Exercise sheet 4

Automaten und Formale Sprachen

Sommersemester 2019, Teaching assistant: Dennis Nolte, Lara Stoltenow
Submission ${ }^{1}$: Monday, May 13, 2019, 10:00 Uhr

Exercise 11: Languages of NFA

Let $\Sigma=\{a, b\}$. In the following there are four non-deterministic finite automata (NFA) M_{i}. For every M_{i}, give the language accepted by the automaton.
(a) M_{1} :

(b) M_{2} :

(d) M_{4} :

[^0]Exercise 12: NFAs for regular languages
Give a (non-deterministic) finite automaton for each of the following languages over the alphabet $\Sigma=\{a, b, c\}$, which accepts exactly the given language.
Note: Do not use ε-edges in your NFAs.
(a) The set of all words which end with $c c b$.
(b) The set of all words, where the words length is divisible by two or three (or both).
(c) The set of all words of the form $(a a)^{n}$ or $(b b b)^{n}$.
(d) The set of all words which can be constructed by an arbitrary concatenation of words of the set $\{a a, a b, c b a\}$. This also includes concatenating one of the words zero times, i.e. the empty word is also in the language.
(1.5 p)

Note: This language can also be written as $L\left((a a|a b| c b a)^{*}\right)$.

Exercise 13: Getting rid of NFAs
Let the following non-deterministic automata N_{1} and N_{2} with input alphabet $\Sigma=\{a, b\}$ be given:

Convert N_{1} and N_{2} to deterministic automata M_{1} and M_{2} by means of the power set construction. Note: You only have to specify reachable states.

Exercise 14: Conversion to NFAs
Let the following regular grammars $G_{1}=\left(\{S, X\}, \Sigma, P_{1}, S\right)$ and $G_{2}=\left(\{S, A, B, C\}, \Sigma, P_{2}, S\right)$ over the alphabet $\Sigma=\{a, b, c\}$ be given, where P_{1} is defined as

$$
S \rightarrow a X|b X| c X \quad X \rightarrow a S \mid a
$$

and P_{2} is defined as:

$$
\begin{array}{ll}
S \rightarrow c S|a A| b B|a| b \mid c & A \rightarrow c A|b C| b \mid c \\
C \rightarrow c C \mid c & B \rightarrow c B|a C| a \mid c
\end{array}
$$

(a) Describe, in words or in set notation, the languages L_{1} and L_{2}, which are generated by the grammars G_{1} and G_{2}.
(b) Construct a nondeterministic finite automata for each language L_{1} and L_{2}, by means of the procedure presented in the lecture.

Note: First converting the grammars to automata can help you to understand their languages.
(In total, there are $\mathbf{2 0}$ points in this exercise sheet.)

[^0]: ${ }^{1}$ Options to submit your solutions: Letterbox next to LF 259 (Campus Duisburg) or via Moodle https://moodle.uni-due.de/course/view.php?id=15777

