

Seminar III

Seminar III

- ATP-Generation via substrate level phosphorylation, electron transport phosphorylation
- CO₂ Fixation
- (Eukaryotic/prokaryotic cell)
- Bacterial cell wall
- Antibiotic resistance

Basic Mechanisms of Energy Conservation

Fig. 5.13 Brock Biology of Microorganisms (11th edition) (Madigan et al.)

Energy-Rich Compounds

Chemiosmotic Model

- In this simple representation of the chemiosmotic theory applied to mitochondria, electrons from NADH and other oxidizable substrates pass through a chain of carriers arranged asymmetrically in the inner membrane.
- Electron flow is accompanied by proton transfer across the membrane, producing both a chemical gradient (ΔpH) and an electrical gradient (Δψ).
- The inner mitochondrial membrane is impermeable to protons; protons can reenter the matrix only through proton-specific channels (F_o). The proton-motive force (PMF) that drives protons back into the matrix provides the energy for ATP synthesis, catalyzed by the F₁ complex associated with E

Figure 19-19 Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

PMF Energized Membrane

Proton-motive force (PMF)

Figure 12-11 Essential Cell Biology, 2/e. (© 2004 Garland Science)

ATP-Synthase/ATPase

Fig. 14.15 Essential Cell Biology (2nd edition, Alberts, Bray et al.)

Energetics of Carbohydrate Metabolism (Aerobic Respiration)

Aerobic Respiration "Eucaryotes"

Abb. 9.6 Die Zellatmung im Überblick.

Biologie (Campbell)

Regulation

Fig. 9.20 **Die Kontrolle der Zellatmung.** Biology (6th edition, Campbell & Reece)

Conversion of different Nutrients

Fig. 9.19 Catabolism of different nutrients. Biology (6th edition, Campbell & Reece)

"Platform Metabolism" Anabolism

Fermentation

Atmung/Fermentation

Fig. 5.14 Microbiology: An Introduction (Tortora, Funke, Case)

Lacitc Acid Fermentation

Lactococcus lactis

Anaerobic Respiration

- Alternative electron acceptors in absence of oxygen
- Energy source:

mostly organic compounds (chemoorganotrophic org.); but also inorganic compounds (chemolithotrophic org.)

• Electron acceptors:

Inorganic compounds, NO₃⁻, SO₄²⁻, Fe³⁺, NO₂⁻, S⁰, CO₂

• Electron transport chain:

analogue to the aerobic chain (Cytochrome, Quinone, Fe-S Proteine)

- Facultative aerobes/anaerobes with aerobic and anaerobic respiration;
- Obligate anaerobes only anaerobic respiration

Nitrate Reduction (*E. coli*)

- Enterobacteriaceae (e.g. *E. coli*)
- Facultative anaerobic Bacteria (anaerobic fermentation)
- Only reduction of nitrate to nitrite (nitrate reductase A)

Fig. 17.37 **Vergleich aerobe und Nitrat Atmung.** Brock Biology of Microorganisms (10th edition) (Madigan et al.)

Knallgas-Bacteria

- Biologic knallgas-reaktion "Oxidation of hydrogen"
- H_2 + ½ O_2 → H_2O ΔG⁰'=-237 kJ "Hydrogenase"
- Different Bacteria:
 - G⁻: Pseudomonas, Alcaligenes, Paracoccus,
 - G⁺: Nocardia, Mycobacterium, Bacillus
- Hydrogenase (membrane-bound) "Electron transport"; some organisms in addition soluble hydrorgenase "direct reduction of NAD+"
- Chemolithoautotrophe "CO₂ fixation via calvin cycle"
- Chemoorganotrophic growth (Calvin cycle and hydrogenase repressed)

Photosynthesis Light- and Dark- Reaction

Fig. 10.4 Biology (6th edition, Campbell & Reece)

Non-cyclic Photophosphorylation

Fig. 10.12 Biology (6th edition, Campbell & Reece)

Plastoquinone (Pq), Cytochrome b₆-f-complex (proton pump), Plastocyanin (Pc, Cu²⁺-Protein)

The Light Reaction and Chemiosmosis

Fig. 10.16 Biology (6th edition, Campbell & Reece)

Comparison of Chemioosmosis in Mitochondrion and Chloroplast

Fig. 10.8 Biology (6th edition, Campbell & Reece)

CO₂ Fixation

CO ₂ fixation pathway	ATP requirement/ pyruvate	Relation to O ₂	Advantages
Calvin cyle	7 ATP	aerobes	Products = sugars, seperated from other metabolic pathways
Reductive citric acid cycle	2(-3) ATP	anaerobes, microaerobes	Suited for microaerobic conditions, revers: Oxidation of acetyl-CoA
Reductive acetyl-CoA pathway	1 ATP	strict anaerobes	Suited for the assimilation of C1 units
3-hydroxypropionate pathway	7 ATP	aerobe	Suited for mixotrophic assimilation of fermentation products

The Calvin Cycle "Dark-Reaction"

Fig. 10.17 Biology (6th edition, Campbell & Reece)

Key Reactions of the Calvin Cycle (Reductive Pentose Phosphate Cycle)

Balance of the Calvin Cycle

Reductive pentose phosphate cycle

(Calvin-Benson cycle)

RubisCO = Ribulose-bisphosphate carboxylase/oxygenase

- Plants, algae, cyanobacteria, most aerobic and facultativ aerobic Bacteria
- Triosephosphates, 3-phosphoglycerate, sugar phosphates as intermediates

Photosynthesis Light- and Dark- Reaction

Fig. 10.4 Biology (6th edition, Campbell & Reece)

Pyruvate Dehydrogenase and Oxidative Citric Acid Cycle

Reductive Citric Acid Cycle

(Arnon-Buchanan cycle)

- Anaerobic Green sulfur bacteria (Chlorobiales) and other Proteobacteria, Aquificales (microaerophilic)
- Acetyl-CoA, pyruvate, oxaloacetate, succinyl-CoA, 2-oxoglutarate, (PEP)
- Advantages under anaerobic, microaerophilic conditions

Seminar III

- ATP-Generation via substrate level phosphorylation, electron transport phosphorylation
- (Eukaryotic/prokaryotic cell)
- Bacterial cell wall
- Antibiotic resistance

Prokaryotes & Eukaryotes

• Gram positive cell wall

Gram negative cell wall

Figure 4-35a Brock Biology of Microorganisms 11/e © 2006 Pearson Prentice Hall, Inc.

N-acetylglucosamine

 N-acetylglucosamine, a sugar derivative, basic building block for chitin and murein.

- Structure of the polysaccharide in bacterial cell wall peptidoglycan.
- The glycan is a polymer of alternating GlcNAc and Nacetylmuramic acid (MurNAc, Lactic acid linked to C-4 atom) residues.
- Alternating peptide chains of Dund L-amino acids
- Linkage of the L-alanine amino group (amide linkage) with the lactylcarboxylgroup of a MurNac residue

(a) Diaminopimelinsäure(b) Lysin

© 2006 Pearson Prentice Hall, Inc.

Figure 8-31b Principles of Biochemistry, 4/e © 2006 Pearson Prentice Hall, Inc.

Glycoconjugate

- Glycolipids
 - Lipopolysaccharide (Gram negative Bacteria, outer membrane)

Mode of Action of Some Major Antimicrobial Agents

Antimicrobial Spectrum of Activity

Antimicrobial Drug Resistance

• Antimicrobial drug resistance

 The acquired ability of a microbe to resist the effects of a chemotherapeutic agent to which it is normally sensitive

Mechanisms of Drug Resistance

- Prevent entrance of drug
- Drug efflux (pump drug out of cell)
- Inactivation of drug
 - chemical modification of drug by pathogen
- Modification of target
 enzyme or organelle
- Use of alternative pathways or increased production of target metabolite

Sites at Which Antibiotics are Attacked by Enzymes

Antimicrobial Drug Resistance

- Most drug-resistant bacteria isolated from patients contain drug-resistance genes located on R plasmids
- The use of antibiotics in medicine, veterinary, and agriculture select for the spread of R plasmids
 - Many examples of overuse of antibiotics
 - Used far more often than necessary (i.e., antibiotics used in agriculture as supplements to animal feed)

Patterns of Drug Resistance in Pathogens

