Exercise sheet 2

Automaten und Formale Sprachen

Sommersemester 2019, Teaching assistant: Dennis Nolte, Lara Stoltenow

Submission ${ }^{1}$: Monday, April 29, 2019, 10:00 Uhr

Exercise 4: Grammars and their languages
(a) Let $\Sigma=\{a, b\}$. In the following several grammars G_{i} are given. For every grammar G_{i} give the language generated by that grammar. You may use set notation (preferably) or your own words.
(i) $G_{1}=(\{S\}, \Sigma, P, S)$, where P is defined as: $S \rightarrow \varepsilon \mid a S b$
(ii) $G_{2}=(\{S, A, B\}, \Sigma, P, S)$, where P is defined as:

$$
S \rightarrow A B \quad A \rightarrow a A|\varepsilon \quad B \rightarrow b B| \varepsilon \quad a b \rightarrow b a \quad b a \rightarrow a b
$$

(b) In the following we give different languages L_{i}. For every L_{i} give a grammar that generates exactly that language.
(i) $L_{1}=\left\{w \in\{0,1\}^{*} \mid w\right.$ is a binary representation of an odd number $\}$
(ii) $L_{2}=\emptyset$, where the alphabet is $\{a, b\}$.
(iii) $L_{3}=\left\{w_{1} w_{2} \mid w_{1} \in\{a, b\}^{*}, w_{2} \in\{b, c\}^{*}\right\}$

[^0]Exercise 5: Grammar and Chomsky hierarchy
(a) Let $\Sigma=\{a, b\}$. Classify the following grammars as accurately as possible with respect to the Chomsky hierarchy. Specify the language $\left(L\left(G_{i}\right)=\{\ldots\}\right)$ which is generated by the grammar. Additionally, specify its Chomsky type.
(i) Let $G_{1}=(\{S\}, \Sigma, P, S)$, where P is defined as follows:

$$
\begin{equation*}
S \rightarrow a S b|a S| \varepsilon \tag{2p}
\end{equation*}
$$

(ii) Let $G_{2}=(\{S, A\}, \Sigma, P, S)$, where P is defined as follows:

$$
\begin{align*}
& S \rightarrow a A|a| b S \tag{2p}\\
& A \rightarrow a S|b A| b
\end{align*}
$$

(b) Let $\Sigma=\{a, b\}$. Give a grammar of maximal Chomsky type for each of the following languages, where type-3 is the largest and type-0 the smallest Chomsky type:
(i) $L_{3}=\left\{w \in \Sigma^{*} \mid w\right.$ contains at least one $\left.b\right\}$
(ii) $L_{4}=\left\{a^{n} b^{k} \mid n, k \in \mathbb{N}_{0} \wedge n<k\right\}$

Exercise 6: Word problem
Check by means of the algorithm for the word problem, which was presented in the lecture, whether the following words are contained in the language of the given grammars:
(a) $G_{1}=(\{S, X\},\{a, b\}, P, S)$, where P is defined as follows:

$$
\begin{aligned}
S & \rightarrow a X \\
X & \rightarrow a X b|b X a| a b \mid b a \\
a X & \rightarrow X a
\end{aligned}
$$

Decide whether the word baaba is part of the language $L\left(G_{1}\right)$ or not.
(b) Let $G_{2}=(\{S, A, B\},\{a, b\}, P, S)$, where P is defined as follows:

$$
\begin{array}{lll}
S \rightarrow S A B \mid a B & a A \rightarrow a a & a B \rightarrow a b \\
b B \rightarrow b b & B A \rightarrow A B
\end{array}
$$

Decide whether the word aaaabb is part of the language $L\left(G_{2}\right)$ or not.
(c) Give a - preferably small - type-0 grammar and a word generated by the grammar, such that the algorithm for the word problem does not detect that the word is generated by the grammar. (1 p)

[^0]: ${ }^{1}$ Options to submit your solutions: Letterbox next to LF 259 (Campus Duisburg) or via Moodle https://moodle.uni-due.de/course/view.php?id=15777

