Exercise sheet 9

Automaten und Formale Sprachen

Sommersemester 2019, Teaching assistant: Dennis Nolte, Lara Stoltenow
Submission ${ }^{1}$: Monday, June 17, 2019, 10:00 Uhr

Exercise 28 Equivalence of regular languages
Let the following deterministic finite automata M_{1} and M_{2} over the alphabet $\Sigma=\{a, b\}$ be given:

Check whether both deterministic finite automata are equivalent. Two finite automata are equivalent, if the following holds:

$$
T\left(M_{1}\right)=T\left(M_{2}\right)
$$

First of all construct the minimal automata of M_{1} and M_{2} by means of the algorithm presented in the lecture (4 points) and argue with the aid of the minimal automata, why M_{1} and M_{2} are (not) equivalent (2 points).
Indicate all intermediate steps of the algorithm. Submissions without intermediate steps do not achieve points!
Note: Minimal automata for a language are unique up to the naming of states.

[^0]Exercise 29 Regular languages and Myhill-Nerode equivalence
Show by means of the Myhill-Nerode Theorem, whether the following languages over the alphabet $\Sigma=\{a, b\}$ are regular or not:
(a) $L_{1}=\left\{w \in \Sigma^{*} \mid \#_{a}(w)=\#_{b}(w)\right\}$
(b) $L_{2}=\left\{a^{2 n} \mid n \in \mathbb{N}_{0}\right\}$
(c) $L_{3}=\left\{a^{n} b^{m} \mid n, m \in \mathbb{N}_{0} \wedge 1 \leq n \leq m\right\}$

Prove that the following problems are decidable by giving an algorithm for each problem that solves it. Assume that each language is given by a deterministic finite automaton. Justify the correctness of your algorithms!
(a) Let L_{1}, L_{2} be regular languages. Does the intersection of L_{1} and L_{2} contain infinitely many words?
(b) Let L_{1}, L_{2} be regular languages. Is the union of L_{1} and L_{2} equal to the set of all words?
(c) Let L_{1}, L_{2} be regular languages over the alphabet Σ. Is L_{2} the complement of L_{1} ?

Note: Your algorithms can use the algorithms presented in the lecture.
(In total, there are $\mathbf{2 0}$ points in this exercise sheet.)

[^0]: ${ }^{1}$ Options to submit your solutions: Letterbox next to LF 259 (Campus Duisburg) or via Moodle https://moodle.uni-due.de/course/view.php?id=15777

