

Seminar II

Seminar II

- ATP-Generation via substrate level phosphorylation, electron transport phosphorylation
- (Eukaryotic/prokaryotic cell)
- Bacterial cell wall
- Antibiotic resistance

Principles of Metabolism -Energy generation-

Energy Change in Exergonic und Endergonic Reactions

> Change of free energy (Δ G Gibbs free energy (enthalpie)) indicates if a reaction runs spontaneous or not.

- $> \Delta G^{0}$: standard conditions, pH 7, 25°C, all reaction compounds at 1M
- Reaction runs spontaneous, AG<0 (exergonic reaction)</p>
- Reaction can not run spontaneous \(\Delta G > 0\) (endergonic reaction)

Fig. 6.5 Biology (6th edition, Campbell & Reece)

Chemical Principles

Example Cellular Respiration

Fig. 9.5 Biology (6th edition, Campbell & Reece)

Electron Transfer in Metabolism

Oxidation-Reduction "Redox"-reactionen Oxidation: donation/release of electrons Reduktion: acception/uptake of electrons

Redoxreaktionen & Redoxpotential

$$\mathrm{H_2} + {}^{1\!\!/_2}\mathrm{O_2} \to \mathrm{H_2O}$$

 $H_2 \rightarrow 2 e^- + 2 H^+$ Electron-donor

 $\frac{1}{2} O_2 + 2 e^- \rightarrow O^{2-}$ Electron-acceptor

Reduction (Redox) potential: Substrates vary in their tendency to be oxidized or reduced, wich is expressed as reduction potential (E_0 ') in volts (V). The free energy (ΔG^{0°) of the redox reaction is proportional to the difference of the reduction potential (E_0 ', standard conditions) of both half reactions.

 $\Delta G^{0^{\circ}} = -n \bullet F \bullet \Delta E_0^{\circ} = -n \bullet 96,5 \bullet \Delta E_0^{\circ} \text{ (kJ/mol)}$

n = number of transferred electrons

F = Faraday constant

Fig. 5.8, 5.9 Brock Biology of Microorganisms (10th edition) (Madigan et al.)

The Electronen Tower

Redoxpairs arranged from the strongest reductants (neg. reduction potential, at the top) to the strongest oxidants (positive reduction potential, at the bottom).

Electronen Carriers

Glyceraldehyde-3-phosphate dehydrogenase:

Glyceraldehyde-3-phosphate + NAD⁺ + $P_i \leftrightarrow 1,3$ -Diphosphoglycerate + NADH + H⁺

Energy Currency of all Cells "ATP"

 $\Delta G^{0^{\circ}}$ of ATP synthesis or hydrolysis = 32 kJ/mol

Energy-Rich Compounds

Basic Mechanisms of Energy Conservation

Fig. 5.13 Brock Biology of Microorganisms (11th edition) (Madigan et al.)

EMP-Weg (Glycolysis)

Figure 14-2a Lehninger Principles of Biochemistry, Fifth Edition © 2008 W. H. Freeman and Company

EMP-Weg (Glycolysis)

Figure 14-2b Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

Glyceraldehyde-3-phosphate dehydrogenase

• Which compound is oxidized/reduced?

 $\Delta G'^{\circ}$ = 6.3 kJ/mol

1,3-Bisphosphoglycerate

Energetics of Glycolysis

Fig. 9.8 **Die Glycolyse im Überblick.** Biology (6th edition, Campbell & Reece)

Pyruvat Dehydrogenase and Citric Acid Cycle

Energetics of Carbohydrate Metabolism

Electron Transport Chain

The mitochondrial or bacterial electron transport chain (ETC) = a series of e⁻ carriers, operating together to transfer e⁻ from NADH and FADH₂ to a terminal e⁻ acceptor, O₂

E⁻ flow from carriers with more negative reduction potentials (E₀) to carriers with more positive E₀

Elektron Transport Chain

- In eukaryotes the e⁻ transport chain carriers are in the inner mitochondrial membrane, connected by coenzyme Q and cytochrome c
- E⁻ transfer accompanied by proton movement across inner mitochondrial membrane (proton pumps)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chemiosmotic Model

- In this simple representation of the chemiosmotic theory applied to mitochondria, electrons from NADH and other oxidizable substrates pass through a chain of carriers arranged asymmetrically in the inner membrane.
- Electron flow is accompanied by proton transfer across the membrane, producing both a chemical gradient (ΔpH) and an electrical gradient (Δψ).
- The inner mitochondrial membrane is impermeable to protons; protons can reenter the matrix only through proton-specific channels (F_o). The proton-motive force (PMF) that drives protons back into the matrix provides the energy for ATP synthesis, catalyzed by the F₁ complex associated with E

Figure 19-19 Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

ATP-Synthase/ATPase

Fig. 14.15 Essential Cell Biology (2nd edition, Alberts, Bray et al.)

Energetics of Carbohydrate Metabolism (Aerobic Respiration)

PMF Energized Membrane

Proton-motive force (PMF)

Figure 12-11 Essential Cell Biology, 2/e. (© 2004 Garland Science)

Fermentation

Atmung/Fermentation

Fig. 5.14 Microbiology: An Introduction (Tortora, Funke, Case)

Lacitc Acid Fermentation

Lactococcus lactis

Anaerobic Respiration

- Alternative electron acceptors in absence of oxygen
- Energy source:

mostly organic compounds (chemoorganotrophic org.); but also inorganic compounds (chemolithotrophic org.)

• Electron acceptors:

Inorganic compounds, NO₃⁻, SO₄²⁻, Fe³⁺, NO₂⁻, S⁰, CO₂

• Electron transport chain:

analogue to the aerobic chain (Cytochrome, Quinone, Fe-S Proteine)

- Facultative aerobes/anaerobes with aerobic and anaerobic respiration;
- Obligate anaerobes only anaerobic respiration

Nitrate Reduction (*E. coli*)

Enterobacteriaceae (e.g. *E. coli*)

aerob

- facultative anaerobic Bacteria (anaerobic fermentation)
- only reduction of nitrate to nitrite (nitrate reductase A)

Fig. 17.37 Vergleich aerobe und Nitrat Atmung. Brock Biology of Microorganisms (10th edition) (Madigan et al.)

Knallgas-Bacteria

- Biologic knallgas-reaktion "Oxidation of hydrogen"
- H_2 + ½ O_2 → H_2O ΔG⁰'=-237 kJ "Hydrogenase"
- Different Bacteria:
 - G⁻: Pseudomonas, Alcaligenes, Paracoccus,
 - G⁺: Nocardia, Mycobacterium, Bacillus
- Hydrogenase (membrane-bound) "Electron transport"; some organisms in addition soluble hydrorgenase "direct reduction of NAD+"
- Chemolithoautotrophe "CO₂ fixation via calvin cycle"
- Chemoorganotrophic growth (Calvin cycle and hydrogenase repressed)

Photosynthesis Light- and dark-reaction

Fig. 10.4 Biology (6th edition, Campbell & Reece)

Non-cyclic Photophosphorylation

Fig. 10.12 Biology (6th edition, Campbell & Reece)

Plastoquinone (Pq), Cytochrome b₆-f-complex (proton pump), Plastocyanin (Pc, Cu²⁺-Protein)

The Light Reaction and Chemiosmosis

Fig. 10.16 Biology (6th edition, Campbell & Reece)

Comparison of Chemioosmosisin Mitochondrien und Chloroplasten

Fig. 10.8 Biology (6th edition, Campbell & Reece)

Seminar II

- ATP-Generation via substrate level phosphorylation, electron transport phosphorylation
- (Eukaryotic/prokaryotic cell)
- Bacterial cell wall
- Antibiotic resistance

Prokaryotes & Eukaryotes

• Gram positive cell wall

Gram negative cell wall

Figure 4-35a Brock Biology of Microorganisms 11/e © 2006 Pearson Prentice Hall, Inc.

N-acetylglucosamine

 N-acetylglucosamine, a sugar derivative, basic building block for chitin and murein.

- Structure of the polysaccharide in bacterial cell wall peptidoglycan.
- The glycan is a polymer of alternating GlcNAc and Nacetylmuramic acid (MurNAc, Lactic acid linked to C-4 atom) residues.
- Alternating peptide chains of Dund L-amino acids
- Linkage of the L-alanine amino group (amide linkage) with the lactylcarboxylgroup of a MurNac residue

(a) Diaminopimelinsäure(b) Lysin

© 2006 Pearson Prentice Hall, Inc.

Figure 8-31b Principles of Biochemistry, 4/e © 2006 Pearson Prentice Hall, Inc.

Glycoconjugate

- Glycolipids
 - Lipopolysaccharide (Gram negative Bacteria, outer membrane)

Mode of Action of Some Major Antimicrobial Agents

Antimicrobial Spectrum of Activity

Antimicrobial Drug Resistance

• Antimicrobial drug resistance

 The acquired ability of a microbe to resist the effects of a chemotherapeutic agent to which it is normally sensitive

Mechanisms of Drug Resistance

- Prevent entrance of drug
- Drug efflux (pump drug out of cell)
- Inactivation of drug
 - chemical modification of drug by pathogen
- Modification of target
 enzyme or organelle
- Use of alternative pathways or increased production of target metabolite

Sites at Which Antibiotics are Attacked by Enzymes

Antimicrobial Drug Resistance

- Most drug-resistant bacteria isolated from patients contain drug-resistance genes located on R plasmids
- The use of antibiotics in medicine, veterinary, and agriculture select for the spread of R plasmids
 - Many examples of overuse of antibiotics
 - Used far more often than necessary (i.e., antibiotics used in agriculture as supplements to animal feed)

Patterns of Drug Resistance in Pathogens

