S1: M. Sc. Water Science	Environmental Microbiology	26.09.2016	
Name:	Signature:		
Matriculation No.:	Participation No.: 1, 2 or 3	Participation No.: 1, 2 or 3 (circle appropriate)	
Prof. Meckenstock / Prof. Sieber	s PKZ: 1722/40	0105 / 40191	

Part A: Prof. Meckenstock

A company has a big tank of waste with 0.5 M glucose. Instead of pumping oxygen for a long time, they want to mix in nitrate once to let it all be degraded to CO₂ and nitrogen. How much nitrate do they have to add? Explain by showing the redox equations

(10 points)

S1: M. Sc. Water Science	Environmental Microbiology	26.09.2016
Name:	Signature:	
Matriculation No.:	Participation No.: 1, 2 or 3	(circle appropriate)
Prof. Meckenstock / Prof. Sieber	s PKZ: 1722/4	0105 / 40191

2) If *Clostridium acetobutylicum* would be present in the closed tank filled with glucose of question 1 and they would **not** add nitrate, what would be the potential products, in what sequence would they appear, and why?

(10 points)

S1: M. Sc. Water Science	Environmental Microbiology	26.09.2016
Name:	Signature:	
Matriculation No.:	Participation No.: 1, 2 or 3	(circle appropriate)
Prof. Meckenstock / Prof. Sieber	s PKZ: 1722/4	0105 / 40191

3) Explain why a chemostat is better suited to mimic environmental conditions than a batch culture.

(7 points)

S1: M. Sc. Water Science	Environmental Microbiology	26.09.2016
Name:	Signature:	
Matriculation No.:	Participation No.: 1, 2 or 3	(circle appropriate)
Prof. Meckenstock / Prof. Siebers	s PKZ: 1722/4	0105 / 40191

- 4) Redox zonation:
 - a. Explain the reasoning of the redox zonation model in lake sediments (6 points)
 - b. How does that compare to contaminated aquifers? (7 points)

S1: M. Sc. Water Science	Environmental Microbiology	26.09.2016
Name:	Signature:	
Matriculation No.:	Participation No.: 1, 2 or 3	(circle appropriate)
Prof. Meckenstock / Prof. Siebers	s PKZ: 1722/4	0105 / 40191

5) What are NAPLs and what is the correlated problem concerning remediation of a contaminated site?

(10 points)