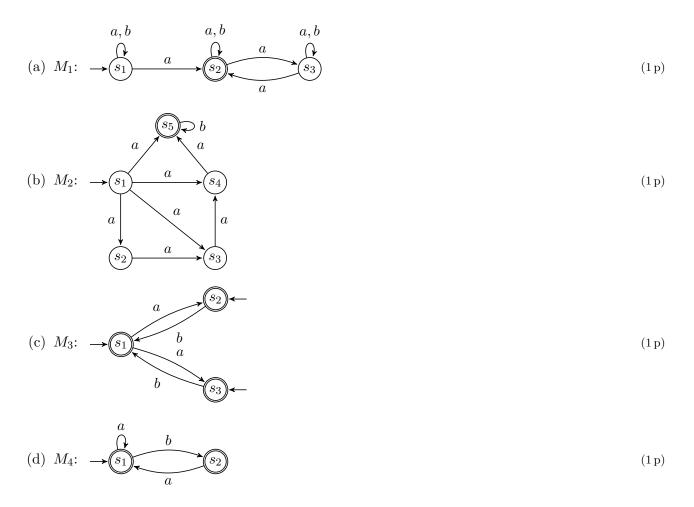
Universität Duisburg-Essen Faculty of Engineering Department of Computer Science and Applied Cognitive Science Theoretical Computer Science Group Prof. Dr. Barbara König

UNIVERSITÄT DUISBURG ESSEN

Open-Minded

Exercise sheet 4

Automaten und Formale Sprachen


Sommersemester 2019, Teaching assistant: Dennis Nolte, Lara Stoltenow

Submission¹: Monday, May 13, 2019, 10:00 Uhr

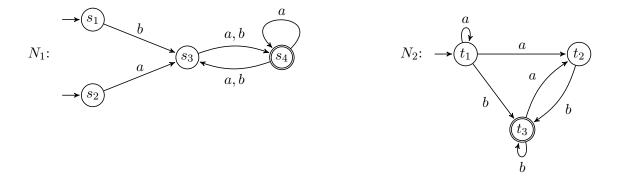
Exercise 11: Languages of NFA

(4 points)

Let $\Sigma = \{a, b\}$. In the following there are four non-deterministic finite automata (NFA) M_i . For every M_i , give the language accepted by the automaton.

¹Options to submit your solutions: Letterbox next to LF 259 (Campus Duisburg) or via Moodle https://moodle.uni-due.de/course/view.php?id=15777

Exercise 12: NFAs for regular languages (6 points)


Give a (non-deterministic) finite automaton for each of the following languages over the alphabet $\Sigma = \{a, b, c\}$, which accepts *exactly* the given language. Note: Do not use ε -edges in your NFAs.

- (a) The set of all words which end with ccb. (1.5 p)
- (b) The set of all words, where the words length is divisible by two or three (or both). (1.5 p)
- (c) The set of all words of the form $(aa)^n$ or $(bbb)^n$. (1.5 p)
- (d) The set of all words which can be constructed by an arbitrary concatenation of words of the set $\{aa, ab, cba\}$. This also includes concatenating one of the words zero times, i.e. the empty word is also in the language. (1.5 p) Note: This language can also be written as $L((aa \mid ab \mid cba)^*)$.

Exercise 13: Getting rid of NFAs

(5 points)

Let the following non-deterministic automata N_1 and N_2 with input alphabet $\Sigma = \{a, b\}$ be given:

Convert N_1 and N_2 to deterministic automata M_1 and M_2 by means of the power set construction. Note: You only have to specify reachable states.

Exercise 14: Conversion to NFAs

(5 points)

Let the following regular grammars $G_1 = (\{S, X\}, \Sigma, P_1, S)$ and $G_2 = (\{S, A, B, C\}, \Sigma, P_2, S)$ over the alphabet $\Sigma = \{a, b, c\}$ be given, where P_1 is defined as

$$S \to aX \mid bX \mid cX$$
 $X \to aS \mid a$

and P_2 is defined as:

$$\begin{split} S &\to cS \mid aA \mid bB \mid a \mid b \mid c & A \to cA \mid bC \mid b \mid c \\ C &\to cC \mid c & B \to cB \mid aC \mid a \mid c \end{split}$$

- (a) Describe, in words or in set notation, the languages L_1 and L_2 , which are generated by the grammars G_1 and G_2 . (2 p)
- (b) Construct a nondeterministic finite automata for each language L_1 and L_2 , by means of the procedure presented in the lecture. (3 p)

Note: First converting the grammars to automata can help you to understand their languages.

(In total, there are **20** points in this exercise sheet.)