Lecture notes on Modelling of concurrent systems

Harsh Beohar

April 23, 2019

Chapter 1

Some properties on bisimilarity

1.1 Closure properties

Definition 1. A symmetric relation $\mathcal{R} \subseteq S \times S$ on the states of a transition system (S, L, \rightarrow) is a bisimulation relation if, and only if, the following transfer property is satisfied.

$$\forall_{s,s',t\in S,a\in L} \ (s \xrightarrow{a} s' \wedge s\mathcal{R}t) \implies \exists_{t'\in S} \ t \xrightarrow{a} t' \wedge s'\mathcal{R}t'. \tag{1.1}$$

Two states $s, t \in S$ are bisimilar, denoted s = t, if there exists a bisimulation relation \mathcal{R} such that $s\mathcal{R}t$.

In other words, bisimilarity \rightleftharpoons is defined as the union of all bisimulation relations. However, the natural question is: whether bisimilarity is a bisimulation relation? Yes it is, which we prove next.

Lemma 1. The union of two bisimulation relations is a bisimulation relation.

Proof. Let $\mathcal{R}, \mathcal{R}'$ be two bisimulation relations on (S, L, \rightarrow) . Let $s\mathcal{R} \cup \mathcal{R}'t$ and let $s \xrightarrow{a} s'$. Then we distinguish two cases:

- Let $s\mathcal{R}t$. Then, by (1.1) we find a transition $t \stackrel{a}{\longrightarrow} t'$, for some t', such that $s'\mathcal{R}t'$. Clearly, $s'\mathcal{R} \cup \mathcal{R}'t'$.
- Let $s\mathcal{R}'t$. Similar to the previous case.

Lemma 2. The relational composition of two bisimulation relations results in a bisimulation relation.

Theorem 3. Bisimilarity, i.e., \Rightarrow is an equivalence relation.

Proof. Direct from the previous two lemmata.

1.2 The link with saturated bisimilarity

Definition 2. Let (S, L, \to) be a transition system. Define a family of symmetric relations $\sim_n \subseteq S \times S$ (for each $n \in \mathbb{N}$) as follows:

- Basis: $\sim_0 = S \times S$.
- Inductive step: $s \sim_{n+1} t \iff \forall_{s' \in S, a \in L} \ (s \stackrel{a}{\to} s' \implies \exists_{t'} \ t \stackrel{a}{\to} t' \land s' \sim_n t').$

Then the relation $\sim = \bigcap_{n \in \mathbb{N}} \sim_n$ is called *saturated* bisimilarity.

Lemma 4. $\forall_{m,n\in\mathbb{N}} \ m \leq n \implies \sim_m \supseteq \sim_n$.

Proof. It suffices to show that $\sim_{n+1} \subseteq \sim_n$, for any $n \in \mathbb{N}$. Let $s \sim_{n+1} t$, for some $n \in \mathbb{N}$, and let $s \xrightarrow{a} s'$. Then, $t \xrightarrow{a} t'$ and $s' \sim_n t'$, for some t'. By induction hypothesis $\sim_n \subseteq \sim_{n-1}$. Thus, $s' \sim_{n-1} t'$. Likewise, we can prove the transition originating from t. Hence, $s \sim_n t$.

Theorem 5. If the underlying transition system is image-finite, then the bisimilarity and saturated bisimilarity coincides, i.e., $\rightleftharpoons = \sim$.

Proof. \Longrightarrow This direction is obvious and the result follows directly from induction on \sim_n . \Longleftrightarrow Let $s \sim t$ and $s \stackrel{a}{\to} s'$. Then,

$$\Leftarrow$$
 Let $s \sim t$ and $s \to s$. Then,

$$\forall_{n>0} \exists_{t_n \in S} \ t \xrightarrow{a} t_n \land s' \sim_n t_n.$$

Since the underlying transition system is image finite, we know that the set $\{t' \mid t \xrightarrow{a} t' \land \exists_n s' \sim_n t'\}$ is finite. I.e., some element in this set that is appearing infinitely often in the sequence $(t_n)_{n \in \mathbb{N}}$. I.e., there is a state t_k (for some $k \in \mathbb{N}$) such that

$$\forall_{m \in \mathbb{N}} \exists_{n \in \mathbb{N}} \quad m \le n \land t_n = t_k. \tag{1.2}$$

Next, we claim that $\forall_{m \in \mathbb{N}} s' \sim_m t_k$. Let $m \in \mathbb{N}$. Clearly, from (1.2) we have some $n \in \mathbb{N}$ such that $m \leq n$ and $t_n = t_k$. And using Lemma 4 we conclude that $s' \sim_m t_k$. Hence, $s' \sim t_k$.

1.3 The link with Hennessy-Milner logic

Recall the Hennessy-Milner logical formulas are generated from the following grammar:

$$\Phi_{\mathrm{HML}} ::= \qquad \top \quad | \quad \langle a \rangle \varphi \quad | \quad \neg \varphi \quad | \quad \varphi \wedge \varphi'.$$

Define a modal depth δ as a function of type $\Phi_{HML} \longrightarrow \mathbb{N}$:

$$\begin{split} \delta(\top) &= 0 & \delta(\neg \varphi) = \delta(\varphi) \\ \delta(\langle a \rangle \varphi) &= \delta(\varphi) + 1 & \delta(\varphi \wedge \varphi') = \max(\delta(\varphi), \delta(\varphi')). \end{split}$$

Theorem 6. Let $\Phi_{HML}(n) = \{ \varphi \in \Phi_{HML} \mid \delta(\varphi) \leq n \}$ be the set of logical formulas of modal depth n and let $\Phi_{HML}(s,n) = \{ \varphi \in \Phi_{HML}(n) \mid s \models \varphi \}$. Then, two states are saturated bisimilar up to depth n if, and only if, they satisfy the same set of modal formulas of depth n. In symbols,

$$\forall_{n \in \mathbb{N}} \ s \sim_n t \iff \Phi_{HML}(s, n) = \Phi_{HML}(t, n).$$

Proof. \sqsubseteq Consider the above theorem statement as the definition of \sim_n . Clearly, $\sim_0 = S \times S$ because all states satisfy \top and $\Phi(s,0) = \{\top\}$. Furthermore, observe that

$$\forall_{n \in \mathbb{N}} \ \Phi_{\text{HML}}(s, n) = \Phi_{\text{HML}}(t, n) \implies \forall_{a \in L} \ s \xrightarrow{a} \iff t \xrightarrow{a}. \tag{1.3}$$

Now for the inductive case, assume $\Phi_{\text{HML}}(s,n) = \Phi_{\text{HML}}(t,n)$ to prove the contrapositive statement, i.e,

$$s \nsim_{n+1} t \implies \Phi_{\text{HML}}(n+1,s) \neq \Phi_{\text{HML}}(n+1,t).$$

Suppose $s \not\sim_{n+1} t$ and, without loss of generality, let $s \stackrel{a}{\to} s'$. Furthermore, we fix $\mathsf{Moves}(a,t) = \{t' \mid t \stackrel{a}{\to} t'\}$. Note that $\mathsf{Moves}(a,t) \neq \emptyset$ due to (1.3). Since the underlying transition system is image finite, we can enumerate the set $\mathsf{Moves}(a,t)$ by a finite nonempty index set I = [0,n] for some $n \in \mathbb{N}$. Then, we find that $\forall_{i \in I} s' \not\sim_n t'_i$. By induction hypothesis we get $\Phi_{\mathsf{HML}}(s',n) \neq \Phi_{\mathsf{HML}}(t'_i,n)$ for all $i \in I$. I.e., there are formulae $\varphi_i \in \Phi_{\mathsf{HML}}(s',n)$ such that $\varphi_i \notin \Phi_{\mathsf{HML}}(t'_i,n)$. So consider the formula $\varphi = \langle a \rangle \bigwedge_{i \in I} \varphi_i$. Clearly, $\delta(\varphi) = n + 1$ and, more importantly, we have $s \models \varphi$ but $t \not\models \varphi$. Thus, $\Phi_{\mathsf{HML}}(s,n+1) \neq \Phi_{\mathsf{HML}}(t,n+1)$. \Rightarrow Left as an exercise.

Corollary 7. For an image-finite transition system, logical equivalence coincides with bisimilarity.

Proof. Direct from Theorem 5 and Theorem 6. \Box