Exercise sheet 7

Automaten und Formale Sprachen

Sommersemester 2019, Teaching assistant: Dennis Nolte, Lara Stoltenow
Submission ${ }^{1}$: Monday, June 3, 2019, 10:00 Uhr

Exercise 21 Closure properties of regular languages

Let $\Sigma=\{a, b\}$ and let the following deterministic finite automata $M_{1}=\left(Z_{1}, \Sigma, \delta_{1}, s_{1}, E_{1}\right)$ and $M_{2}=$ $\left(Z_{2}, \Sigma, \delta_{2}, t_{1}, E_{2}\right)$ be given:

(a) (i) Construct by means of the cross product construction given in the lecture a deterministic finite automaton M_{S}, which accepts the language

$$
T\left(M_{S}\right)=T\left(M_{1}\right) \cap T\left(M_{2}\right)
$$

Note: You only have to specify reachable states.
(ii) Give a deterministic finite automaton M_{V}, which accepts the language

$$
T\left(M_{V}\right)=T\left(M_{1}\right) \cup T\left(M_{2}\right)
$$

Note: You can construct this automaton using an adapted version of the cross product construction.
(b) Describe for two arbitrary deterministic finite automata $M^{\prime}=\left(Z^{\prime}, \Sigma, \delta^{\prime}, s^{\prime}, E^{\prime}\right)$ and $M^{\prime \prime}=$ $\left(Z^{\prime \prime}, \Sigma, \delta^{\prime \prime}, s^{\prime \prime}, E^{\prime \prime}\right)$ how to construct a deterministic finite automaton M that accepts the language

$$
T(M)=T\left(M^{\prime}\right) \cup T\left(M^{\prime \prime}\right)
$$

Briefly describe why your procedure is correct!

[^0]Exercise 22 Pumping Lemma for beginners
Show by means of the Pumping Lemma for regular languages, that the following languages are not regular:
(a) $L_{1}=\left\{a b^{k} c^{m} \mid k, m \in \mathbb{N}_{0} \wedge k>m\right\}$
(b) $L_{2}=\left\{a^{k} b^{\left(k^{2}\right)} \mid k \in \mathbb{N}_{0}\right\}$

Your proof should have the following form:
Let n be an arbitrary natural number. We choose the word $x=$ \qquad Then $x \in L$ and $|x| \geq n$ holds. We can decompose x in the following ways, such that $|u v| \leq n,|v| \geq 1$:

1) $u=\square, v=\square, w=\square$, where \square
2) $u=\square, v=\square, w=\square$, where \square
3) $u=\square, v=\square, w=\square$, where \square

For every decomposition there is an index i such that $u v^{i} w \notin L$. For the decompositions mentioned above, we choose the indices as follows:

1) $i=\square$, such that $u v^{i} w=$ \square $\notin L$, because \square
2) $i=\square$, such that $u v^{i} w=$ \square $\notin L$, because \square
3) $i=$ \qquad , such that $u v^{i} w=$ \qquad $\notin L$, because \qquad
According to the Pumping Lemma L is therefore not regular.
Note: The number of different decompositions depends on the chosen word and the way of describing the decompositions.

Exercise 23 Language of a state
You already know that the language of a deterministic finite automaton (DFA) is the set of all words w such that beginning at the start state and reading the word w, the DFA ends up in a final state.
We now define the language of a state $Z\left(s_{i}\right)$ as the set of words w such that beginning at a given state s_{i} and reading the word w, the DFA ends up in a final state. Formally: ${ }^{2}$

$$
Z\left(s_{i}\right)=\left\{w \in \Sigma^{*} \mid \hat{\delta}\left(s_{i}, w\right) \in E\right\}
$$

Now let the following deterministic automaton M be given:

As an example, starting at s_{2}, a final state can be reached by reading $a a$, therefore $a a \in Z\left(s_{2}\right)$. On the other hand, $b \notin Z\left(s_{2}\right), a b \notin Z\left(s_{2}\right), a \notin Z\left(s_{2}\right)$, since reading all these words results in a non-final state being reached.
(a) For each state of M, specify the language of this state. You can use set notation $\left(Z\left(s_{i}\right)=\{\ldots\}\right)$ or regular expressions $\left(Z\left(s_{i}\right)=L(\ldots)\right)$.
(b) Recall the definition of Myhill-Nerode equivalence:

$$
x \equiv_{L} y \Longleftrightarrow \text { for all } z \in \Sigma^{*} \text { it holds that }(x z \in L \Leftrightarrow y z \in L)
$$

We have $\hat{\delta}\left(s_{1}, a a\right)=s_{3}$ and $\hat{\delta}\left(s_{1}, b b\right)=s_{6}$. Also, it is easy to see that $Z\left(s_{3}\right)=Z\left(s_{6}\right)$ (if you did not solve subtask (a), then you may simply assume that this is true). Based on this, what is the relationship between the words $a a$ and $b b$? Give a short justification for your answer.
(c) Specify the Myhill-Nerode equivalence class of the word $a a\left([a a]_{\equiv_{T(M)}}=\{\ldots\}\right)$.
(In total, there are $\mathbf{2 0}$ points in this exercise sheet.)

[^1]
[^0]: ${ }^{1}$ Options to submit your solutions: Letterbox next to LF 259 (Campus Duisburg) or via Moodle https://moodle.uni-due.de/course/view.php?id=15777

[^1]: ${ }^{2} \hat{\delta}\left(s_{i}, w\right)=s_{k}$ means that if a DFA is in state s_{i} and reads w, then it is in s_{k} afterwards, see also slide 90 .

