Exercise sheet 5

Automaten und Formale Sprachen

Sommersemester 2019, Teaching assistant: Dennis Nolte, Lara Stoltenow
Submission ${ }^{1}$: Monday, May 20, 2019, 10:00 Uhr

Exercise 15: Regular expressions for regular languages
Give regular expressions for the languages given below over the alphabet $\Sigma=\{a, b, c\}$.
(a) The set of all words of even length.
(b) The set of all words where there are no more b 's after the first c.
(c) The set of all words which do not have length 1 .
(d) The set of all words which do not contain any a, but contain at least one c.
(e) The set of all words which start with a and end with a.

Note: When writing down your regular expressions, use only the notation used in the definition of regular expression from the lecture. (This means that e.g. there is no ${ }^{+}$operator.)

[^0]Exercise 16: Regular Expressions and their languages
Let the following regular expression over the alphabet $\Sigma=\{a, b, c\}$ be given:

$$
\alpha=(a c|b c| c c)^{*}
$$

State for every regular expression β_{i} whether $L(\alpha) \subseteq L\left(\beta_{i}\right)$ holds and whether $L(\alpha) \supseteq L\left(\beta_{i}\right)$ holds, i.e. whether the language of one of the regular expressions is a sublanguage of the language of the other regular expression. Justify your answers!
(a) $\beta_{1}=(c a|c b| c c)^{*}$
(b) $\beta_{2}=((a|b| c) c)^{*}$
(c) $\beta_{3}=(a c)^{*}(b c)^{*}(c c)^{*}$
(d) $\beta_{4}=\left((a \mid b)^{*} c\right)^{*}$

Note: Two independent properties have to be shown for every pair α, β_{i}.

Exercise 17: Statements about regular languages
Let $\Sigma \neq \emptyset$ and let α be a regular expression over Σ. Decide for each of the following equations whether it holds for arbitrary α. Briefly motivate your answer. For answers without motivation, no points are given.
(a) $L(\emptyset) L(\alpha)=L(\alpha)$
(b) $L\left(\varepsilon \mid \alpha^{*}\right)=L\left(\alpha^{*}\right)$
(c) $L\left(\alpha \alpha^{*}\right)=L\left(\alpha^{*}\right) \backslash\{\varepsilon\}$

Decide (with justification) whether the following statement is true or not.
(d) If a language is finite, then it is regular.
(In total, there are $\mathbf{2 0}$ points in this exercise sheet.)

[^0]: ${ }^{1}$ Options to submit your solutions: Letterbox next to LF 259 (Campus Duisburg) or via Moodle https://moodle.uni-due.de/course/view.php?id=15777

