Exercise sheet 6

Automaten und Formale Sprachen

Sommersemester 2019, Teaching assistant: Dennis Nolte, Lara Stoltenow
Submission ${ }^{1}$: Monday, May 27, 2019, 10:00 Uhr

Exercise 18: Conversion of finite automata to regular expressions
Let the following non-deterministic automata N_{1} and N_{2} be given:

Convert both non-deterministic automata N_{1} and N_{2} to regular expressions α and β. Use the procedure from the lecture! The regular expressions α and β have to describe the same languages that are accepted by the automata N_{1} and N_{2}. Thus the following should hold:

$$
L\left(N_{1}\right)=L(\alpha) \quad \text { and } \quad L\left(N_{2}\right)=L(\beta)
$$

Indicate all intermediate steps of your transformation.
Note: If you apply the rule S (deletion of loops) as late as possible, the resulting regular expressions will be smaller.

[^0]Exercise 19: Conversion of regular expressions to finite automata
Let $\Sigma=\{a, b\}$ and let the following regular expressions over Σ be given:

$$
\alpha=a^{*} b(a \mid b)^{*} \quad \text { and } \quad \beta=(a b \mid b)^{*}(a \mid \varepsilon) .
$$

(a) Which languages $L(\alpha)$ and $L(\beta)$ are described by these regular expressions? Use words or set notation.
(b) Convert both regular expressions α and β to non-deterministic automata M_{α} and M_{β}. Use the procedure from the lecture! The automata M_{α} and M_{β} must accept the same language as those described by the regular expressions α and β. Thus the following should hold:

$$
L(\alpha)=T\left(M_{\alpha}\right) \quad \text { and } \quad L(\beta)=T\left(M_{\beta}\right) .
$$

Indicate all intermediate steps of your transformation. Finite automata for a and b do not have to be given separately.

Exercise 20: Questions about closure properties
Decide whether the following statements hold for arbitrary languages $L_{1}, L_{2} \subseteq \Sigma^{*}$. Give either a proof or a counterexample in each case. Answers without any justification achieve no points.
Note: For the construction of counterexamples you can use the fact that nonregular languages exist. Examples for such nonregular languages are $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ or $\left\{w \in\{a, b\}^{*} \mid \# a(w)=\#_{b}(w)\right\}$.
(a) If $L_{1} \cup L_{2}$ is regular, then at least one of the languages L_{1} or L_{2} is regular.
(b) If $L_{1} \cup L_{2}$ is not regular, then at least one of the languages L_{1} or L_{2} is not regular.
(c) If L_{1} is regular and L_{2} is not regular, then $L_{1} \cup L_{2}$ is also not regular.
(d) If L_{2} is regular and $L_{1} \subseteq L_{2}$ holds, then L_{1} is also regular.
(e) If L_{1} is regular and $L_{1} \subseteq L_{2}$, then L_{2} is also regular.
(f) If L_{1} is regular, then the language $L_{2}=\left\{x y \mid x \in L_{1} \wedge y \notin L_{1} \wedge y \in \Sigma^{*}\right\}$ is also regular.
(In total, there are $\mathbf{2 0}$ points in this exercise sheet.)

[^0]: ${ }^{1}$ Options to submit your solutions: Letterbox next to LF 259 (Campus Duisburg) or via Moodle https://moodle.uni-due.de/course/view.php?id=15777

