Exercise sheet 8

Automaten und Formale Sprachen

Sommersemester 2019, Teaching assistant: Dennis Nolte, Lara Stoltenow
Submission ${ }^{1}$: Wednesday, June 12, 2019^{2}, 10:00 Uhr

Exercise 24 Pumping Lemma for advanced learners
Let $\Sigma=\{a, b\}$. Prove by means of the Pumping Lemma for regular languages, that the following languages are not regular:
(a) $L_{1}=\left\{a^{m^{2}} \mid m \in \mathbb{N}_{0}\right\}$
(b) $L_{2}=\left\{a^{n} b a^{2 n} \mid n \in \mathbb{N}_{0}\right\}$

Note: It is not sufficient to just give what has to be filled into the holes of the cloze text. You have to write down the entire proof!

[^0]In this exercise the equivalence of words according to the Myhill-Nerode equivalence shall be examined. Justify the correctness of your answers!
(a) Let the language $L_{1}=\left\{(a b c)^{n} \mid n \in \mathbb{N}_{0}\right\}$ over the alphabet $\Sigma=\{a, b, c\}$ be given. In the following we use the Myhill-Nerode equivalence $\equiv_{L_{1}}$.
(i) Give one equivalent word for each of the following words: a, c and $a b c$. Also give a word which is not equivalent to any of these three words.
(ii) Write down the equivalence class which contains the word a and the equivalence class which contains the word $a b c$ in set notation.
(b) Let the language $L_{2}=\left\{a^{n} b^{m} \mid n, m \in \mathbb{N}_{0}\right.$ and $n+m$ is even $\}$ over the alphabet $\Sigma=\{a, b\}$ be given. In the following we use the Myhill-Nerode equivalence $\equiv_{L_{2}}$.
(i) Give one equivalent word for each of the following words: $a b, b$ and a. Also give a word which is not equivalent to any of these three words.
(ii) Write down the equivalence class which contains the word $a b$ and the equivalence class which contains the word a in set notation.

Note: Do not confuse Myhill-Nerode equivalence classes with the language of a state as discussed in Exercise 23! (Given an automaton, equivalence classes are sets of words that lead to a set of acceptance-equivalent states, while the language of a state is a set of words that lead from some state to a final state.)

Exercise 26 Models for regular languages (former exam task)

Let the following regular language over the alphabet $\Sigma=\{a, b, c\}$ be given:

$$
L=\left\{w v \in \Sigma^{*} \mid w \text { contains exactly one } a \text { and } v \text { contains exactly one } b\right\}
$$

(a) Give a regular grammar that generates L.
(b) Give a finite automaton which accepts L.
(c) Give a regular expression which generates L.
(d) Is the language L finite?

Exercise 27 Closure properties and language classification
Let $\Sigma=\{a, b\}$. We give the language

$$
L=\left\{w \in \Sigma^{*} \mid \#_{a}(w)=\#_{b}(w)\right\}
$$

Argue, using the closure properties of regular languages, why L cannot be regular. You may use the fact that $\left\{a^{n} b^{n} \mid n \in \mathbb{N}_{0}\right\}$ is not regular.
(In total, there are $\mathbf{2 0}$ points in this exercise sheet.)

[^0]: ${ }^{1}$ Options to submit your solutions: Letterbox next to LF 259 (Campus Duisburg) or via Moodle https://moodle.uni-due.de/course/view.php?id=15777
 ${ }^{2}$ Only this time because of holidays

