih Sprdy e resn
Kontextfreie Sprachen und XML

Eine DTD-Grammatik kann schematisch in eine herkdmmliche
kontextfreie Grammatik libersetzt werden. Beispielsweise kann die
Regel

<!ELEMENT PC (MODEL, PRICE, PROCESSOR, RAM, DISK+)> J

ubersetzt werden nach:

PC — MODEL PRICE PROCESSOR RAM DISKS
DISKS — DISK
DISKS — DISKS DISK

_ CniEs s En T e e Resih Sprdy e resn
Kontextfreie Sprachen und XML

Weitere Bemerkungen:

@ Zum eindeutigen Parsen werden um jede der urspriinglichen
Variablen A noch Tags <A>... gelegt.

@ Das Aufbauen eines Syntaxbaums aus einem XML-Dokument
wird automatisch von Funktionen einer XML-Library erledigt.
Hierzu muss der Benutzer keinen eigenen Code schreiben.

@ In der Praxis benutzte DTDs enthalten noch weitere Eintrage,

beispielsweise fiir Attribute, Verweise auf externe Dokumente,
etc.

Fragestellungen zu dieser Vorlesungseinheit

Zum Ende einer jeden Vorlesungseinheit betrachten wir im Regelfall
drei Fragestellungen, die mithilfe der in dieser Einheit besprochenen
Inhalte beantwortet werden sollen. In der darauffolgenden Einheit
konnen zu Beginn mogliche Antworten gesammelt werden.

Fragen zur neunten Vorlesungseinheit

@ Welche Rolle spielt die Chomsky-Normalform beim
Pumping-Lemma fiir kontextfreie Sprachen?

@ Wie zeigt man mithilfe des Pumping-Lemmas, dass eine
Sprache nicht kontextfrei ist?

@ Wie kann man einsehen, dass kontextfreie Sprachen nicht
unter Schnitt abgeschlossen sind?

Kellerautomaten

Analog zu reguldren Sprachen suchen wir hier ein
Automatenmodell fiir kontextfreie Sprachen.

Antwort: Kellerautomaten (englisch: push-down automata)

Automaten, die mit einem zusatzlichen Keller (englisch: stack)
ausgestattet sind.

_ Organisatorisches _Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontetfreie Sprachen
Kellerautomaten

Nutzen eines solchen Automatenmodells

Manche Konstruktionen und Verfahren lassen sich besser mit Hilfe
des Automatenmodells durchfiihren (anstatt auf Grammatiken).
Dazu gehort:

@ das Wortproblem (wir werden herausfinden, dass das
Wortproblem unter bestimmten Umstanden effizienter als in
Zeit O(n3) geldst werden kann)

@ Abschlusseigenschaften (Abschluss von kontextfreien Sprachen
unter Schnitt mit reguldren Sprachen ldsst sich gut mit
Kellerautomaten zeigen)

_ Organisatorisches _Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontetfreie Sprachen
Kellerautomaten

Wir betrachten die Sprache

L = {ajay...a,%a,...a0a1 | 3; € A}
{wsw® | w e A}

mit ¥ = A U {$} fiir ein Alphabet A. Dabei steht w” fiir die
Umkehrung des Wortes w (zum Beispiel: (abc)R = cba).

Ein endlicher Automat kann diese Sprache deshalb nicht erkennen,
weil er sich keine beliebig langen Worter der Form aja; ... a,
“merken” kann. Er miisste sich aber solche Worter merken, um die
Ubereinstimmung mit dem Wortteil nach dem $ zu iiberpriifen.
Ubungsaufgabe: Zeigen Sie mit Hilfe von
Myhill-Nerode-Aquivalenz, dass L nicht regulr ist.

Kellerautomaten

Um ein Automatenmodell fiir kontextfreie Sprachen zu erhalten,

o fiihren wir daher einen Keller oder Pushdown-Speicher ein, auf
dem sich eine beliebig lange Sequenz von Zeichen befinden
darf.

@ Beim Einlesen eines neuen Zeichens darf das oberste Zeichen
des Kellers gelesen und folgendermaBen verdndert werden:

o entweder bleibt der Keller unverdndert oder
o das oberste Zeichen des Kellers wird entfernt und evtl.
durch eine Sequenz von anderen Zeichen ersetzt.

An anderen Stellen darf der Keller nicht gelesen oder
verdandert werden.

_ Organisatorisches _Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontetfreie Sprachen
Kellerautomaten

Schematische Darstellung eines Kellerautomaten:

el i|n|g|la|b|e

Kellerautomat 4[

Keller

:ﬁ:‘ﬁmib

- Kellerbodenzeichen

Kellerautomaten

Sei A ={a,b,c,d} und
L={aiaz...a,%a,... 2021 | 3; € A}.

Ein Kellerautomat erkennt diese Sprache folgendermaBen:
@ Ein Wort w wird von links nach rechts eingelesen.

@ Der Automat hat zwei Zustande:
Zustand 1: Ersten Teil des Wortes speichern.

Zustand 2: Zweiten Teil des Wortes iiberpriifen.

_ Organisatorisches _Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontetfreie Sprachen
Kellerautomaten

Zustand 1:

@ Solange $ noch nicht erreicht ist: jedes eingelesene Symbol
wird als GroBbuchstabe auf den Keller gelegt
(a~A b~ B,...).

@ Wenn $ eingelesen wird: Keller bleibt unverandert und
Automat wechselt in Zustand 2.

_ Organisatorisches _Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontetfreie Sprachen
Kellerautomaten

Zustand 2:

o Fiir jedes neu eingelesene Zeichen wird iiberpriift, ob der
passende GroBbuchstabe auf dem Keller liegt. Dieser wird
dann entfernt.

o Falls irgendwann keine Ubereinstimmung festgestellt wird:
Kellerautomat blockiert und das Wort wird nicht akzeptiert.

e Falls immer Ubereinstimmung herrscht: auch das
Kellerbodenzeichen # wird entfernt und der Automat
akzeptiert mit leerem Keller.

Kellerautomaten

Kellerautomat
Zustand 1

Kellerautomaten

Kellerautomat
Zustand 1

Kellerautomaten

Kellerautomat

Zustand 1
C
A

Kellerautomaten

Kellerautomat
Zustand 1 ﬁ—[

F (> 0 >

Kellerautomaten

Kellerautomat ﬁ

Zustand 1

F | >0 > O

Kellerautomaten

Kellerautomat
Zustand 2

F | >0 > O

Kellerautomaten

Kellerautomat
Zustand 2 ﬁ—[

F (> 0 >

Kellerautomaten

alcla|d|$|d|a|c]|a

Kellerautomat

Zustand 2
C
A

Kellerautomaten

alcla|d|$|d|a|c]|a

Kellerautomat
Zustand 2

Kellerautomaten

alcla|d|$|d|a|c]|a

Kellerautomat
Zustand 2

Kellerautomaten

alcla|d|$|d

Kellerautomat
Zustand 2

Kellerautomaten

Ein (nichtdeterministischer) Kellerautomat M ist ein 6-Tupel
M= (Z,%,T,0,z,#), wobei
o Z die Menge der Zustande,
¥ das Eingabealphabet (mit ZNX = (),
I das Kelleralphabet,
2o € Z der Startzustand,

§: Z x (TU{e}) xT — Pe(Z x I'*) die Uberfiihrungsfunktion
und

@ # €[das unterste Kellerzeichen oder Kellerbodenzeichen ist.

Kellerautomaten

Bemerkungen zu Kellerautomaten:

@ Z, ¥ miissen wiederum endliche Mengen sein.

@ P.(Z x '*) bezeichnet die Menge aller endlichen Teilmengen
von Z x ['*.

o Abkiirzung: KA (Kellerautomat) oder PDA (pushdown
automaton).

_ Organisatorisches _Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontetfreie Sprachen
Kellerautomaten

e Wir betrachten die Uberfiihrungsfunktion
0: Zx (ZU{e}) xT = Pe(Z xT7)

Falls (2, By ... Bx) € §(z, a, A), so bedeutet das:
e wenn im Zustand z das Eingabesymbol a gelesen wird
und das Zeichen A als oberstes auf dem Keller liegt, dann
o wird A vom Keller entfernt und durch By ... By ersetzt
(Bs liegt zuoberst) und der Automat geht in den Zustand
Z iiber.
Es kann auch a = ¢ gelten. In diesem Fall wird kein
Eingabesymbol eingelesen.

_ Organisatorisches _Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontetfreie Sprachen
Kellerautomaten

_/_Vir betrachten verschiedene Fille von Werten der
Uberfiihrungsfunktion 4:

@ Zeichen a wird gelesen

@ Zustand indert sich von z nach Z/

@ Symbol A wird vom Keller entfernt: e [

Kellerautomaten

@ Zeichen a wird gelesen

@ Zustand andert sich von z nach Z/

Symbol A auf dem Keller wird [{
durch B ersetzt:

Kellerautomaten

@ Zeichen a wird gelesen

@ Zustand andert sich von z nach Z/

@ Symbol A bleibt auf dem Keller:

Kellerautomaten

@ Zeichen a wird gelesen

@ Zustand andert sich von z nach Z/

Symbol B wird neu auf den Kel- {
ler gelegt:

Kellerautomaten

@ Zeichen a wird gelesen

@ Zustand andert sich von z nach Z/

Symbol A wird durch mehrere {
neue Symbole ersetzt:

Kellerautomaten

@ Zu Beginn einer jeden Berechnung enthilt der Keller genau
das Kellerbodenzeichen #.

@ Der Keller ist nicht beschrankt und kann beliebig wachsen. Es
gibt unendlich viele mogliche Kellerinhalte, das unterscheidet
Kellerautomaten von endlichen Automaten.

@ Die von uns betrachteten Kellerautomaten akzeptieren immer
mit leerem Keller (in diesem Fall gibt es auch keine
Ubergangsmdglichkeiten mehr). Es gibt aber auch andere
Varianten von Kellerautomaten, die mit Endzustand
akzeptieren.

Kellerautomaten

Kellerautomat fiir die Sprache
L={aiar...an%a,... 2221 | a; € {a, b}}:
M = ({Zlv 22}7 {37 ba $}a {#a A7 B}7 5a z1, #)a

wobei § folgendermaBen definiert ist (wir schreiben
(z,a,A) = (Z,x), falls (2, x) € §(z, a, A)):

(zi,3,#) = (21, A#) (z1,a,A) — (z1,AA) (z1,a,B) — (z1,AB)
(z1,b,#) — (z1,B#) (z1,b,A) — (z1,BA) (z1,b,B) — (z1, BB)
(21,8, #) = (22, #) (z1,%,A) = (z,A) (21,9%,B) — (=, B)
(22,2,A) = (22,6) (22,0,B) = (2,¢) (22,6, #) — (22.¢)

Kellerautomaten

Eine Konfiguration eines Kellerautomaten ist gegeben durch ein
Tripel

keZxXI*xTl*.

Bedeutung der Komponenten von k = (z,w,y) € Z x ¥* x I'*:
@ z € Z ist der aktuelle Zustand des Kellerautomaten.
@ w € X* ist der noch zu lesende Teil der Eingabe.

@ v € " ist der aktuelle Kellerinhalt. Dabei steht das oberste
Kellerzeichen ganz links.

Kellerautomaten

Qbergénge zwischen Konfigurationen ergeben sich aus der
Uberfiihrungsfunktion 4:

Es gilt
(z,aw, Ay) F (2, w, By ... By),

falls (z/,By ... Bk) € 6(z,a,A), und es gilt
(z,w, Ay) F (2, w, By ... Byy),

falls (z/,B1 ... Bk) € 6(z,¢, A).

Im ersten Fall wird ein Zeichen der Eingabe gelesen, im zweiten
jedoch nicht.

_ Organisatorisches _Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontetfreie Sprachen
Kellerautomaten

Wir definieren F* als die reflexive and transitive Hiille von .

Damit kann jetzt die von einem Kellerautomaten akzeptierte
Sprache definiert werden:

Akzeptierte Sprache (Definition)

Sei M = (Z,%,T,06, 2y, #) ein Kellerautomat. Dann ist die von M
akzeptierte Sprache:

N(M) ={x € £ | (20, x,#) F* (z,¢,¢) fiirein z € Z}.

Das heiBt die akzeptierte Sprache enthilt alle Wérter, mit Hilfe
derer es moglich ist, den Keller vollstandig zu leeren. Da
Kellerautomaten jedoch nicht-deterministisch sind, kann es auch
Berechnungen fiir dieses Wort geben, die den Keller nicht leeren.

_ Organisatorisches _Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontetfreie Sprachen
Kellerautomaten

Ein weiteres Beispiel: ein Kellerautomat fiir die Sprache
L={ajay...anan...a2a1 | a; € {a, b}}.

Idee: anstatt auf das Zeichen $ zu warten, kann sich der Automat
nicht-deterministisch entscheiden, in den Zustand z, (= Keller
abbauen) iiberzugehen, sobald das aktuelle Zeichen auf dem Band
mit dem Zeichen auf dem Keller iibereinstimmt (oder wenn der
Keller leer ist).

_ Organisatorisches _Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontetfreie Sprachen
Kellerautomaten

Verinderte Uberfiihrungsfunktion & (3. Zeile ist gedndert):

(Zlaaa #) - (ZlaA#) (21735 A) - (ZlvAA) (21537 B) — (217AB)
(Zl,b, #) — (Zl,B#) (Zl,b, A) — (Zl,BA) (Z]_,b, B) — (Z]_,BB)
(2175a#) - (227#) (Zlaaa A) — (22a€) (Zl?b7 B) - (2275)
(22,8,A) = (2,6) (22,b,B) = (22,6) (22,6, #) = (z,¢)

Anmerkung: dieser Kellerautomat nutzt (im Gegensatz zum
vorherigen) Nichtdeterminismus, d.h., eine Konfiguration kann
mehrere mogliche Nachfolger haben. (Und méglicherweise enden
einige Konfigurationsfolgen als Sackgassen und fiihren nicht dazu,
dass der Keller geleert wird.)

Beispiel: Kellerautomat erhilt die Eingabe aabbaa.

Kellerautomaten

(z1, aabba, #) t- (z1, abbaa, A#) F (z1bbaa, AA#)
F (21, baa, BAA#) & (22, baa, BAA#)

An dieser Stelle haben wir uns nichtdeterministisch entscheiden, in
den Zustand z» zu wechseln, denn wir haben die Mitte des Wortes
erreicht. Das kann ein Kellerautomat natiirlich nicht ersehen, es
gibt also noch eine Reihe weiterer moglicher Folgekonfigurationen,
nur mit einem Wechsel zu Zustand z an dieser Stelle konnen wir
aber sicherstellen, dass der Kellerautomat den leeren Keller am
Ende der Eingabe erreicht, sie also akzeptiert.

ek (227 aa, AA#) F (Zlv Q,A#) + (21,8,#) - (217675)

~ Organisatorisches Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontextfreie Sprachen
Think-Pair-Share: Kellerautomaten

Betrachten Sie den Kellerautomaten

M = ({Zla Z2}a {av b}a {A7 Ba #}7 5) 21, #) mit folgender
Uberfiihrungsfunktion:

(z1,8,#) = (21, A#) (z1,3,A) = (21,AA) (z1,b,A) = (22, B)
(Zz,b, B) — (22,6) (22, b, A) — (22, B) (22,6, #) — (22,6)

Welche Sprache akzeptiert M? Erarbeiten Sie zunichst fiinf
Minuten in Einzelarbeit eine Losung. AnschlieBend tauschen Sie
sich fiir weitere fiinf Minuten mit ihrem Sitznachbarn aus.
Schlussendlich besprechen wir die Losung im Plenum.

Hinweis: Es kann hilfreich sein, den Kellerautomaten auf einigen
Eingaben zu simulieren.

Sl L e S R L S R e TSR L O E e SR E R
Losungsvorschlag zu Think-Pair-Share: Kellerautomaten

Die Sprache ist
L={a"b’" | n>0}

Deterministisch kontextfreie Sprachen

Wir betrachten nun eine Unterklasse von Kellerautomaten, die
dazu verwendet werden kdnnen, Sprachen deterministisch und
damit effizient zu erkennen.

Deterministischer Kellerautomat (Definition)

En deterministischer Kellerautomat M ist ein 7-Tupel
M= (Z,%,T,9,zy,#, E), wobei

o (Z,X,I,6,2),7#) ein Kellerautomat ist,
@ E C Z eine Menge von Endzustinden ist und

o die Uberfiihrungsfunktion § deterministisch ist, das heiBt: fiir
alleze Z, ae X und A T gilt:

16(2, a, A)| + |8(z, 2, A)| < 1.

e e e e Tk e ol kot el b
Deterministisch kontextfreie Sprachen

Unterschiede zwischen Kellerautomaten und deterministischen
Kellerautomaten:

@ Deterministische Kellerautomaten haben eine Menge von
Endzustinden und akzeptieren mit Endzustand — und nicht
mit leerem Keller.

(Bei deterministischen Kellerautomaten ist dies ein
Unterschied, fiir nicht-deterministische Kellerautomaten sind
beide Akzeptanzmdoglichkeiten gleichwertig.)
o Fiir jeden Zustand z und jedes Kellersymbol A gilt:
o entweder gibt es hochstens einen e-Ubergang
o oder es gibt fiir jedes Alphabetsymbol hdchstens einen
Ubergang.

Deterministisch kontextfreie Sprachen

Konfigurationen und Uberginge zwischen Konfiguration bleiben
gleich definiert. Konfigurationsfolgen werden jedoch zu linearen
Ketten, d.h., es gibt immer héchstens eine Folgekonfiguration.

Diese Tatsache kann fiir die effiziente Losung des Wortproblems
ausgenutzt werden.

Deterministisch kontextfreie Sprachen

Sei M(Z,%,T,0,zy, #, E) ein deterministischer Kellerautomat.
Dann ist die von M akzeptierte Sprache:

D(M)={x € X*| (20, x,#) F* (z,&,7) firein z€ E, y € [*}.

Vergleiche dies mit der Definition fiir nicht-deterministische
Kellerautomaten! Bei deterministischen Kellerautomaten ist
folgendes anders:

@ Der erreichte Zustand z muss ein Endzustand sein.

o Es darf ein Kellerinhalt iibrigbleiben.

e e e e Tk e ol kot el b
Deterministisch kontextfreie Sprachen

Eine Sprache heiBt deterministisch kontextfrei genau dann, wenn
sie von einem deterministischen Kellerautomaten akzeptiert wird.

Beispiele:

o Die Sprache L = {ajay...a,%a,...a2a1 | a; € A} ist
deterministisch kontextfrei. (Siehe den entsprechenden
Kellerautomaten.)

e Die Sprache L = {ajay...apa3,... 2231 | a; € A} ist jedoch
nicht deterministisch kontextfrei. (Ohne Beweis.)

e e e e Tk e ol kot el b
Deterministisch kontextfreie Sprachen

Weitere Bemerkungen:

o Effizienz: Mit Hilfe von deterministischen Kellerautomaten hat
man jetzt ein Verfahren zur Lésung des Wortproblems, das die
Komplexitdt O(n) hat. (n ist die Lange des Wortes.)

Dazu ldsst man einfach den Automaten auf dem Wort
arbeiten und iiberpriift, ob man in einen Endzustand gelangt.

@ Deterministisch kontextfreie Grammatiken: Da die Syntax von
Sprachen einfacher mit Hilfe von Grammatiken als mit Hilfe
von Kellerautomaten definiert werden kann, ist es notwendig,
die zu deterministischen Kellerautomaten passende Klasse von
deterministisch kontextfreien Grammatiken zu definieren.

Da dies nicht ganz trivial ist, gibt es hierzu mehrere Ansatze.
Der bekannteste davon sind die sogenannten
LR(k)-Grammatiken (siehe Compilerbau und Syntaxanalyse).

e e e e Tk e ol kot el b
Deterministisch kontextfreie Sprachen

Die Abschlusseigenschaften bei deterministisch kontextfreien
Sprachen sehen etwas anders aus als bei kontextfreien Sprachen.

Wenn L eine deterministisch kontextfreie Sprache ist, dann ist auch
L = ¥*\L deterministisch kontextfrei.

(Ohne Beweis)

Deterministisch kontextfreie Sprachen

Kein Abschluss unter Schnitt

Wenn L; und L deterministisch kontextfreie Sprachen sind, dann
ist L1 N Ly nicht notwendigerweise deterministisch kontextfrei.

Begriindung: Die Beispiel-Sprachen aus dem Argument, dass die
kontextfreien Sprachen unter Schnitt nicht abgeschlossen sind, sind
sogar deterministisch kontextfrei, ihr Schnitt jedoch noch nicht
einmal kontextfrei:

L, = {abkck|j>0k>0}
L, = {ab*d|j>0,k>0}

Deterministisch kontextfreie Sprachen

Kein Abschluss unter Vereinigung

Wenn Ly und L, deterministisch kontextfreie Sprachen sind, dann
ist L1 U Ly nicht notwendigerweise deterministisch kontextfrei.

Begriindung: Aus dem Abschluss unter Vereinigung und
Komplement wiirde auch der Abschluss unter Schnitt folgen

(wegen LiN Ly = L UL_2)

e e e e Tk e ol kot el b
Deterministisch kontextfreie Sprachen

Deterministisch kontextfreie Sprachen sind unter Schnitt mit
reguldren Sprachen abgeschlossen.

Sei L eine deterministisch kontextfreie Sprache und R eine reguldre
Sprache. Dann gilt, dass L N R eine deterministisch kontextfreie
Sprache ist.

e e e e Tk e ol kot el b
Deterministisch kontextfreie Sprachen

Beweisidee:

Konstruktion eines Kellerautomaten M’ fiir L N R aus einem
deterministischen Kellerautomaten M = (Z1,%,T, 1, 23, #, Ey) fiir
L und einem deterministischen endlichen Automaten

A= (Zg, Z, 52, Zg, E2) fir R:

M =(Zy x Z5,X,T,8,(23,23),#, E1 X E)
mit

o ((z1,2),B1...Bk) € 6((z1, 22), a, A), falls
(Z{, B... Bk) S 51(21, a, A) und 52(22, a) = Zé

] ((Z{,Zg), B;... Bk) S (5((21,22),8,/\), falls
(Z]/_, Bl - Bk) S 51(21,8,A)

(Analog der Kreuzprodukt-Konstruktion fiir endliche Automaten.)

Nochmal Abschlusseigenschaften

Mit einer dhnlichen Technik und unter Ausnutzung der Tatsache,
dass fiir allgemeine (nicht-deterministische) Kellerautomaten die
Akzeptanz mit leerem Keller analog zur Akzeptanz mit Endzustand
ist, ldsst sich auch folgendes zeigen:

Sei L eine kontextfreie Sprache und R eine reguldre Sprache. Dann
gilt, dass L N R eine kontextfreie Sprache ist.

Nochmal Abschlusseigenschaften

Zusammenfassung Abschlusseigenschaften:

Abgeschlossen
unter

Vereinigung
Konkatenation
Kleene-Stern
Schnitt

Schnitt mit reg. Spr.
Komplement

NN N N N N[Regulére Spr.

N N X X X || Det. kfr. Spr
> N\ X N\ N\ \[Kfr. Sprachen

Fragestellungen zu dieser Vorlesungseinheit

Zum Ende einer jeden Vorlesungseinheit betrachten wir im Regelfall
drei Fragestellungen, die mithilfe der in dieser Einheit besprochenen
Inhalte beantwortet werden sollen. In der darauffolgenden Einheit
konnen zu Beginn mogliche Antworten gesammelt werden.

Fragen zur zehnten Vorlesungseinheit

@ Wovon ist der Ubergang eines Kellerautomaten abhingig?

@ Wann akzeptiert ein nichtdeterministischer Kellerautomat ein
Wort, wann ein deterministischer?

@ Wie zeigt man, dass deterministisch kontextfreie Sprachen
unter Schnitt mit reguldren Sprachen abgeschlossen sind?

_ Organisatorisches _Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontetfreie Sprachen
Kellerautomaten

Wir miissen nun noch zeigen, dass man mit Kellerautomaten
wirklich genau die kontextfreien Sprachen akzeptieren kann.

Zu jeder kontextfreien Grammatik G gibt es einen Kellerautomaten
M mit L(G) = N(M).

Kellerautomaten

Beweisidee:

@ Verwende den Keller zur Simulation der Grammatik. Leite ein
Wort der Sprache auf dem Keller ab (nicht-deterministisches
Raten) und iiberpriife dann, ob dieses Wort mit dem Wort in
der Eingabe iibereinstimmt.

@ Problem: der Keller darf nicht beliebig verwendet werden, man
kann immer nur das oberste Kellersymbol ersetzen.

Losung: Entferne die bereits fertig abgeleiteten Teile des
Wortes auf dem Keller, indem sie mit der Eingabe verglichen
und bei Ubereinstimmung weggenommen werden.

© Damit kann man erreichen, dass immer wieder eine Variable
zuoberst auf dem Keller liegt und abgeleitet werden kann.

Kellerautomaten

Formaler:
sei G = (V,X,P,S) eine kontextfreie Grammatik. Dann definieren
wir einen Kellerautomaten

M= ({z},=,VUY,35,z25)

mit einem Zustand z und Kelleralphabet V U %X. Das Startsymbol
S ist das Kellerbodenzeichen.
Uberfiihrungsfunktion 4:
e Fiir jede Regel (A — a) € P mit a € (VUX)* nehme (z, @)
in die Menge 6(z,¢, A) auf.
(Ableitungsschritt auf dem Keller ohne Lesen der Eingabe)

e AuBerdem nehme (z,¢) in §(z, a, a) auf.
(Vergleichen von Kellerinhalt und Eingabe)

Kellerautomaten

Wir betrachten folgende kontextfreie Grammatik mit dem
zweielementigen Alphabet ¥ = {[,]}, die korrekte
Klammerstrukturen erzeugt:

S[S]S | e

Aufgabe: wandle diese Grammatik in einen Kellerautomaten um
und akzeptiere damit das Wort [[]][].

_ Organisatorisches _Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontetfreie Sprachen
Kellerautomaten

Kellerautomat fiir Beispiel-Grammatik:

M= ({z},£,{S}UL,4z)VS)
mit folgender Uberfiihrungsfunktion 4:
(2,¢,5) = (2,[5]9)
(z,¢,5) = (2,¢)

(z,[.[) = (z:¢)
(2:1.]) = (z:¢)

Kellerautomaten

Kellerautomat
Zustand z

Konfiguration:

(z,[1111),5)

Kellerautomaten

Kellerautomat
Zustand z

Konfiguration:

(z, [T1111,515)

0| — v —

Kellerautomaten

Kellerautomat

Zustand z
S

Konfiguration:

(z. 11111, 515) 1

Kellerautomaten

Kellerautomat

Zustand z

Konfiguration:

(2, (1111, [51515)

N —| n|l— |l —

_ Organisatorisches _Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontetfreie Sprachen
Kellerautomaten

Kellerautomat
Zustand z

Konfiguration:

(21111, 51515)

nNni—| | — un

Kellerautomaten

Kellerautomat
Zustand z

Konfiguration:

(211111519

»n|—| »|—

Kellerautomaten

SRERRRREER

-

Kellerautomat

Zustand z
S

Konfiguration:

(2,111, S1S) 1

Kellerautomaten

D)1

-

Kellerautomat
Zustand z

Konfiguration:

(z,111,15)

i

Kellerautomaten

D)1

]

;ﬁ

Kellerautomat
Zustand z

Konfiguration:

(z.01,9)

Kellerautomaten

SRERRRREER

;ﬁ

Kellerautomat
Zustand z

Konfiguration:

(z,[1.[519)

0| — v —

Kellerautomaten

SRERRRREER

;

Kellerautomat

Zustand z
S

Konfiguration:

(2.1, 515) 1

Kellerautomaten

SRERRRREER

;

Kellerautomat
Zustand z

Konfiguration:

(2,1.15) 1

Kellerautomaten

D)1

]

%ﬁ

Kellerautomat
Zustand z

Konfiguration:

(z,¢,95)

Kellerautomaten

D)1

]

%ﬁ

Kellerautomat
Zustand z

Konfiguration:
(z,¢,¢€)

Think-Pair-Share: Transformation von Grammatik in
Kellerautomat

Wandeln Sie die folgende Grammatik in einen Kellerautomaten um:

G =({S,A},{a,b,c},P,S)

mit folgender Produktionenmenge P:

S — aAb|ab
A — §S]aaSc

Erarbeiten Sie zunichst vier Minuten in Einzelarbeit eine Losung.
AnschlieBend tauschen Sie sich fiir weitere vier Minuten mit ihrem
Sitznachbarn aus. Schlussendlich besprechen wir die Lésung im
Plenum.

Losungsvorschlag zu Think-Pair-Share: Transformation von
Grammatik in Kellerautomat

M = ({z},{a,b,¢c},{S,A,a,b,¢,},6,2,5)
(z,e,5) — (z,aAb)

_ Organisatorisches _Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontetfreie Sprachen
Kellerautomaten

Nun geht es darum zu zeigen, dass es zu jedem Kellerautomaten
eine entsprechende kontextfreie Grammatik gibt. (Das ist die
schwierigere Richtung.)

Zu jedem Kellerautomaten M gibt es eine kontextfreie Grammatik
G mit N(M) = L(G).

_ Organisatorisches _Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontetfreie Sprachen
Kellerautomaten

Beweisidee:

@ Wir wollen beschreiben, welche Wérter man durch Abbauen
eines bestimmten Kellersymbols akzeptieren kann. Die vom
Automaten akzeptierte Sprache besteht ndmlich aus allen
Wortern, die man durch Abbauen von # erzeugen kann.

Abbauen bedeutet: zwischendurch diirfen weitere Symbole auf
den Keller gelegt werden, aber zuletzt muss der Keller um
dieses eine Symbol kiirzer geworden sein.

@ Die zu erstellende kontextfreie Gram-
matik besitzt Variablen der Form (z;, A, z2) mit der Bedeutung:

Aus (z1, A, z2) kann man genau die Woérter ableiten,
die der Kellerautomat einliest, wenn er im Zustand
71 startet, A vom Keller abbaut und im Zustand z
aufhort.

Kellerautomaten

Hohe
des Kellers

A liegt —]

auf dem Keller
KA im Zustand z)

Erstes Unterschreiten
der urspriinglichen
Kellerhéhe

(KA im Zustand z,)

Eingelesenes Teilwort
(kann aus (z;, A,)
abgeleitet werden)

Eingelesene
Eingabesymbole

Zwischendurch kann A durch ein anderes Symbol ersetzt werden.
Die urspriingliche Kellerhohe wird jedoch nicht unterschritten.

Kellerautomaten

Bedeutung der Nicht-Terminale (z1, A, z2):

(z1,A, 22) =* x = (z1,x,A) F* (22,¢,¢) J

Gegeben sei ein Kellerautomat M = (Z,%,T, 6, zp, #). Wir
definieren eine Grammatik G = (V, X, P, S) wie folgt:

Variable: V = {S} U Z x I x Z (Eigene Startvariable und
Variablen der Form (z1, A, z2))

Kellerautomaten

Produktionen folgender Form:

S — (z0,#,2) firalleze Z

(Entfernen des Kellerbodenzeichens)

(z,A,Z) — a falls (Z,¢) € 6(z,a,A)
(Symbol A kann — bei Einlesen
von a — sofort entfernt werden)

(z,AZ) — a(z1, B1,2)(z2,B2,23) ... (2, B, Z')
falls (z1,B1...Bk) € §(z,a,A), Z/,z0,...,z € Z
(Symbol A wird bei Einlesen von a durch By ... Bx
ersetzt, diese miissen iiber Zwischenzustande

71, ...,z entfernt werden)

Kellerautomaten

Produktionen folgender Form:
(Z, A, ZI) — a(zl, Bl, 22)(22, BQ, 23) ce (Zk, Bk, Zl)

Die Idee ist hier die folgende: Wenn das Symbol A auf dem Keller
entfernt und durch die Symbole Bj ... By ersetzt wird, ist es
notwendig, Bj ... By durch weitere Transitionen abzubauen. Dabei
werden irgendwelche Zwischenzustdnde z . .. z, erreicht, bevor
schlussendlich By abgebaut und der Zustand z’ erreicht wird. Es
gibt daher eine Uberfiihrungsregel fiir jede mégliche Wahl von
Z2...2k.

Wenn man ein Wort ableiten mochte, muss man also bei der
Simulation eines Schrittes des Kellerautomaten bereits , raten”,
welche Zwischenzustdnde bei der Elimination der neuen
Kellerzeichen erreicht werden.

_ Organisatorisches _Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontetfreie Sprachen
Kellerautomaten

Beispiel: Wir betrachten den Kellerautomaten

M = ({217 Zz}, {37 b}’ {A7 #}7 5’ 21, #)

mit folgender Uberfiihrungsfunktion &:

(21,6, #
(z1,a,#
(z1,a,A
(z1,b,A
(z2, b, A)

— (22,8)
— (Zl,AA)
— (21, AAA)
—
RN

)
)
)
) (22,€)
(22,€)
Es gilt: N(M) = {a"b?>" | n > 0}.

Aufgabe: Umwandlung von M in eine kontextfreie Grammatik.

_ Organisatorisches _Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontetfreie Sprachen
Kellerautomaten

Kontextfreie Grammatik fiir den Beispiel-Kellerautomaten:

G=(V,L,P,S)

mit folgender Variablenmenge

vV = {57 (zla #a 21)7 (217 #7 22); (227 #7 zl)a (22, #722)7
(z21,A,21), (21, A, 22), (22, A, 1), (22, A, 22) }

_ Organisatorisches _Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontetfreie Sprachen
Kellerautomaten

...und mit folgender Produktionenmenge P:

S = (a,#,2)] (a1, #,)

(z1,#,22) — ¢

(z1,A,2) — b

(z2,A,z2) — b

(z1,#,21) — a(z1,A,2)(z,A, 1)
(z1,#,22) — a(z1,A,2)(z,A 2)
(z21,A,z1) — a(z1,A 2)(z,A,Z)(Z, A z1)
(z21,A,22) — a(z1,A 2)(z,A,Z)(Z, A 2)

z,7' € {z1, 2o} kdnnen jeweils beliebig gew3hlt werden.

Kellerautomaten

Beispiel-Ableitung des Wortes aabbbb:

S

(21, #. 22)

a(z1, A, 2)(22, A, 22)

aa(zl, A, 22)(22, A, 22)(22, A, 22)(22, A, 22)
aab(zz, A, 22)(22, A, 22)(22, A, 22)
aabb(zz, A, 22)(22, A, 22)

aabbb(zz, A, z2)

aabbbb

Kellerautomaten

Bemerkung zu den Umwandlungen “Kontextfreie Grammatik <
Kellerautomat”:

@ Zu jedem Kellerautomaten gibt es immer einen dquivalenten
Kellerautomaten mit nur einem Zustand.

Dazu wandelt man ihn in eine kontextfreie Grammatik um und
dann wieder zuriick in einen Kellerautomaten. Es wird
ausgenutzt, dass bei der Umwandlung in Kellerautomaten
immer nur Automaten mit einem Zustand konstruiert werden.

~ Organisatorisches Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontextfreie Sprachen
Entscheidbarkeit

Wir betrachten nun noch Probleme fiir kontextfreie Sprachen und
stellen fest, ob sie entscheidbar sind, d.h., ob es entsprechende
Verfahren zu ihrer Lésung gibt.

Folgende Probleme sind fiir kontextfreie Sprachen (reprasentiert
durch eine kontextfreie Grammatik oder einen Kellerautomaten)
entscheidbar:

Wortproblem bei kontextfreien Sprachen ist entscheidbar

@ Wortproblem: Gegeben eine kontextfreie Sprache L und
weX Giltwel?

Mit dem CYK-Algorithmus in O(|w|3) Zeit.

Entscheidbarkeit

@ Leerheitsproblem: Gegeben eine kontextfreie Sprache L. Gilt
L=0?
Bestimme alle produktiven Variablen, d.h., alle Variablen A,
fiir die es ein x € X* gibt mit A =* x (siche Ubungsaufgabe).
Die Sprache L ist leer, genau dann wenn das Startsymbol S
nicht produktiv ist.

~ Organisatorisches Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontextfreie Sprachen
Entscheidbarkeit

Endlichkeitsproblem bei kontextfreien Sprachen ist entscheidbar

@ Endlichkeitsproblem: Gegeben eine kontextfreie Sprache L. Ist
L endlich?

Wir gehen davon aus, dass die Grammatik in CNF gegeben ist
(sonst iiberfiihren wir sie in CNF).

@ Entferne alle nicht produktiven oder nicht erreichbaren
Variablen aus der Grammatik (vgl. Ubungen)

@ Ermittle fiir jede Variable, welche Variablen in einem oder
mehr Schritten ableitbar sind (Fixpunktiteration analog zur
Bestimmung erreichbarer Variablen)

© Gibt es eine Variable, die von sich selbst aus abgeleitet werden
kann, ist die Sprache unendlich, sonst endlich (vgl.
Pumping-Lemma fiir kontextfreie Sprachen: Ist eine Variable
von sich selbst aus erreichbar, kann man an dieser Variable
pumpen).

~ Organisatorisches Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontextfreie Sprachen
Entscheidbarkeit

Folgende Probleme sind fiir kontextfreie Sprachen nicht
entscheidbar, d.h., man kann zeigen, dass es kein entsprechendes
Verfahren gibt:

Unentscheidbare Probleme bei kontextfreien Sprachen

o Aquivalenzproblem: Gegeben zwei kontextfreie Sprachen Ly,
Ly. Gilt L1 = Ly?

@ Schnittproblem: Gegeben zwei kontextfreie Sprachen Ly, L.
Gilt Ly N Ly =07

Bemerkung: In der Vorlesung “Berechenbarkeit und Komplexitat”
wird es darum gehen, wie man solche Unentscheidbarkeitsresultate
zeigen kann.

~ Organisatorisches Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontextfreie Sprachen
Entscheidbarkeit

Schnittproblem mit reguldren Sprachen ist entscheidbar

Das Schnittproblem ist jedoch entscheidbar, wenn von einer der
beiden Sprachen Ly, L, bekannt ist, dass sie regular ist und sie als
endlicher Automat gegeben ist.

Entscheidungsverfahren:
@ In diesem Fall kann ein Kellerautomat M konstruiert werden

(Konstruktion siehe weiter oben), der L1 N L, akzeptiert.

@ Der Kellerautomat M kann dann in eine kontextfreie
Grammatik G umgewandelt werden.

© Durch Bestimmung der produktiven Variablen von G kann
dann ermittelt werden, ob S nicht-produktiv ist und damit, ob
L1 N Ly leer ist.

~ Organisatorisches Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontextfreie Sprachen
Entscheidbarkeit

Folgende Probleme sind fiir deterministisch kontextfreie Sprachen
(reprasentiert durch einen deterministischen Kellerautomaten)
entscheidbar:

Entscheidbarkeit bei deterministisch kontextfreien Sprachen

@ Wortproblem: Gegeben eine deterministisch kontextfreie
Sprache L und w € *. Gilt w € L?

Mit einem deterministischen Kellerautomaten in O(|w|) Zeit.

@ Leerheitsproblem: Gegeben eine deterministisch kontextfreie
Sprache L. Gilt L = (?
Siehe das entsprechende Entscheidungsverfahren fiir
kontextfreie Sprachen.

Entscheidbarkeit

@ Endlichkeitsproblem: Gegeben eine kontextfreie Sprache L. Ist
L endlich?

Siehe das entsprechende Entscheidungsverfahren fiir
kontextfreie Sprachen.

o Aquivalenzproblem: Gegeben zwei deterministisch kontextfreie
Sprachen Ly, Ly. Gilt L; = L7

War lange offen und die Entscheidbarkeit wurde erst 1997 von
Sénizergues gezeigt.

~ Organisatorisches Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontextfreie Sprachen
Entscheidbarkeit

Folgende Problem ist fiir deterministisch kontextfreie Sprachen
nicht entscheidbar, d.h., man kann zeigen, dass es kein
entsprechendes Verfahren gibt:

Unentscheidbarkeit bei deterministisch kontextfreien Sprachen

@ Schnittproblem: Gegeben zwei deterministisch kontextfreie
Sprachen Ly, L. Gilt Ly N Ly = ()7

Wie bei kontextfreien Sprachen ist dieses Problem jedoch
entscheidbar, wenn eine der beiden Sprachen regular ist.

~ Organisatorisches Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontextfreie Sprachen
Entscheidbarkeit

Zusammenfassung Entscheidbarkeit:

Problem
entscheidbar

Wortproblem

Leerheit

Endlichkeit
Schnittproblem
Schnittp. mit reg. Spr.
Aquivalenz

NN SN SN N N|| Regulére Spr.
NN % NN Y| Det. kfr. Spr
x N\ % N\ N\ N[Kfr. Sprachen

Entscheidbarkeit

Wir betrachten als eine Anwendung von Kellerautomaten das
Adventure-Problem, Level 2.

Man muss mindestens zwei Schatze finden.

Unmittelbar nach der Begegnung mit einem Drachen muss man in
einen Fluss springen, da uns der Drache in Brand stecken wird.
Dies gilt nicht mehr, sobald man ein Schwert besitzt, mit dem man
den Drachen vorher téten kann.

Die Schliissel sind magisch und verschwinden sofort, nachdem eine
Tir mit ihnen gedffnet wurde. Sobald man eine Tiir durchschritten
hat, schlieBt sie sich sofort wieder.

Entscheidbarkeit

Es gilt:

@ Die Schatz- und die Drachen-Regel sowie die Menge aller
moglichen Pfade im Adventure konnen durch endliche
Automaten A, D, M beschrieben werden.

@ Es gibt einen Kellerautomaten T (siehe néchste Folie), der
alle Worter akzeptiert, die die neue Tiir-Regel erfiillen.

Idee: Lege Schliissel (L) auf den Keller und entferne sie
wieder, sobald eine Tiir (T) in der Eingabe auftaucht.

Entscheidbarkeit

(Nicht-deterministischer) Kellerautomat fiir die Tiir-Regel:

= ({20}7 {D7 B: Ta W7 Aa F7 L}7 {#7 L}a 57 20, #)a

mit folgendem 4:

(20, L, #)
(20,2, #)
(20, L, L)
(20, T, L)
(20,3, L)
(z0,, X)

L4

—

(20, L#)

(20,#), firae{D,B,W, A F}
(Zo, LL)

(2075)

(20,L), firac{D,B,W,AF}
(z0,€), fir X € {L,#}

Die letzte Regel dient dazu, den Keller am Ende zu leeren, um mit
leerem Keller zu akzeptieren. Sie kann auch in Sackgassen fiihren.

Entscheidbarkeit

Es gibt auch einen deterministischen Kellerautomaten fiir die
Sprache aller Worter, die die Tiir-Regel erfiillen:

T= ({20}7 {Dﬂ B? T’ Wa Aa F7 L}7 {#a L}7 57 20, #7 {ZO})7

mit folgendem ¢:

(20, L, #)
(20,2, #)
(20, L, L)
(20, T,L)
(20,3, L)

Ll

(207 L#)

(20, #), firae {D,B,W,A F}
(Zo, LL)

(2076)

(20, L), firae {D,B,W,A F}

~ Organisatorisches Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontextfreie Sprachen
Entscheidbarkeit

Verfahren zur Lésung des Adventure-Problems (Level 2):

© Kreuzprodukt der endlichen Automaten, A, D, M bilden. Der
entstehende Automat heiBt ADM und akzeptiert
T(A)NT(D)N T(M).

@ Kreuzprodukt des Kellerautomaten T mit dem endlichen
Automaten ADM bilden (sieche Abschluss von kontextfreien
Sprachen unter Schnitt mit reguldren Sprachen). Daraus
entsteht ein Kellerautomat TADM.

© Kellerautomat TADM in eine kontextfreie Grammatik G
umwandeln und uberpriifen, ob das Startsymbol S produktiv
ist. Genau in diesem Fall gibt es eine Losung. Aufbauend auf
dem Verfahren zur Uberpriifung der Produktivitit kann man
eine solche Losung auch explizit angeben.

Fragestellungen zu dieser Vorlesungseinheit

Zum Ende einer jeden Vorlesungseinheit betrachten wir im Regelfall
drei Fragestellungen, die mithilfe der in dieser Einheit besprochenen
Inhalte beantwortet werden sollen. In der darauffolgenden Einheit
konnen zu Beginn mogliche Antworten gesammelt werden.

Fragen zur elften Vorlesungseinheit

@ Wie transformiert man einen Kellerautomaten in eine
kontextfreie Grammatik?

@ Wie transformiert man eine kontextfreie Grammatik in einen
Kellerautomaten?

@ Wie entscheidet man das Schnittproblem zwischen
kontextfreien und reguldren Sprachen?

Typ-0-Sprachen
semi-entscheidbare Sprachen

Typ-2-Sprachen
kontextfreie Sprachen

Typ-3-Sprachen
regulare Sprachen

Wir haben uns bis jetzt mit
den untersten beiden Stufen
der Chomsky-Hierarchie
beschéftigt: den reguldren
und kontextfreien Sprachen.

Mit den weiter oben
befindlichen Stufen
beschaftigt sich die Vorlesung
"Berechenbarkeit und
Komplexitat”. Inbesondere
geht es darin um die Frage,
was berechenbar und was
nicht mehr berechenbar ist.

Zusammenfassung

405

~ Organisatorisches Einfiihrung Chomsky-Hierarchie Regulire Sprachen Kontextfreie Sprachen
Weiterer Ablauf

Im Moodle werden alle Fragen zur Vorlesungseinheit zur Wahl
gestellt. Diejenigen Fragen, die die meisten Stimmen erhalten,
werden in der kommenden Vorlesungseinheit beantwortet.

In der darauffolgenden Woche wird die Vorlesung durch Christine
Mika vertreten und als Fragestunde fungieren, bitte senden Sie
zeitig lhre Fragen per E-Mail an Christine Mika.

Das Tutorium wird bis zum Vorlesungsende wie gewohnt im
Wechsel Donnerstags und Freitags stattfinden.

	Organisatorisches
	Einführung
	Chomsky-Hierarchie
	Reguläre Sprachen
	Kontextfreie Sprachen

