During modern anesthesia isoflurane is delivered by an inhalation mask or by intubation. Since only a small proportion of isoflurane is absorbed by the patient the largest part remains in the exhaled air. Leaks in the dosing system and inefficient ventilation induce a contamination of indoor air. Even traces of isoflurane lead to symptoms of fatigue on medical staff if exposed to it over longer periods of time.

One measure to remove those trace level concentrations is an adsorptive process. Against this background the adsorption of anesthetics (isoflurane, sevoflurane and desflurane) on activated carbons, dealkuminated zeolites and newly developed adsorbents is systematically investigated.

During modern anesthesia isoflurane is delivered by an inhalation mask or by intubation. Since only a small proportion of isoflurane is absorbed by the patient the largest part remains in the exhaled air. Leaks in the dosing system and inefficient ventilation induce a contamination of indoor air. Even traces of isoflurane lead to symptoms of fatigue on medical staff if exposed to it over longer periods of time.

One measure to remove those trace level concentrations is an adsorptive process. Against this background the adsorption of anesthetics (isoflurane, sevoflurane and desflurane) on activated carbons, dealkuminated zeolites and newly developed adsorbents is systematically investigated.

During modern anesthesia isoflurane is delivered by an inhalation mask or by intubation. Since only a small proportion of isoflurane is absorbed by the patient the largest part remains in the exhaled air. Leaks in the dosing system and inefficient ventilation induce a contamination of indoor air. Even traces of isoflurane lead to symptoms of fatigue on medical staff if exposed to it over longer periods of time.

One measure to remove those trace level concentrations is an adsorptive process. Against this background the adsorption of anesthetics (isoflurane, sevoflurane and desflurane) on activated carbons, dealkuminated zeolites and newly developed adsorbents is systematically investigated.

During modern anesthesia isoflurane is delivered by an inhalation mask or by intubation. Since only a small proportion of isoflurane is absorbed by the patient the largest part remains in the exhaled air. Leaks in the dosing system and inefficient ventilation induce a contamination of indoor air. Even traces of isoflurane lead to symptoms of fatigue on medical staff if exposed to it over longer periods of time.

One measure to remove those trace level concentrations is an adsorptive process. Against this background the adsorption of anesthetics (isoflurane, sevoflurane and desflurane) on activated carbons, dealkuminated zeolites and newly developed adsorbents is systematically investigated.

During modern anesthesia isoflurane is delivered by an inhalation mask or by intubation. Since only a small proportion of isoflurane is absorbed by the patient the largest part remains in the exhaled air. Leaks in the dosing system and inefficient ventilation induce a contamination of indoor air. Even traces of isoflurane lead to symptoms of fatigue on medical staff if exposed to it over longer periods of time.

One measure to remove those trace level concentrations is an adsorptive process. Against this background the adsorption of anesthetics (isoflurane, sevoflurane and desflurane) on activated carbons, dealkuminated zeolites and newly developed adsorbents is systematically investigated.

During modern anesthesia isoflurane is delivered by an inhalation mask or by intubation. Since only a small proportion of isoflurane is absorbed by the patient the largest part remains in the exhaled air. Leaks in the dosing system and inefficient ventilation induce a contamination of indoor air. Even traces of isoflurane lead to symptoms of fatigue on medical staff if exposed to it over longer periods of time.

One measure to remove those trace level concentrations is an adsorptive process. Against this background the adsorption of anesthetics (isoflurane, sevoflurane and desflurane) on activated carbons, dealkuminated zeolites and newly developed adsorbents is systematically investigated.

During modern anesthesia isoflurane is delivered by an inhalation mask or by intubation. Since only a small proportion of isoflurane is absorbed by the patient the largest part remains in the exhaled air. Leaks in the dosing system and inefficient ventilation induce a contamination of indoor air. Even traces of isoflurane lead to symptoms of fatigue on medical staff if exposed to it over longer periods of time.

One measure to remove those trace level concentrations is an adsorptive process. Against this background the adsorption of anesthetics (isoflurane, sevoflurane and desflurane) on activated carbons, dealkuminated zeolites and newly developed adsorbents is systematically investigated.

During modern anesthesia isoflurane is delivered by an inhalation mask or by intubation. Since only a small proportion of isoflurane is absorbed by the patient the largest part remains in the exhaled air. Leaks in the dosing system and inefficient ventilation induce a contamination of indoor air. Even traces of isoflurane lead to symptoms of fatigue on medical staff if exposed to it over longer periods of time.

One measure to remove those trace level concentrations is an adsorptive process. Against this background the adsorption of anesthetics (isoflurane, sevoflurane and desflurane) on activated carbons, dealkuminated zeolites and newly developed adsorbents is systematically investigated.

During modern anesthesia isoflurane is delivered by an inhalation mask or by intubation. Since only a small proportion of isoflurane is absorbed by the patient the largest part remains in the exhaled air. Leaks in the dosing system and inefficient ventilation induce a contamination of indoor air. Even traces of isoflurane lead to symptoms of fatigue on medical staff if exposed to it over longer periods of time.

One measure to remove those trace level concentrations is an adsorptive process. Against this background the adsorption of anesthetics (isoflurane, sevoflurane and desflurane) on activated carbons, dealkuminated zeolites and newly developed adsorbents is systematically investigated.