Name:	Signature:	
Matriculation No.:	Participation No.: 1, 2 or 3	(circle appropriate)
Prof. Meckenstock / Prof. Siebers	PKZ: 1722/40	0105 / 40191

Part A: Prof. Meckenstock

1. a) Imagine an aquifer which is contaminated with 1 mM toluene. The groundwater has a background concentration of 0.5 mM. Show with a chemical equation if the amount of sulfate is enough to oxidize the toluene. (10 points)

b) In your study you find that acetate is accumulating in the aquifer. Can it be that anaerobic acetate oxidation with sulfate is not thermodynamically feasible? Show a thermodynamic calculation under standard conditions. (See table next page)

(5 points)

1

S1: M. Sc. Water Science	Environ	mental Microbiology	14.10.2015
Name:	Si	ignature:	
Matriculation No.:	Pa	articipation No.: 1, 2 or 3	3 (circle appropriate)
Prof. Meckenstock / Prof. S	Siebers	PKZ: 1722/4	40105 / 40191
Tafel 9.7. Bildungsenth	alpien biolog	gisch relevanter Stoffe	ΔG_{of} (kJ/mol)
H_2	0	H ⁺ (1 M)	0
H ⁺ (pH=7)	-39.9		
H ₂ O	-237.2	O_2	о
CO	-137.2	\overline{CO}_2	-394.4
HCO ₃ ⁻	-586.9	CH_4	-50.8
Formiat	-351.0	Acetat	-369.4
Glucose	-917.2	Lactat	-517.8
Pyruvat ⁻	-474.6	Butyrat⁻	-352.6
Succinat ²⁻	-619.2	Ethanol	-181.8
N.		NTT +	
N ₂	0	NH4 ⁺	-79.4
NO	+86.6	NO ₂	-37.2
NO ₃	-111.3	N_2O	+104.2
S° (rhombisch)	о	HS⁻	+12.5
H ₂ S	-33.6	S ²⁻	+85.8
$(H_2S + HS)/2$	-10.5	SO3 ²⁻	-486.6
HSO ₃	-527.8	SO_4^{2-} $S_3O_6^{2-}$	-744.6
$S_2O_3^{2-}$	-513.4	$S_{3}O_{6}^{2}$	-1022.2
$S_4O_6^{2-}$	-958.1	2	
Fe ²⁺	-78.8	Fe ³⁺	-4.6
FeS ₂	-150.8		
Mn ²⁺	227.0	Mn^{3+}	-82.1
MnO_4^{2-}	-227.9 -506.6	MnO_2	
WIIIO ₄	-506.6		-456.7
		Cypionka, Grundlagen der Mikr	robiologie, 3. Aufl.

S1: M. Sc. Water Science	Environmental Microbiology	14.10.2015
Name:	Signature:	
Matriculation No.:	Participation No.: 1, 2 or 3	(circle appropriate)
Prof. Meckenstock / Prof. Siebe	ers PKZ: 1722 / 4	0105 / 40191

2) Is the classical redox sequence model for hydrocarbon contaminated aquifers still valid? Discuss your statement. (10 points)

S1: M. Sc. Water Science	Environmental Microbiology	14.10.2015
Name:	Signature:	
Matriculation No.:	Participation No.: 1, 2 or 3	(circle appropriate)
Prof. Meckenstock / Prof. Siebe	rs PKZ: 1722 / 40	0105 / 40191

3) How would you assess the biodegradation of PCE in a contaminated aquifer? (10 points)

S1: M. Sc. Water Science	Environmental Microbiology	14.10.2015
Name:	Signature:	
Matriculation No.:	Participation No.: 1, 2 or 3	(circle appropriate)
Prof. Meckenstock / Prof. Sieb	ers PKZ: 1722 / 4	0105 / 40191

4) Imagine a pollutant which can only be degraded with molecular oxygen and which is buried in 1 m depth of the saturated sandy sediment of a lake. A consultant proposes to leave the situation untouched because oxygen will diffuse into the sediment and the pollutant will be degraded. Do you agree? (10 points)

S1: M. Sc. Water Science	Environmental Microbiology	14.10.2015	
Name:	Signature:		
Matriculation No.:	Participation No.: 1, 2 or	Participation No.: 1, 2 or 3 (circle appropriate)	
Prof. Meckenstock / Prof. Siebe	ers PKZ: 1722 / -	PKZ: 1722 / 40105 / 40191	

⁵⁾ In a hydrocarbon-contaminated aquifer, you detect benzoic acid, and benzyl-succinic acid. What does tell you about biodegradation? (5 points)