Mill Process Calculations - A Design and Optimization Tool for Wire Rod and Bar Mills developed at the University of Duisburg-Essen
Dr.-Ing. Christian Overhagen
University of Duisburg-Essen, Germany

```
UNIVERSITÄT
DEUSSSEBNURG
```


## Scope

- Introduction to Roll Pass Design and Groove Sequences
- The Mill Process Calculations (MPC) Geometry system
- Submodels of MPC
- Roll Force and Torque
- Spreading Calculation and Rectangular Equivalence Method
- Material Models: Flow Stress and Spreading Behaviour
- Calculation of Mill Temperature Profiles
- Elastic Stand Feedback and Interstand Tensions
- Example Calculations


## Section Shapes to be calculated using MPC



Rounds


Rounds (3-Roll)


Squares


Hexagons (3-Roll)
,,Until few decades ago, roll pass design was a kind of secret art, inherited from one to the next pass designer of a rolling mill, carried out behind closed doors of their office rooms, just like the art of gold making in the laboratories of the alchemists.

Wilhelm Tafel, ,,Rolling and Roll Pass Design" (1923)

## UNIVERSITÄT <br> DESSSEBN R G

## Design of Groove Sequences



Example: 80 mm square to 34 mm square in 6 passes (3 sequences)
square - diamond - square pass sequence
$\lambda_{\text {tot }}=\frac{A_{0}}{A_{e}} \quad$ (total elongation)
$\lambda_{\text {tot }}=\lambda_{\text {mean,seq }}{ }^{N} \quad$ (total elongation expressed by the sequence elongation and the number of sequences $N$ )
$N=\operatorname{TRUNC}\left(\frac{\ln \lambda_{\text {tot }}}{\ln \lambda_{\text {mean }, \text { seq }}}\right)+1$
(number of sequences needed for a given elongation)

$$
\lambda_{\text {seq, }, i}=\lambda_{\text {mean,seq }} \cdot \boldsymbol{Z}^{y_{i}} \begin{aligned}
& \text { degressive elongation } \\
& \text { distribution for } z>1)
\end{aligned}
$$

UNIVERSITÄT
DESSSEBN R G
Open-Minded

## MPC Geometry System; Polygonal Contours



Lower Roll Contour


Methods of pass design assessment and optimization in MPC:

- Simulation of groove sequences with given geometries
- Optimization of screw-down for given groove filling ratios
- Optimization with iterative refinement of grooves, also complete redesign is possible


## UNIVERSITÄT $D_{E S} U_{S} S_{E} B_{N} U R G$

Open-Minded

## Calculation of Roll Force and Torque



Slab theory acc. to von Karman, leading to differential equation of the roll gap:

$$
\frac{d\left(\sigma_{x} h\right)}{d x}=\sigma_{N} \frac{d h}{d x} \pm 2 \tau_{F}
$$

$$
F_{W}=b_{m} k_{f n} \sqrt{r \Delta h} \cdot Q_{P}
$$

$$
M_{\text {dges }}=2 \cdot b_{m} k_{f m} r \Delta h \cdot Q_{M}
$$

With: $Q_{P}=\frac{\sigma_{R}}{k_{f m}}+2 \sqrt{\frac{1-\varepsilon_{h}}{\varepsilon_{h}}} \arctan \left(\sqrt{\frac{\varepsilon_{h}}{1-\varepsilon_{h}}}\right)-1+\sqrt{\frac{r}{h_{1}}} \sqrt{\frac{1-\varepsilon_{h}}{\varepsilon_{h}}} \ln \frac{\sqrt{1-\varepsilon_{h}}}{1-\varepsilon_{h}\left(1-\beta_{F}{ }^{2}\right)}$

$$
Q_{M}=\sqrt{\frac{r}{h_{1}}} \sqrt{\frac{1-\varepsilon_{n}}{\varepsilon_{h}}}\left(\frac{1}{2}-\beta_{F}\right)
$$

20IInc $\beta_{-12} \beta_{F}=\left(\frac{\alpha_{F}}{\alpha_{0}}\right)=\sqrt{\frac{1-\left|\varepsilon_{h}\right|}{\left|\varepsilon_{h}\right|}} \tan \left\{\frac{1}{2} \sqrt{\frac{h_{1}}{r}}\left[\frac{\sigma_{R}-\sigma_{V}}{k_{f n}}+\ln \left(1-\left|\varepsilon_{h}\right|\right)\right]+\frac{1}{2} \arctan \sqrt{\frac{\left|\varepsilon_{h}\right|}{1-\left|\varepsilon_{h}\right|}}\right\}$

## UNIVERSITÄT DESSSERN R G

## Spread Calculation

$$
\begin{array}{ll}
\text { Marini's spread equation: } & A=\frac{\sqrt{\Delta h}}{2 \mu \sqrt{\frac{d_{w}}{2}}} \\
b_{1}=b_{0}+\frac{2 B \cdot \Delta h \cdot b_{0} \cdot\left(\frac{d_{w}-h_{0}}{2}\right)}{0,91 \cdot \frac{b_{0}+3 h_{0}}{4 h_{0}} \cdot\left(h b_{0}+b_{0} \frac{h_{0}+h_{1}}{2} \cdot \frac{1+A}{1-A}\right)+h \cdot d_{w} \cdot B} & B=\sqrt{\frac{2 \Delta h}{d_{w}}}
\end{array}
$$




Equivalence Method, based upon works by A.E. Lendl and P.J. Mauk

$$
h_{1 L}=\frac{A_{1 L}}{b_{L}}=\frac{b_{L} h_{1}-2 b_{L} R+b_{L} \sqrt{R^{2}-\frac{b_{L}^{2}}{4}}+2 R^{2} \arcsin \left(\frac{b_{L}}{2 R}\right)}{b_{L}}
$$

$$
b_{L}=2 \sqrt{R-\left(\frac{h_{1} R-\frac{h_{1}^{2}}{4}-R^{2}}{h_{1}-2 R}\right)^{2}}
$$

(analytical solution for the pass Round in Oval)

## UNIVERSITÄT 

## Material Modeling 1 - Flow Curves



$$
k_{f}(\varphi, \dot{\varphi}, \vartheta)=K e^{m_{1} \vartheta} \dot{\varphi}^{m_{2}+m_{5} \vartheta} \varphi^{m_{3}} e^{m_{4} \varphi}
$$

The „Duisburg Approach" for hot flow curves (Function No. 8 acc. to Gottschling and Mauk)

Coefficients of this function are available for a set of 270 steel materials
(mean flow stress for simplified rolling models)

## Material Modeling 2 - Spread behaviour



After experiments carried out by Grosse and Gottwald (1951)
$f_{b}=\frac{\left(\frac{\Delta b}{\Delta h}\right)}{\left(\frac{\Delta b}{\Delta h}\right)_{\text {ref }}}$

The temperature-dependent spread factors are available for a set of common steel materials

A newer approach is the prediction of the material dependent spreading by the use of artificial neural networks (see presentation by Maik Tino Gruszka in session Mathematical Modeling and Simulation VI on Friday)

## Temperature Field Calculations

One-dimensional axisymmetric heat equation:
$\rho c_{p} \frac{\partial T}{\partial t}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \lambda \frac{\partial T}{\partial r}\right)+s_{q}$
Mathematical Formulation

$$
a T_{i, k}+b T_{i-1, k}+c T_{i+1, k}=T_{i, k-1}+\frac{\Delta t s_{q, i, k-1}}{\rho_{i, k-1} \cdot c_{p, i, k-1}}
$$

Finite Difference Approximation

Numerical solution by finite differences (one linear system for one time $k$ ), boundary conditions are given by the mill layout in a layout data file. (excerpt example given below)


## Example for a temperature field calculation in a bar mill




Data of this example available online!

## UNIVERSITÄT $\mathrm{D}_{\mathrm{E}} \mathrm{U}_{S_{S}} \mathrm{~S}_{\mathrm{E}} \mathrm{BN}_{\mathrm{N}} \mathrm{U}$ R G

Three-Roll and Four-Roll Rolling Techniques (1)


UNIVERSITĂT



## Three-Roll and Four-Roll Techniques (2)



Ch. Overhagen: Pass Design Methods for Three- and Four-Roll Rolling Processes Comparison and Analysis, 11th International Rolling Conference, Sao Paulo, Brazil, 2019

UNIVERSITÄT
$D_{E S} U_{S} S_{E} B_{N}^{U}$ R G

## Example Calculations - Elastic Stand Feedback


A) Effects of Elastic Feedback
B) Effects of Elastic Feedback combined with Interstand Tensions

```
Data of this example available online!
https://www.uni-due.de/umf/mpc.php
```

UNIVERSITÄT
D_U ISSEBN R G
Open-Minded

## Elastic feedback of the rolling stands

Gagemeter Equation: $\quad s^{\prime}=s_{o}+\frac{F}{C_{S}}$

$s^{\prime}$ : Roll gap under load [mm]
$s_{0}$ : Unloaded roll gap [mm]
$F$ : Rolling Force [kN]
$C_{S}$ : Elastic Modulus of Rolling Stand [kN/mm]

Dashed lines: rigid stands Solid lines: with elasticity

## Interstand Tension Assessments


$a_{i}=\frac{\partial \omega_{i}}{\partial t_{0, i}}=\frac{\partial \omega_{i}}{\partial \alpha_{N, i}} \cdot \frac{\partial \alpha_{N, i}}{\partial t_{0, i}}$
Leads to a linear equation system for the unknown tensions
$b_{i}=\frac{\partial \omega_{i}}{\partial t_{1, i}}=\frac{\partial \omega_{i}}{\partial \alpha_{N, i}} \cdot \frac{\partial \alpha_{N, i}}{\partial t_{1, i}} \quad \mathbf{A t}=\mathbf{W}$
$\omega_{i}=f\left(t_{0}, t_{1}, \dot{V}\right)$
$\omega_{i}=\omega_{0, i}+a_{i} t_{0, i}+b_{i} t_{1, i}$
Change of the roll speed due to change of the tensions:
$\Delta \omega_{i}=a_{i} \Delta t_{0, i}+b_{i} \Delta t_{1, i}$
Change of the roll speed difference of two successive stands due to change of the tensions:

$$
\Delta \omega_{i+1}-\Delta \omega_{i}=\left(a_{i+1}-b_{i}\right) \Delta t_{1, i}-a_{i} \Delta t_{0, i}+b_{i+1} \Delta t_{1, i+1}
$$

$$
\begin{aligned}
& \varphi_{l}=\varphi_{l 0}+\Delta \varphi_{l \sigma} \\
& \quad \Delta \varphi_{l \sigma}=k_{1}\left(\frac{t_{0}}{k_{f n}}\right)^{2}+k_{2}\left(\frac{t_{0}}{k_{f n}}\right)+k_{3}\left(\frac{t_{1}}{k_{f n}}\right) \\
& k_{i}=m_{1 i} \frac{\Delta h}{h_{0}}+m_{2 i} \frac{b_{0}}{h_{0}}+m_{3 i} \frac{A_{d}}{A_{m}} ; i=1 \ldots 3
\end{aligned}
$$

## Rolling

## Example Calculations - Assessment of interstand tensions




[^0]UNIVERSITÅT
DESSSERNRG

## Summary

- Grown in 15 years of continuous development, MPC today is a software package that can aid the pass designer or rolling mill engineer in new- or redesigning groove sequence, or in optimization of the rolling processes.
- The assessment of interstand tensions can be carried out with MPC from known groove setups and roll speeds. The knowledge of the acting tensions is an important building block towards the digital twin of a section rolling process.
- The three- and four-roll technologies are implemented, enabling MPC to be used for optimization of these rolling processes

Thank you for your interest !


Dr.-Ing. Christian Overhagen
Lecturer Metal Forming
University of Duisburg-Essen, Duisburg, Germany Faculty of Engineering

Institute for Technologies of Metals
christian.overhagen@uni-due.de

MPC is available to industrial partners as part of a training programme in rolling theory and roll pass design.
Please contact me if you are interested !


Pieter Josseling de Jong: "Wire Rod Mill, England" (1885)


Herman Heijenbrock: „Workers in the Rolling Mill" (1915)


Adolph von Menzel: „The Iron Rolling Mill" (1875)


Arthur Kampf: „Rolling Mill" (1904)

## UNIVERSITÅT D $\mathrm{U}_{S} \mathrm{~S}_{\mathrm{S}} \mathrm{B}$ U R G ESSSEN


[^0]:    Data of this example available online !
    https://www.uni-due.de/umf/mpc.php

