Universität Duisburg-Essen Faculty of Engineering Department of Computer Science and Applied Cognitive Science Theoretical Computer Science Group Prof. Dr. Barbara König

UNIVERSITÄT DUISBURG ESSEN

Open-Minded

Exercise sheet 5

Automaten und Formale Sprachen

Sommersemester 2019, Teaching assistant: Dennis Nolte, Lara Stoltenow

Submission¹: Monday, May 20, 2019, 10:00 Uhr

Exercise 15: Regular expressions for regular languages	(7 points)
Give regular expressions for the languages given below over the alphabet $\Sigma = \{a, b, c\}$.	
(a) The set of all words of even length.	(1 p)
(b) The set of all words where there are no more b 's after the first c .	$(1.5{ m p})$
(c) The set of all words which do <i>not</i> have length 1 .	$(1.5{ m p})$
(d) The set of all words which do not contain any a , but contain at least one c .	(1 p)
(e) The set of all words which start with a and end with a .	$(2\mathrm{p})$

Note: When writing down your regular expressions, use *only* the notation used in the definition of regular expression from the lecture. (This means that e.g. there is no^+ operator.)

¹Options to submit your solutions: Letterbox next to LF 259 (Campus Duisburg) or via Moodle https://moodle.uni-due.de/course/view.php?id=15777

Exercise 16: Regular Expressions and their languages

(8 points)

Let the following regular expression over the alphabet $\Sigma = \{a, b, c\}$ be given:

$$\alpha = (ac \mid bc \mid cc)^*$$

State for every regular expression β_i whether $L(\alpha) \subseteq L(\beta_i)$ holds and whether $L(\alpha) \supseteq L(\beta_i)$ holds, i.e. whether the language of one of the regular expressions is a sublanguage of the language of the other regular expression. Justify your answers!

(a)
$$\beta_1 = (ca \mid cb \mid cc)^*$$
 (2 p)

(b)
$$\beta_2 = ((a \mid b \mid c)c)^*$$
 (2 p)

(c)
$$\beta_3 = (ac)^* (bc)^* (cc)^*$$
 (2 p)

(d)
$$\beta_4 = ((a \mid b)^* c)^*$$
 (2 p)

Note: Two independent properties have to be shown for every pair α , β_i .

Exercise 17: Statements about regular languages (5 points)

Let $\Sigma \neq \emptyset$ and let α be a regular expression over Σ . Decide for each of the following equations whether it holds for arbitrary α . Briefly motivate your answer. For answers without motivation, *no* points are given.

(a)
$$L(\emptyset) L(\alpha) = L(\alpha)$$
 (1 p)

(b)
$$L(\varepsilon \mid \alpha^*) = L(\alpha^*)$$
 (1 p)

(c)
$$L(\alpha \alpha^*) = L(\alpha^*) \setminus \{\varepsilon\}$$
 (2 p)

Decide (with justification) whether the following statement is true or not.

(d) If a language is finite, then it is regular.

(In total, there are **20** points in this exercise sheet.)

(1 p)