Water Chemistry

Lecture (2 h): Wednesday 08¹⁵ - 10⁰⁰, S05 T02 B02 Tutorial+Exercise (2h): Wednesday 14¹⁵ - 16⁰⁰, S05 T02 B02

Subject	Date	Date Tutorial
Introduction/Concepts/Organization/Literature	12.10.	19.10.
search, data retrieval		
Essentials in Equilibrium and Kinetics of aquatic	19.10.	26.10.
systems		
Useful Tools	26.10.	02.11.
Aquatic Chemistry of Surfaces and Colloids	02.11.	09.11.
Advanced Sorption	09.11.	16.11.
Transformation reactions: Substitution and	16.11.	23.11.
Elimination		
Photochemistry	23.11.	30.11.
Mile Stone I: Concept		07.12.*
Mile Stone II: Relevant Processes		11.01.*
Case Study Presentation and Discussion	25.01.	
Case Study Presentation and Discussion/Wrap up	01.02.	

^{*} individual group appointments with advising PhD student

Major **aims** of the course:

- Qualitative and quantitative understanding of processes dominating natural aquatic systems
- Fundamentals for evaluation of the fate of pollutants in natural and technical systems
- Realisation of (necessary) simplifications and plausibility control of assumptions and results
- Realizing a small-scale project in a very limited timeframe: learning how to organize project tasks in a group, how to present and discuss results

Organisation

- The course is given by Prof. Schmidt (<u>torsten.schmidt@uni-due.de</u>) and the PhD students
 Maike Cyris (m.cyris@iww-online.de) and Thorsten Hüffer (thorsten.hueffer@ uni-due.de), both
 former Water Science students.
- Eight groups of students form in the first lecture/tutorial on October 12.
- Each group presents in the tutorial on Wednesday their solution to a specified problem in a problem set handed out in the course. Their approach will be discussed. It is not the primary goal to show the correct result but to learn how to tackle such problems. When forming groups you should try to incorporate people with different levels of expertise and each group should encompass one of the foreign students who have started here with the Master course. By doing so, all of you will benefit most.

Environmental case studies (second half of the term)

In November, each group will be given a past environmental case study to work on over the semester. In these case studies you should learn to apply the knowledge and skills acquired during your past courses in the area of water chemistry. The situation will be similar to typical future project tasks as an environmental consultant. Firstly, you need to understand the problem to be addressed, gather a few sources of information and judge required time to be spend on the project. You also need to split tasks among group members. You are required to put together these information into a concept of your further work and submit it to the responsible PhD student prior to milestone 1 (deadline 05.12.11, 1 page). On December 07 your group will discuss the submitted concept with the PhD student. Based on this discussion you will set out to work on the topic. You need to decide which environmental processes are relevant in a particular situation and which you may neglect based on an appropriate evaluation. You will also need to handle uncertainties in data, make adequate assumptions for unknowns etc. The results of your work are summarized in a short report (3-5 pages) that is submitted to the responsible PhD student prior to milestone 2 (deadline 09.01.12). On January 11 each group will discuss the submitted report with the PhD student. Based on this discussion each group will prepare a short presentation (10 min each plus discussion, timing is important!). The last two lectures/tutorials will be used to introduce the subjects and findings with these presentations. An important aspect of your work is that science is not necessarily free of subjective judgement. To demonstrate this, each subject will be given to two groups that start from the same situation/problem but requires different viewpoints (e.g., industry representative vs. environmental NGO). In all cases you work as experts for such groups. Since you

do not want to compromise your good reputation you need to base all your statements and judgements on good science. However, you will see that interpretation may differ to some extent.

The case studies will be substantially taken into account for the final grade, however, you also need to pass the exam with a minimum of 50 %!

Subject list:

- 1. PCB contamination of Hudson river
- 2. Benzene pollution of Songhua river, PRC
- 3. Drinking water pollution by chlorinated solvents: Woburn case
- 4. Drinking water pollution: hexavalent chromium/Erin Brockovich

Recommended Reading

The course is covered to a large extent by any of the aquatic chemistry textbooks cited below.

Howard, A. G., 1998: Aquatic Environmental Chemistry, Oxford University Press, Oxford (very brief introductory material, only sufficient for repetition of bachelor course contents, cheap)

Jensen, J. N., 2003: A Problem-solving Approach to Aquatic Chemistry, Wiley, NY

Benjamin, M.M., 2002: Water Chemistry, McGraw-Hill, New York

Schwarzenbach, R.P., Gschwend, P.M. and D. Imboden, 2003: Environmental Organic Chemistry, Wiley, NY

Sigg, L. and W. Stumm, 1996: Aquatische Chemie, VDF/Teubner, Zürich (in German!)

Stumm, W. and J.J. Morgan, 1996: Aquatic Chemistry, Wiley, NY (*the* authorative textbook but not well suited for learning purposes and a bit weak/outdated on environmental organic chemistry)

Syllabus (might change to some extent depending on your background)

Retro of thermodynamics, chemical equilibrium and kinetics

Units and scales

Thermodynamics

Chemical equilibrium

Speciation diagrams

Reaction rates, reaction orders (0th, 1st, 2nd order)

Pseudo-first-order kinetics

Effect of temperature (Arrhenius equation)

Transition State theory

Useful Tools

Thermodynamic cycle

Mass balance equations

Definitions

Single-parameter Linear Free Energy Relationships (LFERs)

Poly-parameter LFERs

Steady-state systems

Aquatic Chemistry of Surfaces and Colloids

Surface chemistry

Surface charge

Surface potential

Layer theory

Electrostatic interactions: Ion Exchange II

Sorption of organic ions

Surface complexation

Colloids

Colloidal material in the environment

Colloidal contaminant transport

Advanced Sorption

Sorption processes

Role of organic matter: partitioning

Role of surfaces (minerals, carbonaceous materials): adsorption

Sorption isotherms

Determination of sorption parameters

Dissolved organic carbon (DOC)

Transformation reactions

Reaction mechanisms: Nucleophilic substitution A special case: Hydrolysis (water as a nucleophile)

Reaction mechanisms: Elimination

Acid and base catalysis Hammett relationships

Photochemistry

Basics of Photochemistry

Quantum yield

Light attenuation in natural water bodies

Direct and indirect photolysis

Reactive species in indirect photolysis

Appendix 1: Thermodynamic Data

•	ΔG_I^0	ΔH_I^0	So ·	
Species	(kJ/mol)	(kJ/mol)	(J/mol⋅K)	Source
KCl (sylvite)	-408.6	-436.5	82.6	5
KAlSi ₃ O ₈ (microcline feldspar)	-3742.9	-3681.1	214.22	2
KAl ₃ Si ₃ O ₁₀ (OH) ₂ (muscovite mica)	-5608.4	-5984.4	305.3	2
Mg ²⁺	-456.1	-468.6	-138.1	1
	-454.8	-466.85	-138.1	2
Mg(OH) ₂ (brucite)	-833.51	-924.54	63.18	2
MgCO ₃ (magnesite)	-1012.1	-1095.8	65.7	2
Mg ₂ SiO ₄ (forsterite)	-2056.7	-2175.7	95.2	6
MgSiO ₃ (enstatite)	-1459.9	-1546.8	67.8	6
Mg ₃ Si ₂ O ₅ (OH) ₄ (chrysotile, serpentine)	-4037.8	-4365.6	221.3	2
Mg ₃ Si ₄ O ₁₀ (OH) ₂ (tale)	-5523.7	-5903.5	260.7	7
Mg ₅ Al ₂ Si ₃ O ₁₀ (OH) ₈ (chlorite)	-8207.8	-8857.4	465,3	6
Mg ₄ Si ₆ O ₁₅ (OH) ₂ · 6H ₂ O (sepiolite)	-9251.6	-10116.9	613.4	6
In (metal)	0	0	32.0	2
An ²⁴	-228.1	-220.75	-73.6	2
4nO	-362.90	-385.22	59.71	2
In(OH)2 (pyrochroite)	-616.5	303.22	39.71	8
InO(OH) (manganite)	-133.3			8
In ₃ O ₄ (hausmannite)	-1283.2	-1387.8	155.6	2
In ₂ O ₃ (bixbyite)	-881.1			2
InO ₂ (pyrolusite)	-465.14	-959.0	110.5	2
InO ₂ (pyrotusite)	-453.14 -453.1	-520.3	53.06	2
InCO ₃ (rhodochrosite)	-816.7	-894.1	85.8	8
InS (alabandite)	210.0	212.0	70.0	
	-218.0	-213.8	78.2	4
InSiO ₃ (rhodonite)	-1243.1	-1319.2	102.5	4
l₂ (g) lH₃ (g)	0	0	191.6	2
	-16.45	-46.11	192.5	2
H ₃ (aq)	-26.50	-80.29	111.3	2
H.	-79.31	-132.51	113.4	2
03	-108.74	-205.0	146.4	2
a ⁺	-261.92	-240.29	58.4	1
COLOR III.	-261.91	-240.12	59.0	2 2 9
aCl (halite)	-384.14	-411.15	72.1	2
aHCO ₃ (nahcolite) aHCO ₃ · Na ₂ CO ₃ · 2H ₂ O	-851.9 -2386.6	-947.7	102.1	9
(trona)				
a ₂ SO ₄ (thenardite)	-1269.8	-1387.8	149.6	5
a ₂ SO ₄ ·I0H ₂ O (mirabilite)	-3646.4	-4327.1	592.0	5
aSi ₇ O ₁₃ (OH) ₃ (magadiite)	-6651.9			10
aAlSi ₃ O ₈ (albite)	-3711.5	-3935.1	207.4	2
aAlSi ₂ O ₆ · H ₂ O	-3082.6	-3300.8	234.3	2

0 1	ΔG^{9}	A 110	-0	_
Species	(kJ/mol)	$\triangle H_f^0$ (kJ/mol)	S^0 $(J/mol \cdot K)$	Source
Na _{0.33} Al _{2.33} Si _{3.67} O ₁₀ (OH) ₂ (Na-beidellite)	-5382			
O2 (g)	0	0	205.1	
S (rhombic)	0	ŏ		
H ₂ S (g)	-33.56	-20.63	31.8	
H ₂ S (aq)	-27.83	-39.7	205.8	
SO ₂ (g)	-300.2		121	
HS ⁻		-296.8	248.1	
S ²⁻	12.08	-17.6	62.8	
	85.8	33.1	-14.6	
HSO ₄	-755.91	-887.34	131.8	
SO ₄ ²⁻	-744.53	-909.27	20.1	
SiO ₂ (quartz)	-856.64	-910.94	41.84	3
SiO ₂ (amorph)	-849.28	-902.07		
H ₄ SiO ₄ (aq)	-1308.1	-1439.5	46.9	
Sr ²⁺	-563.83		180	
SrCO ₃ (strontianite)		-550.90	-31.5	11
SrSO ₄ (celestite)	-1144.73 -1340.9	-1225.77 -1453.1	97.2 117.	11
 Haas et al. (1981) Busenberg and Plummer (15 Robie et al. (1978) Helgeson et al. (1978) Adjusted by the author for 8 Bricker (1965) 		other values.		
Busenberg and Plummer (15 Robie et al. (1978) Helgeson et al. (1978) Helgeson et al. (1978) Adjusted by the author for Bricker (1965) Garrels and Christ (1965) Calculated from Bricker (1965)	consistency with o	other values.		
Busenberg and Plummer (15 Robie et al. (1978) Helgeson et al. (1978) Helgeson et al. (1978) Adjusted by the author for Bricker (1965) Garrels and Christ (1965) Calculated from Bricker (1965)	consistency with o	other values.		
Busenberg and Plummer (15 Robie et al. (1978) Helgeson et al. (1978) Helgeson et al. (1978) Adjusted by the author for Bricker (1965) Garrels and Christ (1965) Calculated from Bricker (1965)	consistency with o	other values.		
Busenberg and Plummer (15 Robie et al. (1978) Helgeson et al. (1978) Helgeson et al. (1978) Adjusted by the author for Bricker (1965) Garrels and Christ (1965) Calculated from Bricker (1965)	consistency with o	other values.		
Busenberg and Plummer (15 Robie et al. (1978) Helgeson et al. (1978) Helgeson et al. (1978) Adjusted by the author for Bricker (1965) Garrels and Christ (1965) Calculated from Bricker (1965)	consistency with o	other values.		
 Busenberg and Plummer (1 Robie et al. (1978) Helgeson et al. (1978) Adjusted by the author for Bricker (1965) Garrels and Christ (1965) 	consistency with o	other values.		
Busenberg and Plummer (15 Robie et al. (1978) Helgeson et al. (1978) Helgeson et al. (1978) Adjusted by the author for Bricker (1965) Garrels and Christ (1965) Calculated from Bricker (1965)	consistency with o	other values.		
Busenberg and Plummer (15 Robie et al. (1978) Helgeson et al. (1978) Helgeson et al. (1978) Adjusted by the author for Bricker (1965) Garrels and Christ (1965) Calculated from Bricker (1965)	consistency with o	other values.		
Busenberg and Plummer (15 Robie et al. (1978) Helgeson et al. (1978) Helgeson et al. (1978) Adjusted by the author for Bricker (1965) Garrels and Christ (1965) Calculated from Bricker (1965)	consistency with o	other values.		
 Busenberg and Plummer (15. Robie et al. (1978) Helgeson et al. (1978) Helgeson et al. (1978) Adjusted by the author for Bricker (1965) Garrels and Christ (1965) Calculated from Bricker (1965) 	consistency with o	other values.		
Busenberg and Plummer (15 Robie et al. (1978) Helgeson et al. (1978) Helgeson et al. (1978) Adjusted by the author for Bricker (1965) Garrels and Christ (1965) Calculated from Bricker (1965)	consistency with o	other values.		
Busenberg and Plummer (15 Robie et al. (1978) Helgeson et al. (1978) Helgeson et al. (1978) Adjusted by the author for Bricker (1965) Garrels and Christ (1965) Calculated from Bricker (1965)	consistency with o	other values.		
Busenberg and Plummer (15 Robie et al. (1978) Helgeson et al. (1978) Helgeson et al. (1978) Adjusted by the author for Bricker (1965) Garrels and Christ (1965) Calculated from Bricker (1965)	consistency with o	other values.		
Busenberg and Plummer (15 Robie et al. (1978) Helgeson et al. (1978) Helgeson et al. (1978) Adjusted by the author for Bricker (1965) Garrels and Christ (1965) Calculated from Bricker (1965)	consistency with o	other values.		
Busenberg and Plummer (15 Robie et al. (1978) Helgeson et al. (1978) Helgeson et al. (1978) Adjusted by the author for Bricker (1965) Garrels and Christ (1965) Calculated from Bricker (1965)	consistency with o	other values.		
Busenberg and Plummer (15 Robie et al. (1978) Helgeson et al. (1978) Helgeson et al. (1978) Adjusted by the author for Bricker (1965) Garrels and Christ (1965) Calculated from Bricker (1965)	consistency with o	other values.		
Busenberg and Plummer (15 Robie et al. (1978) Helgeson et al. (1978) Helgeson et al. (1978) Adjusted by the author for Bricker (1965) Garrels and Christ (1965) Calculated from Bricker (1965)	consistency with o	wher values.		
Busenberg and Plummer (15 Robie et al. (1978) Helgeson et al. (1978) Helgeson et al. (1978) Adjusted by the author for Bricker (1965) Garrels and Christ (1965) Calculated from Bricker (1965)	consistency with o	other values.		
Busenberg and Plummer (15 Robie et al. (1978) Helgeson et al. (1978) Helgeson et al. (1978) Adjusted by the author for Bricker (1965) Garrels and Christ (1965) Calculated from Bricker (1965)	consistency with o	other values.		
Busenberg and Plummer (15 Robie et al. (1978) Helgeson et al. (1978) Helgeson et al. (1978) Adjusted by the author for Bricker (1965) Garrels and Christ (1965) Calculated from Bricker (1965)	consistency with o	other values.		
Busenberg and Plummer (15 Robie et al. (1978) Helgeson et al. (1978) Helgeson et al. (1978) Adjusted by the author for Bricker (1965) Garrels and Christ (1965) Calculated from Bricker (1965)	consistency with o	wher values.		

Source: Diever, 1918

Appendix 2: Dissociation constants of acids

Acid	НА	A ⁻	K _a	pK _a
Hydroiodic acid	НІ	I.	10 ¹¹	-11
Perchloric acid	HClO ₄	ClO ₄	10 ¹⁰	-10
Hydrobromic acid	HBr	Br ⁻	109	-9
Hydrochloric acid	HCl	Cl ⁻	107	-7
Chloric acid	HClO ₃	ClO ₃	10 ³	-3
Sulfuric acid	H ₂ SO ₄	HSO ₄	10 ²	-2
Nitric acid	HNO ₃	NO ₃ -	10	-1
Hydronium-Ion (H ⁺ _(aq))	H_3O^+	H ₂ O	1	0.0
Trichloroacetic acid	Cl³C−C,O OH	Cl3C-C\O	2.0•10 ⁻¹	0.70
Oxalic acid	ноос-соон	HOOC-COO	5.9•10 ⁻²	1.23
Dichloroacetic acid	Cl₂CH−C,O OH	Cl ₂ CH-C,O	3.32•10 ⁻²	1.48
Sulfurous acid	H ₂ SO ₃	HSO ₃ -	1.5•10 ⁻²	1.81
Hydrogensulfate ion	HSO ₄ -	SO ₄ ²⁻	1.2•10 ⁻²	1.92
Phosphoric acid	H ₃ PO ₄	H ₂ PO ₄	7.5•10 ⁻³	2.12
Glycinium ion	H ₃ N-COOH	H ₃ N-COO	4.0•10 ⁻³	2.4
Pyruvic acid	H₃C COOH O	H ₃ N-COO COO	3.24•10 ⁻³	2.49
Malonic acid	ноос Соон	H00C C00-	1.49•10 ⁻³	2.83
Chloroacetic acid	CICH ₂ -C,OOH	CICH ₂ -COO	1.36•10 ⁻³	2.87
Citric acid	но соон	HO COOH HOOC COO	7.45•10 ⁻⁴	3.13
Nitrous acid	HNO_2	NO ₂ -	4.6•10 ⁻⁴	3.34
Hydrofluoric acid	HF	F-	3.5•10 ⁻⁴	3.45
Formic acid	H-C, O	H-C,0	1.8•10 ⁻⁴	3.75
Lactic acid	H ₃ C COOH	H₃C COO H OH	1.4•10 ⁻⁴	3.86
Benzoic acid	СООН		6.46•10 ⁻⁵	4.19

Ascorbic acid (vitamin C)	OH OH OH	O O OH OH	6.3•10 ⁻⁵	4.2
	но он	HO O-		
Acid	НА	\mathbf{A}^{-}	K_{a}	pK_a
Succinic acid	HOOC	HOOC COO-	6.21•10 ⁻⁵	4.21
Dihydrogencitrate ion	HOOC COOL	HO COO COO	4.0•10 ⁻⁵	4.4
Anilinium ion	— NH₃	NH ₂	2.3•10 ⁻⁵	4.63
Acetic acid	H₃C−C,O OH	H₃C−C, O O	1.8•10 ⁻⁵	4.75
1-Butanoic acid	COOH		1.5•10 ⁻⁵	4.82
Propionic acid (propanoic acid)	COOH	^coo-	1.4•10 ⁻⁵	4.87
Pyridinium ion	*NH	N	5.6•10 ⁻⁶	5.25
Hydrogenmalonate ion	H00C C00	_00C_C00_	2.03•10 ⁻⁶	5.69
Hydrogencitrate ion	HO COO	HO COO	2.0•10 ⁻⁶	5.7
Carbonic acid	H ₂ CO ₃	HCO ₃ -	4.3•10-7	6.37
Hydrogen sulfide	H_2S	HS ⁻	9.1•10 ⁻⁸	7.04
Dihydrogenphosphate ion	H_2PO_4	HPO ₄ ²⁻	6.2•10 ⁻⁸	7.21
Hydrazinium ion	H_2N-NH_3	H ₂ N-NH ₂	5.9•10 ⁻⁹	8.23
Boric acid	B(OH) ₃	B(OH) ₄	7.2•10 ⁻¹⁰	9.14
Ammonium ion	NH ₄ , ⁺	NH_3	5.6•10 ⁻¹⁰	9.25
Hydrogen cyanide	HCN	CN ⁻	4.9•10 ⁻¹⁰	9.31
Trimethylammonium ion	, H N	\ _ /	1.6•10 ⁻¹⁰	9.81
Phenol	—ОН		1.3•10 ⁻¹⁰	9.89
Bicarbonate ion	HCO ₃ -	CO ₃ ²⁻	4.8•10-11	10.32
Hydrogen peroxide	H_2O_2	HOO-	2.4•10 ⁻¹²	11.62
Hydrogenphosphate ion	HPO ₄ ²⁻	PO ₄ ³⁻	2.2•10 ⁻¹³	12.67
Water	H ₂ O	HO ⁻	1.0•10 ⁻¹⁴	14.0

Appendix 3: List of oxidation states in common compounds (Ref.: Pankow 1991)

Molecule		
or	Name	1107 000 07 100
Ion	Name	Oxidation States
O ₂	molecular, elemental oxygen	O(0)
H ₂ O ₂	. hydrogen peroxide	O(-I), H(I)
H ₂ O	water	O(-II), H(I)
OH-	hydroxide	O(-II), H(I)
H ⁺	proton	H(I)
HOCI	molecular hypochlorous acid	Cl(I), O(-II), H(I)
OCI-	hypochlorite ion	Cl(I), O(-II)
Cl ₂	molecular, elemental chlorine	Cl(0)
HČI	molecular hydrochloric acid	Cl(-I), H(I)
CI ⁻	chloride ion	Cl(-I)
H ₂ CO ₃ *	carbonic acid	C(IV), O(-II), H(I)
HCO ₃	bicarbonate ion	C(IV), O(-II), H(I)
CO_3^{2-}	carbonate ion	C(IV), O(-II)
HCOO-	formate ion	C(II), O(-II), H(I)
CH ₃ -CH ₂ -OH	ethanol	C(, O(-II), H(I)
$C_{(s)}$	elemental carbon,	C(0)
	e.g. graphite or diamond	10 and 00 model
CH ₂ O	formaldehyde	C(0)
$C_{6}H_{12}O_{6}$	glucose	C(0)
CH ₃ -CH ₃	ethane	C(-III)
CH ₄	methane	C(-IV)
H ₂ SO ₄	molecular sulfuric acid	S(VI), $O(-II)$, $H(I)$
HSO ₄	bisulfate `	S(VI), $O(-II)$, $H(I)$
SO_4^{2-}	sulfate	S(VI), O(-II)
S _{8(s)}	molecular, elemental sulfur	S(0)
H ₂ S	hydrogen sulfide	S(-II), H(I)
HS-	bisulfide	S(-II), H(I)
S ²⁻	sulfide	S(-II)
HNO ₃	molecular nitric acid	N(V), O(-II), H(I)
NO_3^-	nitrate	N(V), O(-II)
HNO ₂	molecular nitrous acid	N(III), O(-II), H(I)
NO ₂	nitrite	N(III), O(-II)
N ₂	molecular, elemental nitrogen	N(0)
NH ₃	ammonia	N(-III), H(I)
NH ₄ ⁺	ammonium	N(-III), H(I)

Appendix 4: Equilibrium constants for environmentally relevant redox processes (Ref.: Pankow 1991)

TABLE 19.2. Data for selected redox reactions at 25°C/1 atm in order of increasing pe° and E_{H}° . (Data from Bard et al. (1985) and Stumm and Morgan (1981).) The reducing strength of the RED species tends to increase towards the top of the table, and the oxidizing strength of the OX species tends to increase towards the bottom of the table.

Reduction Half Reaction	$\log K$	peo	peo(W)	$E_{ m H}^{ m o}$	
$OX + ne^- = RED$	$\frac{\{\text{RED}\}}{\{\text{OX}\}\{e^-\}''}$	$\frac{1}{n}\log K$	pe ^o − $\frac{n_{\rm H}}{n_{\star}}$ 7	0.05916 pe°	
$Na^+ + e^- = Na_{(s)}$	-46.0	-46.0	-46.0	-2.71	
$Zn^{2+} + 2e^{-} = Zn_{(s)}$	-26.0	13.0	-13.0	-0.76	
$FeCO_{3(s)} + 2e^{-} = Fe_{(s)} + CO_3^{2-}$	-25.58	- 12.79	- 12.79	-0.76	
$Fe^{2+} + 2e^{-} = Fe_{(s)}$	- 14.9	-7.45	-7.45	-0.44	
$CO_{2(g)} + H^+ + 2e^- = HCOO^-$	-9.66	-4.83	-8.33	-0.29	
$CO_{2(g)}^{-1} + 4H^{+} + 4e^{-} = CH_{2}O + H_{2}O$	-4.8	-1.2	-8.2	-0.071	
$CO_{2(g)} + 4H^+ + 4e^- =$	-0.8	-0.2	-7.2	-0.012	
$\frac{1}{6}C_6H_{12}O_6(\text{glucose}) + H_2O$					
$2H^+ + 2e^- = H_{2(g)}$	0.0	0.0	-7.0	0.00	
$N_{2(g)} + 6H^+ + 6e^- = 2NH_3$	9.5	1.58	-5.42	0.093	
$S_{(s)} + 2H^+ + 2e^- = H_2S$	4.8	2.4	4.6	0.14	
$Cu^{2+} + e^- = Cu^+$	2.7	2.7	2.7	0.16	
$HCOO^{-} + 3H^{+} + 2e^{-} = CH_{2}O + H_{2}O$	5.64	2.82	-7.68	0.17	
$CO_{2(g)} + 8H^+ + 8e^- = CH_{4(g)} + 2H_2O$	23.0	2.87	-4.13	0.17	
$AgCl_{(s)} + e^{-} = Ag_{(s)} + Cl^{-}$	3.7	3.7	3.7	0.22	
$CH_{2}O + 2H^{+} + 2e^{-} = CH_{3}OH$. , 8.0	4.0	-3.0	0.24	
$SO_4^{2-} + 9H^+ + 8e^- = HS^- + 4H_2O$	34.0	4.25	-3.63	0.25	
$Hg_2Cl_{2(s)} + 2e^- = 2Hg_{(1)} + 2Cl^-$	9.06	4.53	4.53	0.268	
$N_{2(g)} + 8H^+ + 6e^- = 2NH_4^+$	28.1	4.68	-4.65	0.28	
$SO_4^{2-} + 10H^+ + 8e^- = H_2S + 4H_2O$	41.0	5.13	-3.62	0.30	
$Cu^{2+} + 2e^{-} = Cu_{(s)}$	11.4	5.7	5.7	0.34	
$HSO_4^- + 7H^+ + 6e^- = S_{(s)} + 4H_2O$	34.2	5.7	-2.47	0.34	
$SO_4^{2-} + 8H^+ + 6e^- = S_{(s)} + 4H_2O$	36.2	6.03	-3.3	0.36	

TABLE 19.2. (continued)

Reduction Half Reaction	log K	pe^{o}	pe ^o (W)	$E_{ m H}^{\rm o}$
$OX + ne^- = RED$	$\frac{\{\text{RED}\}}{\{\text{OX}\}\{\text{e}^-\}^n}$	$\frac{1}{n}\log K$	$pe^{o} - \frac{n_{H}}{n_{e}}7$	0.05916
$CH_2O + 4H^+ + 4e^- = CH_{4(g)} + H_2O$	27.8	6.94	- 0.06	0.41
$Cu^+ + e^- = Cu_{(s)}$	8.8	8.8	8.8	0.52
$CH_3OH + 2H^+ + 2e^- = CH_{4(g)} + H_2O$	19.8	9.88	2.88	0.58
$Fe^{3+} + e^{-} = Fe^{2+}$	13.0	13.0	13.0	0.77
$Ag^+ + e^- = Ag_{(s)}$	13.5	13.5	13.5	0.80
$NO_2^- + 7H^+ + 6e^- = NH_3 + 2H_2O$	81.5	13.58	5.41	0.80
$NO_3^- + 2H^+ + 2e^- = NO_2^- + H_2O$	28.3	14.15	7.15	0.84
$NO_3^- + 10H^+ + 8e^- = NH_4^+ + 3H_2O$	119.2	14.9	6.15	0.88
$NO_2^- + 8H^+ + 6e^- = NH_4^+ + 2H_2O$	90.8	15.14	5.82	0.90
$Mn\mathring{O}_{2(s)} + H\mathring{C}O_3^{-} + 3H^+ + 2e^- = Mn\mathring{C}O_{3(s)} + 2H_2O$	25.8	15.9	5.4	0.94
(α)FeOOH _(s) + HCO ₃ ⁻ + 2H ⁺ + e ⁻ = FeCO _{3(s)} + 2H ₂ O	13.15	13.15	-0.85	0.78
(α)FeOOH _(s) + 3H ⁺ + e ⁻ = Fe ²⁺ + 2H ₂ O	13.5	13.5	-7.5	0.80
$(am)Fe(OH)_s^2 + 3H^+ + e^- = Fe^{2+} + 3H_2O$	16.2	16.2	-4.8	0.96
$O_{2(g)} + 4H^+ + 4e^- = 2H_2O$	83.1	20.78	13.78	-1.23
$NO_3^- + 6H^+ + 5e^- = \frac{1}{2}N_{2(g)} + 3H_2O$	105.3	21.05	12.65	1.25
$MnO_{2(s)} + 4H^+ + 2e^- = Mn^{2+} + 2H_2O$	43.6	21.8	7.8	1.29
$Fe^{3+} + CO_3^{2-} + e^{-} = FeCO_{3(s)}$	23.68	23.68	23.68	1.40
$Cl_2 + 2e^- = 2Cl^-$	47.2	23.6	23.6	1.40
$HOCl + H^{+} + e^{-} = \frac{1}{2}Cl_{2} + H_{2}O$	26.9	26.9	19.9	1.59
$ClO^{-} + 2H^{+} + 2e^{-} =$ $Cl^{-} + H_{2}O$	57.8	28.9	21.8	1.71
$H_2O_2 + 2H^+ + 2e^- =$	59.6	29.80	22.80	1.76

Appendix 5: Equilibrium constants for redox reactions of selected environmentally relevant organic compounds (Ref.: Schwarzenbach et al. 2002)

Table 14.3 Standard Reduction Potentials and Average Standard Free Energies of Reaction (per Electron Transferred) at 25° C of Some Organic Redox Couples in Aqueous Solution (The reactions are ordered in decreasing $E_H(W)$ values.) ^a

	Halfreactio	m				
C	oxidized Species		Reduced Species	<i>E</i> ⁰ _H (V)	$E_{\rm H}^0({ m W})^{b}$ $({ m V})$	$\frac{\Delta_{\rm r} G_{\rm H}^{\rm O}({\rm W})/{\rm n}^{c}}{({\rm kJ\cdot mol^{-1}})}$
(1)	CCl ₃ — CCl ₃ + 2 e ⁻		Cl ₂ C≕CCl ₂ + 2Cl⁻	+ 0.95	+ 1.13	- 109.0
(2)	CBr ₄ + H ⁺ + 2e ⁻	=	CHBr ₃ + Br	+ 0.89	+ 0.83	- 80.1
(3)	CCl ₄ + H ⁺ + 2e ⁻	=	CHCI _S + Cl	+ 0.79	+ 0.67	- 64.7
(4)	CHBr ₈ + H* + 2e*	=	CH₂Br₂ + Br	+ 0.67	+ 0.61	- 58.9
(5)	Ol ₂ C=COl ₂ + H ⁺ + 2e ⁻	=	Cl₂C≕CHCl + Cl	+ 0.70	+ 0.58	- 56.0
(6)	CHCl ₃ + H ⁺ + 2e ⁻	=	CH ₂ Cl ₂ + Cl	+ 0.68	+ 0.56	- 54.0
(7)	Cl ₆ + H ⁺ + 2e ⁻	=	+ CI-	+ 0.68	+ 0.56	- 54,0
(8)	Cl + H* + 2e	=	+ at	+ 0.54	+ 0.42	- 40.5
(9)	NO ₂ + 6H+ + 6e ⁻	=	NH ₂ +2H ₂ O	+ 0.83	+ 0.42	- 40.5
(10)	O + 2H+ + 2e-		но-С	+ 0.70	+ 0.28	-27.0
(11)	O II H ₃ C—S—CH ₃ +2H ⁺ +2e ⁻	æ	H ₈ C — S — CH ₈ + H ₂ O	+ 0.57	+ 0.16	- 15.4
(12)	N=N- +4H* + 4e-	=	2 NH ₂	+ 0.31	-0.10	+ 9.7
(13)	○ [[CH ₃ —S—CH ₃ +2H*+2e ⁻ []	=	$\begin{matrix} \bigcirc \\ \downarrow \downarrow \\ H_3 C - S - C H_3 \ + H_2 O \end{matrix}$	+ 0.17	- 0.24	+23.2
(14)	R-S-S-R + 2H* + 2e ⁻ (cystine)	=	2R~SH (cysteine)	+ 0.02	-0.39	+ 37.6

^a Estimated from thermodynamic data Dean (1985); Vogel et al. (1987); Krop et al. (1994); Roberts et al. (1996); Totten and Roberts (2001). ^b [H⁺] = 10^{-7} , {Cl⁻} = 10^{-3} , {Br⁻} = 10^{-3} . ^c n = number of electrons transferred.

Appendix 6: Cation exchange capacities (CEC) of various environmental materials found in the colloidal size fraction (Ref.: van Loon/Duffy 2005)

Material	CEC range (average) /cmol(+) kg ⁻¹	
Kaolinite	3-15 (8)	
Halloysite	4-10 (8)	
Montmorillonite	80-150 (100)	
Chlorite	10-40 (25)	
Vermiculite	100-150 (125)	
Hydrous iron and aluminium oxides	Ca. 4	
Feldspar	1-2 (2)	
Quartz	1-2 (2)	
Organic matter	150-500 (200)	

Appendix 7: A few useful relationships (Ref.: Stumm&Morgan 1996)

Table 2.6. Basic Relationships for Equilibria: Fixed T and p Systems

1. Chemical potential of a species	$\mu_i = \mu_i^{\circ} + RT \ln \{i\} = \mu_i$ = $\mu_i^{\circ} + RT \ln c_i \gamma_i$
2. Reference states for γ_i	$\gamma_i \to 1 \text{ as } x_i \to 1 \text{ or } x_i \to 0$ $\gamma_i \to 1 \text{ as } \sum m_j \to 0 \text{ or } \gamma_i \to 1 \text{ as } m_i \to 0$
3. Standard states for c_i 4. Reaction $\sum v_i M_i = 0$	$\gamma_i = 1 \text{ and: } x_i = 1 \text{ or } m_i = 1$ $\Delta H = \sum_i \nu_i \overline{H}_i, \Delta V = \sum_i \nu_i \overline{V}_i,$ $\Delta S = \sum_i \nu_i \overline{S}_i \Delta G = \sum_i \nu_i \mu_i$
5. State function relationship6. Equilibrium constant	$\Delta G = \Delta H - T \Delta S$ $K = \prod_{i} \{i\}_{eq}^{\nu_{i}}$ $Q = \prod_{i} \{i\}^{\nu_{i}}$
7. Reaction quotient8. Standard free energy and K	$\Delta G^{\circ} \text{ (kJ mol}^{-1}) = -5.71 \log K \text{ at } 25^{\circ}\text{C}$
9. Free energy and Q	$\Delta G = RT \ln \frac{Q}{K}$
10. K , m_i , and ν_i	$K = \left(\prod_{i} \left(\frac{m_{i}}{m^{\circ}}\right)^{\nu_{i}} \prod_{i} \gamma_{i}^{\nu_{i}}\right)_{\text{eq}}$
11. K and T	$\log \frac{K_{T_2}}{K_{T_1}} = \frac{\Delta H^{\circ}}{2.3R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
12. K and P	$\log \frac{K_{P_2}}{K_{P_1}} = -\frac{\Delta V^{\circ}(P_2 - P_1)}{2.3RT}$

A simple help with large logarithms:

$$ln10^x = x \ ln10$$