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Zusammenfassung

In der vorliegenden Arbeit wird die Wechselwirkung von geladenen selbstorganisier-
ten InAs-Quantenpunkten mit einem zweidimensionalen Elektronengas (2DEG) unter-
sucht. Die in einer MISFET-Struktur eingebettete InAs-Quantenpunktschicht kann über
eine 25 nm-dicke Tunnelbarriere mit dem 2DEG wechselwirken.
Zunächst wird die Probe mittels der bereits in der Vergangenheit erfolgreich eingesetz-
ten Methode der Kapazitätsspektroskopie elektronisch charakterisiert und probenspe-
zifische Parameter wie effektive Elektronenmasse und Quantenpunktdichte bestimmt.
In Transportmessungen an „makroskopischen“ Leitfähigkeitskanälen (Abmessungen
A=100 µm×500 µm) wird ein geringer Einfluss der geladenen Quantenpunkte beobach-
tet. Die weitere Herausforderung besteht darin, diesen Effekt durch laterale Einschrän-
kung des 2DEGs zu verstärken. Um eine solche Verstärkung des Effektes der Quan-
tenpunkte auf das 2DEG zu erreichen, werden Proben präpariert, in denen das 2DEG
durch sogenannte Split-Gates oder eine geätzte Steg-Struktur in einer weiteren Dimen-
sion räumlich eingeschränkt wird.
In der Leitfähigkeit, welche an einer Split-Gate Geometrie gemessen worden sind, wer-
den Effekte beobachtet, die auf den Einfluss geladener Quantenpunkte zurückzufüh-
ren sind. Im Gatespannungsbereich, in dem das s-Niveau der Quantenpunkte geladen
wird, ist ein starker Einbruch in der Leitfähigkeit zu beobachten.
Desweiteren ist im Rahmen dieser Arbeit eine Messmethode entwickelt worden, mit der
es möglich ist, über eine asymmetrische Spannungsverteilung auf den Split-Gates den
1D-Leitfähigkeitskanal lateral zu verschieben. So ist man in der Lage das 2DEG über
einen größeren Bereich eindimensional abzutasten, um so den Idealzustand zu errei-
chen, bei dem der 1D-Kanal durch das Coulomb-Potenzial eines Quantenpunktes voll-
ständig abgeschnürt wird. Der Einfluss des Coulomb-Potenzials eines geladenen Quan-
tenpunkt auf das 2DEG äußert sich in einem leichten Ansteigen der 1D-Leitfähigkeit,
wenn die Quantenpunkte kapazitiv geladen werden (s- und p-Niveaus). Dieses Verhal-
ten ist bis zum gegenwärtigen Zeitpunkt nicht ganz verstanden und muss in zukünfti-
gen Arbeiten weiter untersucht werden.
Neben den σ(UG)-Messungen wurden auch Vierpunkt-Widerstandsmessungen bei ver-
änderlichem Magnetfeld an den erwähnten nanoskaligen Messstrukturen durchgeführt.
Die ersten Ergebnisse dieser Messungen deuten daraufhin, dass eine Reduzierung der
Raumdimension zu keiner Verstärkung des Einflusses der Quantenpunkte auf das 2DEG
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Abstract

Within the present thesis the influence of charged self-assembled InAs-quantum dots
on the transport properties of a two dimensional electron gas (2DEG) is investigated.
The InAs-quantum dot-layer is embedded in a MISFET-heterostructure in close vicinity
of the 2DEG (tunnelling barrier: d=25 nm).
Firstly, the sample is characterized with capacitance-spectroscopy. With this CV-spectros-
copy it is possible to estimate specific sample parameters like effective mass and the dot
density. Furthermore, from the capacitance-voltage spectra in the magnetic field the di-
spersion of the quantum dot levels is determined.
For the transport measurements the sample device structure is designed as a gated
" macroscopic" Hallbar (A=100 µm×500 µm). So, we are able to identify the charge car-
rier concentration and the mobility for arbitrary gate bias. In such transport measure-
ments the influence of the dots on the charge carrier concentration and mobility of the
2DEG is very little.
The challenge for the next step is to enhance this quantum dot effect on the 2D-transport
properties. To enhance the influence of the dots on the transport properties a gated
1D-conductance channel for example by etching or by using the split-gate-technique is
fabricated. With these techniques it is possible to create an 1D-conductance channel
(A=400 nm×600 nm). In the results of the measurements on the split-gate structure a
drop of the conductance is found, which indicates the influence of the dots on the trans-
port properties of the channel as the gate bias value agrees exactly with the value where
the first s-Niveau get charged (compared with CV-spectroscopy).
Furthermore, in the present thesis a new method for lateral translation of the 1D-conduct-
ance channel. If you apply independent and asymmetric voltages on the split gates is
used that allows to achieve lateral translation of the 1D-conductance channel between
the split gates. Therefore, the 1D-channel and the repulsive quantum dot potential can
be brought into spatial resonance. In these measurements, a small increase in conduc-
tance if the dots are charged is found. This behavior is not yet fully understood at the
moment and should be the scope of further work.
Furthermore, in this work a split-gate structure is investigated by Hall-measurements.
First results do not show any enhance of quantum dot influence on the 2DEG.
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1 Einleitung

Der Begriff der Nanotechnologie∗ ist im letzten Jahrzehnt zu einem der wichtigsten Schlag-
worte der populärwissenschaftlichen Literatur geworden.
Die Grundlagen zur Realisierung der in dieser Arbeit betrachteten Quantenpunkte lie-
fert gerade diese Nanotechnologie. Sie erlaubt, beispielsweise die kontrollierte Herstel-
lung von atomar genauen Strukturen in Halbleitern und eine damit erzielte Einschrän-
kung der Bewegung der Ladungsträger in einer, zwei oder drei Raumrichtung(en) auf
Skalen in der Größenordnung von wenigen bis zu einigen hundert Nanometern.
Die in dieser Größenordnung eingeschränkten Elektronensysteme können nicht mehr
mit der klassischen (Volumen)-Physik beschrieben werden. Bei ständig fortgesetzter
Verkleinerung der hergestellten Bauelemente werden schließlich Abmessungen erreicht,
bei denen Quanteneffekte auftreten [1]. Die Kontrolle dieser räumlichen Einschrän-
kung von Ladungsträgern und den damit „kontrollierbaren“ Quanteneffekten führte in
der Vergangenheit zu der Entwicklung von neuartigen Halbleiter-Bauelementen. Das
große Interesse an halbleiterbasierten niedrigdimensionalen Elektronensystemen liegt
an der im Vergleich zu Metallen sehr viel größeren Fermi-Wellenlänge λF (λF,M ≈1 nm,
λF,HL ≈40 nm). Dies hat zur Folge, dass Quanteneffekte im Halbleiter schon bei sehr viel
größeren Abmessungen, als es bei Metallen der Fall wäre, dominieren.
Niedrigdimensionale Systeme sind in optischer Hinsicht wegen ihrer erhöhten Zustands-
dichten interessant. Speziell auf Basis von nulldimensionalen Elektronensystemen (Quan-
tenpunkte) beruht z.B. ein Halbleiterlaser mit hoher Effizienz [2]. Die Wellenlänge des
emittierten Lichts kann dabei durch Variation der Quantenpunktgröße eingestellt wer-
den†.
Auch die moderne Computertechnologie ging in ihrer Entwicklung zeitlich mit der Mi-
niaturisierung von Halbleiter-Bauelementen einher.
Die räumliche Dimensionsreduzierung des Elektronengases und die damit verbundene
Entwicklung eines Halbleiter-Transistors (MOSFET‡) war ein Wendepunkt für die mo-
derne Computertechnologie.
Grundlage dieser Anwendungen ist das zweidimensionale Elektronengas (2DEG). Die-

∗griech.: nanos=Zwerg
†Über die Variation der Größe können die energetischen Abstände der diskreten Niveaus eingestellt

werden.
‡MOSFET=Metal Oxide Semiconductor Field Effect Transistor
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1 Einleitung

ses System ist in einer Bewegungsrichtung so stark eingeschränkt, dass die Energien
quantisiert sind. Neben dem bereits erwähnten MOSFET-Transistor sind unter anderem
der von H.Krömer entwickelte Heterostukturlaser (Nobelpreis 2000) oder der Quanten-
Kaskaden-Laser zu nennen, die auf zweidimensionalen Systemen beruhen.
Der erfolgreiche Einsatz zukünftiger Entwicklungen erfordert aber nicht nur die Bereit-
stellung geeigneter Herstellungsverfahren, sondern auch ein genaues mikroskopisches
Verständnis der speziellen physikalischen Eigenschaften. Daher ist es unerlässlich, die
Eigenschaften der erzeugten Systeme zu charakterisieren und ein Verständnis der phy-
sikalischen Effekte zu erlangen. Eine der bekanntesten und für das Verständnis von
zweidimensionalen Elektronensystemen wichtigsten Entdeckungen der letzten Jahr-
zehnte ist der Quanten-Hall-Effekt im Jahre 1980 [36]. Dieser quantenmechanische Effekt
tritt in einem 2D-Elektronensystem auf, wenn senkrecht zur Ebene ein starkes Magnet-
feld angelegt ist. Hall-Widerstandsmessungen in Abhängigkeit von einem Magnetfeld
zeigen Plateaus bei ganzzahligen Bruchteilen der von-Klitzing-Konstante RK (RK= h

e2 ). Im
Quanten-Hall-Effekt spielen Potenzialmodulationen eine entscheidende Rolle bei der
Erklärung des Auftretens der Plateaus.
Prinzipiell sind daher Proben, bei denen solche Störstellen in ihrer Wirkung in situ vari-
iert werden können von besonderem Interesse für ein grundlagenorientiertes Verständ-
nis des 2DEG im Magnetfeld. Selbstorganisierte InAs-Quantenpunkte bieten z.B. die
Möglichkeit, bis zu sechs Elektronen zu speichern und sind damit vielversprechende
Kandidaten zur Untersuchung des Quanten-Hall-Effektes unter dem Einfluss von kon-
trollierten Streupotenzialen.
Zur Herstellung solcher Quantenpunkte stehen zwei verschiedene technologische An-
sätze zur Verfügung. Die sogenannte top-down-Technologie bezeichnet in diesem Zu-
sammenhang die Herstellung solcher Quantenpunke über elektrostatische Potenziale.
Hierfür müssen zunächst Bereiche auf der Probenoberfläche lithografisch definiert wer-
den, die dem 2DEG ein Potenzial aufprägen, so dass die Bewegung der Elektronen in
allen drei Raumrichtungen elektrostatisch eingeschränkt ist. Solche Herstellungsmetho-
den sind sehr zeitintensiv und die laterale Auflösung der Lithografieverfahren ist zur
Zeit auf etwa 40 nm begrenzt.
Eine von aufwändigen lithografischen Prozessen unabhängige Methode zur Herstel-
lung sehr kleiner Strukturen ist das sogenannte selbstorganisierte Wachstum, dieses
wird als bottom-up-Technologie bezeichnet. Es basiert auf einer Fehlanpassung der Git-
terkonstanten beim Abscheiden eines Halbleiterkristalles auf einem anderen Trägerkris-
tall (Substrat). Mit dieser Methode ist es möglich, Quantenpunkte in großer Anzahl mit
hoher Qualität und Uniformität herzustellen.
In seiner elementarsten Form lässt sich der niedrigdimensionale Elektronentransport
anhand von eindimensionalen Systemen untersuchen, da hier den Elektronen nur noch
eine einzige freie Bewegungsrichtung verbleibt. Ein solches 1D-Elektronensystem be-
sitzt eine große Bedeutung in der Grundlagenforschung. Im ballistischen eindimensio-
nalen Transportregime ist der Leitwert in Vielfachen des elementaren Quantums 2e2

h

2



quantisiert. Dieses Phänomen der Leitwertquantisierung ist an einer HEMT§ -Struktur,
dessen 2DEG elektrostatisch über Metallelektroden auf der Oberfläche lateral einge-
schränkt worden ist, erstmals von von Wees et al. 1986 experimentell bestätigt worden.
Solche Quantendrähte bzw. Quantenpunktkontakte bilden die Basis für Untersuchun-
gen zur elektronischen Kohärenz [3]. Etwas anwendungsbezogener ist die Möglichkeit
solche 1D-Systeme als empfindliche Detektoren für Interferenzexperimente zu nutzen
[4].

Aufbau der vorliegenden Arbeit:

• In KAPITEL 2 sind die theoretischen Grundlagen von niedrigdimensionalen Elek-
tronensystemen zusammengefasst.
Zunächst werden nulldimensionale Elektronensysteme in ihren elektronischen Ei-
genschaften und Herstellung beschrieben. Danach werden die charakteristischen
Eigenschaften von ein- und zweidimensionalen Elektronensystemen erläutert.

• KAPITEL 3 beschreibt die Probenpräparationsmethoden und Messtechniken, die
in dieser Arbeit Verwendung fanden. Desweiteren werden kurz die angewandten
Kryostatsysteme erläutert.

• KAPITEL 4 beinhaltet die Auswertung und Diskussion der Ergebnisse. Zunächst
wird die untersuchte Heterostruktur mit der CV-Spektroskopie charakterisiert,
um im Weiteren mit den Ergebnissen aus der Transportmessung an einem „ma-
kroskopischen“ Hallbar und „mikroskopischen“ 1D-Split-Gate- und Steg-Geome-
trien verglichen zu werden.

• In KAPITEL 5 werden die Erkenntnisse dieser Arbeit zusammengefasst, zudem
wird ein Ausblick hinsichtlich der zukünftigen Untersuchungsmöglichkeiten ge-
geben.

§HEMT=High Electron Mobility Transistor
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2 Grundlagen

Der Inhalt dieses Kapitels ist die Wiedergabe von grundlegenden theoretischen Er-
kenntnissen von dimensionsreduzierten Elektronensystemen. Angesprochen werden
zudem die experimentelle Herstellung und die verschiedenen Methoden, mit denen
es möglich ist, diese Systeme messtechnisch zu erschließen.

2.1 Niedrigdimensionale Elektronensysteme

Niedrigdimensionale (d.h., auf weniger als drei Raumdimensionen eingeschränkte) Elek-
tronensysteme unterscheiden sich bezüglich den physikalischen Eigenschaften sehr stark
von denen der dreidimensionalen Halbleitersysteme. Die Erforschung der Prinzipien
dieser „neuen“ Physik war in den letzten 30 Jahren Gegenstand intensiver Forschung.
Die experimentelle und theoretische Erforschung der Physik auf sehr kleinen Längens-
kalen ging mit der Entwicklung von Lithografie (Elektronenstrahllitografie∗) und Kris-
tallwachstum (Molekularstrahlepitaxie†) zeitlich einher. Erst als Techniken zur Herstel-
lung kleinster Strukturen auf Oberflächen und atomar genaue Epitaxie verschiedener
(halbleitender) Materialien verfügbar waren, konnten theoretische Erkenntnisse experi-
mentell verifiziert werden.
In Abb. 2.1 sind Größenordnungen wichtiger charakteristischer Längen niedrigdimen-
sionaler Elektronensysteme auf GaAs/(Al,Ga)As-Basis logarithmisch aufgetragen. Zum
einen sind hier Längen dargestellt, die ihren Ursprung in den Herstellungsmethoden
von lateralen und vertikalen Kleinststrukturen wie EBL und MBE haben, zum anderen
Längenskalen physikalischen Ursprungs, wie z.B. Impulsrelaxationslänge oder Zyklo-
tronradien von Elektronen.
Entscheidend für die räumliche Einschränkung von Elektronen ist die Fermi-Wellenlänge
λF. Schließt man Elektronen in einer Raumrichtung kleiner als die Fermi-Wellenlänge
λF = h√

2mEF
ein, so kann bei tiefen Temperaturen eine ausschließliche Besetzung des

Grundzustandes in dieser Richtung erreicht werden (zweidimensionales Elektronen-
gas). Eine weitere Reduktion der Dimensionalität führt in entsprechender Weise zu

∗engl.:Electron Beam Lithography, EBL
†engl.: Molecular Beam Epitaxy, MBE
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2 Grundlagen
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Abbildung 2.1: Logarithmische Darstellung verschiedener Längenskalen.

Quantendrähten (1D) und Quantenpunkten (0D).
Aus Abb. 2.1 ist zu entnehmen, dass die Fermi-Wellenlänge λF eines Halbleiters, die von
der Elektronendichte des Systems abhängt, Werte zwischen 25 und 120 nm annehmen
kann. Die experimentelle Herausforderung besteht darin Methoden zu entwickeln, mit
denen es möglich ist Elektronen in allen Raumrichtungen einzuschränken.
Den vertikalen Einschluss erreicht man durch das Aufwachsen halbleitender Materia-
lien mit unterschiedlichen Bandlücken. So ist es möglich, durch das versetzungsfreie
Wachsen einer spezielle Schichtfolge (Heterostruktur) die Elektronen in Wachstums-
richtung räumlich einzuschränken. Die intrinsischen Eigenschaften (z.B. Elektronenflä-
chendichte N2D und Beweglichkeit µ) eines solchen 2DEGs (zweidimensionales Elek-
tronengas) können über die Schichtfolge oder die Einstellung verschiedener Parameter
während des Wachstums erreicht werden.
Ein solches 2DEG ist Basis für die weitere laterale Einschnürung der Elektronen.
Die Einschränkung in den verbliebenen Raumdimensionen erreicht man mit unter-
schiedlichen Methoden. Zum einen ist das Ätzen von Leitfähigkeitskanälen [5], [6], zum
anderen die von Thornton et al. [7], [8] entwickelte Split-Gate-Technik zu erwähnen. Hier-
bei werden laterale Metallelektroden (Gateelektrode) auf die Probenoberfläche aufge-
dampft. Durch das Anlegen einer negativen Spannung zwischen 2DEG und Elektrode
werden die Elektronen unter dem Gate verdrängt. Mit dieser Methode ist es möglich,
dem 2DEG definierte laterale Strukturen aufzuzwingen. (vgl. Abb. 2.1, Ausmaße mit

6



2.1 Niedrigdimensionale Elektronensysteme

EBL geschriebenen Strukturen)
Bei Transportmessungen an so hergestellten eindimensionalen Leitfähigkeitskanälen
spielen im Hinblick auf die elektrischen Eigenschaften weitere charakteristische Län-
gen eine entscheidende Rolle.
Die Phasenkohärenzlänge lφ, die stark von den intrinsischen Eigenschaften des 2DEGs
und der Temperatur abhängt, beschreibt die zurückgelegte Länge eines Ladungsträ-
gers zwischen zwei Stößen, bei denen die Phaseninformation des Wellenpakets, das
das Elektron beschreibt, verloren geht.
Ist lφ kleiner als die Impulsrelaxationslänge lD (Länge zwischen zwei elastischen Streu-
ungen) und den Ausmaßen des Leitfähigkeitskanals W(eite), B(reite), spricht man von
diffusiven Transport.
Ist lφ größer als lD, W und B befindet man sich im ballistischen Regime. Die elektrischen
Eigenschaften und Unterschiede zwischen diffusivem und ballistischem Transport wer-
den im jeweiligen Unterkapitel erläutert.
Eine weitere wichtige physikalische Größe zur Beschreibung elektronischer Systeme ist
die (dimensionsabhängige) elektronische Zustandsdiche‡. Die Herleitung der Anzahl
der Zustände pro Energieintervall in den verschiedenen Dimensionen findet sich etwa
in [9] und es werden in dieser Arbeit nur die grafischen Ergebnisse gezeigt, welche in
Abb. 2.2 dargestellt sind.

‡Anzahl von Zustände in einem bestimmtes Energieintervall
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Abbildung 2.2: Qualitativer Verlauf der Zustandsdichte für verschiedene Dimensionen eines
Elektronensystems. Im dreidimensionalen Fall besitzt die Zustandsdichte eine wurzelförmige
Abhängigkeit der Energie. In zwei Dimensionen bilden sich Subbänder aus, die nacheinander
besetzt werden. Somit zeigt sich eine Stufenform in der Energieabhängigkeit der Zustandsdich-
te. Schränkt man die freie Bewegung der Ladungsträger weiter ein, so besitzt die Zustandsdich-
te für jedes Subband eine inverse Wurzelabhängigkeit. Im nulldimensionalen Fall schließlich
bilden sich einzelne quantisierte Energieniveaus heraus. Die Dispersion hat dann die Form hin-
tereinander folgender Deltafunktionen.
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2.1 Niedrigdimensionale Elektronensysteme

2.1.1 Nulldimensionale Elektronensysteme - Quantenpunkte

Quantenpunkte sind quasi-nulldimensionale Elektroneninseln, d.h. die Elektronen sind
in ihrer freien Bewegung in allen drei Raumrichtungen eingeschränkt und können nur
definierte Energieniveaus einnehmen. Damit haben Quantenpunkte in vieler Hinsicht
atomaren Charakter, aus diesem Grund nennt man sie auch künstliche Atome.
Quantenpunkte lassen sich auf verschiedene Weise herstellen. Eine Möglichkeit ist die
Einschränkung eines 2DEGs in den lateralen Bewegungsrichtungen durch Verarmungs-
gates [12], [13] oder durch Ätzen [10], [11]. Mit diesen Methoden ist es gelungen, einzel-
ne Elektronen im Quantenpunkt zu untersuchen. Die Herstellung solcher Strukturen ist
jedoch sehr schwierig und zeitintensiv. Eine andere Methode nutzt die Selbstorganisati-
on beim Aufwachsen zweier verschiedener Materialien und wird im folgenden Kapitel
erläutert [14].

Selbstorganisierte Herstellung von Quantenpunkten

In dieser Arbeit werden Proben untersucht, die eine Schicht InAs-Quantenpunkte ent-
halten. Diese Quantenpunkte werden nicht lithografisch definiert, sondern entstehen
in einem selbstorganisierten Prozess beim Aufwachsen zweier unterschiedlicher halb-
leitender Materialien. Der Wachstumsmodus wird durch die Oberflächen- und Grenz-
flächenenergien und bei Materialien mit unterschiedlichen Gitterkonstanten zusätzlich
durch Verspannungseffekte bestimmt. Man unterscheidet dabei die folgenden drei Wachs-
tumsmodi:

• Frank-van der Merwe Wachstum: Die aufwachsende Schicht bedeckt die kom-
plette Oberfläche des Substrats und wächst in epitaktisch geschlossenen, zweidi-
mensionalen Schichten (Beispiel: GaAs auf Al1−XGaXAs) [15]. Die untere Abbil-
dung zeigt das Substrat mit unterschiedlichen Schichtdicken des Adsorptionsma-
terials.

Frank - van der Merwe
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• Volmer-Weber Wachstum: Bei diesem Wachstumsmodus wird die Substratober-
fläche nicht vollständig mit dem abgeschiedenen Material bedeckt, sondern es ent-
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2 Grundlagen

stehen dreidimensionale Inseln direkt auf der ursprünglichen Oberfläche. Dieses
Wachstum bezeichnet man auch als 3D-Wachstum [16].

Volmer - Weber
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• Stranski-Krastanov Wachstum: Dieser Wachstumsmodus ist eine Mischung aus
den beiden anderen Wachstumsmodi. So bildet sich zunächst eine zweidimensio-
nale Schicht im Lagenwachstum (Frank-van der Merwe Wachstum) aus, die die
ursprüngliche Oberfläche komplett abdeckt (sogenannte Benetzungsschicht). Ab
einer kritischen Schichtdicke (dkrit ≈1.5 ML bei InAs auf GaAs) setzt dreidimen-
sionales Inselwachstum (Volmer-Weber Wachstum) ein. Diese Art des Wachstums
ist z.B. beim Abscheiden von InAs auf GaAs aufgrund einer Gitterfehlanpassung
von 7% zu beobachten und führt unter geeigneten Wachstumsbedingungen zu de-
fektfreien InAs-Inseln sehr homogener Form und Größe (typischerweise: lateraler
Durchmesser: 20 nm, Höhe: 5 nm) [17].

Stranski - Krastanov
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Es ist jedoch davon auszugehen, dass die Quantenpunkte nicht vollständig aus reinem
Indiumarsenid bestehen, da während des Wachstums, das bei hohen Temperaturen
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2.1 Niedrigdimensionale Elektronensysteme

(T=500 °C) durchgeführt wird, GaAs in das InAs diffundieren kann. Dies wurde von
Kegel et al. [18] experimentell bestätigt.
Diese verschiedenen Wachtumsmodi können mit dem Youngschen Gesetz, welches ei-
ne (Grenzflächen-)Energienbilanz aufstellt, quantitativ erfasst werden. Die Youngsche
Relation lautet im thermodynamischen Gleichgewicht wie folgt:

σ13 = σ12 + σ23 · cos φ, (2.1)

wobei σxx die Beträge der Grenzflächenkräfte (abhängig von den beiden jeweiligen Ma-
terialien) darstellen, welche in Abb. 2.3 gezeigt sind. Tritt der erste Fall ein, dass gilt

|σ13 − σ12| ≥ σ23,

so wachsen die Materialien 1,2 und 3 nach dem Frank-van der Merwe-Modus auf
(φ =0→Lagenwachstum).
Aus dem zweiten möglichen Fall

|σ13 − σ12| < σ23

folgt ein endlich großer Winkel φ, so dass bei diesem Grenzflächenkräfte-Verhältnis das
Volmer-Weber-Wachstum resultiert.
Material 1 und 3 stellen in der untersuchten Probe GaAs und Material 2 InAs dar.

Material 1

Material 2

Material 3

s
13

s
23

s
12

F

Abbildung 2.3: Schematischer Quantenpunkt im Profil mit den Grenzflächenkräften der Ma-
terialien 1,2 und 3.

Elektronische Beschreibung von Quantenpunkten

Aufgrund der im Vergleich zu GaAs kleineren Bandlücke stellen die InAs- Inseln in der
GaAs-Umgebung ein effektives Einschlusspotenzial dar. Aufgrund der Geometrie der
zu untersuchenden Quantenpunkte (laterale Ausdehnung ist ungefähr vier mal grö-
ßer als in z-Richtung), ist die Einschränkung§ der elektronischen Wellenfunktion in
z-Richtung und damit auch ihre Quantisierung stärker als die in lateraler Raumrich-
tung. Aufgrund der unterschiedlichen Größenordnung der Quantisierungsenergien ist
die Wellenfunktion separierbar. Zahlreiche experimentelle und theoretische Untersu-
chungen der elektronischen Charakterisierung von Quantenpunkten zeigen, dass das

§engl.:Confinement
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2 Grundlagen

laterale Einschlusspotenzial in guter Näherung im Rahmen eines parabolischen Mo-
dells beschrieben werden kann ([53], [35], [20]).
Die Schrödingergleichung, welche die Trajektorie eines Elektrons in einem paraboli-
schem (2D) Potenzial und angelegtem Magnetfeld beschreibt, lautet¶:

( 1

2m∗ (p − eA)2 +
1

2
m∗ω2

0(x
2 + y2)

)

︸ ︷︷ ︸
H

Ψ = EΨ. (2.2)

Die Randbedingungen sind hierbei sowohl ein isotropes Einschlusspotenzial in der la-
teralen Ebene mit der Kreisfrequenz ω0, als auch eine isotrope und konstante effektive
Masse m∗. A ist das zum schichtsenkrechten Magnetfeld B = (0, 0, B) = B⊥ gehörende
Vektorpotenzial und stellt zudem den zusätzlichen Feldimpuls dar (p ist der kanoni-
sche Impuls des zu beschreibenden Elektrons).
Unter der Verwendung der symmetrischen Eichung mit

A =





−yB

xB

0





kann der Hamilton-Operator H in folgender Weise umgeschrieben werden:

H =
1

2m∗ (p
2
x + p2

y) +
1

2
m∗ (ω2

0 +
e2B2

4m∗2 )
︸ ︷︷ ︸

Ω2

(x2 + y2) +
eB

2m∗ (xpy − ypx)︸ ︷︷ ︸
Lz

(2.3)

=
1

2m∗ (p
2
x + p2

y)
︸ ︷︷ ︸

kin. Anteil

+
1

2
m∗Ω2(x2 + y2)

︸ ︷︷ ︸
el. und magn. Einschluss

+
ωc

2
Lz

︸ ︷︷ ︸
Zeeman-Aufspaltung

(2.4)

= H‘
xy +

ωc

2
Lz. (2.5)

Aus dieser modifizierten Gleichung ist schnell ersichtlich, dass sich beim Einschalten
eines Magnetfeldes B⊥ die charakteristische Kreisfrequenz des Systems ändert:

ω0 → Ω =

√

ω2
0 +

ω2
c

4
.

Außerdem führt das Magnetfeld zu einer Zeeman-Aufspaltung. Hierbei sind Lz der
(orbitale) Drehimpulsoperator in z-Richtung und ωc = eB

m∗
die Zyklotronfrequenz des

Elektrons.
Die Energieeigenwerte zu dem Hamiltonoperator eines parabolischem Einschlusspo-
tenzial mit angelegtem Magnetfeld sind erstmals von Fock und Darwin ([21], [22]) be-

¶Elektronenspin wird hier vernachlässigt, da Landé´scher g-Faktor in diesem speziellen Fall sehr klein
ist (siehe [23]).
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2.1 Niedrigdimensionale Elektronensysteme

rechnet worden und lauten:

EN,m = (N + 1)hΩ + lh
ωc

2
, (2.6)

wobei sich N = n	 + n� und l = n	 − n� eindeutig aus den zirkularen Quantenzahlen
beschreiben lassen [24].
Die berechnete Energiedispersion der Eigenwerte eines parabolischen Potenzials in Ab-
hängigkeit eines Magnetfeldes ist in Abbildung 2.4 gezeigt. Der Entartungsgrad der Zu-

1 1

1 -1

0 0 0

0

0

0

2 -2

1 1 0

1

1

2

s

p

d

0,0 0,2 0,4 0,6 0,8 1,0
0

1

2

3

4

 

 

wc/w0

E
/h
w

0

Abbildung 2.4: Eigenwerte des harmonischen Oszillator im Magnetfeld mit ihren Quanten-
zahlen (Fock-Darwin Zustände). Das grauschattierte Gebiet deutet den experimentell erreichba-
ren Bereich an. In Analogie zur Atomphysik bezeichnet man die Zustände als s-, p- und d-artig

stände beträgt 2(N + 1). Die Entartung wird im Magnetfeld durch den Zeeman-Anteil,
(siehe Gleichung 2.6) aufgehoben.
Die Wellenfunktionen Ψ, welche die Gleichung 2.5 lösen, lassen sich aus dem Produkt
des Hermite-Polynoms Hn(x,y) und einer ebenen Welle bilden. In den Gleichungen 2.7
bis 2.9 sind diese Wellenfunktionen Ψn(x, y) in kartesischen Koordinaten für n=1,2 und
3 gezeigt.

Ψ1(x, y) =
1√
πl2

0

e−(x2+y2)/2l2
0 (2.7)

Dieser Ausdruck ist die Wellenfunktion des Grundzustandes und wird als s-Niveau be-
zeichnet. Hierbei ist l0 die charakteristische Länge, die die Ausdehnung der Wellenfunk-
tion angibt. Für n=2 existieren zwei verschiedene gleichberechtigte Wellenfunktionen,
welche identische Symmetrie besitzen und senkrecht zueinander stehen. Diese beiden
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2 Grundlagen

Wellenfunktionen identifiziert man mit den p-Niveaus:

Ψ2(x, y) =
2√
2πl2

0

xe−(x2+y2)/2l2
0 ∨ Ψ2(x, y) =

2√
2πl2

0

ye−(x2+y2)/2l2
0 . (2.8)

Die höherenergetische d-artige Wellenfunktion lautet:

Ψ3(x, y) =
1√
πl3

0

2xye−(x2+y2)/2l2
0 . (2.9)

Das Betragsquadrat dieser Wellenfunktionen und damit die
Aufenthaltswahrscheinlichkeiten der Elektronen in den einzelnen Zuständen sind in
Abb. 2.5 grafisch dargestellt. Diese Wellenfunktionen enthalten alle Informationen des
Quantensystems und sind für das Verständnis solcher sehr wertvoll. In den letzten Jah-
ren ist es mittels Magneto-Kapazitätsspektroskopie gelungen, solche Wellenfunktionen
experimentell abzubilden ([25], [26], [27]).

(    ) (    )(    )(    )

Abbildung 2.5: Darstellung der Elektronen-Aufenthaltswahrscheinlichkeiten der verschiede-
nen Zustände eines harmonischen Oszillators.
(a): s-, (b) & (c): p-, (d): d-artiges Quadratsprodukt der Wellenfunktionen Ψn(x,y).
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2.1 Niedrigdimensionale Elektronensysteme

Ladeprozess von Quantenpunkten

Bisher wurden Grundzustandsenergien der Elektronen im Quantenpunkt im Einteil-
chenbild betrachtet. Im Folgenden wird nun die Elektron-Elektron Wechselwirkung dis-
kutiert und versucht, diesen Beitrag in einem Modell quantitativ zu erfassen.
Elektronen besitzen eine negative Ladung und werden daher von einem elektrischem
Feld umgeben. Kommt nun ein weiteres Elektron hinzu, so wird dieses mit einer be-
stimmten Kraft (Coulombkraft) abgestoßen. Dieser abstoßende Coulombbeitrag, der
von der Anzahl der Elektronen im Quantenpunkt abhängt, muss überwunden werden,
damit ein weiteres Elektron in den Quantenpunkt geladen werden kann (Coulomb-
Blockade). Das Constant-Interaction Model beschreibt diesen Beitrag, indem es davon
ausgeht, dass jedes in den Quantenpunkt hinzugefügte Elektronpaar einen konstan-
ten Coulombbeitrag Ec zur Gesamtenergie hinzufügt, unabhängig vom bisherigen La-
dungszustand ([28], [29]). Zudem werden die verschiedenen Energieanteile (Quanti-
sierungenergie und Wechselwirkungsenergien) völlig getrennt voneinander behandelt,
so dass die Gesamtenergie eines Elektronenensembles in einem Quantenpunkt im CI-
Model beträgt:

E(N) =

N∑

i=0

Ei +
N(N + 1)

2
Ec. (2.10)

Hierbei ist N die Gesamtelektronenzahl und Ei die Quantisierungenergie eines einzel-
nen Elektrons. Die Coulomb-Blockade lässt sich mit der Kapazitätsspektroskopie, die
in Kapitel 3 noch eingehend diskutiert wird, experimentell bestimmen. Diese Spektro-
skopiemethode wird an einer Kondensatorstruktur durchgeführt und zeichnet sich da-
durch aus, dass Elektronen kontrolliert in eine Quantenschicht (z.B. Quantenpunkte)
geladen werden können.
Der Quantenpunkt mit der Eigenkapazität CQP und der Ladung QQP=Ne ist zwischen
den Elektroden eines Plattenkondensators eingebettet und über einen Tunnelwider-
stand mit eine Platte verbunden (siehe Abbildung 2.6). Wird die Spannung U am Plat-
tenkondensator erhöht, so tunnelt ein Elektron von der näheren Kondensatorplatte in
den Quantenpunkt, dessen Ladungszustand sich dadurch ändert.
Die Gesamtenergie E eines Quantenpunkt beträgt bei einer angelegten Spannung U:

E =
Q2

QP

2CQP︸ ︷︷ ︸
kapazitiver Anteil des QP

+
dTunnel

dges

eU

︸ ︷︷ ︸
Anteil der Ladung QQP im el. Feld

, (2.11)

wobei λ =
dges

dTunnel
als Hebelarm bezeichnet wird.

Nun betrachten wir ein nulldimensionales Quantensystem, das so klein ist, dass die
Ladung auf den Quantenpunkten nicht mehr als kontinuierlich angenommen werden
darf, sondern berücksichtigt werden muss, dass die Ladung quantisiert ist (Q=Ne).
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2 Grundlagen

dges

dTunnel

e-

U

Abbildung 2.6: Ersatzschaltbild zur Erklärung der Coulomb-Blockade.

Es folgt also für die Ladung im Quantenpunkt, dass sie ein ganzzahliges Vielfaches N
der Elementarladung sein muss:

QQP = λCQPU = Ne ⇔ U =
Ne

λCQP

. (2.12)

Weitere Elektronen können nur dann in den Quantenpunkt tunneln, wenn die Gesamt-
energie von N und N+1 Elektronen gleich ist. Daraus lässt sich die Spannungsdifferenz
zwischen zwei Ladevorgängen ableiten:

∆U = U(N + 1) − U(N) (2.13)

=
e

λCQP

. (2.14)

Und für die Energiedifferenz zwischen zwei Ladevorgängen folgt (unter Vernachlässi-
gung des Bildladungsanteils):

∆E = λe∆U =
e2

CQP

, (2.15)

welches die Coulomb-Blockade Energie darstellt.
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2.1 Niedrigdimensionale Elektronensysteme

2.1.2 Eindimensionale Elektronensysteme

Im Folgenden werden die elektronischen Eigenschaften eines eindimensionalen Elek-
tronensystem diskutiert. Charakteristisch für ein solches System ist die Einschränkung
der Elektronen in zwei Raumdimensionen und die Möglichkeit der freien Bewegung
in der verbliebenen Raumrichtung (Quantendraht). Die möglichen Methoden der Her-
stellung dieser Elektronensysteme unterscheiden sich stark voneinander. Zum einen ist
es möglich, einen eindimensionalen Leitfähigkeitskanal aus einem zweidimensionalen
Elektronengas zu ätzen [6], zum anderen wurde von Thornton et al. [7] eine Methode
entwickelt, die auf dem Feldeffekt beruht und erlaubt, das zweidimensionale Elektro-
nengas unter aufgedampften Metallelektroden zu verarmen. Mit dieser Technik ist es
möglich, beliebige laterale Strukturen im 2DEG zu erzeugen (siehe Abbildung 2.7). Um

Verarmungszone
1D-Einschnürung

Split-Gate-Elektroden

2DEG

z

x y

Abbildung 2.7: 1D-Leitfähigkeitskanal durch Split-Gate-Technik. Durch Anlegen einer Span-
nung U werden über den Feldeffekt die Elektronen im 2DEG verdrängt.

die Energiezustände eines eindimensionales Elektronensystems zu beschreiben, muss
die Schrödingergleichung gelöst werden. Man geht in diesem Fall von einem, nähe-
rungsweise parabolischen, Potenzial in einer Dimension aus. Aus Abb. 2.7 wird ersicht-
lich, dass sich die Elektronen des 2DEGs im Bereich der 1D-Einschnürung nur in eine
der beiden lateralen Raumrichtungen frei bewegen können [30]. Die Elektronenbewe-
gung in y-Richtung ist in diesem Fall durch das „elektrostatische Messer“ der Split-
Gate-Elektroden harmonisch eingeschränkt. Im Inneren der Einschnürung lautet die
Schrödingergleichung:

( p2

2m∗ + V(y)
)

Ψ = EyΨ (2.16)
( p2

2m∗ +
1

2
m∗ω2

0y
2
)

Ψ = EyΨ. (2.17)

Hierbei sind p der kanonische Impuls, m∗ die konstante effektive Masse und ω0 die
charakteristische Eigenfrequenz des Elektrons. Mit dem Ansatz der harmonischen Wel-
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lenfunktionen erhält man folgende Eigenwerte:

Ey = Ex + h̄ω0(n +
1

2
) + Ez mit Ex =

h̄2k2
x

2m∗ . (2.18)

Hierbei stellt Ez die Quantisierungsenergie in z-Richtung dar (siehe Kapitel 2.1.3).
Berücksichtigt man noch ein Magnetfeld, welches senkrecht zum 2DEG angelegt ist, so
muss die Schrödingergleichung (Gleichung 2.17) mit dem zusätzlichen Feldimpuls A
modifiziert werden [31]

(

(

p − eA
)2

2m∗ +
1

2
m∗ω2

0y
2
)

Ψ = EΨ. (2.19)

Diese Gleichung kann mit der Landau-Eichung A = (By, 0, 0) umgeschrieben werden
und man erhält die Eigenwerte

Ey =
h̄2k2

x

2m∗
( ω0

ωc,0

)2
+ h̄ωc,0(n +

1

2
) + Ez mit ωc,0 =

√

ω2
c + ω2

0, (2.20)

mit ωc = eB
m∗

als Zyklotronfrequenz des Elektrons und n ∈ N. Aus dieser Formel folgt,
dass sich auch im 1D-Fall die Eigenfrequenz des Systems mit angelegtem Magnetfeld
ändert. Einen weiteren Einfluss hat das Magnetfeld auf die effektive Masse der La-
dungsträger. Die effektive Masse ohne Magnetfeld m∗ transformiert sich bei Anlegen
eines Magnetfeldes zu

m∗ → meff = m∗ω
2
c,0

ω2
0

.

Im Folgenden wird die Frage beantwortet, wieviel jedes 1D-Subband zum Gesamtstrom
beiträgt.
Die Stromgleichung im Fall des eindimensionalen Elektronentransports bei angelegter
Spannung U lautet [30]

I1D = 2e

∫EF+eU

EF

D1D(E)v1D(E)dE. (2.21)

D1D = dN1D

dE
‖ stellt die Zustandsdichte im eindimensionalen Fall dar, deren Verlauf in

Abb. 2.2 zu sehen ist (der Faktor 2 berücksichtigt die Spinentartung)

D1D =
1

πh̄

√

2m∗

E
=

1

π

(∂E

∂k

)−1
,

‖dN1D ist die Anzahl der Zustände im Energieintervall dE im eindimensionalen Fall.
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2.1 Niedrigdimensionale Elektronensysteme

und v1D ist die 1D-Gruppengeschwindigkeit.

v1D =
1

π

∂E

∂k
.

Setzt man die eindimensionale Zustandsdichte und Gruppengeschwindigkeit in Glei-
chung 2.21 ein so erhält man

I1D =
2e

h
eU (2.22)

⇔
I1D

U
= G =

2e2

h
(2.23)

Der Strom wird also gleichmäßig über die Subbänder verteilt und jede einzelne Sub-
bandmode trägt 2e2

h
zum Gesamtleitwert G bei. Für N besetzte 1D-Subbänder ist der

Leitwert eines 1D-Kanal gegeben durch

GN = N
2e2

h
mit N =

2b

λF

, (2.24)

wobei b die effektive Breite des 1D-Kanals darstellt.
Mitte des 20sten Jahrhunderts wurde dann ein sehr leistungsfähiges theoretisches Mo-
dell erarbeitet [32] und experimentell untersucht, welches die Leitfähikeit als Streupro-
blem beschreibt. Dieser Landauer-Büttiker Formalismus verallgemeinert das oben be-
trachtete Problem auf ein System mit verschiedenen 1D-Moden. Man erhält für die Lö-
sung dieses Problems eine ähnliche Gesetzmäßigkeit:

G = (
2e2

h
)

N∑

m,n=1

|tm,n|2. (2.25)

Hierbei ist |tm,n|2 der Transmissionskoeffizient von Mode m nach Mode n.
Gleichung 2.25 impliziert schon, dass sich das eindimensionale Transportverhalten nicht
immer so verhält wie im idealen semi-klassischen Fall beschrieben. Der Leitwert G =

N2e2

h
stellt im Landauer-Büttiker-Formalismus nur einen Spezialfall dar, wenn alle Trans-

missionskoeffizienten gleich eins sind. Dieser Spezialfall tritt auf, wenn eine endliche
Temperatur vernachlässigt wird und damit angenommen wird, dass die Fermi-Dirac-
Verteilungsfunktion eine Stufenfunktion ist (mit EF als Abschneidewert). Zudem wur-
den die Elektron-Elektron Wechselwirkung und inelastische Stöße zwischen Elektronen
und Störstellen nicht betrachtet.
Das 1D-Transportverhalten ist grob in zwei Grenzfälle zu unterteilen (siehe Abbildung
2.8).

• diffusiver Transport: lφ �lD �W,B, d.h. Elektronen werden an Störstellen oft
gestreut, so dass die Phasenkohärenzlänge lφ sehr viel größer ist als die Impulsre-
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laxationslänge lD. Nach jedem Stoß wird die Phase des Elektrons gelöscht.

• ballistischer Transport: W,B< lD < lφ d.h. der Elektronentransport wird nur
durch die Abgrenzungen des Kanals gestört. An den Außenwänden werden Elek-
tronen elastisch gestreut. Die Phasenkohärenzlänge lφ ist größer als W,B und lD.
Dieser Elektronentransport ist auch dadurch gekennzeichnet, dass nicht mehr die
inneren Materialeigenschaften des Kanals ausschlaggebend sind, sondern die Um-
randung größeren Einfluss ausübt. Im Welle-Teilchen Dualismus dominiert in die-
sem Fall die (Materie-)Welleneigenschaft des Elektrons.

diffusiver Transport

ballistischer Transport

(a)

(b)

W

B

Abbildung 2.8: Schematische Darstellung von zwei verschiedenen Arten des 1D-Tranpsorts.

Wharam et al. und van Wees et al. ([33], [34]) konnten durch stetiges Einschnüren des
2DEGs den 1D-Kanal in der Breite nach und nach reduzieren und so die Quantisierung
des Leitwerts zeigen (siehe Abb. 2.9).
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k
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Abbildung 2.9: Das linke Diagramm zeigt die theoretisch erwartete Leitwert-Stufenfunktion
bei T=0 K. Das rechte Diagramm zeigt eine real gemessene Stufenfunktion bei ca. 200 mK (van
Wees et al. [33]). Die Stufen sind aufgrund endlicher Temperaturen abgerundet. Bei steigenden
Temperaturen nimmt die Anzahl der Phononen zu, die mit den Elektronen streuen können.
Die Phasenkohärenzlänge wird kürzer als die Breite und Länge des Leitfähigkeits-Kanals. Die
Folge ist der Übergang von einer Stufenfunktion zu einer Geraden mit linearer Steigung für
kBT > h̄ω0.(ballistischer Transport → diffusiver Transport).
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2.1.3 Zweidimensionale Elektronensysteme

Das zweidimensionale Elektronengas ist das technologisch wichtigste und meist unter-
suchte niederdimensionale Elektronensystem. 2DEGs besitzen große technische Bedeu-
tung, da sie Grundlage vieler elektronischen Halbleiter-Bauelemente sind. Mittlerweile
sind viele grundlegende Effekte entdeckt und weitestgehend geklärt worden, welche für
das Verständnis solcher Elektronensysteme sehr wichtig sind. Als Beispiel ist hier der
Quanten-Hall-Effekt zu nennen, für den bis zum gegenwärtigen Zeitpunkt zwei Nobel-
preise vergeben worden sind ([36], [38]).
Von einem zweidimensionalem Elektronensystem spricht man, wenn die Elektronen-
bewegung in einer Raumdimension durch ein Einschlusspotential eingeschränkt ist
(räumliche Eingrenzung im Größenbereich der Fermi-Wellenlänge), wohingegen die
Bewegung in den anderen beiden Raumrichtungen frei ist.
In diesem Unterkapitel sollen nun die Herstellung und die elektrischen Eigenschaften
des zweidimensionalen Elektronengases diskutiert werden.

Herstellung

Die ersten zweidimensionalen Elektronengase wurden in einem Si/SiO2-MOSFET (Metal
Oxide Semiconductor Field Effect Transistor) hergestellt, zeichneten sich aber bei tiefen
Temperaturen durch eine relativ kleine Elektronen-Beweglichkeit aus. Der Grund hier-
für ist die raue Grenzfläche zwischen dem kristallinen Silizium und amorphem Siliziu-
moxid, welches ein großes Störpotenzial bildet.
Im Vergleich zu den früheren MOSFETs auf Silizium-Basis, besitzen 2DEGs in einer
AlXGa1−XAs/GaAs-Heterostruktur ∗∗ (0 ≤ X ≤ 1) eine bis zu 500mal bessere Tieftem-
peraturbeweglichkeit. Daher sind diese auf GaAs basierenden Heterostrukturen expe-
rimentell sehr interessant und von größter Popularität. Gründe für die hohe Beweglich-
keit sind im Folgenden aufgeführt

• Die Grenzflächenrauigkeit ist minimal, aufgrund fast identischer Gitterkonstanten
(aGaAs = 5.6533 Å, aAlAs = 5.6611 Å)

• die effektive Elektronenmasse eines Elektrons m∗ (Beweglichkeit µ ∝ 1
m∗

) in GaAs
ist sehr klein (m∗=0.067me).

Weiterhin wird die Beweglichkeit durch eine räumliche Trennung der Elektronen von
den ionisierten Dotieratomen erhöht (Modulationsdotierung [37], [38]).
Das atomar genaue Wachstum verschiedener halbleitender Materialien basiert auf der
Molekularstrahlepitaxie oder der metallorganischen Gasphasenepitaxie.
Mit diesen Methoden ist man in der Lage, den Bandkantenverlauf einer Probe nach
eigenen Wünschen zu gestalten (bandgap-engineering). In Abbildung 2.10 ist der gerech-
nete Bandkantenverlauf einer auf GaAs/AlGaAs-basierenden Halbleiterheterostruktur

∗∗MISFET:Metal Insulator Semiconductor Field Effect Transistor
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2.1 Niedrigdimensionale Elektronensysteme

dargestellt. Das 2DEG bildet sich am Übergang von GaAs und AlXGa1−XAs aus (der Al-

GaAs AlGaAsGaAs/AlAs-Übergitter d-Si-Dotierung
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Abbildung 2.10: Leitungsbandkantenverlauf einer typischen GaAs/(AlGa)As basierten
HEMT-Struktur mit Ausbildung eines 2DEGs. In Höhe von ca. 100nm innerhalb der Probe, liegt
das Leitungsband unterhalb der Fermi-Energie EF und es entsteht ein dreieckförmiger Potenzi-
alverlauf. Das erste Niveau dieser Potenzialstruktur ist mit n=1 gekennzeichnet. Schließlich ist
noch die Elektronenaufenthaltswahrscheinlichkeit dargestellt, welche bis auf dem Bereich des
Potenzialminimums vernachlässigbar klein ist.

Anteil in der untersuchten Heterostruktur liegt bei X=30%). Die (AlGa)As-Schicht be-
sitzt gegenüber GaAs eine größere Bandlücke und dient deshalb als Isolator. Außerdem
fungiert die (AlGa)As-Schicht als Abstandshalter∗ für die δ-Silizium Dotierung (1-2 Mo-
nolagen). Der AlGaAs-Abstandshalter (d=15 nm) trennt die Elektronen räumlich von
den positiv geladenen Ionenrümpfen der Si-Donatoren, die als Coulombstreuer agieren.
Si-Atome wirken in einer (AlGa)As-Matrix als Donatoren, welche energetisch durch das
Wasserstoffmodell beschrieben werden können. Die Bindungsenergie des Valenzelek-
trons liegt bei wenigen meV, so dass sich die äußeren Elektronen bei Zimmertempera-
tur (kBT300K=25 meV) wie freie Ladungsträger verhalten und das energetisch günstigere
Potenzialminimum suchen. Über die Si-Dotierkonzentration ist es direkt möglich, die
Elektronendichte im 2DEG einzustellen, da das 2DEG nur die Elektronen aus der Do-
tierschicht als Ladungsträger bezieht.

∗engl. Spacer
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Elektronische Eigenschaften für B=0

Um das 2D-Elektronensystem elektronisch beschreiben zu können, muss die dem Pro-
blem angepasste zeitunabhängige Schrödingergleichung gelöst werden.
Die Schrödingergleichung lautet:

(

−
h̄2

2m∗∆ + V(z)
)

Ψ(x, y, z) = EΨ(x, y, z). (2.26)

Hierbei ist m∗ die effektive Masse eines Elektrons in einer GaAs-Matrix an der Fermi-
Kante. Durch Separation des z-Anteils† mit Hilfe des harmonischen Wellenansatzes

Ψ(x, y, z) = Ψn(z)ei(kxx+kyy)

erhält man folgende Energieeigenwerte

E = En,z +
h̄2

2m∗ (k
2
x + k2

y) mit n ∈ N. (2.27)

Die freie Bewegung in der x und y Richtung äußert sich darin, dass keine Beschrän-
kungen der kx und ky-Werte existieren. Im Gegensatz dazu ist die Bewegung in z-
Richtung quantisiert (Quantisierungsenergie En,z), was zu Subbändern in Wachstums-
richtung führt. n stellt hier die Nummerierung der Subbänder dar. Für kBT< ∆E‡ gilt
näherungsweise, dass nur der Grundzustand (n=0) besetzt ist. Aus den Energieeigen-
werten ist nun leicht die zweidimensionale Zustandsdichte zu berechnen, wie etwa in
[30] beschrieben.
Man erhält das Ergebnis, dass die 2D-Zustandsdichte energieunabhängig ist und zwar
in folgender Form

D2D(E) =
dN2D

dE
=

gsgvm
∗

πh̄2
, (2.28)

wobei die Valley-Entartung gv bei GaAs den Wert 1 und die Spinentartung gs den Wert
2 besitzen. N2D stellt in diesem Zusammenhang die Flächendichte der Elektronen dar.
Gehen wir vom allgemeinen Fall aus, welcher auch höherenergetische Subbänder in z-
Richtung und eine endliche Temperatur berücksichtigt, muss Gl. 2.28 etwas modifiziert
werden

D(µ) =

N∑

n=0

Θ(µ − En,z). (2.29)

†Die Quantisierungsenergie in z-Richtung ist aufgrund der stark eingeschränkten Elektronenbewegung
in dieser Richtung um Größenordnungen größer als in lateraler Richtung. Daher ist es möglich, die
lateralen und vertikalen Wellenfunktionen zu separieren.

‡energetischer Abstand zweier Submoden
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2.1 Niedrigdimensionale Elektronensysteme

Hierbei ist µ das chemische Potenzial. Es berücksichtigt die Fermi-Dirac-Verteilung der
Besetzungswahrscheinlichkeiten bei endlichen Temperaturen. Θ(E) stellt die Heaviside-
Stufenfunktion und N die Anzahl der besetzten Subbänder En,z dar. Die Wellenfunktio-
nen, die Submoden in Abhängigkeit der Wellenvektoren kx und ky und die Zustands-
dichte eines zweidimensionalen Elektronensystems sind in Abb. 2.11 dargestellt. Um

E(z) E(kx,y) E(D)

z kx,y

E2

E1

E0

EF

D

EF EF

E2 E2

E1 E1

E0 E0

(a) (b) (c)

Abbildung 2.11: Abbildung (a) zeigt das dreiecksförmiges Potenzial, in welchem sich das
2DEG ausbildet, zusammen mit den verschiedenen Wellenfunktionen. Im Diagramm (b) ist die
Energie in Abhängigkeit der Wellenvektoren kx und ky dargestellt und (c) illustriert schematisch
die stufenförmige Zustandsfunktion des (quasi)-zweidimensionalen Elektronengas.

die Energieeigenwerte En,z bzw. die Wellenfunktionen des 2DEGs in Wachstumsrich-
tung zu berechnen, nähert man das reale 2DEG-Potenzial in der Umgebung der
GaAs/(AlGa)As-Grenzfläche einem Dreieckspotenzial an, wie es in Abb. 2.12 schema-
tisch gezeigt ist.
Um nun die Schrödingergleichung eines Dreieckspotenzial zu berechnen teilt man das
Potenzial in zwei Regionen ([39], [40]). Im Bereich 1 (z<0) ist das Potenzial unendlich
stark. Der zweite Bereich besitzt eine in Richtung positiver z eine lineare Steigung. Dar-
aus folgt:

V(z) =

{
∞ für z < 0

eEeffz für z > 0.
(2.30)

Hierbei ist Eeff das eingebaute (built-in) anliegende elektrische Feld am GaAs/(AlGa)As-
Übergang. Die Region mit einer unendlich hohen Potenzialwand besitzt keine bzw. tri-
viale Lösungen, im Gegensatz zu z>0. Die Schrödingergleichung für die z-Komponente
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V(z>0)=eEeff zV(z<0)=∞

z=0 z

V(z)

Bereich 1 Bereich 2

Abbildung 2.12: Um die Quantisierungsenergie in z-Richtung zu berechnen, idealisiert man
den realen Bandkantenverlauf , der für die Ausbildung des 2DEGs zuständig ist, zu einem Drei-
eckspotenzial. Bei z=0 steht eine unendlich hohe Potenzialwand, für z>0 ist der Verlauf linear
mit der Steigung eEeff.

lautet wie folgt:

h̄2

2m∗
z

d2

dz2
Ψn(z) +

(

En,z − eEeffz
)

Ψn(z) = 0, (2.31)

wobei m∗
z die effektive Elektronenmasse in z-Richtung darstellt.

Nach einer Substitution von
z̃ =

z

z0

Ẽ =
En,z

eEeffz0

in dimensionslose Parameter z̃ und Ẽ lautet Gl. 2.31

h̄2

2m∗
zeEeffz

3
0

d2

dz̃2
Ψn(z̃) +

(

En,z − z̃
)

Ψn(z̃) = 0. (2.32)

Mit z0 =
(

h̄2

2m∗

zeEeff

) 1
3

folgt

−
d2

dz̃2
Ψn(z̃) + (z̃ − En,z)Ψn(z̃) = 0 (2.33)

⇒
d2

dξ2
Ψn(z̃) − ξΨn(z̃) = 0 mit ξ = z̃ − Ẽ. (2.34)

Gleichung 2.35 stellt nun die Airy-Funktion (Gl. 2.35) dar [41], deren Lösungen bekannt
sind und aus denen die Energieeigenwerte En,z (Gl. 2.36) numerisch bestimmt werden
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2.1 Niedrigdimensionale Elektronensysteme

können [40]:

Ψn(z) = Ai
[2m∗

zeEeff

h̄2

[

z −
En,z

eEeff

]]

, (2.35)

En,z ∝
[ h̄2

2m∗
z

]1
3
[3πeEeff

2

[

n +
3

4

]]2
3

, n = 0, 1, 2, ... (2.36)

Für die beiden niedrigsten Zustände erhält man für typische Feldstärken Eeff (Eeff =

7 · 106 MV
m

) Werte von E0,z=70 meV und E1,z=120 meV [63].

Elektronische Eigenschaften für B 6= 0

Nun soll zusätzlich ein starkes Magnetfeld, welches senkrecht zum 2DEG angelegt ist,
die Elektronen beeinflussen.
Die klassische Betrachtung eines dreidimensionalen freien Elektrongases mit der Elek-
tronenmasse me (für GaAs m∗=0.067 me) in einem homogenen magnetischen Feld
B=(0,0,B) wird über die Lorentz-Bewegungsgleichung beschrieben:

mev̇ = −e(v × B). (2.37)

Quantenmechanisch läßt sich die Trajektorie eines Elektrons im Magnetfeld mit der
Schrödingergleichung berechnen

[ 1

2m∗ (p − eA)2 + V(z)
]

Ψ(x, y, z) = EΨ(x, y, z), (2.38)

wobei p den kanonischen Impulsoperator und A das magnetische Vektorpotenzial dar-
stellt.
Für ein Magnetfeld B in z-Richtung ergibt sich bei Landau-Eichung das Vektorpotenzial
A = (−By, 0, 0) und die Schrödinger-Gleichung lautet:

[ 1

2m∗ (p
2
x + (py − eBy)2 + p2

z) + V(z)
]

Ψ(x, y, z) = EΨ(x, y, z). (2.39)

Da das Magnetfeld die Bewegung in z-Richtung nicht beeinflusst, kann die Gleichung
für die z-Richtung separiert werden, so dass nur noch das Problem in der xy-Ebene ge-
löst werden muss.
Mit Hilfe des Ansatzes Ψ(x, y, z)=Ψn(z)ζ(x,y) läßt sich die Bewegung parallel zur Grenz-
fläche separieren, und man erhält:

[ 1

2m∗ (p
2
x + (py − eBy)2

]

ζ(x, y) = (E − En,z)ζ(x, y). (2.40)

Dieser Ausdruck ist durch eine weitere Separation vereinfachbar, so dass Gl. 2.40 in
eine Differentialgleichung eines eindimensionalen harmonischen Oszillator überführt
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werden kann, dessen Nullpunkt um y0 verschoben ist. Mit

ζ(x, y) = eikxφ(y)

ergibt sich die Schrödingergleichung zu

[ 1

2m∗
∂2

∂2y
+

1

2
m∗ωc(y −

h̄kx

m∗ωc︸ ︷︷ ︸
y0

)2
]

φ(y) = Ejφ(y), (2.41)

wobei ωc = eB
m∗

die Zyklotronfrequenz des Elektrons ist.
Gleichung 2.41 führt zu den Energie-Eigenwerten (Landau-Zustände) des Systems

Ej = h̄ωc(j +
1

2
) + Ex(B) + En,z. (2.42)

Hierbei sind Ex(B) und En,z die Quantisierungsenergien in x und z-Richtung [42].
Für ein 2DEG, das in der z-Richtung bereits quantisierte Zustände annimmt, ist die
Elektronenbewegung nun auch in der xy-Ebene eingeschränkt. Die Zustandsdichte kon-
densiert somit in diskrete, äquidistante Niveaus, die sich unter Vernachlässigung von
Streuprozessen als δ-Funktionen beschreiben lassen (siehe Abbildung 2.13). Die Entar-

D
2D

(E)

E
E

F
E

F

2DEG

E

D
2D

(E)

2DEG

B

hw
c

Abbildung 2.13: In der linken Abbildung ist die konstante Zustandsdichte eines 2DEG oh-
ne Magnetfeld dargestellt. Legt man nun ein zur lateralen Ebene senkrechtes Magnetfeld an,
kondensieren die Zustände auf Landau-Niveaus. In einem idealen Störpotenzial-freien 2DEGs
stellen die Landau-Niveaus δ-Funktionen dar. Durch Potenzialfluktuationen werden diese Ni-
veaus energetisch verbreitert (graue Semi-Ellipsen).

tung eines Landau-Niveaus kann berechnet werden, da die Elektronendichte konstant
bleibt. Die Elektronen, die vorher zwischen zwei Landau-Niveaus Platz gefunden ha-
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2.1 Niedrigdimensionale Elektronensysteme

ben, müssen nun in ein Landau-Niveau verteilt werden. Die Zustandsdichte lautet (un-
ter Vernachlässigung der Spinentartung)

D(E) = NL

∑
δ(E − Ej). (2.43)

Hierbei ist NL = eB
h

der Entartungsgrad, also die Anzahl der besetzten Zustände eines
Landau-Niveaus.
Die tatsächliche Anzahl der noch gefüllten Landau-Zustände unterhalb des
Fermi-Niveaus gibt der Füllfaktor ν an, der über die Ladungsträgerdichte des 2DEGs
N2D wie folgt definiert ist:

ν =
N2Dh

eB
=

N2D

NL

. (2.44)

Wie schon in Abb. 2.13 grafisch angedeutet, sind die Zustandsdichten realer Proben
durch verschiedene Streueffekte verbreitert. Diese energetischen Verbreiterungen bil-
den die Grundlage des Quanten-Hall-Effektes.

2DEG-Transportverhalten

Das einfachste Modell zur Beschreibung eines Elektrons im 2DEG bei kleinen Magnet-
feldern ist das klassische Drude-Modell.
Lässt man einen Strom I = Iex durch das 2DEG fließen, dessen Ladungsträger mit der
Masse m durch ein zur Bewegungsrichtung senkrechtes Magnetfeld (B = Bez) beein-
flusst werden, muss im Drude-Modell folgende Differentialgleichung gelöst werden:

F = mv̇ = e(E + v × B). (2.45)

Hierbei ist E das angelegte elektrische Feld, welches parallel zur Stromrichtung gerich-
tet ist (E = Eex). Im realen Festkörper muss außerdem noch die Streuung der Elektronen
an Potenzialmodulationen, verursacht durch Kristalldefekte, Gitterschwingungen und
anderen Elektronen berücksichtigt werden. Gleichung 2.45 nimmt dann folgende Ge-
stalt an:

F =
dp
dt

|Streuung +
dp
dt

|Feld =
mv
τ

− e(E + v × B), (2.46)

wobei τ die Impuls-Relaxationszeit ist, die ein Maß dafür ist, in welcher Zeit die La-
dungsträger ihren Impuls durch Streuprozesse verlieren. Die Lösung dieser Differenzi-
algleichung ist für F→0

(

Ex

Ey

)

=

(

m
eτ

−B

B m
eτ

)(

vx

vy

)

. (2.47)
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Führt man nun in diesem Zusammenhang die spezifische Leitfähigkeit σ0 = e2N2Dτ
m

und Stromdichte j = eN2Dv ein, kann man Gl. 2.47 in das ohmsche Gesetz E = ρ̄j
transformieren

(

Ex

Ey

)

= σ−1
0

(

1 −ωcτ

ωcτ 1

)

︸ ︷︷ ︸
ρ̄

(

jx
jy

)

. (2.48)

N2d ist hier die Elektronendichte, ωc die Zyklotronfrequenz und ρ̄ der Widerstandsten-
sor.
Liegt kein Magnetfeld an (ωc = 0), so bleiben nur die Diagonalterme der Matrix aus Gl.
2.48 erhalten, welche das klassische ohmsche Gesetz beschreiben.
Die beiden anderen Terme beschreiben die Querleitfähigkeit bzw. den Querwiderstand
des 2DEGs

ρxy = −ρyx = σ−1
0 ωcτ =

B

eN2D

. (2.49)

Diese Beschreibung gilt im klassischen Grenzfall kleiner Magnetfelder (ωcτ � 1).
Liegt der Grenzfall hoher Magnetfelder (ωcτ � 1) vor, ist das Drude-Modell nicht mehr
gültig und die bereits diskutierte Landau-Quantisierung wird relevant.
Bei Messungen des spezifischen Hallwiderstandes ρxy in Abhängigkeit des Magnetfel-
des erhält man klassisch eine Gerade, deren Steigung durch die Ladungsträgerdichte
und die Elementarladung gegeben ist (vgl. Gleichung 2.49).
Um experimentell die Längs- und Transversalspannung messen zu können, bedient
man sich einer Hallbar-Geometrie, welche in Abbildung 2.14 schematisch dargestellt ist
[43]. Die gezeigte Geometrie stellt die leitfähigen Bereiche des 2DEGs dar. Die Gebiete
um dieses Hallbar werden mit einer Ätztechnik entfernt. Bei hinreichend hohen Ma-
gnetfeldern beobachtet man, aufgrund der oszillierenden Zustandsdichte (Abb. 2.13),
ein vom klassischen abweichendes Verhalten (Abb. 2.15): Im Bereich ganzzahliger Füll-
faktoren treten im transversalen Widerstand ρxy Plateaus bei den Werten

ρxy =
1

ν

h

2e2
mit ν ∈ N

auf. Diese quantisierten Werte sind weitgehend unabhängig von der Probengeometrie
und so genau definiert, dass sie heute als Basis der Definition des Widerstandes dienen.
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I

I

Uxx

Uxy

Abbildung 2.14: Darstellung einer typische 4-Punkt-Hallbargeometrie. Die äußeren Rückkon-
takte dienen der Stromzufuhr und die anderen gekennzeichneten Rückkontakte als Längs- und
Querspannungsabgriffe.

Dieser Effekt ist als Quanten-Hall Effekt bekannt, welcher von von Klitzing entdeckt und
ansatzweise erklärt worden ist [36]. Diese Leistung wurde mit der Verleihung des Physik-
Nobelpreises im Jahre 1985 gewürdigt.

Die Voraussetzungen für die Beobachtung des Quanten-Hall-Effekts sind die Folgen-
den:

• ωcτ � 1 d.h. Verbreiterung der Landau-Niveaus sollte klein gegenüber dem Ab-
stand der einzelnen Landau-Niveaus sein.

• kBT � h̄ωc d.h. die thermische Energie sollte nicht zu einer Verschmierung der
Landau-Niveaus führen.

Eine Erklärung des Quanten-Hall-Effekts basiert auf der Existenz von lokalisierten und
delokalisierten Zuständen in einem Unordnungspotenzial, wobei nur die ausgedehnten
Zustände zum Stromtransport beitragen. Nach L. J. Challis [44] entsteht dieses Potenzi-
algebirge durch Ausbildung von elektrostatischen Minima und Maxima, hervorgerufen
durch Streuzentren. Innerhalb des Unordnungspotenzials bilden sich Täler und Berge
aus, die dazu führen, dass sich lokalisierte und delokalisierte Zustände ausbilden.
Für B→ 0 und T=0 K existieren nur lokalisierte Zustände [45]. Im steigenden Magnet-
feld ändert sich nun die Eigenschaft der Potenziallandschaft, welche zu delokalisier-
ten Zuständen führt. In diesem Zusammenhang stellt die Lokalisierungslänge ξ eine
wichtige Größe dar, die die Ausdehnung der Wellenfunktion der Elektronen beschreibt.
Diese Lokalisierungslänge steigt im Anderson-Modell [46] mit steigender Systemener-
gie ausgehend von den lokalisierten Zuständen sehr stark an (für E<En, Abb. 2.16). Ab
einem bestimmten Wert, einer kritischen Länge ξkrit, treten die Elektronen aus den loka-
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Abbildung 2.15: Experimentell gemessene Hall- und Längswiderstände in Abhängigkeit des
Magnetfeldes. Man erkennt ein Ansteigen des Längswiderstandes ρxx mit Plateau-artigen Ebe-
nen im Bereich hoher Magnetfelder. Der Querwiderstand zeigt ausgeprägte SdH-Oszillationen.

len elektrostatischen Fallen heraus, und können im ausgedehnten Zustand zum Strom-
transport beitragen. Steigt die Systemenergie weiter an, z.B. durch steigendes Magnet-
feld, so fällt die Lokalisierungslänge ξ und damit die Ausdehnung der Elektronen sehr
stark ab (für E>En). Sie sind nun im lokalisierten Zustand und gefangen in den Poten-
zialextrema (siehe Abbildung 2.16).
Mit anderen Worten: Wird das Magnetfeld kontinuierlich erhöht, so passiert jedes

Landau-Niveau aufgrund des Energieanstiegs (vgl. Gl. 2.42) nacheinander die Fermi-
Energie und es werden lokalisierte/delokalisierte Bereiche durchlaufen. Hat ein Niveau
die Fermi-Energie passiert, so kann der Zustand nicht mehr besetzt werden
(Annahme:T→0). Die Elektronen verteilen sich dann auf die energetisch tieferliegenden
Niveaus, die aufgrund der angestiegenen Zustandsdichte wieder Elektronen aufneh-
men können.
Die Plateaus kommen dadurch zu Stande, dass die lokalisierten Zustände mit Elektro-
nen zwar besetzt werden, diese aber nicht zum Stromtransport beitragen.
Aus dem Lokalisierungsmodell ist auch das Verhalten des Längswiderstandes, also den
sogenannten Shubnikov- de Haas Oszillationen (SdH), zu verstehen.
Die Oszillationen des Längswiderstandes in kleinen Magnetfeldern reflektieren die je-
weils aktuelle Zustandsdichte an der Fermikante. Für den Fall kleiner Magnetfelder
(ωcτ � 1) sind die Landau-Niveaus noch nicht stark ausgeprägt bzw. die ausgedehnten
Niveaus überlappen, so dass man in diesem Regime einen nahezu klassisch konstan-
ten Längswiderstand misst. Dies ändert sich mit steigendem Magnetfeld, wenn sich
die Landau-Niveaus stärker ausbilden und der energetische Abstand zwischen zwei
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ausgedehnte Zustände

lokalisierte Zustände

des Landau-Niveau
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Abbildung 2.16: Die erste Abbildung zeigt ein Landau-Niveau und die energetische Anord-
nung der lokalisierten und ausgedehnten Zustände. Die obere rechte Abbildung stellt die Lo-
kalisierungslänge in Abhängigkeit der Energie dar. Zuletzt sind die Messgrößen ρxx,xy über die
Energie des Systems aufgetragen.

Landau-Niveaus größer wird. Im Bereich hoher Magnetfelder (ωcτ � 1) überlappen
die ausgedehnten Zustände nicht mehr, so dass sich auch die lokalisierten Zustände
ausbilden können. Werden nun diese Bereiche energetisch durchfahren, können Elek-
tronen nicht mehr in stromführende Zustände streuen. Die Folge ist das Absinken der
spezifischen Leitfähigeit. Im Regime hoher Magnetfelder ist die spezifische Längsleitfä-
higkeit proportional zum spezifischen Längswiderstand, so dass auch der Längswider-
stand in Höhe lokalisierter Zustände auf theoretisch Null absinkt.
Die SdH-Oszillationen können mit folgender Formel beschrieben werden [47]:

σxx =
e2N2Dτ

m

1

1 + (ωcτ)2

(

1 + 2
1 − (ωcτ)2

1 + (ωcτ)2
exp

( −π

ωcτ

) ξ

sinh ξ
cos

2πEF

h̄ωc

)

, (2.50)

wobei ξ = 2π2kBT
h̄ωc

ist.
Die Temperaturabhängigkeit wird durch den sogenannten Dingle Term ( ξ

sinh ξ
) beschrie-

ben.
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3 Probenpräparation und experimentelle
Messmethoden

In diesem Kapitel werden das zu untersuchende Materialsystem und die einzelnen Pro-
zessschritte erläutert, welche erforderlich sind, um die gewünschten physikalischen Ef-
fekte experimentell beschreiben zu können. Dabei kommt es zum einen auf die Qualität
und Homogenität der Proben, zum anderen auf die anschließende Präparation an.

3.1 Probenpräparation

Die in dieser Arbeit untersuchten Proben sind in der Gruppe von Prof. Dr. Wieck an
der Ruhr-Universität Bochum mittels des Verfahrens der Molekularstrahlepitaxie ge-
wachsen worden und zeichnen sich durch höchste Qualität aus. In einer solchen MBE-
Anlage lassen sich Halbleiterschichten mit hoher Perfektion auf einen einkristallinen
GaAs-Substrat atomlagen genau abscheiden. Mittels MBE ist man somit in der Lage,
Materialsysteme mit völlig individuellen Eigenschaften herzustellen.
Die Probenpräparation wurde im Reinraum der Klasse 5 ∗ an der Universität Duisburg-
Essen durchgeführt, um sicher zu stellen, dass keine Schmutzpartikel die Proben bzw.
die kleinsten Messstrukturen unbrauchbar machen
(Leckströme, Kurzschluss usw.).

∗d.h maximal 10.000 Partikel in 28 l, welche größer als 0.1 µm sind (siehe VDI Richtlinie 2083 oder US
Federal Standard 209b)
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3 Probenpräparation und experimentelle Messmethoden

3.1.1 Probenmaterial

Die Forderungen, welche an eine ideale Probe im Hinblick auf die zu untersuchenden
Fragestellung dieser Arbeit gestellt werden, kann man auf die drei Folgenden reduzie-
ren:

• Qualität und Größenhomogenität der Quantenpunkte

• hohe Beweglichkeit des 2D Elektronengases

• elektrische Isolation zwischen Metallgates und Rückkontakt (2DEG).

Die erste Forderung resultiert aus den größenabhängigen diskreten Energieniveaus der
Quantenpunkte ([48], [60]). Ist die Variation der Form oder die Größendispersion in ei-
nem Quantenpunktensemble ausgeprägt, variieren die Werte der Energieniveaus ein-
zelner Quantenpunkte. Die theoretisch diskrete Zustandsdichte singulärer Quanten-
punkte, summiert sich in einem Ensemble zu einer gaußförmig verbreiterten Zustands-
dichte, deren Halbwertsbreite von der relativen Abweichung vom Durchschnittsradius
und der Höhe der Quantenpunkte abhängt. Experimentell äußert sich dies z.B. in der
schlechten Auflösbarkeit der p-Niveaus im CV-Spektrogramm, da sich die einzelnen p-
Niveaus energetisch nur gering voneinander unterscheiden (für B ≈ 0 T, ∆E = 17 meV).

Eine hohe Beweglichkeit des 2DEG hat im Hinblick auf 1D-Transportmessungen viele
Vorzüge. Zunächst ist hier die Beobachtbarkeit der quantisierten 1D-Leitfähigkeit zu
nennen. Eine Leitwert-Stufenfunktion bildet sich nur im ballistischen Regime aus. Die-
ser Typ des Transports ist dadurch charakterisiert, dass die Ladungsträger im Leitfä-
higkeitskanal nicht an Störstellen streuen. Diese Bedingung ist aber nur erfüllt, wenn
die Beweglichkeit groß und damit die Impulsrelaxationszeit τ lang ist (Beweglichkeit
µ ∝ τ). Desweiteren ist der Einfluss der Quantenpunkte als Coulomb-Streuer auf das
Transportverhalten hochbeweglicher 2D-Elektronengase eventuell ausgeprägter.
Nimmt man aber den Quanten-Hall-Effekt als genaue Charakterisierungsmethode, so
sollten auch (genügend) Streuzentren im 2DEG enthalten sein. Diese verursachen un-
geordnete Potenzialmodulationen, deren Existenz der Ursprung der Plateaus im QHE
und der SdH-Oszillationen sind (vgl. Kapitel 1).
Von elementarer Wichtigkeit ist die dritte Forderung an das elektrische Verhalten der
Probe. Ist die Isolation der Metallgates und der Rückkontakte nicht gegeben (z. B. ohne
ausreichendes isolierendes Übergitter zwischen Gate und 2DEG), so entstehen Leckströ-
me (Tunnelströme) zwischen 2DEG und Gate. Die Folge ist, dass sich keine elektrostati-
sche Barriere unter der Metallelektrode ausbilden kann und somit das Laden der Quan-
tenpunkte und Subbänder des 2DEG nicht möglich ist.
Die in Abb. 3.1 dargestellte Schichtfolge, welche zur Entstehung eines zweidimensiona-
len Elektronengases führt, nennt man in der Literatur MISFET (Metal-Insulator-Field-
Effect-Transistor). Diese Bauelemente waren schon Gegenstand zahlreicher wissenschaft-
licher Arbeiten. Die Probensysteme, welche in dieser Arbeit untersucht wurden, beste-
hen aus einer MISFET-Struktur, in der eine dünne Schicht mit InAs-Quantenpunkten
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3.1 Probenpräparation

zwischen Übergitter und 2DEG eingebettet ist, die über eine Tunnelbarriere (dtunnel=25 nm)
mit dem 2D-Elektronengas wechselwirken kann. In Abb. 3.2 ist schematisch die MISFET
- Schichtfolge der zu untersuchenden Probe und die Leitungsbandkante dargestellt.
Die Physik hinter der Entstehung des zweidimensionalen Elektronengases ist schon im

InAs-Quantenpunkte

2DEG

Si-Dotierung

Übergitter

Abbildung 3.1: Schichtfolge der
in dieser Arbeit untersuchten Hete-
rostruktur.
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Abbildung 3.2: Leitungsbandkante der Probe
(bzw. die Elektonenkonzentration).

ersten Kapitel dieser Arbeit ausführlich behandelt worden. Das Elementarste wird nun
noch einmal am Beispiel der untersuchten Probe wiederholt.
In der vorliegenden Heterostruktur bildet sich ein 2D-Elektronensystem an der Grenz-
fläche zwischen GaAs und (AlGa)As† aus, was in Abbildung 3.2 dargestellt ist. Es zeigt
die gerechnete‡ Leitungsbandkante und die Aufenthaltswahrscheinlichkeit der Elektro-
nen.
Das 2DEG bezieht die Elektronen aus der δ-Si-Dotierung im (AlGa)As (Abstand zum
2DEG ca. 10 nm). Diese Silizium-Atome wirken im (AlGa)As als Donatoren und ent-
ledigen sich daher sehr leicht eines überschüssigen Valenzelektrons (vgl. Wasserstoff-
modell). Das nun freie Elektron sucht sich lokal den energetisch günstigsten Ort aus,
welcher in diesem Fall die Grenzfläche zwischen GaAs und AlGaAs darstellt. An dieser
Stelle ist die potenzielle Energie für das Elektron minimal. Es verliert einen Teil seiner
Gesamtenergie und ist nun in einem Potenzialtopf gefangen, da es nicht in der Lage ist,
die Barriere zu überwinden.
Zwischen der δ-Si-Dotierschicht und GaAs wurde noch ein Abstandshalter§ aus (Al-
Ga)As gewachsen (dS ≈ 15 nm). Die Aufgabe dieser Schicht ist es, die Elektronen des
2DEG und die positiv geladenen Donatorrümpfe räumlich zu trennen, um so die Be-
weglichkeit der Elektronen zu steigern.

†genauer: AlXGa1−XAs mit X=30 %
‡mit 1Dpoisson-Software von G. Snider
§engl.:Spacer
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3 Probenpräparation und experimentelle Messmethoden

Das 2DEG wechselwirkt über einen Tunnelkontakt (dT = 25...40 nm) mit den InAs-
Quantenpunkten. Die bereits angesprochene Isolationsschicht (GaAs/AlAs-Übergitter,
dI = 250 nm) zwischen Probenoberfläche und Quantenpunkten dient neben der elektri-
schen Isolation auch zur Glättung der Oberfläche und dem Einschließen von Defekten.

3.1.2 Probenprozessierung

Um nun die Wechselwirkung zwischen 2DEG und Quantenpunkten messtechnisch zu
erschließen, müssen die Proben in einem weiteren Schritt präpariert werden. Im Einzel-
nen bedeutet dies, dass das 2DEG über eine Schottky-Barriere (d.h. Metall-Halbleiter-
Übergang) elektrisch gesteuert und auch ohmsch kontaktiert werden muss. Die kurz
angedeuteten Präparationsschritte werden im Folgenden ausführlicher erläutert. Diese
Prozessschritte folgen erst nach einer gründlichen Reinigung der Probe. Bei dieser Rei-
nigung durchläuft die Probe drei Bäder verschieden polarer organische Lösungsmittel
(Aceton, Methanol, Isopropanol) mit anschließendem Ultraschallbad. Näheres zur Rei-
nigungen und anderen Parameter (z.B. Parameter der Lacke usw.) ist im Anhang zu
finden.

Lithografie

Nun stellt sich die Frage, wie man speziell nach seinen Wünschen gestaltete Geometrien
(metallische Steuerelektroden und Rückkontakte, Mesadefinitionen) möglichst homo-
gen auf die Oberfläche der Probe bringen kann. Den ersten Schritt bilden hierbei zwei
Lithografieverfahren - die optische Kontaktlithografie und die Elektronenstrahllithografie.
Die verschiedenen Präparationsschritte sind schematisch in Abbildung 3.1.2 dargestellt.

Optische Kontaktlithografie

Die optische Kontaktlithografie steht in der Präparationskette an erster Stelle und zeichnet
sich als sehr einfaches und schnelles Verfahren aus. Mit ihr werden Bereiche definiert,
welche in einem weiteren Prozessschritt entweder geätzt oder metallisiert werden.
Das Fotolithografieverfahren ist für Strukturgrößen >1.1 µm geeignet. Als Grund ist das
begrenzte Auflösungsvermögen des verwendeten Lichts zu nennen.
Um Strukturen auf die Probe übertragen zu können, werden die Proben mit einem
Ultraviolett-empfindlichen Lack beschichtet und anschließend durch eine Maske be-
lichtet, welche die gewünschten Strukturen enthält.
Als Maske dienen hierbei Quarzsubstrate, die auf einer Seite mit Chrom beschichtet
sind. Mittels der Elektronenstrahllithografie (s.u.) werden in einem vorher aufgeschleu-
derten und für Elektronenbeschuß-sensitiven Doppellacksystem die gewünschten Struk-
turen geschrieben. Nachdem der belichtete Lack entfernt worden ist, wird nun die frei-
gewordene Chromoberfläche mit einer speziellen Ätzmischung entfernt, so dass nur
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Reinigung

Belacken

Aushärten

Fotolithographie
Elektronenstrahl-
   Lithographie

Entwickeln

Ätzen Aufdampfen

Lift OffLift Off

Maske

Probe

PMMA

Metall

Abbildung 3.3: Schematische Darstellung der einzelnen Prozeßschritte. Der erste Schritt stellt
die Reinigung der Probe dar, gefolgt vom Belacken und Aushärten, und anschließender Litho-
graphie (Foto- oder Elektronenstrahllithografie). Nach dem Entwickeln der Probe können die
entstandenen Strukturen geätzt oder metallisiert werden. Abgeschlossen wird die Präparation
mit dem Entfernen der stehengebliebenen Lack- und Metallreste (Lift-Off).

noch das UV-durchlässige Quarzglas vorhanden ist.
Diese Maske wird anschließend unter Probenkontakt mit ultravioletter Strahlung
(λUV=200 nm) belichtet. Das Chrom reflektiert die Photonen, so dass nur die Chrom-
freien Bereiche der Maske Licht transmittieren und den Lack belichten können. Nach
dem Entfernen des belichteten Lackes (Entwickeln) steht die Probe für weitere Präpara-
tionstechniken zur Verfügung.

Elektronenstrahl-Lithografie

Wie bereits erwähnt, ist die Fotolithografie nur für kleine Strukturen der Größe >1,1 µm
zu empfehlen. Die in dieser Diplomarbeit gemessenen Strukturen hatten Abmessun-
gen von wenigen hundert Nanometern (200...1000 nm) und konnten dementsprechend
nicht mittels optische Lithografie definiert werden.
Daher wurde hier auf die bereits erwähnte Elektronenstrahl - Lithografie¶ zurückgegrif-
fen.

¶engl.: Electron Beam Lithography, EBL
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3 Probenpräparation und experimentelle Messmethoden

Analog zur Fotolithografie wird die Probe zunächst gründlichst gereinigt und mit ei-
nem für Elektronenbeschuss sensitiven Lack homogen bedeckt (mittels Spinner: 6000 U

min
).

Anschließend wird sie auf einer Heizplatte ausgehärtet. Der Lack besteht aus Polyme-
thylmethacrylat (PMMA). PMMA ist ein Polymer, welches aus langkettigen Molekü-
len besteht. Bei der Belichtung mit Elektronen werden die Verbindungen der langket-
tigen Moleküle aufgetrennt, so dass die Löslichkeit des Polymers in Isobutylmethyl-
keton (MIBK) steigt. Dieses Lösungsmittel dient dann in Verbindung mit Isopropy-
lalkohol (IPA) als Entwickler. Werden zwei verschieden lösliche Lacke übereinander
aufgebracht, so entsteht ein Doppellacksystem, welches Vorteile beim späteren Lift-Off
besitzt. Ist der untere Lack elektronensensitiver, so entsteht nach dem Entwickeln ein
unterkehliges Profil, das ein leichteres und homogeneres Ablösen der Lack- und Me-
tallreste ermöglicht.
Der Lack wird dann in einem Sekundärelektronenmikroskop (SEM) vom Typ Leo 1530,
an das eine Schreibeinheit der Firma Raith mit der Software Elphy Plus angeschlossen
ist, belichtet. Das SEM ist mit einer Feldemissionskathode ausgestattet und hat eine
Auflösung von 2 nm. Beim Belichtungsprozess wird eine Beschleunigungsspannung
von U=20 kV verwendet. Die verwendete Dosis für die Split-Gate-Strukturen liegt bei
20 µC

cm2 . Die Strukturen werden durch eine Blende mit 10 µm Durchmesser belichtet, bei
der der Strahlstrom etwa I = 30 pA beträgt.

Ätzen

Nach dem Entwickeln der Probe wurde die Ätzmischung präpariert. Die verwendete
Ätzlösung, welche für GaAs optimiert ist, bestand aus einer verdünnten Schwefelsäure
und Wasserstoffperoxid (Verhältnis: H2O(100):H2SO4(3):H2O2(1)) mit einer Ätzrate von
1 nm

s
.

Die Intention des Ätzens ist die elektronische Isolation des aktiven zu messenden Be-
reichs von seiner Umgebung. Daher muss die Ätzdauer so gewählt werden, dass min-
destens die aktiven Bereiche des 2DEGs entfernt werden. Für die in dieser Arbeit ver-
wendeten Proben bedeutete dies, dass sie mindestens 250 s in der Ätzmischung zu ver-
weilen hatten.
Über diesen Zeitraum musste der Lack ätzresistive Eigenschaften besitzen, was in der
Praxis aber nicht immer der Fall war. So mussten verschiedene Lacke getestet werden,
um die geforderte Ätzbeständigkeit zu erreichen.

Metallisieren

Das Metallisieren von bestimmten Geometrien wurde mit einer Aufdampfanlage von
BOC Edwards vollzogen. Es standen zwei verschiedene Arten von Verdampfern zur
Verfügung. Zum einen der thermische Verdampfer, bei dem in einem Behälter mit dem
gewünschten aufzudampfenden Metall das Metall durch Stromzufuhr (I=ca. 70 A) zum
Schmelzen gebracht wurde und zum anderen ein auf Elektronenstrahlen basierender Ver-
dampfer. Bei diesem Typ wurden Elektronenstrahlen, gesteuert über ein Magnetfeld,
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3.1 Probenpräparation

unter Hochspannung (UKathode =5 kV) auf das Metall geschossen, so dass auch hier
das Metall zum Schmelzen gebracht wurde. Die aufgedampfte Schichtdicke wird von
Schwingquarzen kontrolliert.
Für eine homogene und defektfreie Metallisierung sind zwei Faktoren entscheidend.
Zum Ersten ist hier der Aufdampfdruck zu nennen, welcher im Bereich p<10−6 mbar lie-
gen sollte. Dies garantiert ein möglichst verunreinigungsfreies Aufdampfen. Als zwei-
ter Faktor ist die Aufdampfrate zu nennen. Ist diese Aufdampfrate zu groß, so dampft
das Metall nicht homogen auf, was unter anderem Auswirkungen auf das elektrische
Verhalten der Metallelektrode hat. Ist die Rate zu klein, so werden mehr Schmutzpar-
tikel eingeschlossen, was mitunter auch zu negativen Folgeerscheinungen bezüglich
des elektrischen Verhaltens führt. Kleinste Unregelmäßigkeiten in der Gateelektrode
können z.B. schon eine messbare Reduktion der Homogenität der Ladungsträgerzahl
des 2DEGs bewirken. Die Substrattemperatur beträgt während des Aufdampfvorgan-
ges circa 20 °C bis 30 °C. Höhere Substrattemperaturen, die für verbesserte Wachstums-
bedingungen sorgen, können nicht verwendet werden, da der Lack bei erhöhten Tem-
peraturen aushärtet und der Lift-Off-Prozess (Abhebeprozess) nicht mehr möglich ist.

Kontaktierung/Einlegierung

Das ohmsche Kontaktieren des 2DEGs stellt in der Prozessfolge einen weiteren wichti-
gen Schritt dar, da es die Qualität der elektrischen Messung stark beeinflusst.
Zur Kontaktierung des 2DEGs wurde auf die durch Fotolithografie vordefinierten Be-
reiche ein Dreischichtensystem mittels der thermischen Verdampfung aufgebracht. Be-
ginnend mit einer dünnen Schicht Nickel (d=10 nm), wurde anschließend eine Schicht
aus Gold-Germanium (AuGe,Verhältnis 88:12, d=150 nm) aufgedampft. Die Aufgabe
des Nickel ist die eines Haftvermittlers für das nachfolgende Gold-Germanium. Nickel
besitzt zudem eine Diffusions-fördernde Eigenschaft für die Ge-Atome. Als dritte und
letzte Schicht wurde ca. 30 nm Gold aufgebracht, welches die AuGe-Schicht elektrisch
verbinden sollte, um das Bonden zu erleichtern.
Nach dem Lift-Off (Entfernung der Lackreste) wurde die Probe mit dem aufgedampf-
ten Material auf einer Heizplatte stufenweise stark erhitzt (→ Einlegierung).
Die hohen Temperaturen (T=400...500 °C) ermöglichen die Diffusion von Germanium-
Atomen in die Probe. Die Germanium-Komponente des AuGe dotiert das Material, in-
dem es das Gallium an seinen Gitterplätzen ersetzt. Um optimale ohmsche Kontakte zu
erhalten, sollte eine Germaniumdichte von etwa 1019 cm−3 erreicht werden [50].
Die einzelnen genauen Einlegierungsparameter sind dem Anhang zu entnehmen.

Die nun fertig präparierte Probe wird abschließend mit einem tieftemperaturresistenten
Leitsilber auf einen Probenträger‖ befestigt und die Probenkontakte mit dem Proben-

‖engl. chip carrier
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3 Probenpräparation und experimentelle Messmethoden

halter verdrahtet∗∗. Diese Verdrahtung wurde mit einem halbautomatischem Wedge-
Bonder durchgeführt. Die Drähte (Material: Al0.99Si0.1) werden mit Ultraschallenergie
auf den Probenkontakten und dem Probenhalter befestigt. Nun können die Struktu-
ren auf der Probe über die Anschlüsse des Probenhalters elektrisch kontaktiert werden.
Dies hat den großen Vorteil, dass nach jedem Messvorgang nur der Chip-carrier mit der
Probe ausgetauscht werden muss und die Verdrahtung auf der Probe intakt bleibt. Die
Chip-carrier werden dann über metallische Federn, welche in jedem Probenstab ange-
bracht sind, elektrisch kontaktiert.

∗∗engl. bonden
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3.2 Tieftemperatur - Messplatz

3.2 Tieftemperatur - Messplatz

Die in dieser Arbeit durchgeführten Messungen sind bei einer Temperatur von 4.2 K
oder 0.25 K durchgeführt worden. In diesem Temperaturregime sind die Phononen (Git-
terschwingungsquanten) nahezu ausgefroren und stellen keine Störpotenziale für die
Ladungsträger dar.
Im Folgenden wird erläutert, wie diese Temperaturen erreicht und auf konstantem Ni-
veau gehalten werden.

3.2.1 4He-Badkryostat

Eine Temperatur von 4.2 K lässt sich vergleichsweise einfach erreichen.
Man benötigt ein Behältnis mit flüssigem 4Helium, in welches ein Probenstab einge-
führt werden kann.
Diese 4Helium-Behälter besitzen ein Isolationsvakuum als Wärmeschild, um das Ab-
dampfen des flüssigen Heliums zu reduzieren (vergleichbar mit Dewar-Gefäßen).
Der im Rahmen dieser Arbeit verwendete Kryostat††-Modell ST-STEEL der Firma
Cryogenic LTD besitzt neben einer LHelium - Kammer zudem eine supraleitende Spu-
le, mit der maximal 12 Tesla erreicht werden können. Abbildung 3.4 zeigt vereinfacht

LN2 - Wärmeschild

Magnetspule

LHe-Kammer

Öffnung für Probenstab

Abbildung 3.4: Perspektivische Darstellung des 4Helium Badkryostaten. Erläuternde Be-
schreibungen befinden sich im Text.

den typischen Aufbau eines Badkryostaten:
In der LHelium - Kammer, in welche sich der Probenstab über die Öffnung einführen
lässt, befindet sich im unteren Drittel die supraleitende Spule. Umschlossen wird die-
se LHelium - Kammer von einem thermischen Isolationsschild mit flüssigem Stickstoff
(TLN2

= 77 K), um die Abdampfrate des Heliums zu minimieren. Als Wärmeschild für
die LN2 - Kammer dient ein Isolationsvakuum, das in Abbildung 3.4 nicht gezeigt ist.
Der Probenstab wird nun über die Öffnung in das flüssige Helium eingeführt. Nach

††griech. cryos =kalt
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3 Probenpräparation und experimentelle Messmethoden

kurzer Zeit stellt sich zwischen Probe und flüssigen Helium das thermische Gleichge-
wicht ein.
Erfordert das Experiment sehr viel tiefere Temperaturen, ist das auf flüssigem 4Helium
basierende Kryostatmodell nicht mehr geeignet. Zwar lassen sich über das Abpum-
pen des LHelium-Dampfdruck noch tiefere Temperaturen erzielen (T=2.2 K), aber der
Subkelvin-Bereich ist so nicht zugänglich.
Um also auch niedrigere Temperaturbereiche zu erschließen, wird eine Kombination
aus dem erwähnten 4Helium-Badkryostat und einem sogenannten 3Helium-Kryostat
verwendet, der im Folgenden vorgestellt wird.

3.2.2 3He-Kryostat

Mit dem 3He-Kryostat, der auf einem geschlossenen Kreislauf des leichteren Isotop 3He
basiert, sind Temperaturen zwischen 1.5 K und 0.25 K kontrollierbar einzustellen.
Das Prinzip des 3He-Kryostat Heliox VL von Oxford Instruments ist in Abbildung 3.5
schematisch skizziert. Die Abbildung 3.6 stellt den Heliox in seinen Einzelheiten dar.
Die Probe (in Abb. 3.5 nicht dargestellt) befindet sich ca. 20 cm unterhalb des 3Helium
- Topfes, thermisch mit diesem verbunden über eine Kupferstange. Im Betrieb ist der
in Abbildung 3.6 gekennzeichnete Teil des 3He-Kryostaten in einem evakuierten Me-
tallzylinder eingeschlossen (innere Vakuumkammer). Dieser Bereich ist es auch, der in
Abbildung 3.5 zur Erklärung des physikalischen Kühlprinzips dargestellt ist.
Die im Kryostat befindliche 3Helium-Gasmenge beträgt 2.5 l und wird in der 3Helium-
Vorratskammer unter einem Druck von 2 bar gespeichert.
Der 3He-Kryostat wird zunächst in den Badkryostaten eingeführt, so dass der Syphon
in flüssiges 4Helium eintaucht. Mittels einer Drehschieberpumpe wird der Druck in der
1K-Wicklung reduziert. Gesteuert über das Nadelventil wird 4Helium durch die 1K-
Wicklung gesogen, das über eine Wärmetausch-Kopplung die 1K - Platte auf ca. 1.5 K
kühlt.
In Phase eins der Kühlung (vgl. Abb. 3.5) wird die 3Helium-Sorptionspumpe auf ca.
30 K geheizt und beginnt kontinuierlich ihr adsorbiertes 3Helium zu desorbieren. Die-
ses Gas kondensiert an der 1K-Platte und sammelt sich im 3He-Pot (Kondensationswär-
me wird über der metallischen 1K-Platte abgeführt). Nach Ausschalten der Heizung
sinkt die Temperatur der Sorptionspumpe und die Phase zwei des Kühlprozesses kann
beginnen.
Die Sorptionspumpe beendet ab ca. 3 K ihre Desorptionseigenschaft und beginnt 3Helium
zu adsorbieren. Dadurch wird der Dampfdruck über dem Flüssigkeitsspiegel reduziert,
so dass die Temperatur des 3Helium-Topfes und damit auch die der Probe bis zu 240 mK
sinkt. Das Temperaturniveau kann fast 120 Stunden konstant gehalten werden. Ist das
flüssige 3Helium im Topf verdampft und von der Sorptionspumpe aufgenommen, kann
der Einkondensationsprozess erneut erfolgen.
Die Temperatur der Probe kann durch das Einstellen der Temperatur an der Sorptions-
pumpe kontrolliert werden. Dies ermöglicht es, die Saugleistung der Pumpe zu vari-
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ieren und damit den 3He-Dampfdruck zu beeinflussen. Zudem ist die Temperatur der
1K-Platte über den 4Helium-Durchfluss und damit direkt über das Nadelventil steuer-
bar.

flüssiges 3He

1K - Platte

1K - Wicklung

Nadelventil

            3He  

Sorptionspumpe

kondensiertes 3He

T = 30K
( desorbiert  3He )

T < 3K
( absorbiert  3He )  

     Reduktion des
 3He - Dampfdrucks

Phase 1 Phase 2

Abbildung 3.5: Diese Darstellung zeigt das zweiphasige Prinzip der Kühlung. Phase eins
ist auf der rechten Seite schematisch abgebildet und zeigt, wie die auf etwa 30K geheizte 3He-
Sorbtionspumpe das gasförmige 3Helium desorbiert. Dieses 3Helium kondensiert anschließend
auf der etwa 1.5K kalten 1K-Platte und tropft in den 3He-Pot. Phase zwei beginnt, wenn die
3He-Sorbtionspumpe sich wieder auf 3K abgekühlt hat. Ab dieser Temperatur absorbiert die
das 3Helium und reduziert so den Dampfdruck. Die Temperatur sinkt dann auf etwa 240mK.
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Probe

3He - Pot

1K - Platte

3He-Sorb

3He - Kammer

BNC - Anschlüsse

Nadelventil - Motor

Fischer - Stecker

Syphon

Abbildung 3.6: Dieses Foto zeigt den Heliox - 3He-Kryostat. Der obere Teil besteht aus der 3He
- Vorratskammer, diversen elektrischen Anschlüsse und Abpumpöffnungen, welche zum wich-
tigsten Bereich, der inneren Vakuumkammer (IVK), führen. Die gestrichelte Linie kennzeichnet
den Bereich der IVK, welche im Betrieb (Ausnahme ist der Syphon) mit einem Metallzylinder
überdeckt und evakuiert ist. Zu erkennen ist die am unteren Ende der Kupferstange angebrach-
te Probe, deren elektrischen Zuleitungen mit Teflonband umwickelt sind. Diese IVK ist auch in
der Abbildung 3.5 schematisch dargestellt.
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3.3 Experimentelle Messmethoden

In diesem Abschnitt werden nun die verschiedenen experimentellen Messmethoden
diskutiert, welche im Rahmen dieser Arbeit durchgeführt worden sind, um die Wech-
selwirkung zwischen 2DEG und Quantenpunkten in ihren vielfältigen Erscheinungs-
formen darzustellen. Beginnend mit der Kapazitäts-Spannungs-Spektroskopie, welche
hauptsächlich zur energetischen Charakterisierung der Proben genutzt wurde, bis zu
den verschiedenen Transportmessmethoden, werden Messaufbau und -intention be-
schrieben.
In Abbildung 3.7 ist auf der linken Seite die Schichtfolge der untersuchten Probe mit
den aufgebrachten Elektroden dargestellt.
Auf dieses Probenstück mit den Ausmaßen A=4 mm×4 mm×1 mm wurden stets drei

GaAs

Übergitter

GaAs
Quantenpunkte

Tunnelbarriere
2DEG

AlGaAs-Spacer
d-Si-Dotierung

Substrat

AlGaAs

I
-

I
+

U
G

d1

dges

Abbildung 3.7: Die rechte Skizze zeigt die Schichtfolge der untersuchten Probe mit den zwei
verschiedenen Elektroden (Metallgate und Rückkontakt). Angedeutet ist der Stromfluss I bei
einer Transportmessung über zwei einlegierte Rückkontakte und die elektrostatische Potenzial-
barriere unter dem Metallgate (gestrichelte Linie) bei einer angelegten Spannung UG. Die rechte
Seite zeigt die drei verschiedenen aufgebrachten Messstrukturen auf der Probenoberfläche. Bei-
de Grafiken sind nicht maßstabsgetreu.

verschiedene Strukturen für die oben diskutierten Methoden aufgebracht, welche sche-
matisch auf der rechten Seite der Abbildung 3.7 gezeigt sind. Ein einfaches quadrati-
sches Metallgate und ein Rückkontakt ohne Ätzgraben stand für die Kapazitäts-Spann-
ungs-Spektroskopie (siehe Abb. 3.7, →CV-Spektroskopie) zur Verfügung; an einem geätz-
ten Hallbar mit einer (den Leitfähigkeitskanal-überdeckenden) Gateelektrode (→Hallbar-
Transport) und an einem ähnlich geätzten Hallbar mit lateral aufgedampften Split-Gates
(→Split-Gate-Transport, Abstand d=400...1000 nm) wurden Transportmessungen durchge-
führt. In Abb. 3.7 nicht gezeigt, ist die Messstruktur mit einem geätzten 1D-Leitfähigkeits-
kanal und aufliegendem Metallgate, die in dem Kapitel der Auswertung angesprochen
wird.
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3.3.1 Kapazitäts-Spannungs-Spektroskopie

Mit Hilfe der Kapazitäts-Spannungs-(CV)-Spektroskopie lässt sich direkt die Zustands-
dichte von niedrigdimensionalen Systemen in einer MISFET-Struktur vermessen. Die in
diesem Fall betrachteten Quantenpunkte besitzten diskrete Zustände, so dass über die
Messungen der differentiellen Kapazität direkt auf die Lage der Energieniveaus in den
Quantenpunkten bezüglich des Fermi-Niveaus geschlossen werden kann.
Die Kapazitätsspektroskopie war schon Gegenstand zahlreicher Arbeiten und wurde
ausführlich beschrieben ([57], [59]). Daher wird diese Messmethode im Folgenden nur
kurz erläutert.
Mit dieser Methode ist es also möglich, die elektronischen Zustände der Quantenpunk-
te zu spektroskopieren und Aussagen über die Grundzustandsenergien des Elektronen-
systems zu treffen.
In Abbildung 3.9 ist der typische Messaufbau zur CV-Spektroskopie schematisch darge-
stellt. Über einen Lock-In Verstärker wird eine Wechselspannung (Amplitude A=5 mV,
Frequenz f=100...100000 Hz) ausgegeben, diese Wechselspannung wird nun über eine
Spannungsweiche auf eine Gleichspannung, welche von einer DC-Spannungsquelle ge-
liefert wird, aufmoduliert und direkt auf das Metallgate der Probe gegeben. Das indu-
zierte kapazitive Stromsignal im Rückkontakt wird über den Stromeingang des Lock-
In Verstärker aufgenommen und über eine GPIB-Schnittstelle direkt an einen Rechner
übergeben.
Durch Anlegen einer Gleichspannung zwischen Rückkontakt und Gate kann die Lei-
tungsbandkante (und die Valenzbandkante) kontrolliert verschoben werden, da sich die
erzeugten elektrostatischen Energien mit den Bandkantenenergien addieren (in Abbil-
dung 3.8 schematisch angedeutet). Vernachlässigt man die Bandkrümmungen im Rück-
kontakt und in der QP-Schicht, so ändert sich die Fermienergie im Inneren der Struktur
linear mit der angelegten Gatespannung und folgt folgender Gleichung [35]:

∆EF

e
=

dTunnel

dges

∆UG = λ−1∆UG, (3.1)

wobei dges den Abstand zwischen 2DEG und Gate und dTunnel die Tunnelbarriere zwi-
schen Quantenpunkten und 2DEG darstellen. λ bezeichnet man in diesem Zusammen-
hang als Hebelarm. Er beträgt für die in dieser Arbeit untersuchte Probe ca. λ = 7.05.
So ist es möglich durch eine geeignete Spannung das Niveau des ersten Subbandes des
2DEGs (nur dieses ist besetzt) und eines der diskreten Energieniveaus der Quanten-
punkte in Resonanz zu bringen. Die Resonanzbedingung ist erfüllt, wenn gilt

EF = ∆E,

wobei EF die Fermienergie im Rückkontakt und ∆E die Energie darstellt, die benö-
tigt wird, um dem Quantensystem ein Elektron hinzuzufügen. Ist dies der Fall, so ist
das Elektron in der Lage, vom 2DEG in einen unbesetzten Zustand der Quantenpunkte
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zu tunneln. Durch die aufmodulierte Wechselspannung entsteht ein induzierter Wech-
selstrom im 2DEG, welcher mit der Lock-In Technik phasensensitiv gemessen werden
kann. Dieser Strom ist um π

2
phasenverschoben und somit von rein kapazitiver Natur.

Bei einer idealen Probe ohne Leckströme (z.B.: Plattenkondensator mit R=∞) ist nur der
imaginäre kapazitive Anteil zu messen, bei realen Proben tritt zusätzlich ein resistiver
Stromanteil (R 6= ∞) auf. Der gemessene imaginäre Wechselstrom ist proportional zur
Kapazität und diese wird durch folgende Gesetzmäßigkeit beschrieben:

C =
I2

ω(U2 − I2R2)
, (3.2)

wobei I das Messsignal, ω die Kreisfrequenz der effektiv anliegenden Spannung U und
R der nicht zu vernachlässigende ohmsche Widerstand (resistive Anteil) darstellen.
Vereinfacht kann man bei einer Resonanzbedingung sagen, dass sich der Abstand d
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Abbildung 3.8: Hier ist die Leitungsbandkante der Probe bei zwei verschiedenen Gatespan-
nungen vereinfacht dargestellt. Die linke Abbildung illustriert den Fall der Besetzung des ersten
Energieniveau des Quantenpunkt. Die Gatespannung hat die Leitungsbandkante so verschoben,
dass die Fermi-Energie im Rückkontakt in Resonanz mit dem ersten s-Niveau der Quanten-
punkte tritt. Die Elektronen im 2DEG können in die unbesetzten Zustände der Quantenpunk-
te tunneln, aufgrund der aufmodulierten Wechselspannung kommt es nun zu einem induzier-
ten messbaren (kapazitiven) Wechselstrom, der proportional zur Kapazität der Struktur ist. Die
rechte Darstellung bildet die Situation während der Besetzung des ersten p-Niveaus ab.

des aktiven Kondensators ändert. Ist die Resonanzbedingung nicht erfüllt oder sind
keine besetzbaren Zustände in den Quantenpunkten vorhanden, begrenzen der 2DEG-
Rückkontakt und das Metallgate die aktive Region.
Es gilt:

C2DEG =
ε

dges

, (3.3)

wobei ε die Dielektrizitätskonstante des Materials (hier: GaAs) zwischen Gate und Rück-
kontakt darstellt. Sind aber nun besetzbare Zustände in den Quantenpunkten vorhan-
den und die Resonanzbedingung erfüllt, stellt die InAs-Quantenpunktschicht die zwei-
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Lock In

Strom Eingang U~ Ausgang U= Ausgang

Spannungsweiche

Gate
Rückkontakt

Abbildung 3.9: Die Komponenten des CV-Messaufbaus. Benötigt werden ein Lock-In Ver-
stärker (Wechselspannung mit Amplitude 5 mV und Frequenz 100...100000 Hz), eine DC-
Spannungsquelle und eine Spannungsweiche. Die Probe befindet sich im 4He-Badkryostat.

te "Kondensatorplatte"dar. Es gilt nun für die gemessene Kapazität:

CQP =
ε

dQP

mit dQP = dges − dTunnel. (3.4)

Die Folge ist ein Ansteigen der Kapazität bzw. des imaginären Stroms im Falle der Be-
setzung der Quantenpunkt - Energieniveaus (dQP<dges). Die aktive Region der Probe
ist in Abbildung 3.10 dargestellt.
Hierbei ist aber zu erwähnen, dass dies ein sehr vereinfachtes Bild für die Erklärung des
Kapazitätsanstiegs ist. In dem erwähnten Fall geht man von einer metallischen Gegen-
elektrode mit einer unendlich großen Zustandsdichte am Ort der Quantenpunkte aus,
was aber in der Probe nicht der Fall ist. Aufgrund der nur geringen Anzahl besetzbarer
Zustände (geringe Quantenpunktdichte) ist der tatsächliche beobachtbare Kapazitäts-
anstieg deutlich geringer. Die Quantenpunktschicht bildet eine sogenannte Quanten-
kapazität, die im Gegensatz zu einer metallischen Platte nicht vollständig in der Lage
ist, ein angelegtes elektrisches Feld abzuschirmen [51]. Eine solche Quantenkapaziät CQ

von niederdimensionalen Elektronensystemen ist proportional zur Zustandsdichte

CQ = e2D(EF).
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dQP

dtunnel

Metallgate

Quantenpunkt-

        schicht 2DEG

Abbildung 3.10: Grafik veranschaulicht die Kondensatorstruktur der Probe. Bei Resonanz
zwischen 2DEG und Quantenpunkte stellt die Quantenpunktschicht mit dem Abstand dQP

(dQP<dges) die zweite aktive Kondensatorplatte dar.
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3.3.2 Transportmessungen

Im folgenden Abschnitt wird die Datenaufnahme und die Technik der Transportmes-
sungen näher erläutert, mittels derer die Längs- und Querwiderstandswerte aufgenom-
men wurden. Hierzu wurden die in Abb. 3.11 und 3.12 gezeigten schematischen Messauf-
bauten und Probenbeschaltungen vorgenommen.
In dieser Arbeit wurde für Transportmessungen zwei verschiedene Messtechniken ge-
nutzt. Zum einen wurden Längs- und Querspannungsmessungen mit der Standard
Lock-In Technik (AC) durchgeführt, und zum anderen wurde eine im DC-Modus ar-
beitende Strom&Spannungseinheit (SMU∗) betrieben. Der Grund für die Durchführung
von Gleichstromexperimenten hauptsächlich an den Split-Gate Geometrien ist zum größ-
ten Teil in der Zeitersparnis zu sehen. Bei einfachen Hallmessungen mit wenigen Mess-
werten ist dies nicht sofort ersichtlich, dies ändert sich aber bei Experimenten mit mehr
als 120000 Messwerten. Um die Messdauer eines Experimentes nicht über Wochen aus-
zudehnen, wurde hier auf die schnelle DC-Messung zurückgegriffen, da zudem das
Signal/Rausch Verhältnis die Interpretation der Daten nicht beeinflusste.
Mit Hilfe eines EG & G Zweiphasen DSP Lock-In Verstärkers 7320, der über eine IEEE

Spannungsquelle

U= Ausgang

Messtellenumschalter

In

1 2 3
Sense

Lock In

U~ Ausgang

UA

UB

Strom

68MOhm

Abbildung 3.11: Diese Abbildung zeigt schematisch den Transport-Messaufbau mit der Stan-
dard Lock-In Technik. Eingehende Erklärungen zu diesem Messaufbau sind im Text zu finden.

488-Schnittstelle mit dem Messcomputer verbunden ist, erfolgte die Verarbeitung und
Aufnahme der Daten mit Unterstützung der Software Labview. Dabei wurde am Lock-In
Verstärker über den Oszillatorausgang eine Sinusspannung (f=23 Hz) von U=4.5 Vrms

∗engl.: Source Measurement Unit
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U= Ausgang

SMU
Ausgang HI Ausgang LO

U+

Ausgang
U-

Spannungsquelle 1

U= Ausgang ULO UHI

Abbildung 3.12: Eine weitere Methode zur Transportmessung ist die Verwendung von
Gleichstrom (DC), der Messaufbau ist hier dargestellt. Die Strom & Spannungseinheit (SMU)
schickt einen Strom von 20 nA durch die Probe, die Messung der Spannungen wird über einen
Spannungs-Differenzenverstärker an einem Multimeter ausgelesen.

eingestellt, um so mit dem in Serie geschalteten R=68 kΩ-Vorwiderstand einen Effek-
tivstrom von I=67 nArms zu erhalten.
Die Widerstandsmessungen erfolgten differenziell und masselos mit Hilfe des Lock-In
internen Differenzverstärkers, wodurch Offsets durch Einkopplung über die Masse ver-
mieden wurden. Über den Lock-In Verstärker wurde zudem der Außenleiter geerdet,
um das Messsignal gegen externe elektrische Störeinflüsse abzuschirmen.
Das Metallgate des Hallbars bzw. die beiden Split-Gates wurden mit einer DC-Spannungs-
quelle elektrisch angesteuert. Bei Experimenten an Split-Gates mit zwei unabhängig
voneinander anliegenden Gatespannungen ist eine weitere Spannungsquelle im Messauf-
bau integriert worden.
Um nun in einer einzigen Messeinheit Quer- und Längsspannung abgreifen zu können,
ist ein Messstellenumschalter (MSU) genutzt worden, welcher in jedem einzelnen Mess-
zyklus, die zu messenden Abgriffe für Uxx und Uxy steuerte. Die Konstanz des Stroms
wurde an einem Multimeter (DMM) kontrolliert und senkrecht zur Probe konnte ein
Magnetfeld (bis zu 12 T) angelegt werden.
In der reinen DC-Messung lieferte die Strom & Spannungseinheit einen Strom von
20 nA und die Spannungsdifferenz an den Longitudinalabgriffen der Probe wurde mit
einem I/V-Wandler von Femto verstärkt und an einem Multimeter ausgelesen. Die Steue-
rung der Split-Gates war identisch mit der Standard Lock-In Technik.
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4 Auswertung und Diskussion

4.1 Probencharakterisierung mittels CV-Spektroskopie

In diesem Abschnitt werden die spezifischen Eigenschaften der in dieser Arbeit unter-
suchten Proben ermittelt.
Im Einzelnen bedeutet dies, dass mittels der Kapazitätsspektroskopie die Quanten-
punktflächendichte nQP und die effektive Masse m∗ der Ladungsträger bestimmt wer-
den können. Weiterhin ist es möglich, eine Charakterisierung der elektronischen Zu-
stände der Quantenpunkte vorzunehmen. Die theoretischen Grundlagen dazu sind in
Kapitel 2 erläutert worden.
Ein typisches Kapazitätsspektrum ist in Abbildung 4.1 dargestellt und wird im Fol-
genden näher diskutiert. Eine vollständige Auswertung der energetischen Charakte-
risierung von selbstorganisierten nulldimensionalen Elektronensystemen mittels CV-
Spektroskopie ist in [58], [59] durchgeführt.
Durch Anlegen einer Gleichspannung an ein Metallgate, welches einen Schottky-Kon-

takt mit der Probenoberfläche bildet (USchottky ≈0.7 V), kann das Leitungsband der Pro-
be kontrolliert verschoben werden. Durch die Aufmodulation einer Wechselspannung
erhält man einen um 90 ° phasenverschobenen Wechselstrom (Im(I)), der proportional
zur Kapazität der Probe ist.
Die Entstehung des in Abb. 4.1 dargestellten Spektrums kann wie folgt erklärt werden:
Ist die angelegte Gatespannung kleiner als -1.8 V, so ist das 2DEG unter der Gateelek-
trode verarmt und es bildet sich keine aktive Kondensatorstruktur in der Probe aus.
Der Ursprung der gemessenen Hintergrundkapazität (CH ≈85.4 pF) ist die verwendete
Messtechnik. Hier sind Kabelkapazitäten oder parasitäre Kapazitäten in den Messgerä-
ten relevant.
Ab einer Spannung von etwa -1.8 V steigt die Kapazität stark an. In diesem Bereich wird
das erste Subband des 2DEGs geladen. Bei etwa UG,depl=-1.8 V ist für diese Probe die Re-
sonanzbedingung erfüllt, d.h. das Fermi-Niveau EF stimmt mit dem Energieeigenwert
E0,z des 2DEGs überein. Die unterste Submode des zweidimensionalen Elektronengases
wird mit Elektronen besetzt und bildet so neben der Gateelektrode die zweite aktive
Kondensatorplatte. Diese Verarmungsspannung UG,depl ist ein spezifischer Parameter
der Probe, der über den Abstand der Oberfläche bis zum 2DEG dges und die Ladungs-
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Abbildung 4.1: Die Abbildung zeigt ein typisches CV-Spektrum. Ab einer Spannung von ≤-
1.8 V ist das 2DEG unter dem Gate verarmt und es sind nur Hintergrundkapazitäten messbar.
Für UG ≥-1.8 V wird das erste 2D-Subband geladen. Erhöht man die Gatespannung weiter, ist
auf einem nahezu konstantem Kapazitätshintergrund eine Doppelstruktur und im Spannungs-
intervall von -0.3 V<UG<0.3 V eine breite Schulter zu beobachten. Die Ursache der Kapazitätsan-
stiege bei diesen Gatespannungswerten ist die Besetzung der beiden s-Niveaus und der vier p-
Niveaus der Quantenpunkte. Ab 0.4 V steigt das Signal stark an, da die InAs-Benetzungsschicht
(BS) geladen wird.

trägerdichte N2D,0V bei UG=0 V definiert ist:

UG,depl =
eN2D,0Vdges

εε0

,

wobei ε die Dielektrizitätskonstante von GaAs darstellt (εGaAs=13.1 , [62]). Die nun an-
nähernd konstante Kapazität bei steigenden Gatespannungen spiegelt den linearen An-
stieg der Ladungsträgerdichte des 2DEGs wieder. Der aufmodulierte schwache lineare
Anteil im CV-Spektrum für UG < −1.8 V ist der Verschiebung der Aufenthaltswahr-
scheinlichkeit der Elektronen im 2DEG zuzuordnen.
Ab einer Gatespannung von etwa -0.85 V ist eine gaußförmig verbreiterte Doppelstruk-
tur zu beobachten. Diese Doppelstruktur stellt den Einfluss der Quantenpunktschicht
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dar, welche mit der sogenannten Quantenkapazität CQ zur Gesamtkapazität beiträgt.
Die Doppelstruktur kann mit den beiden s-Niveaus der Quantenpunkte identifiziert
werden ([53], [35]). Die Quantenpunkte und die Metallelektrode grenzen im Resonanz-
fall die aktive Kondensatorstruktur ab. Aufgrund des nun kleineren geometrischen Ab-
standes zwischen den beiden Kondensatorplatten (vgl. 3.10) resultiert ein Anstieg der
Kapazität∗. Die Halbwertsbreite der Kapazitätsmaxima ist ein Maß für die Größenho-
mogenität der Quantenpunkte auf der Probe. Im Einteilchenbild ist dieses s-Niveau
zweifach Spin-entartet. In dem hier zu betrachtenden Vielteilchenmodell tritt aber noch
die Coulomb-Blockade auf (siehe Kapitel 2: Constant-Interaction-Modell), welche zur
Aufhebung der Entartung des Grundzustandes führt. Analog dazu sind die vier p-
Niveaus, welche im Spannungsintervall von -0.3 V bis 0.3 V besetzt werden, durch die
Coulomb-Blockade in ihrer Entartung aufgehoben. Aufgrund der kleineren Coulomb-
Blockadeenergie zwischen den Ladevorgängen der p-Zustände (→ unterschiedlichen
Orientierungen der Wellenfunktionen [25]), zeigt die Messung nicht vier eindeutige lo-
kale Maxima, sondern lediglich ein verbreitertes Plateau. Ab ungefähr UG=0.4 V wird
dann die Benetzungsschicht (BS) geladen. Die Wechselwirkungsenergien zwischen Elek-
tronen im Quantenpunkt bezeichnet man als Additionsenergien und sind mit der CV-
Spektroskopie experimentell analysierbar ([35], [54]).
Quantenmechanisch entspricht diese Energie dem Überlappintegral der zugehörigen
Wellenfunktionen.
Mit Hilfe der Störungstheorie 1. Ordnung erhält man für die Coulomb-Blockade der
ersten zwei Niveaus folgenden Ausdruck [56]:

EC
ss =

e2

Css

=
e2

4πεε0

∫ ∫
|Ψs(r1)|

2|Ψs(r2)|
2

|r1 − r2|
dr1dr2 (4.1)

=
e2

4πεε0l

√

π

2
mit l =

√

h̄

m∗Ω
, (4.2)

wobei Ψs die Eigenfunktion des Grundzustandes und l die charakteristische Länge des
harmonischen Oszillators ist (hier: l=6 nm).
Etwas anders sieht die Rechnung der Coulomb-Blockadeenergie zwischen dem zweiten
und dritten Ladevorgang aus. Hier muss neben der direkten Coulomb-Blockadeenerie
EC

sp auch die Austauschwechselwirkung EA
sp betrachtet werden.

Es folgt für die direkte Coulomb-Blockadeenergie:

EC
sp =

e2

Css

=
e2

4πεε0

∫ ∫
|Ψs(r1)|

2|Ψp(r2)|
2

|r1 − r2|
dr1dr2 =

3

4
EC

ss

∗Dies ist wie schon in Abschnitt 3.3.1 erwähnt eine vereinfachte Sichtweise. Dieses Modell geht von
einer metallischen Gegenelektrode am Ort der QP aus. Das ist hier aber nicht der Fall, da die Quan-
tenpunkte eine weitaus geringe Anzahl an Zuständen besitzt. Es muss die Quantenkapazität CQ be-
rücksichtigt werden.
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4 Auswertung und Diskussion

Coulomb-Blockade
x-y EC

xy EC
xy/EC

ss EC
xy,theo

s1-s2 22.4 meV 1 22.4 meV
s2-p1 16.0 meV 1/4 5.6 meV
p1-p2 9.8 meV 1/2 11.2 meV
p2-p3 18.1 meV 7/8 19.6 meV
p3-p4 13.4 meV 1/2 11.2 meV

Tabelle 4.1: Die Tabelle zeigt die experimentell ermittelten Coulomb-Blockadeenergien unter
Vernachlässigung des Bildladungsanteils (EBild ≈0.3 meV). Um EC

s2,p1 zu erhalten, wurde ei-
ne Quantisierungsenergie E0 von 50 meV angenommen. Die beiden letzten Spalten stellen die
theoretischen Coulomb-Blockadeenergien dar (nach [56]).

und für die Austauschwechselwirkung:

EA
sp =

e2

4πεε0

∫ ∫
Ψ∗

s(r1)Ψ
∗
p(r2)Ψs(r2)Ψp(r1)

|r1 − r2|
dr1dr2 =

1

4
EC

ss.

Die aus der Auftragung der magnetischen Dispersion der Zustände (Abb. 4.2) ermittel-
ten Werte der Coulombbeiträge ∆EC

xy sind in Tabelle 4.1 aufgelistet. x und y stellen in
diesem Zusammenhang die Elektronenzustände dar.
Vergleicht man nun die theoretischen Coulomb-Blockadeenergien mit den experimen-

tell ermittelten Werten, so fällt eine relativ große Diskrepanz auf. Besonders der Ver-
gleich der Gesamtladeenergie zwischen dem zweiten und dritten Elektron weicht ex-
trem stark vom theoretischen Wert ab. Als ein Grund ist in diesem speziellen Fall die
Unsicherheit bezüglich der Quantisierungsenergie E0 zu nennen. Die Quantisierun-
genergie wurde mit einem Wert von 50 meV angenommen, was für die untersuchte
Probe anscheinend zu gering ist. Die Berechnung der Quantisierungsenergie über die
charakteristische Länge l führt zu einem Ergebnis von E0<50 meV und vergrößert damit
die Abweichung vom theoretischen Wert.
Um die allgemeinen Abweichungen zur Theorie zu erklären, ist es sinnvoll die Rand-
bedingungen, welche Warburton et al. in ihrer theoretischen Beschreibung annehmen,
anzusprechen, die nicht ohne weiteres auf das vorliegende Problem übertragen werden
können.
Warburton et al. gehen in ihrer Beschreibung von einem dreidimensionalen Rückkontakt
aus. Die Fermienergie dieses Rückkontaktes wird näherungsweise weder von einem
Magnetfeld noch der Gatespannung beeinflusst. In der hier untersuchten Probe wird
ein 2D-Elektronengas als Rückkontakt benutzt. Die Fermi-Energie in diesem dimen-
sionsreduzierten Elektronensystem ist bei steigendem Magnetfeld und Gatespannung
nicht mehr als konstant zu beschreiben (→ EF-Oszillationen) . Diese Tatsache wurde von
Russ et al. ([57], [61]) erfolgreich ausgenutzt, um die Zustandsdichte des 2DEGs gezielt
zu untersuchen.
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4.1 Probencharakterisierung mittels CV-Spektroskopie

Eine weitere Grundannahme ist ein exakt rotationssymmetrisches (und parabolisches)
Einschlusspotenzial für die Elektronen im Quantenpunkt. In der Praxis ist dies in der
Regel nicht exakt der Fall. Besitzt die Geometrie der Quantenpunkte eine elliptische
Prägung, so werden die Unterschiede zwischen den einzelnen Ladeenergien geringer,
bis im Extremfall bei starker Elliptizität die Hundschen Regeln nicht mehr gelten [60].
Im Folgenden wird aus einem CV-Spektrum (Abb. 4.1) die Quantenpunktdichte nQP er-
mittelt und mit der Anzahl von Quantenpunkten auf der Probenoberfläche verglichen.
Es gilt laut [55]:

eNAnQP = λ

∫UG,S1

UG,S2

CdUG mit C =
Im(I)

2πfU
∼

(4.3)

⇒ nQP =
λ

eNA2πfU
∼

·
∫UG,S1

UG,S2

Im(I)dUG

︸ ︷︷ ︸
Maß der schraffierten Fläche in Abb. 4.3

, (4.4)

wobei A die Gatefläche und N die Anzahl der Elektronen pro Quantenpunkt, U
∼

die
effektiv anliegende Wechselspannung und f die verwendete Frequenz darstellt. Führt
man nun die Integration von UG,S1

bis UG,S2
aus, erhält man folgende Quantenpunkt-

dichte:
nQP = 7.6 · 109 1

cm2
.

Dieser Wert ist vergleichbar mit der Quantenpunktdichte (siehe Abbildung 4.3), die
über REM-Bilder der Probenoberfläche erhalten wurde und zwar

nQP = 8.3 · 109 1

cm2
.

Die gute Übereinstimmung der Quantenpunktdichte aus der Integrationsmethode und
der Abzählung (Abweichung etwa 10 %) ist überraschend. In anderen Arbeiten wurden
Abweichungen von bis zu 50 % ermittelt (siehe [52], [57]). Die im Vergleich zu anderen
Arbeiten besseren Übereinstimmung ist auch damit zu erklären, dass in dieser Arbeit
nur die s-Niveaus zur Quantenpunktbestimmung herangezogen wurden. Werden die
p-Niveaus in der Integration mitberücksichtigt, so führt das zu einer größeren Abwei-
chung. Als Grund ist unteranderem der größere Einfluss der Benetzungsschicht im Be-
reich der p-Niveaus zu nennen.

Aus der magnetischen Dispersion der Energiezustände, welche das Diagramm 4.2 ab-
bildet, ist es näherungsweise möglich, die effektive Masse der Ladungsträger zu ermit-
teln.
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4 Auswertung und Diskussion

Es gilt (näherungsweise):

∆Ep2,p3 = λ−1e∆UG,p2,p3 = h̄ωc + E0 mit ωc =
eB

m∗ (4.5)

⇒
∂∆Ep2,p3

∂B
=

eh̄

m∗ (4.6)

⇒ m∗ =
eh̄

∂∆Ep2,p3

∂B

. (4.7)

Führt man diese Rechnung aus, so erhält man eine effektive Masse von

m∗ = 0.049me.

Dieser experimentell ermittelte Wert der effektiven Masse ist in etwa zu erwarten. Ver-
gleicht man Literaturwerte für Ladungsträger in reinem InAs (m∗

InAs=0.023me, [62]) und
GaAs (m∗

GaAs=0.067me, [62]), so sollte die effektive Masse der Elektronen dieser unter-
suchten Probe im Intervall 0.023me<m∗<0.067me liegen. Aufgrund der Tatsache, dass
die Quantenpunkte aus einem größeren Anteil der InAs-Komponente (mit negativen
Konzentrationsgradienten zur GaAs-Schicht, [18]) besteht, ist zu erwarten, dass die ge-
messene effektive Masse der Elektronen in reinen InAs-Quantenpunkten zu den Wert
von InAs tendieren. Einige Gründe, warum dies nicht der Fall ist und die effektive Mas-
se in verschiedenen Arbeiten sogar größer als die effektive Masse im reinen GaAs ist,
wurden bereits erwähnt. Weitere Gründe sind Potenzialmodulationen und Grenzflä-
chenrauhigkeiten, welche beide zu schwereren Massen führen. Zu erwähnen ist zudem
noch die Nicht-Parabolizität des InAs-Leitungsbandes. Vergleichbare Arbeiten sind zu
ähnlichen Ergebnissen gelangt ([58], [59])

Damit sind alle (für diese Arbeit wichtigen) spezifischen Parameter der Probe, die man
mit der CV-Spektroskopie erhalten kann, bekannt. Weiterführende Literatur bezüglich
der elektronischen Charakterisierung von Quantenpunktzustände findet sich z.B in ([48],
[56] [58]).
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4.1 Probencharakterisierung mittels CV-Spektroskopie

Abbildung 4.2: Die obere Abbildung zeigt schematisch die Positionen der Lademaxima mit
den dazugehörigen CV-Spektren, welche mit einem konstantem Offset in vertikaler Richtung
versehen sind. Das untere Diagramm bildet die magnetische Dispersion der Zustände mit den
entsprechenden Energien ab. Mit zunehmendem Magnetfeld spalten sich die p1p2 und p3p4

linear auf, wohingegen die s-Niveaus nahezu unbeeinflusst bleiben. Dieses Verhalten entspricht
der Theorie (vgl. Kapitel 2, speziell Abb. 2.4). Die Oszillationen der p-Zustände im Magnetfeld
sind Folge der oszillierenden Fermi-Energie des 2DEGs bei steigendem Magnetfeld.
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4 Auswertung und Diskussion

200nm

Abbildung 4.3: Diese beiden Abbildungen dienen zur Bestimmung der Quantenpunktdich-
te. Das obere Diagramm zeigt die Doppelstruktur der beiden s-Niveaus nach der Subtraktion
eines linearen Anteils. Die Fläche unter dem Graphen ist ein Maß für die Quantenpunktdichte.
Das untere Bild zeigt die Quantenpunkte auf der Probenoberfläche, welches mit einem Sekun-
därelektronenmikroskop aufgenommen wurden. Über die Abzählung der Quantenpunkte in
einem abgegrenzten Gebiet, wurde die Quantenpunktdichte bestimmt.
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4.2 Transportmessungen an Hallbar-Geometrie

4.2 Transportmessungen an Hallbar-Geometrie

In diesem Kapitel wird der Einfluss von Quantenpunkten auf das Transportverhalten
eines zweidimensionalen Elektronengases untersucht. Die verwendete Messgeometrie
ist eine Standard-Vierpunkt-Hallbarstruktur, welche in Kapitel 2 schon diskutiert wur-
de. Diese Struktur besteht aus einem „makroskopischen“ Leitfähigkeitskanal, dessen
elektrische Eigenschaften über vier Spannungsabgriffe untersucht werden können (sie-
he Abb. 2.14).
Die Heterostruktur der untersuchten Probe wurde bereits in Kapitel 3 dargestellt. Das
zweidimensionale Elektronengas kann über eine Tunnelbarriere (dTunnel=25 nm) mit
den Quantenpunkten wechselwirken. Über ein Metallgate auf dem Leitfähigkeitskanal
ist es möglich, den Ladungszustand der Quantenpunkte und des 2DEGs zu variieren.
Neben Transportmessungen in Abhängigkeit des Magnetfeldes (→ Magneto-Transport)
kann als weitere kontrollierbare Variable die Spannung auf dem Metallgate dienen (→
σ(UG)-Transport). Zunächst werden die sogenannten σ(UG)-Transportmessungen im Hin-
blick auf Quantenpunkt-Einflüsse diskutiert.

4.2.1 σ(UG)-Transportmessungen an Hallbar-Geometrie

In dieser Messmethode wird ein konstanter Strom durch den 2D-Leitfähigkeitskanal ge-
schickt, so dass über die transversalen und longitudinalen Spannungsabgriffe die zuge-
hörige Leitfähigkeit bestimmt werden kann. Durch Variation der Gatespannung UG ist
es möglich, den Ladungszustand des 2DEGs und der Quantenpunkte in situ zu ändern.
Die Messdaten in den folgenden Diagrammen sind in einer Standard-Lock-In-Technik
bei einer Temperatur von 0.25 K aufgenommen worden. Die Messtechnik ist in Kapitel
3 erläutert worden.
Abbildung 4.4 zeigt die longitudinale spezifische Leitfähigkeit σxx und die Ladungsträ-
gerdichte N2D gegenüber der Gatespannung UG. Erwartungsgemäß steigt die Leitfähig-
keit σxx des Kanals monoton mit der Gatespannung an. Die Leitfähigkeit eines 2DEGs
hängt hauptsächlich von zwei Faktoren ab, zum einen von der Ladungsträgerdichte
N2D, zum anderen von der Beweglichkeit µ. Dabei hängt die Beweglichkeit selbst wie-
derum stark von der Ladungsträgerkonzentration ab.
Betrachtet man die Abbildung 4.4, so ist auf den ersten Blick kein Einfluss der Quan-

tenpunkte auf das longitudinale oder auch auf das transversale Transportverhalten des
2DEGs (σxy ∝N2D) erkennbar. Zu Erwarten ist aber, dass sich sowohl die longitudinale
Leitfähigkeit als auch die Ladungsträgerdichte N2D des 2DEGs reduzieren sollte, wenn
ca. 4 · 106 Quantenpunkte (∼= 4 · 106 Elektronen) geladen werden und Elektronen vom
2DEG in die freien Zustände der Quantenpunkte tunneln können. Wenn man bedenkt,
dass die Ladungsträgerdichte des zweidimensionalen Elektronengas bei dieser Probe
etwa (bei UG=-0.8 V, wo das erste s-Niveau geladen wird) bei 4 · 1011 1

cm2 liegt, ist sofort
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4 Auswertung und Diskussion

Abbildung 4.4: Longitudinale Leitfähigkeit und Ladungsträgerdichte aus der AC-
Transportmessung. Man erkennt nur sehr geringe Leitfähigkeits- und Ladungsträgerdichteein-
brüche, wenn die QP-Zustände geladen werden. Die Kreise und Pfeile zeigen die Bereiche, bei
denen die s- und p-Niveaus geladen werden (vgl. Abb. 4.1).

ersichtlich, dass es sich um einen sehr kleinen Einfluss handelt. Der Einfluss der gela-
denen Quantenpunkte auf die longitudinale Leitfähigkeit des Kanals äußert sich in der
mittleren Streuzeit τ der Ladungsträger im 2DEG, die proportional zur Leitfähigkeit ist

σxx =
N2De2

m∗

(∑

i

1

τi

)−1

︸ ︷︷ ︸
Matthiesen−Regel

, (4.8)

wobei i das jeweilige Streupotenzial beschreibt und τi die zugehörige charakteristische
Streuzeit darstellt. Diese mittlere Steuzeit definiert sich über die Matthiesen-Regel, wel-
che alle möglichen Störpotenziale i mit einbezieht. Tritt nun neben den gatespannungs-
unabhängigen Streupotenzialen wie z.B. der Grenzflächenstreuung zwischen GaAs und
(AlGa)As oder Materialverspannungen noch ein in situ kontrollierbarer Coulomb-Streuer
in die Nähe des 2DEGs (Abstand dTunnel=25 nm) hinzu, muss dieser über seine charak-
teristische Streuzeit in Gleichung 4.8 mit berücksichtigt werden. Dadurch reduziert sich
die longitudinale Leitfähigkeit σxx des 2D-Elektronengas.
Dieser geringe Einfluss der Quantenpunkte sowohl in der Leitfähigkeit als auch in der
Ladungsträgerdichte kann in Abb. 4.4 nur sehr schwach beobachtet werden. Durch ei-
ne geeignete Auftragung lassen sich die Einbrüche dennoch sichtbar machen. In Abbil-
dung 4.5 sind die Ableitungen der spezifischen Leitfähigkeit σxx und N2D dargestellt.
Eine hinreichend glatte Funktion kann über ihre Ableitung kleinste Abweichungen vom
linearen Verhalten sichtbar machen.
Man kann nun in beiden Diagrammen aus Abb. 4.5 die deutlichen Einbrüche erkennen,
wenn die s- und p-Zustände der Quantenpunkten geladen werden (vergleiche: Aus-
wertung der CV-Spektroskopie).
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4.2 Transportmessungen an Hallbar-Geometrie

Die Beweglichkeit ist die entscheidende Größe für die Schaltgeschwindigkeit von Halbleiter-

Abbildung 4.5: Hier sind die ersten Ableitungen der Graphen aus Abb. 4.4. Man erkennt
deutlich Einbrüche im Bereich der Ladevorgänge.

Bauelementen wie etwa Transistoren. Ist der Einfluss der geladenen Quantenpunkte als
kontrollierbare Streuzentren auf die Beweglichkeit des 2DEGs ausgeprägt und in ih-
rem Betrag variierbar, so sind neuartige schaltbare Bauelemente auf Basis von Quan-
tenpunkten denkbar. Interessant ist also zu wissen, wie die Beweglichkeit µ des 2DEGs
auf geladene Quantenpunkte reagiert. Diese wird mit folgender Formel beschrieben:

µ =
σxx

N2De
=

e

m∗

(∑

i

1

τi

)−1

. (4.9)

Die Beweglichkeit des 2DEGs ist in Abbildung 4.6 gegenüber der Gatespannung aufge-
tragen. Auch in der Beweglichkeit ist zunächst kein Einfluss erkennbar, was sich aber
bei der abgeleiteten Funktion ändert. Auch in der Beweglichkeit des 2DEGs ist ein (klei-
ner) Einfluss beobachtbar.
Die Ladungsträgerdichten werden über den Feldeffekt kapazitiv mittels der Gateelek-

trode variiert. Dabei ändern sich in den relevanten Gatespannungsbereichen simultan
die Besetzungszahl der Quantenpunkte und die des 2DEG. Mit der in Kapitel 4.1 vor-
gestellten CV-Spektroskopie ist man in der Lage, nur die Ladungsträgerdichte der ge-
samten Probe zu beschreiben. Von Russ et al. wurde ein leistungsfähiges iteratives Mo-
dell entwickelt, welches die Ladungsträgerdichte in die zugehörigen Quantenschichten
(hier: 2DEG und Quantenpunkte) separiert ([57], [63]). So steht eine weitere unabhängi-
ge Methode zur Spektroskopie von Quantenpunkt-Zuständen zur Verfügung.
Mit diesem neuen Formalismus ist es Russ et al. gelungen, die Ursachen für die Än-
derung der Beweglichkeit des 2DEGs genauer zu analysieren. Basis für dieses Modell
sind die vorgestellten einfachen Hall-Transportmessungen durch Variation der Gate-
spannung (siehe Abb. 4.4, 4.6). Ein Ergebnis dieser neuen Auswertungsmethode ist,
dass das Verspannungspotenzial der Quantenpunkte und nicht die Coulomb-Streuung
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4 Auswertung und Diskussion

Abbildung 4.6: Aus der Leitfähigkeit σxx und der Ladungsträgerdichte N2D kann man die
Beweglichkeit µ des 2DEG bestimmen. Die Einbrüche durch den Einfluss der Quantenpunkte
sind auch hier zu erkennen.

der dominierende Faktor für die kleinen Beweglichkeiten des 2DEGs ist.
Die bisher vorgestellten Messergebnisse sind mit Hilfe der Lock-In Technik durchge-
führt worden. Im Folgenden wird gezeigt, dass dieses Modell auch auf Hall-Transport-
messungen im DC-Betrieb angewendet werden kann. Die Abbildungen 4.7 zeigen die
Leitfähigkeit σxx, die Ladungsträgerkonzentration N2D, die Beweglichkeit µ und de-
ren Ableitungen, die aber nun im DC-Modus aufgenommen wurden. Zwar sind die s-
und p-Niveaus im Vergleich zu den AC-Messungen nicht sehr gut aufgelöst, aber in
der Leitfähigkeit- und die Ladungsträgerkonzentration-Auftragung sind die erwarte-
ten Einbrüche in den relevanten Gatespannungsbereichen zu identifizieren.
Die im Vergleich zur p-Auflösung bessere s-Auflösung ist eine direkte Folge der größe-
ren Coulomb-Blockadeenergie (siehe CV-Spektrokopie, EC

ss = 22.4 meV, EC
pp ≈ 11 meV).

Darüberhinaus ist mit einer größeren 2D-Elektronendichte N2D auch das Abschirmver-
halten verbessert (großes N2D/N0D-Verhältnis†.).
Aufgrund der Tatsache, dass Gleichstromexperimente in der Regel ein schwächeres
Signal/Rausch-Verhältnis als auf Lock-In basierte Messungen besitzen, ist es schwie-
riger im DC-Modus die exakten Positionen der s- und besonders der p-Zustände zu
identifizieren. Zudem ist in der Abbildung 4.7 zu beobachten, dass das Auflösungsver-
mögen der Energieniveaus in der Ladungsträgerdichte-, Leitfähigkeits- und Beweglich-
keitsauftragung unterschiedlich ist. Die Beweglichkeit eines 2DEGs setzt sich wie be-
reits erwähnt aus Leitfähigkeit σxx und der Ladungsträgerdichte N2D zusammen. Da-
durch, dass die Ladungsträgerdichte ansteigt, wird auch das Abschirmungsverhalten
gegenüber den Potenzialmodulationen verstärkt. Dies ist ein weiterer Grund, warum
die Auflösung in der Beweglichkeitsauftragung schwächer ist als in der Leitfähigkeits-
und der Ladungsträgerdichte-Auftragung ist.
Trotzdem zeigen die Abbildungen 4.7, dass es auch in DC-Transportexperimenten mög-

†Hierbei ist N0D die Anzahl der Ladungsträger in der Quantenpunktschicht
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4.2 Transportmessungen an Hallbar-Geometrie

lich ist, spektroskopisch die Energieeigenzustände von Quantenpunkten zu untersu-
chen. Dies hat den entscheidenden Vorteil im Vergleich zu den AC-Messmethoden (CV-
Spektroskopie), dass auch Proben mit großer Tunnelbarriere und damit langer Tunnel-
zeit spektroskopiert werden können. Dies ist in der CV-Spektroskopie nicht möglich,
hier muss der Tunnelvorgang zwischen 2DEG und Quantenpunkt innerhalb einer Peri-
odendauer erfolgt sein.
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4 Auswertung und Diskussion

Abbildung 4.7: DC-Transportmessungen an Hallbar-Geometrie. Analog zur AC-Messung
sind auch im DC-Modus in der Ableitung der Leitfähigkeit, der Ladungsträgerkonzentration
und der Beweglichkeit Einbrüche beim Laden der Zustände auszumachen.
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Abbildung 4.8: SdH-Oszillationen und QHE bei einer angelegten Spannung von 0 V(links)
und -0.4 V (rechts). Eine Verschiebung der Füllfaktoren zu höheren Magnetfeldern ist nur bei
-0.4 V zu beobachten. Die klassische Hall-Gerade durchstößt das Hall-Plateau (ν=4) nicht exakt
im Zentrum. Der Durchstoßpunkt ist zu kleineren Magnetfeldern verschoben (∆B=0.16 T).

4.2.2 Magneto-Transportmessungen an Hallbar-Geometrie

In diesem Unterkapitel soll über eine weitere Transport-Messmethode an einem Hallbar
der Einfluss der Quantenpunkte auf das 2DEG untersucht werden. Im Unterschied zur
oben diskutierten σ(UG)-Transportmessung stellt hier das Magnetfeld den einstellbaren
Parameter dar.
In Abbildung 4.8 sind der transversale und longitudinale Widerstand in Abhängigkeit
des Magnetfeldes bei zwei unterschiedlichen angelegten Gatespannungen dargestellt.
Wie bereits im Kapitel 1 über die Grundlagen des 2DEGs erwähnt, handelt es sich hier-
bei um die Shubnikov-de Haas-Oszillationen (SdH) in der longitudinalen und um den
Quanten-Hall-Effekt in der transversalen Widerstandsmessung.
Ähnliche Magneto-Transportmessungen an einer Hallbargeometrie unter der Fragestel-
lung des Einflusses der Quantenpunkte auf das 2D-Elektronengas sind schon in mehre-
ren Arbeiten durchgeführt worden ([57], [61], [64]).
Der Messaufbau gleicht dem der bereits vorgestellten Standard Lock-In-Technik. Es
wurden jeweils gleichzeitig die Oszillationen des Längs-Widerstandes und die Hall-
Spannung zusammen mit dem aktuellen Probenstrom bestimmt.
Wie bereits erwähnt, ist der Ursprung dieses Widerstandsverhalten in den praktisch un-
vermeidlichen Potenzialmodulationen im 2DEG zu finden. Diese Streuzentren führen
zu einer energetischen Verbreiterung der theoretisch δ-förmigen Landau-Niveaus. Die
Zustände unterscheiden sich in ihren Eigenschaften. Es existieren sogenannte ausge-
dehnte Zustände, die im Zentrum der Landau-Niveaus zu finden sind und zum Strom-
transport beitragen. Darüberhinaus gibt es lokalisierte Zustände, die nicht zum Strom-
transport beitragen (siehe Abb. 2.16). Der Längswiderstand spiegelt die Struktur der
Zustandsdichte wieder. Bei ganzzahligen Füllfaktoren ν ist ein Minimum im Längs-
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widerstand und ein Plateau im Hallwiderstand zu erwarten, da das Fermi-Niveau in
diesem Energiebereich lokale Zustände durchfährt und mit Elektronen besetzt werden.
Durch das Einbringen von positiv oder negativ geladenen Störstellen in der Nähe ei-
nes 2DEGs, ist es möglich, die Hall-Plateaus zu höheren oder niedrigeren Magnetfel-
der zu verschieben [65]. Der physikalische Hintergrund für diese Verschiebung ist die
Veränderung der Symmetrie der Zustandsdichte durch die attraktiven bzw. repulsiven
Störstellen. Diese geladenen Störstellen bewirken, dass die Anzahl an Zuständen für
E<En

‡ und E>En nicht mehr identisch ist. Für ein repulsives Potenzial ist zu erwar-
ten, dass weniger Zustände bei niedrigen Energien als En vorzufinden sind, was zu
einer Asymmetrisierung der Zustandsdichte bezüglich En führt. Dies äußert sich dann
in einer Verschiebung der Hall-Plateaus zu kleineren Magnetfeldern, da die ganzzah-
ligen Füllfaktoren erst bei höheren Fermi-Energie erreicht werden. Die klassische Hall-
Gerade (Rxy = B

eN2D
) schneidet die Plateaus nicht mehr im Zentrum sondern schon

bei größeren Magnetfeldern. In Abbildung 4.8 ist dies ansatzweise bei einem Füllfaktor
von vier und einer Gatespannung von -0.4 V (vgl.: CV-Spektroskopie→QP ist zweifach
negativ geladen) zu erkennen. Das Hall-Plateau ist um etwa ∆B = 0.16 T zu größeren
Magnetfeldern verschoben. Nun stellt sich die Frage, welches (repulsive) Störpotenzial
für diesen Effekt in der hier untersuchten Probe verantwortlich ist. In Betracht kommen
z. B. die geladenen Quantenpunkte als Coulomb-Streuer, aber auch das Verspannungs-
potenzial, welches jeden Quantenpunkt umgibt.
Interessanterweise nimmt der Effekt der Verschiebung ab, wenn die Gatespannung re-
duziert wird (siehe Abb. 4.8). Wäre die Coulomb-Streuung das dominierende Störpo-
tenzial, ist aber zu erwarten, dass ein vierfach geladener Quantenpunkt (UG=0 V) ein
größeres Störpotenzial bildet als ein zweifach besetzter Quantenpunkt (UG=-0.4 V). Dem-
nach sollte die Verschiebung bei einer Gatespannung von 0 V im Betrag größer sein als
bei -0.4 V. Diese Beobachtung ist aber nicht zu machen, so dass das repulsive Coulomb-
Potenzial der geladenen Quantenpunkte als Ursache der Verschiebung auszuschließen
ist. Es muss angenommen werden, dass das Verspannungspotenzial, welches die Quan-
tenpunkte umgibt, die dominierende Ursache für die Plateauverschiebung darstellt.
Darüberhinaus ist die Verstärkung des Abschirmungseffektes durch das Ansteigen der
Ladungsträgerdichte N2D im 2DEG eine Ursache für die kleiner werdende Verschie-
bung der Hall-Plateaus im Magnetfeld bei steigenden Gatespannungen.

In Abbildung 4.9 sind der spezifische Längs- und Querwiderstand bei verschiedenen
Gatespannungen dargestellt.
Mit steigender Gatespannung bzw. steigender Ladungsträgerdichte verschieben sich

die Minima der SdH-Oszillationen zu größeren Gatespannungswerten. Bei den Hall-
Messungen äußert sich der Ladungsträgeranstieg in der kleiner werdenden Steigung
im klassischen Hallregime (0 T< Bklass <1.5 T). Wird die Verarmungsspannung des
2DEGs überschritten, so steigt der longitudinale Widerstand aufgrund der fehlenden
Ladungsträger sehr stark an und die SdH-Oszillationen sind nur noch ansatzweise zu

‡En ist der Landau-Energieeigenwert für die idealen δ-förmigen Zustandsdichte (En = h̄ωc(n + 1
2
)).
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4.2 Transportmessungen an Hallbar-Geometrie

Abbildung 4.9: In der ersten Abbildung sind die SdH-Oszillationen bei verschiedenen La-
dungsträgerdichten bzw. Gatespannungen dargestellt. Das rechte Diagramm zeigt die Entwick-
lung des transversalen Widerstandes bei steigender Ladungsträgerdichte.

Ladungsträgerkonzentration N2D bei UG=0 V
Methode N2D [1011 1

cm2 ]
klass. Hallmessung 7.39
SdH-Oszillationen 7.02

Landau-Fächer (Magneto) 6.89
Landau-Fächer (σ(UG)) 6.84

Wachstumsprotokoll 7.90

Tabelle 4.2: Die Tabelle zeigt die mit verschiedenen Methoden experimentell ermittelten La-
dungsträgerdichten des 2DEGs.

beobachten.
Neben der üblichen Ladungsträgerbestimmung aus klassischen Hallmessungen, ist es
auch möglich über den Längswiderstand die Elektronendichte im 2DEG zu erhalten.
Sowohl aus σxx(UG)- als auch aus σxx(B)-Transportmessungen sind sogenannte Landau-
Fächer-Diagramme aufzustellen Das Landau-Fächer-Diagramm ermöglicht einerseits
die Zuordnung eines Füllfaktors zu jedem Paar (UG,B), andererseits aber auch die Be-
stimmung der Ladungsträgerdichte (N2D = νeB

h
) in Abhängigkeit vom Magnetfeld.

Wie in Abbildung 4.11 zu sehen ist, bilden sich bei bestimmten Gatespannungen die
Landau-Niveaus aus, welche sich dann mit steigendem Magnetfeld zu höheren Gate-
spannungen verschieben. Alle Werte der Ladungsträgerdichten des 2DEGs bei einer
Gatespannung von 0 V aus den fünf verschiedenen Methoden sind in Tabelle 4.2 zu-
sammengefasst. Die Auswertung über die Landau-Fächer-Methode scheint für die La-
dungsträgerbestimmung die ungenaueste Methode zu sein, wenn man die klassische
Hallmessung als Referenz wählt. Als Grund sind z.B. die asymmetrischen Zustands-
dichten zu nennen, welche einen großen Einfluss bei hohen Magnetfeldern auf die
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4 Auswertung und Diskussion

Abbildung 4.10: Im linken Diagramm ist der Längswiderstand in Abhängigkeit des Magnet-
feldes aufgetragen. Zur besseren Übersicht sind die SdH-Oszillationen mit einem vertikalen Off-
set verschoben und die gestrichelten Pfeile verfolgen die SdH-Minima bei verschiedenen ange-
legten Gatespannungen. ν stellt den entsprechenden Füllfaktor dar. Man erkennt sehr schön das
Verschieben der Landau Niveaus mit steigender Ladungsträgerzahl. Die rechte Abbildung zeigt
das resultierende Landau-Fächer-Diagramm, aus dem es möglich ist die Ladungsträgerdichte zu
bestimmen.

Verschiebung der Füllfaktoren nehmen. Insgesamt ist die Übereinstimmung der fünf
verschiedenen Methoden zur Bestimmung der Ladungsträgerdichte mit einer Diffe-
renz von etwa 8 % zufriedenstellend. Mit der Landau-Fächer-Auftragung ist es zudem
möglich, die Verarmungsspannung des 2D-Elektronengases Udepl experimentell über
den UG-Achsenabschnitt für B=0 T zu ermitteln. Die Verarmungsspannung aus dem
Magneto-Landau-Fächer-Chart (Udepl,M '-2.5 V) weicht aber sehr stark von der Verar-
mungsspannung aus der CV-Spektroskopie ab (Udepl,CV '-1.8 V), während die Verar-
mungsspannung des 2DEG aus dem σ(UG)-Landau-Fächer-Diagramm mit der aus der
CV-Spektroskopie in etwa übereinstimmt (Udepl,σ(UG) '-1.88 V).
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4.2 Transportmessungen an Hallbar-Geometrie

Abbildung 4.11: SdH-Oszillationen bilden sich auch bei σ(UG)-Transportmessungen aus, was
im linken Diagramm zu sehen ist. Hier sind den verschiedenen Graphen zur Übersicht vertikale
Offsets hinzugefügt worden. Aus Leitfähigkeitsmessungen bei verschiedenen Magnetfeldern ist
es auch möglich das Landau-Fächer Diagramm zu erhalten, was im rechten Diagramm abgebil-
det ist.
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4 Auswertung und Diskussion

4.3 Transportmessungen an Steg-Struktur

Im vorliegenden Kapitel wird die Transportmessung an einer Steg-Struktur diskutiert.
Aus dem ersten Teil der Auswertung wurde ersichtlich, dass die Quantenpunkte einen
Einfluss auf das Transportverhalten des 2DEGs haben. Dieser Einfluss ist aber sehr ge-
ring, so dass die Leitfähigkeit- und Ladungsträgereinbrüche während des Besetzens
der Quantenpunkte nur in ihrer Ableitung zu beobachten sind. Das Ziel ist es nun, den
Einfluss der Quantenpunkte zu verstärken, in dem man von einem „makroskopischen“
Leitfähigkeitskanal (Abmessungen: A=500 µm×100 µm) zu einem „mikroskopischen“
(A=400 nm×600 nm) übergeht. Die Idee hinter dieser lateralen räumlichen Einschrän-
kung des 2DEGs zur Verstärkung der Quantenpunkte als Störpotenzial ist recht einfach.
Durch laterale Einschränkung wird der leitfähige Kanal in Breite und Länge stark redu-
ziert, so dass Störpotenziale einen größeren Effekt auf die Leitfähigkeit nehmen kön-
nen. Wird nun ein Quantenpunkt, welcher idealerweise räumlich mit dem schmalen
Kanal überlappt, mit einem Elektron geladen, so wirkt dieser als Coulomb-Streuer und
schnürt den schmalen Kanal elektrostatisch ab. Die Leitfähigkeit dieses Kanals würde
sehr stark reduziert.
Die konzeptionell einfachste Art einen solchen schmalen Kanal herzustellen, ist die ei-
ner schmalen Mesa-Struktur, die im folgenden Abschnitt erläutert wird. Eine weite-
re, technologisch einfacher zu realisierende, Methode besteht in der Verwendung von
Split-Gates, d.h. Gatestrukturen, die einen schmalen Spalt aussparen, in dem sich eine
eindimensionale Mode ausbilden kann (Abschnitt 4.4).
Die gemessene Steg-Struktur ist schematisch in Abbildung 4.12 gezeigt.

1D

Substrat
Top-Gate

aktiver Bereich

-I

+I

Abbildung 4.12: Schematische Darstellung der Mesa-Struktur, mit welchen man durch lokales
Ätzen ein 1D-Kanal definiert werden kann.
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4.3 Transportmessungen an Steg-Struktur

Diese Methode der Definition eines leitfähigen 1D-Kanals aus einem 2DEG basiert auf
der Ätztechnik. Zuvor wird ein Layout durch die Elektronenstrahl-Lithografie geschrie-
ben und im nachfolgenden Schritt werden die durch das Entwickeln freigewordenen
Bereiche von den aktiven Bereichen entfernt. So erhält man eine sehr schmale Mesa-
struktur mit einer Breite von etwa 400 nm und einer Länge von 600 nm. Abschließend
wird lithografisch ein Top-Gate auf der geätzten Struktur definiert und metallisiert.
Die Darstellung der Steg-Struktur in Abb. 4.12 ist idealisiert. Das im letzten Präpara-
tionsschritt hergestellte Top-Gate überdeckt in den realen Proben nicht nur den 1D-
Leitfähigkeitskanal, es werden durch das Gate auch Bereiche beeinflusst, die als zwei-
dimensional bezeichnet werden. Die Abbildung 4.13 zeigt eine Falschfarben-Aufnahme
vom geätzten 1D-Kanal, welche mit einem Rastertunnelmikroskop aufgenommen wur-
de.

Abbildung 4.13: Diese AFM-Aufnahme (Falschfarbendarstellung) zeigt den geätzten Kanal
(ohne Top-Gate). Das 2DEG wird auf bis zu 400 nm zusammengeschnürt. Die dunklen Bereiche
stellen die geätzten Bereiche dieser Struktur dar. Der schwarze Pfeil deutet den Elektronenfluss
an.

Durch eine Zweipunkt-Gleichstrommessung wurde eine σ(UG)-Kennlinie bei einer Tem-
peratur von etwa 240 mK aufgenommen. Die Spannung des Top-Gates wurde mit einer
DC-Spannungsquelle erzeugt. Die Aufgabe des Gates ist, analog zur CV-Spektroskopie,
das kontrollierte Laden der Quantenpunkte mit Elektronen. Die Leitfähigkeit in Abhän-
gigkeit der Gatespannung ist in der linken Abbildung 4.14 dargestellt.

75



4 Auswertung und Diskussion

Abbildung 4.14: Diese Abbildungen zeigen die Ergebnisse der Messungen an einer Steg-
Struktur. In der Leitfähigkeitsdarstellung gegenüber der Gatespannung ist nur der Einfluss der
Benetzungsschicht (BS) zu erkennen. Die Ableitung der Leitfähigkeit zeigt dann verschiedene
äquidistante Oszillationen, welche mit der stetigen Besetzung der 1D-Submoden zu identifizie-
ren sind. Der Einfluss der Quantenpunkte ist in dieser Messung nicht zu erkennen. Gleichzeitig
zeigt diese Abbildung den gerechneten Leitfähigkeitsverlauf eines geätzten 1D-Kanals [57].

Der 1D-Leitwert G steigt mit sinkender negativer Gatespannung linear an. Dies lässt
sich durch den zur Gatespannung proportionalen Anstieg der Ladungsträgerdichte er-
klären. Diese Ladungsträger werden über das Top-Gate in das lateral reduzierte 2D-
Elektronengas geladen (vgl. auch Kapitel 4.2.1). Zudem wird simultan die Beweglich-
keit des Kanals erhöht.
Die Steigung der Leitfähigkeit bleibt bis zu einer Gatespannung von etwa 0.45 V kon-
stant und erfährt dann eine geringe Steigungsreduzierung. Dieser leichte Einbruch in
der Leitfähigkeit ist mit dem Einfluss der Benetzungsschicht, die in diesem Gatespan-
nungsbereich geladen wird, zu erklären. Um nun weitere Einflüsse auf die Leitfähigkeit
grafisch sichtbar zu machen, wird, wie bereits in Kapitel 4.2.1 näher erläutert, die Ablei-
tung gegenüber der Gatespannung aufgetragen. Das Ergebnis ist in der rechten Abbil-
dung dargestellt. Die Messkurve zeigt eindeutig äquidistante Leitfähigkeitsoszillatio-
nen, die durch die kontinuierliche Besetzung der 1D-Submoden verursacht werden. Im
relevanten Gatespannungsbereich, in dem s- und p-Niveaus der Quantenpunkte gela-
den werden, sind keine vom Gesamtverlauf abweichende Strukturen zu beobachten.
In beiden Diagrammen ist zum Vergleich auch das Ergebnis einer numerischen Rech-
nung gezeigt.
In dieser Betrachtung wurde der aktive Bereich, der zur Leitfähigkeit beiträgt, in drei
unterschiedliche Gebiete unterteilt (siehe Abb. 4.15).
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2 21 3 1

Top-Gate

aktiver Bereich

RückkontaktRückkontakt

Abbildung 4.15: Draufsicht der 1D-Mesa-Struktur. Dieses Bauelement kann man in drei un-
terschiedlich leitfähige Bereiche unterteilen, die in dieser Illustration mit 1, 2 und 3 bezeichnet
sind.

Diese drei Widerstandsbereiche können dann analog zur Reihenschaltung zu einem Ge-
samtwiderstand zusammengefügt werden:

Rges = R1 + R2 + R3. (4.10)

Der erste betrachtete Widerstandsbeitrag R1, beschreibt den Teil des 2DEGs, der weder
lateral eingeschränkt noch durch das Top-Gate beeinflusst wird. Dieser Beitrag ist als
Konstante in die Rechnung mit einzubeziehen. Auch werden die Einflüsse beschrieben,
die durch eine schwache elektrische Kopplung mit der Umgebung verursacht werden.
Die gesamten Einflüsse, die unabhängig von UG sind, werden durch diesen Beitrag be-
schrieben (R1=konst.).
Der zweite Beitrag wird durch das 2DEG verursacht, welches mit einer Gateelektrode
überdeckt ist und so in seinem Betrag abhängig von der angelegten Gatespannung ist
(R2 ∝ U−2

G ).
Der dritte Beitrag ist der eigentlich interessante Anteil zur Leitfähigkeit im Hinblick auf
den Einfluss der Quantenpunkte auf das 2DEG. Der Ursprung dieses Beitrages ist der
des lateral eingeschnürten mit einem Top-Gate überdecktem 1D-Kanals. In diesem Re-
gime können die Leitwerte aber nicht jeden beliebigen Wert annehmen, sondern sind
in den Einheiten des Leitwertquantums (G0 = 2e2

h
)§.) quantisiert. Die Anzahl der be-

teiligten Moden N ist abhängig von der Ladungsträgerdichte und damit auch von der
Gatespannung (R3 ∝ U−1

G ).
Summiert man nun diese Beiträge und berechnet die Leitfähigkeit in Abhängigkeit der
Gatespannung, erhält man ein Ergebnis, welches sehr gut den realen Verlauf wieder-
gibt.

§aus Kapitel 2 ist bekannt, dass die Gesamtleitfähigkeit mit G = N 2e2

h
berechnet werden kann
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4 Auswertung und Diskussion

Ein Nachteil dieser Methode zur Bewegungseinschränkung von Elektronen in zwei
Raumdimensionen stellen die unregelmäßigen und rauen Kanalabgrenzungen dar, wel-
che ein großes Streupotenzial für die Ladungsträger bilden. Ein weiterer große Nachteil
ist die Tatsache, dass das Top-Gate nicht nur den 1D-Kanal, sondern auch lateral ausge-
dehnte Bereiche beeinflusst. Daher ist in Abbildung 4.14 die Leitwertquantisierung ei-
ner großen Hintergrundleitfähigkeit aufmoduliert. Kleine Effekte, wie der Einfluss von
Quantenpunkte, sind so überlagert und nicht beobachtbar.
Dies ist auch der große Vorteil, der im vorherigen Abschnitt vorgestellten Split-Gate
Technik. Mit dieser Methode ist es möglich, nur definierte Bereiche des 2D-Elektronengases
zu beeinflussen.
Durch Optimierung der Steg-Geometrie, ist es unter Umständen doch möglich Einflüs-
se der Quantenpunkten in einer schmalen Mesastruktur zu messen. Die Optimierung
sieht eine Reduzierung der leitfähigen Bereiche vor, die mit R2 im Gesamtwiderstand
beschrieben werden (Gleichung 4.10). Aufgrund technischer Probleme in der Herstel-
lung dieser Stege ist es nur einmal gelungen eine funktionierende Probe zu präparieren.
Daher war es nicht möglich das Mesa-Layout zu optimieren. Transportmessungen in
Abhängigkeit des Magnetfeldes wurden an dieser Probe nicht durchgeführt.
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4.4 Transportmessungen an Split-Gate-Geometrie

Dieses Kapitel diskutiert die Ergebnisse der Transportmessung an einer Split-Gate Geo-
metrie.
Mit der Split-Gate-Technik wird versucht, das 2DEG lateral in einer weiteren räumli-
chen Dimension einzuschränken, so dass im Idealfall ein 1D-Transportverhalten er-
reicht wird.
Die Split-Gate-Technik zur Definition eines eindimensionalen Kanals ist von Thornton et
al. eingeführt worden und basiert wie bereits in Kapitel 2 erwähnt auf dem Feldeffekt.
Über das Anlegen einer negativen Spannung auf ein Metallgate, ist man in der Lage,
definierte Bereiche des 2DEG zu verarmen und so dem 2DEG eine Potenzialmodulati-
on aufzuprägen. Die in dieser Arbeit verwendete Split-Gate-Struktur ist in Grafik 4.16
schematisch gezeigt.

-I

+I
Substrat

aktiver Bereich

Split-Gate Elektroden
1D

Abbildung 4.16: Schematische Darstellung der Split-Gate Geometrie.

Diese Struktur besteht aus einer üblichen Hallbar-Geometrie, auf welcher in einem
weiteren Präparationsschritt zwei Split-Gates mit einem Abstand von etwa 400 nm bis
1000 nm aufgedampft sind. Einen Überblick über die real gemessen Struktur erhält man
durch Abbildung 4.17, wo in der linken Abbildung die vollständige Split-Gate-Struktur
und rechts der Abstand zwischen den Split-Elektroden verdeutlicht wird.
Die Wirkung des Feldeffektes veranschaulicht die Grafik 4.18. Es zeigt die beiden aufge-
dampften Split-Gates auf der Probenoberfläche. Legt man nun eine negative Spannung
an die Elektroden, so bildet sich unter dem Metallgate eine elektrostatische Barriere aus.
Diese Potenzialbarriere bewirkt eine lokale Verarmung, so dass unter dem Metallgate
bei ausreichend großer negativer Spannung die Quantenpunkte und des 2DEGs nicht
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100 µm 200nm

Abbildung 4.17: Zwei unterschiedliche SEM-Aufnahmen der gleichen Splitstruktur. Die linke
SEM-Aufnahme ist eine Falschfarbendarstellung. Die Source/Drain Kontakte sind rötlich ein-
gefärbt, während die Gateelektroden in einem Gelbton abgebildet sind. Der Abstand zwischen
den beiden Gateelektroden verdeutlicht die zweite Aufnahme. Der Abstand beträgt in diesem
Fall etwa 400 nm. Zu erkennen sind in dieser Aufnahme auch die Quantenpunkte, die zur Grö-
ßenanalyse auf die Probenoberfläche gewachsen worden sind.

mit Elektronen besetzt werden können. Durch stetiges Erhöhen der negativen Gate-
spannung ist es möglich, den ausgesparten Kanal zwischen den Split-Gates kontrolliert
lateral zu reduzieren. Dies führt ab einer kritischen Spannung zu einem vollständigen
Abschnüren des Leitfähigkeitskanals.
Laux et al. löste in einer iterativen Rechnung erstmals das Problem der Energieeigen-

werte in einem durch Split-Gates definierten quasi-eindimensionalen Leitfähigkeitska-
nals [66]. Seine Berechnungen wurden an einer GaAs/(AlGa)As-Heterostruktur durch-
geführt. Im Gegensatz zu den in dieser Arbeit untersuchten Heterostrukturen ist das
2DEG der gerechneten Proben, nicht invertiert, auch bezieht das 2DEG die Ladungsträ-
ger aus einer n-dotierten (AlGa)As-Schicht und nicht aus einer δ-Si Dotierung. Große
physikalische Veränderungen sind aber durch diese Unterschiede nicht zu erwarten.
Unter Vernachlässigung von Austauschwechselwirkungen wurden die Schrödinger- und
Poissongleichungen selbstkonsistent gelöst, um ein laterales Potenzialprofil auf Höhe
des ausgebildeten 2DEGs zu berechnen. Das Ergebnis dieser Rechnung ist in 4.19 dar-
gestellt. Es zeigt den lateralen Verlauf des Potenzials einer Split-Gate Struktur entlang
einer Linie, welche etwa 5.6 nm vom GaAs/(AlGa)As-Übergang entfernt ist (→Position
des Maximum der Elektronenaufenthaltswahrscheinlichkeit). Der Abstand der beiden
Split-Gates beträgt 400 nm.
Das laterale Potenzial zeigt einen annähernd parabolischen Verlauf, wenn die Ladungs-
trägerdichte im Kanal sehr klein ist bzw. die Gatespannung stark negativ (vgl. Abb. 4.19:
UG=-1.52 V). Erhöht man die Spannung weiter auf -1.56 V, so wird der Leitfähigkeitska-
nal vollständig abgeschnürt, was in der Abbildung 4.19 dadurch deutlich wird, dass das
laterale Potenzial über das Fermi-Niveau ansteigt. Zustände, die energetisch oberhalb
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Abbildung 4.18: Schematische Darstellung zur Erläuterung der Split-Gate Technik

von EF liegen, werden bei T→0 nicht besetzt. Wird das Einschlusspotenzial nun durch
kleinere negative Gatespannungen abgeschwächt, so verändert sich der Verlauf des Po-
tenzials. Es bildet sich im Zentrum der beiden Split-Gate-Elektroden ein sehr flaches
Potenzial aus, in welchem sich die Ladungsträger akkumulieren können.
Dieses Modell rechtfertigt also die Annahme eines 1D-parabolischen Potenzials in der
Berechnung der Energieeigenwerte, welche im Kapitel 2.1.2 durchgeführt wurde (V(y) =
1
2
m∗ω2y2). Für eine Split-Gate Anordnung in einer sogenannten Quantenpunktkontakt-

Geometrie, also zwei sehr eng zueinander verlaufende Elektroden, bei denen die Län-
ge des 1D-Kanals gegen Null strebt, entsteht ein 2D-Sattelpunktpotenzial (V(x, y) =

−1
2
m∗ω2

xx
2 + 1

2
m∗ω2

yy
2).

Weiterhin wurden in der Arbeit von Laux et al. die Energien der ersten fünf 1D-Subbänder
in Abhängigkeit der angelegten Gatespannung berechnet. Es zeigte sich, dass der Ab-
stand der Subbänder mit steigender effektiven Breite des Leitfähigkeitskanals (deff) wie
erwartet kleiner wird. Die integrierte Ladungsträgerdichte im 1D-Kanal steigt annä-
hernd linear an (siehe Abbildung 4.20).
Nixon et al. konnte für die hier untersuchte Split-Gate Geometrie eine Formel angeben,

mit welcher man in der Lage ist, das laterale Potenzial zu berechnen, wenn die Entfer-
nung des 2DEG zur Probenoberfläche und der Abstand der Split-Gates bekannt ist [67].
Die Formel lautet:

Φ(y) = UG

[

1 −
1

π
arctan

Bdges

y2 + d2
ges − (B/2)2

]

, (4.11)

wobei B der Abstand der beiden Split-Gate-Elektroden darstellt und dges die Entfer-
nung der Probenoberfläche bis zum 2DEG angibt.
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V(y) y2

Abbildung 4.19: Links: Gerechnetes laterales Potenzialprofil entlang einer Linie , die 5.6 nm
vom GaAs/(AlGa)As-Übergang entfernt ist, bei 4 K. Rechts: Dichte der Ladungsträger, entlang
derselben Linie für sechs verschiedene Gatespannungen [66].

Nixon und Davies berechneten die Dichtefluktuationen von Elektronen im 1D-Kanal für
verschiedene Gatespannungen [67]. Diese Fluktuationen werden z.B. durch ionisierte
Donatoren hervorgerufen. Die Ergebnisse sind in Abbildung 4.21 dargestellt.
Die Bilder der Dichtefluktuationen im 1D-Kanal mit unterschiedlichen Gatespannun-

gen zeigen, dass das Einschlusspotenzial bei steigenden negativen Spannungen sukzes-
sive verstärkt und so der leitfähige Kanal in der Breite reduziert wird. Ab etwa -2.6 V
wird die Breite nicht mehr kontinuierlich verringert. Die im Vergleich zur effektiven
Breite deff nun großen Fluktuationen verursachen eine diskontinuierliche laterale Re-
duktion des Kanals. Ab -2.8 V ist der Kanal vollständig abgeschnürt, so dass keine La-
dungsträger im Kanal vorhanden sind.
Diese diskutierten Ergebnisse können auf das Verhalten der vorliegenden Heterostru-
kur im Allgemeinen übertragen werden. Die Länge des Kanals der untersuchten Split-
struktur beträgt etwa 600 nm.
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Abbildung 4.20: Die ersten fünf Subbänder sind in Abhängigkeit der Gatespannung darge-
stellt. Weiterhin zeigt diese Abbildung den Verlauf des Ferminiveaus EF und der integrierten
Ladungsträgerdichte NL im 1D-Kanal [66].
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Abbildung 4.21: Ladungsträgerdichtefluktuationen des 1D-Kanals (Breite=400nm, Län-
ge=1000nm) bei verschiedenen Gatespannungen [67].
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4.4.1 σ(UG)-Transportmessungen an Split-Gate-Geometrie

In diesem Kapitel werden nun die experimentellen Ergebnisse der σ(UG)-Transport-
messungen an einer Split-Gate-Geometrie vorgestellt.
Im Rahmen dieser Diplomarbeit wurden Split-Gate-Geometrien mit zwei unterschied-
lichen Abständen hergestellt und untersucht. Es standen Splitelektroden mit einem Ab-
stand von 400 nm und 1000 nm zueinander zur Verfügung. Beide Gateelektroden liegen
auf gleichem Potenzial und engen den Leitfähigkeitskanal im 2DEG symmetrisch ein.
Eine typische ISD/UG-Kennlinie solcher Strukturen ist in Abbildung 4.22 dargestellt.
Sie zeigt die spezifische Leitfähigkeit σxx in Abhängigkeit der Gatespannung UG (ge-
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Abbildung 4.22: Darstellung einer Transportmessung in Abhängigkeit der Gatespannung an
einer Split-Gate Geometrie mit einem Abstand von 1000 nm. Die Grafiken über den drei cha-
rakteristischen Leitfähigkeitsbereiche illustrieren schematisch die physikalische Situation. Sie
zeigen jeweils die beiden Split-Gate Elektroden und deren Wirkung auf das 2DEG und den
Stromtransport.

nauer: UG= UG,1=UG,2
¶).

Wie schon in der Abbildung 4.22 angedeutet, ist diese Kennlinie in drei charakteris-
tische Bereiche einzuteilen, in denen sich der Leitfähigkeitsverlauf drastisch von den

¶Hierbei ist UG,1 die Spannung, die an der einen Elektrode anliegt und UG,2 an der anderen.

84



4.4 Transportmessungen an Split-Gate-Geometrie

anderen Bereichen unterscheidet.
Für große negative Gatespannungen (UG ≤-6.3 V) strebt die Leitfähigkeit gegen Null.
In diesem Bereich wird der Leitfähigkeitskanal elektrostatisch vollständig abgeschnürt.
Über die Split-Gates wird dem 2D-Elektronengas eine für die Ladungsträger unüber-
windbare Potenzialbarriere aufgeprägt, so dass die Leitfähigkeit σxx zwischen beiden
Abgriffen sehr stark sinkt. Dieser Bereich entspricht im gerechneten Beispiel von Laux
einer Gatespannung von UG ≤-1.56 V.
In der Berechnung der Ladungsträgerdichtefluktuationen von Nixon und Davies tritt die
vollständige Abschnürung des Leitfähigkeitskanals für UG ≤-2.8 V ein. Die Abschnür-
spannung ist in erster Näherung nur vom Abstand der beiden Gates zueinander und
dem Abstand der Probenoberfläche zum 2DEG abhängig.
Für Gatespannungen ≥-6 V wird der Kanal zwischen den Gates mit Ladungsträgern
besetzt. In diesem sogenannten 1D-Regime steigt die Leitfähigkeit linear an. Der linea-
re Verlauf spiegelt den ebenfalls linearen Anstieg der integrierten Ladungsträgerdich-
te zu kleiner werdenden Gatespannung im 1D-Kanal wieder (siehe Abbildung 4.20).
Der Grund, warum sich in diesem Regime nicht die in Kapitel 2.1.2 erwähnten diskrete
Stufenfunktion ausbildet, ist die zu geringe Beweglichkeit µ des 2DEGs. Mit dieser Be-
weglichkeit ist eine mittlere Streulänge‖ (µ ∝ l) definiert, die weitaus kleiner ist als die
Länge des 1D-Kanals (l<100 nm). Dies zeigt sich im Diagramm 4.22 u. a. darin, dass die
Leitfähigkeit bis zum Laden des 2DEGs maximal den halben Wert des Leitfähigkeits-
quantums erreicht und es so nicht zur Ausbildung von diskreten Stufen kommen kann.
Dieser lineare Verlauf endet ab einer Gatespannung von ca. -1.75 V. Vergleicht man die-
sen Wert mit der CV-Spektroskopie (Kapitel 4.1), so ist dieser Gatespannungswert mit
der Verarmungsspannung UG,depl zu identifizieren. Ab dieser Verarmungsspannung
wird das erste 2D-Subband unter den Gates mit Elektronen besetzt. Dies hat zur Folge,
dass die vorher verarmten Bereiche unter den Split-Gates zum Ladungstransport beitra-
gen können (Parallelleitung). Deutlich wird dies in einem starken Anstieg der Leitfähig-
keit in diesem Gatespannungsbereich. Die Potenzialbarrieren unter den Elektroden wir-
ken nicht mehr als unüberwindbare Hürde für die Elektronen. Auch in diesem Regime
wird das 2DEG unter den Gates weiterhin durch die negative Spannung beeinflusst und
bildet für die Ladungsträger eine Potenzialbarriere. Doch wird die Höhe dieser Barrie-
re mit abnehmender Gatespannung reduziert, so dass mehr und mehr Ladungsträger
die Barriere überwinden können und zum Stromtransport beitragen. Der Strom wird in
diesem Fall durch die Wege mit der größten Leitfähigkeit getragen. Dies bedeutet, dass
der größte Beitrag zur Leitfähigkeit aber immer noch durch den 1D-Kanal herrührt.
Dies ändert sich erst, wenn das 2DEG unter den Elektroden mit den gatespannungsu-
nabhängigen leitfähigen Bereichen gleichberechtigt ist. Aus diesem Grund sättigt sich
die longitudinale Leitfähigkeit σxx für UG →0 V.
In den Diagrammen aus Abbildung 4.23 wird der Einfluss der Temperatur auf die Leit-
fähigkeit und die Ladungsträgerdichte in der Struktur deutlich. Diese Messungen sind
an einer anderen Probe (11080) durchgeführt worden. Die Beweglichkeit dieser Probe

‖d.h. l gibt den mittleren Weg zwischen zwei Stößen an, welche die Phase des Elektrons verändert.
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ist kleiner als die der Probe 11316.
Überraschenderweise hat die Temperaturreduzierung von 4 K auf 250 mK keinen nen-
nenswerten Einfluss auf die Leitfähigkeit. Dies bedeutet, dass Phononen die Beweglich-
keit im Tieftemperaturregime nicht mehr beeinflussen. Zu beobachten ist aber, dass der
Übergang vom 1D-Regime zum Parallelleitungsregime mit zunehmender Temperatur
aufgeweicht wird.
Das rechte Diagramm in Abb. 4.23 zeigt die Ladungsträgerdichte N2D in Abhängig-
keit der Gatespannung bei drei verschiedenen Temperaturen. Die Elektronendichte im
2DEG steigt sehr stark, sobald die vollständige Abschnürung durch die Split-Gates
aufgehoben ist. Die Leitfähigkeit ist über den Hallwiderstand bestimmt worden. Die
Ladungsträgerdichte bleibt aber im Leitfähigkeitskanal, der nicht von den Split-Gates
überdeckt ist konstant. Im Abschnür-Regime ist der Probenwiderstand vergleichbar mit
dem in Reihe geschalteten Vorwiderstand (RVor=68 MΩ), so dass die Messung nicht
mehr N2D wiedergibt. Der Einbruch in der Ladungsträgerdichte, der in Abb. 4.23 zu
beobachten ist, stellt ein Messartefakt dar.
Der Verlauf der Ladungsträgerdichte ist erwartungsgemäß temperaturabhängig. Bei
sehr tiefen Temperaturen (T≈250 mK) ist die Ladungsträgerdichte des 2DEGs um einen
kleinen Offset (∆N2D = 0.35 · 1015m−2) geringer als bei einer Temperatur von 4 K. Die
Ursache ist die geringere thermischen Energie der Elektronen, welche dazu führt, dass
die Anzahl der Elektronen, welche aus der δ-Dotierung kommt, geringfügig kleiner ist.
In diesem Zusammenhang stellt sich die Frage, wie ein Quantenpunkt als Coulomb-

Abbildung 4.23: Die erste Abbildung zeigt den Leitfähigkeitsverlauf an einem 1000nm-Split-
Gate in einem Intervall von -3.2 V bis 0.5 V bei drei verschiedenen Temperaturen. Überraschen-
derweise sind die Kurven trotz verschiedener Temperaturen sehr ähnlich. Die rechte Abbildung
zeigt den Ladungsträgerdichte in Abhängigkeit der Gatespannung. Sobald sich der 1D-Kanal
öffnet (ab -6.5 V), steigt die Ladungsträgerdichte stark an. Dieser Verlauf zeigt auch die erwarte-
te (kleine) Temperatur-Abhängigkeit.

Streuer Einfluss auf die Leitfähigkeit des räumlich reduzierten 2D-Elektronengas neh-
men kann.
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Ein Hinweis darauf findet sich in Abbildung 4.24.
In diesem Diagramm ist die Leitfähigkeit gegenüber der Gatespannung aufgetragen

Abbildung 4.24: Longitudinale Leitfähigkeitsmessung in Abhängigkeit der Gatespannung.
Im Bereich um -0.8 V ist ein starker Einbruch in der Leitfähigkeit zu erkennen, der auf den Ein-
fluss der Quantenpunkte zurückgeführt werden kann. Die Pfeile zeigen die Durchfahrrichtung
der Gatespannung.

(Probenmaterial 11316). Diese Messung ist bei etwa 240 mK durchgeführt worden und
die Messstruktur besitzt einen etwas größeren Abstand zwischen den Gateelektroden,
was sich in der größeren negativen Abschnürspannung ausdrückt (UG,A ≈-6.5 V).
Der Verlauf der Leitfähigkeit ist bis zu einer Spannung von etwa -0.8 V identisch mit
dem des Diagramms 4.22.
Ab einer Spannung von kleiner -0.8 V ist aber ein Einbruch in der Leitfähigkeit zu beob-
achten. Die Position dieses Bereiches stimmt ausgezeichnet mit dem Lademaxima der
s-Niveaus in der Kapazität überein (siehe Abbildung 4.1).
Dies bedeutet, dass der Quantenpunkt auf das 2DEG Einfluss nimmt, sobald er einfach
negativ geladen ist. Als Coulomb-Streuer moduliert er das 2DEG im lateral reduzier-
ten Bereich zwischen den Gateelektroden, so dass die Leitfähigkeit und damit auch die
Beweglichkeit des 2DEGs nachhaltig reduziert wird. Die Größe dieses Einfluss ist je-
doch überraschend, wenn man bedenkt wie schwach der Einfluss der Quantenpunk-
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Abbildung 4.25: Diese Abbildung zeigt die erste Ableitung von σxx aus Abb. 4.24 in Abhän-
gigkeit der Gatespannung. Dieses Diagramm soll deutlich machen, dass es sehr stark im 1D-
Regime rauscht. Dies ist mit den Potenzialmodulationen, die Nixon et al. numerisch berechnet
haben und in Abb. 4.21 abgebildet sind, zu erklären.

te auf einen „makroskopischen“ Leitfähigkeitskanal ist (siehe Kapitel 4.2.1). Aber aus
dem Grund, dass der Stromtransport zwischen den Elektroden wegen des geringsten
Widerstandes überproportional zur Leitfähigkeit beiträgt, ist dieser große Einfluss er-
klärbar. Der Leitfähigkeitseinbruch beträgt etwa 10 % von der maximalen Leitfähigkeit
(∆σ = 0.4e2

h
)

Das Probenmaterial wurde schon in Kapitel 4.2.1 dargestellt und an großflächigen Struk-
turen gemessen. Es weist in Messungen an Hallbar-Strukturen eine nur kleine Reduk-
tion der Ableitung der Beweglichkeit auf (siehe Abb. 4.6). Als Erklärung für diesen
negativ differentiellen Leitfähigkeitseinbruch kommt daher die Wechselwirkung der
Quantenpunktelektronen mit einem lateral reduzierten 2D-Elektronengas-Kanal in Be-
tracht. Zudem ist festzustellen, dass das Signal/Rausch-Verhältnis im 1D-Kanal aus
Abb. 4.24 deutlich stärker ist als in Abb. 4.22, wo kein Leitfähigkeitseinbruch zu be-
obachten ist. Erklärbar ist dieses Verhalten damit, dass die (geladenen) Quantenpunk-
te zusätzliche Potenzialfluktuationen im 1D-Kanal verursachen. Wie von Nixon et al.
numerisch gezeigt (Abb. 4.21) können durch geladene Störstellen Potenzialfluktuatio-
nen im 1D-Kanal auftreten, die sich in einer Leitfähigkeitsmessung als Rauschen aus-
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drücken. Dieser Sachverhalt wird in Abb. 4.25 verdeutlicht, wo die erste Ableitung der
Leitfähigkeitsmessung aus Abb. 4.24 gegenüber der Gatespannung aufgetragen ist. Das
Inset vergrößert den Bereich des 1D-Regime. Man kann erkennen, dass der Großteil
der Oszillationen reproduzierbar sind. Zu beobachten ist zudem, dass im Bereich des
Abschnürregimes das Rauschen aufhört, was auf ein physikalischen Ursprung des Rau-
schen hindeutet. Die Graphen aus Abb. 4.25 zeigen die Ableitung der Leitfähigkeit in
unterschiedlichen Spannungs-Durchlaufrichtungen.

In der Abbildung 4.26 ist Leitfähigkeit einer 400 nm- und 1000 nm-Split-Gate Geome-

Abbildung 4.26: Diese beiden Abbildungen zeigen die Leitfähigkeit an einem 400 nm- und
1000 nm-Split-Gate Geometrie gegenüber der Gatespannung im 1D-Regime bei verschiedenen
Magnetfelder. Der Einfluss des Magnetfeldes auf die Leitfähigkeit in diesem Regime ist nicht
stark ausgeprägt. Zu hohen Magnetfeldern ist ein Abflachen der Leitfähigkeit besonders beim
1000nm-Split-Gate auszumachen.

trie im Spannungsbereich des 1D-Regime für Magnetfelder von 0 T bis 11 T (400nm)
bzw. von 5 T bis 11 T (1000nm) aufgetragen.
Das 1D-Regime, welches durch den linearen Leitfähigkeitsverlauf charakterisiert ist, be-
ginnt bei der 400 nm-Struktur ab einer Gatespannung von etwa UG,A ≈-3.2 V. Begrenzt
wird das 1D-Regime neben der elektrostatischen Abschnürung des leitfähigen Kanals
vom Laden des 2DEGs bei ungefähr -1.8 V. Ab dieser 2DEG-Verarmungsspannung (vgl.
Kapitel 4.1) ist die Parallelleitung unter den Gates nicht mehr zu vernachlässigen, so
dass es zur Ausbildung eines 2D-Kanals kommt. Der größte Teil des Stromtransports
wird in diesem Spannungsbereich weiterhin durch den von Split-Gates ausgesparten
Bereich getragen (s.o.).
Die σ(UG)-Messungen am 400 nm breitem Kanal (siehe Abb. 4.26) zeigen, dass sich beim
Anlegen eines zur Stromrichtung senkrechten Magnetfeldes, die Leitfähigkeit im 1D-
Regime nicht wesentlich verändert. Es ist allerdings eine leichte Plateau-Ausbildung
im Bereich hoher Magnetfeldern bei den Werten von G0

∗∗ und 2G0 auszumachen.

∗∗diskrete Leitwertsquantisierung im Magnetfeld mit ∆G0 = e2

h

89



4 Auswertung und Diskussion

Deutlicher wird diese Ausprägung im 1D-Regime bei einem 1000 nm breitem Kanal.
Hier ist eine eindeutige Änderung der σ(UG)-Abhängigkeit bei unterschiedlichen Ma-
gnetfeldern zu beobachten. Für große Magnetfelder (B>9 T) ist das Ausbilden eines Pla-
teaus zu beobachten.
Erwartet wird bei sehr hohen Magnetfeldern, dass sich die Energieniveaus En im 1D-
Regime (siehe Gleichung 2.20)

En =
h̄2k2

x

2m∗
( ω0

ωc,0

)2
+ h̄ωc,0(n +

1

2
)

gegen die Energieeigenwerte der Landau-Niveaus eines zweidimensionalen Elektro-
nengas streben mit

En ≈ (n +
1

2
)h̄ωc.

Dies hat zur Folge, dass für sehr große Magnetfelder „1D“-SdH-Oszillationen zu erwar-
ten sind. Es ist also möglich, dass diese vermeintliche Plateauausbildung im 1D-Regime
als SdH-Oszillationen zu beschreiben sind. Dies wird unterstützt durch die Tatsache,
dass sich das Plateau bei steigendem Magnetfeld zu kleineren negativen Gatespannun-
gen verschiebt.
In Diagramm 4.27 ist das 1D- und Parallelleitungs-Regime der 1000 nm-Split-Gate Geo-
metrie zum direkten Vergleich dargestellt. In beiden Abbildungen sind Leitfähigkeits-
modulationen zu beobachten.

Abbildung 4.27: Links: Leitfähigkeit an einem 1000nm breitem Kanal im 1D-Regime bei unter-
schiedlichen Magnetfeldern. Für die bessere Übersicht sind den einzelnen Kurven ein vertikaler
Offset hinzugefügt worden. Man beobachtet für große Magnetfelder eine Modulation im für
B=0T linearen Leitfähigkeitsverlauf, die sich mit den „1D“-SdH-Oszillationen identifiziere las-
sen. Rechts: Hier ist der Leitfähigkeitsverlauf des Parallelleitungs-Bereich gezeigt. Man erkennt
die SdH-Oszillationen sehr deutlich.
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4.4.2 σ(UG)-Transportmessungen an Split-Gate mit asymmetrischer
Gatespannungsverteilung

In diesem Abschnitt wird versucht, durch asymmetrische Spannungsverteilung auf den
beiden Split-Gate-Elektroden den 1D-Leitfähigkeitskanal kontrolliert lateral zu verschie-
ben. Auf diese Weise kann ein Überlapp zwischen dem 1D-Transport und den Quanten-
punkten erreicht werden, so dass deren Störpotenzial im 1D-Kanal untersucht werden
kann.
Die Widerstandsmessungen erfolgen nun nicht mehr im AC-Modus über die Lock-
In-Technik, sondern im Gleichstromverfahren mittels einer Strom&Spannungs-Einheit
(SMU). Wie bereits im Kapitel 3 erwähnt, werden die beiden Split-Gates über zwei DC-
Spannungsquellen unabhängig voneinander gesteuert.
Zum physikalischen Verständnis dieser Verschiebungsmethode ist die Situation für zwei
verschiedene Gatespannungsverhältnisse in Abbildung 4.28 dargestellt.
Die Grafik (a) zeigt die Situation, wenn das Gatespannungsverhältnis | UG,2

UG,1
| größer als

-UG,2
-UG,1

(a)

-UG,2
-UG,1

(b)

Quantenpunkte

2DEG

Potenzialbarriere

Split-Gate-Elektrode

Abbildung 4.28: Schematische Darstellung zur lateralen Kanalverschiebung durch asymme-
trische Spannungsverteilung auf Gate 1 und 2. Die Potenzialbarriere grenzt die verarmten und
die geladenen Bereiche ab. Die Pfeile verdeutlichen, dass es durch laterale Potenzialverschie-
bungen möglich ist, den 1D-Kanalverlauf zu kontrollieren.

eins ist.
Die Potenzialbarriere, welche durch Gate 2 verursacht wird, ist in ihren lateralen Aus-
maßen größer als die geometrischen Abmessungen des Gates. Sie bewirkt eine groß-
flächige Verarmung, im Gegensatz dazu die Situation unter Gate 1. Hier stimmen die
lateralen Ausmaße des Gate und der Barriere etwa überein. Das Resultat dieses Gate-
spannungsverhältnis ist eine laterale Verschiebung des 1D-Kanals in Richtung Elektro-
de 1.
Grafik (b) zeigt das inverse Verhältnis der Gatespannung zueinander, was zu einer Ver-
schiebung des Kanals in Richtung des zweiten Gates führt.
Durch (unabhängiges) asymmetrisches Anlegen von Gatespannungen auf den jeweili-
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gen Elektroden ist es also möglich, den 1D-Kanal lateral zu verschieben.
Die beiden Abbildungen zeigen zudem schematisch die physikalische Intention dieser
Verschiebung. In der linken Abbildung überlappen sich der 1D-Kanal und ein (gelade-
ner) Quantenpunkt im Ortsraum. In der rechten Abbildung mit |UG,1|>|UG,2| ist dies
nicht der Fall. Das Ziel ist nun durch Variation der Gatespannungen einen größeren Be-
reich des Kanals und der Quantenpunktschicht eindimensional auszutasten, um so den
idealen Zustand aus Abbildung 4.28 zu messen. In diesem Fall wird dem 1D-Kanal ein
repulsives Coulombpotenzial durch den negativ geladenen Quantenpunkt aufgeprägt.
Es entsteht eine Art Tunnelbarriere für die freien Ladungsträger im 1D-Kanal, was in
Abbildung 4.29(a) schematisch dargestellt ist. Bereiche unter dem Gate sind verarmt.
Die Verarmungszonen definieren einen kontrollierbaren 1D-Kanal, in dessen Zentrum
idealerweise ein Quantenpunkt überlappt. Grafik (b) aus Abb. 4.29 zeigt die Seitenan-
sicht des Problems aus Grafik (a). Die Illustration stellt das Coulomb-Potenzial eines
geladenen Quantenpunktes (QP−) dar, welches den 1D-Kanal beeinflusst.
In den nachfolgenden Diagrammen ist jeweils die Gatespannung der ersten und der

Split-Gate 2Split-Gate 1

2DEG

1D

d

e-

verarmtes

     2DEG

QP
-

Coulomb-

Potenzial

(a) (b) d

1D

Split-Gates

Verarmungs-

      zone

QP-Schicht

2DEG

QP
-

Abbildung 4.29: Darstellung des idealen Zustands, in welchem ein geladener Quantenpunkt
(QP−) den 1D-Kanal abschnürt. Dieser Quantenpunkt bildet durch sein repulsives Potenzial
(Coulomb-Potenzial) eine zusätzliche Potenzialbarriere für die Elektronen. Die weißen Flächen
deuten die Verarmungszonen an. Grafik (a) zeigt die Situation in einer Draufsicht, Grafik (b) in
der Seitenansicht.

zweiten Split-Elektrode gegenüber der Leitfähigkeit dreidimensional in einem Gitter-
netz oder zweidimensional in einem Konturplot aufgetragen. Die Experimente wurden
bei 4 K durchgeführt.
Abbildung 4.30 zeigt eine Leitfähigkeitsmessung mit der vorgestellten Verschiebungs-
methode an einer 400 nm-Split-Gate Geometrie.
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Abbildung 4.30: Leitfähigkeitsmessung an der 400 nm-Split-Gate Geometrie mit unabhängige
Einstellung der beiden Spannungen an Gate 1 und Gate 2. Somit ist es möglich den Leitfähig-
keitskanal kontrollierbar lateral zu verschieben.

Für Gatespannungen unterhalb -1,8 V bzw. -1.5 V wird der Kanal soweit eingeschnürt,
dass seine Leitfähigkeit in der Größenordnung des Leitfähigkeitsquantums 2e2

h
liegt. In

diesem Bereich sind 1D-/0D-Wechselwirkungseffekte zu erwarten. Für kleinere Gate-
spannungen wird ein 2D-Transportverhalten beobachtet.
Der farbige Konturplot in der rechten Abbildung erlaubt es, die beiden Leitfähigkeitsbe-
reiche 1D und 2D†† deutlich abzugrenzen. Desweiteren zeigt diese Art der Auftragung
die Symmetrie zwischen den durch die gestrichelte Diagonale begrenzten Bereiche.
Das 1D-Regime besitzt im Konturplot (Abb. 4.30) eine rechteckige Geometrie. Daraus
folgt, dass im 1D/2D-Übergang die Leitfähigkeit nur von einer Gatespannung abhängt.
Wird an einer Gateelektrode die 2DEG-Verarmungsspannung unterschritten (UG,depl ≈-
1.7 V), so wird nahezu der gesamte Stromtransport und damit die Leitfähigkeit durch
die nun geladenen 2DEG-Bereiche unter dem Gate getragen. Der Leitfähigkeitsanstieg,
der durch die andere Gateelektrode im 1D-Regime bestimmt ist, kann vernachlässigt
werden und ist im Konturplot nicht sichtbar.
Die Symmetrie bezüglich der gestrichelten Diagonalen ist durch eine leichte Verschie-
bung der Verarmungsspannung des Split-Gate 1 zu kleineren UG,1-Werten gestört, was
auf geringfügige Inhomogenitäten des Gates oder 2DEGs hindeuten.
Diese leichte Asymmetrie kann aber auch durch einen Quantenpunkteinfluss gedeutet
werden. Schon kleinste Unterschiede in der Quantenpunktdichte unter den beiden Ga-
tes können die Leitfähigkeit beim Laden des 2DEGs nachhaltig reduzieren. Dies kann
zu einem nach größeren Gatespannungen verschobenen 1D/2D-Übergang führen.
Die im vorherigen Kapitel diskutierten Leitfähigkeitsmessungen, in welchen die beiden
Gate-Elektroden stets auf gleichem Potenzial lagen, entsprechen in dieser „dreidimen-
sionalen“ Auftragung einem diagonalen Verlauf entlang der gestrichelten Symmetrie-

††Parallelleitungs-Bereich
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achse.
Interessante Modulationen im Leitfähigkeitsbereich des 1D-Regime sind durch den star-
ken Anstieg des Parallelleitungs-Regime ab -1.8 V überdeckt und deshalb in dieser Auf-
tragung nicht beobachtbar. Aus diesem Grund wird in Abbildung 4.31 nur der für das
1D-Regime relevante Gatespannungsintervall von -3.2 V bis -2 V dargestellt.
In der Abbildung zeigt sich eine Modulation auf einem zu erwartenden linearen Leit-
fähigkeitsanstieg bei B=0 T. Diese Modulation setzt sich über den gesamten Gatespan-
nungsbereich fort. Der Verlauf dieser Modulation scheint sich parabolisch in der Leit-
fähigkeit zu höheren UG,2 fortzusetzen. Während die Gatespannung UG,1 in diesem
Bereich fast konstant bleibt, durchfährt UG,2 das gesamte Gatespannungsintervall. Es
ist vorstellbar, dass in diesem Bereich die Potenzialbarriere kontinuierlich einen Quan-
tenpunkt durchläuft, so dass diese Potenzialmodulationen den Einfluss der s- und p-
Niveaus darstellen. Um diese Vermutung zu verifizieren, wird die gleiche Messung bei
einem hohen Magnetfeld wiederholt (B=8 T).
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Abbildung 4.31: 1D-Regime an der 400nm-Split-Gate Geometrie bei 0T. Zu erkennen sind
leichte Modulationen, welche annähernd einen parabolischen Verlauf besitzen. Die weißen Pfei-
le deuten den parabolischen Verlauf der Modulationen an. Um zu unterscheiden, ob dies Ein-
fluss der Quantenpunkte oder Verunreinigungseffekte im Leitfähigkeitskanal sind, wird ein Ma-
gnetfeld angelegt, welcher die p-Niveaus aufspalten lässt. Der schwarze Pfeil zeigt auf einen
weiteren interessanten Leitfähigkeitsbereich, wo ein Einbruch zu beobachten ist, der sich auch
parabolisch zu größeren Gatespannungen UG,2 fortsetzt.

Damit soll ausgeschlossen werden, dass es sich eventuell um Verspannungsmodulatio-
nen oder Grenzflächenrauigkeiten der GaAs/(AlGa)As-Grenzfläche handelt. Aufgrund
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Abbildung 4.32: Gezeigt ist das 1D-Regime bei angelegten 8 T. Der 3D-Plot zeigt eine Ver-
änderung des Modulation. Die Modulationen zeigen eine Aufspaltung bei diesem Magnetfeld.
Diese Aufspaltung lässt die Modulationen als Einfluss der p-Niveaus identifizieren.

ihres orbitalen Drehimpulses zeigen die p-Zustände von selbstorganisierten Quanten-
punkten eine starke Dispersion im Magnetfeld, während die s-Niveaus nahezu keinen
Einfluss erfahren. Insbesondere erwartet man im Hartree-Fock-Modell (siehe Kapitel 2)
eine zunehmende Aufspaltung der unteren (p1 und p2) und der oberen (p3 und p4) Zu-
stände, die sich auch in den vorliegenden Transportmessungen niederschlagen sollte.
Das Ergebnis dieser Messung ist in Abbildung 4.32 gezeigt.
Man beobachtet tatsächlich eine Aufspaltung der in der Leitfähigkeit höher liegenden

Modulation, währenddessen die untere Modulation nicht beeinflusst wird. Dies bestä-
tigt die Vermutung, dass diese Modulationen durch den Einfluss der s- und p-Niveaus
verursacht werden. Vergleiche der Coulomb-Blockadeenergien aus dieser Messmetho-
de und der CV-Spektroskopie sind nicht zulässig, da sich die Spannungsskalen in bei-
den Methoden unterschiedlich in Energien umrechnen lassen. Während in der CV-
Spektroskopie nur der inverse Hebelarm mit der Spannung multipliziert wird, um die
Additionenergien zu erhalten, ist dies in der Verschiebungsmessung weitaus aufwen-
diger. Interessant ist, dass es sich um „positive“ Modulationen handelt. Solche Modu-
lationen sind nicht ohne Weiteres mit einem repulsiven Potenzial, welches ein gela-
dener Quantenpunkt durch sein Coulomb-Potenzial darstellt, erklärbar. In Abb. 4.30
sind die Modulationen aus Abb. 4.31 und 4.32 in einer anderen Auftragungsweise dar-
gestellt. Die Gatespannung UG,2 wurde konstant gehalten und die Hintergrundleitfä-
higkeit mit einem Polynomfit zweiten Grades abgezogen. Die Kurven zeigen deut-
lich die in den Abb. 4.31 und 4.32 als s- und p-Niveaus gekennzeichneten Modulatio-
nen. Während die p-Niveaus bei 0 T keine Aufspaltung aufweisen, so lässt sich bei ei-
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4 Auswertung und Diskussion

Abbildung 4.33: Diese Darstellung soll die Modulationen bei 0 und 8T etwas verdeutlichen.
Die Gatespannung UG,2 wurde konstant gehalten und UG,1 durchgefahren. Außerdem wurde
die nahezu lineare Hintergrundleitfähigkeit abgezogen.

nem Magnetfeld von 8 T eine leichte Aufspaltung der p1p2 und p3p4-Niveaus erkennen
(∆UG=60 meV). Interessanterweise verschieben sich die s- und p-Niveau bei steigen-
dem Magnetfeld zu kleineren UG,1-Spannungen. Der Spannungsabstand zwischen s-
und ersten p-Niveau bleibt dabei nahezu konstant. Der parabolische Verlauf und die
Tatsache, dass es sich um „positive“ Modulationen handelt, sind bis zum gegenwärti-
gen Zeitpunkt noch nicht verstanden.
Der schwarze Pfeil in Abb. 4.31 deutet auf einen weiteren interessanten Leitfähigkeis-
bereich. In diesem Bereich ist ein signifikanter Einbruch in der Leitfähigkeit zu beob-
achten. Dieser Einbruch setzt sich analog zu den s- und p-Modulationen parabolisch
in Richtung steigenden UG,2 fort. Dieser Einbruch ist durch ein repulsives Potenzial,
welches von den Quantenpunkten verursacht wird zu verstehen (Coulomb-Potenzial,
Verspannungspotenzial). Ein physikalischer Beweis kann aber nicht aufgeführt werden,
da dieser Leitfähigkeitseinbruch bei einem Magnetfeld von etwa 8 T zu verschwinden
scheint.
Interessanterweise weichen die maximal erreichbaren 1D-Leitfähigkeiten bei etwa
-1.75 V bzw. -1.5 V sehr stark voneinander ab (Abb. 4.31). Während der Anstieg der Leit-
fähigkeit, wenn UG,2 konstant gehalten wird, einen maximalen Wert von etwa einem
Leitwertsquantum erreicht, besitzt die maximale 1D-Leitfähigkeit, wenn UG,1 konstant
gehalten wird, einen Wert von etwa 0.1 e2

h
. Diese sehr große Abweichung ist nicht mehr

mit dem Einfluss der Quantenpunkte auf den 1D-Kanal zu erklären. Als Grund sind
hier Inhomogenitäten der Split-Gates zu nennen. Die SEM-Abbildung 4.17 würde diese
Vermutung bestätigen. Die Abgrenzungen der Metallelektroden sind nicht sehr glatt,
was sich stark auf die 1D-Leitfähigkeit ausüben kann.
Es wurden im Rahmen dieser Arbeit Verschiebungsmessungen auch an einem 1000 nm-
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Abbildung 4.34: Analog zu den Transportmessungen am 400nm-Kanal sind hier die Ergeb-
nisse am 1000nm-Split dargestellt. Der Konturplot zeigt die Leitfähigkeit des gesamten Span-
nungsbereich von -6.5 V bis 0.5 V, während der Gitternetzplot nur das 1D-Regime darstellt.

Split-Gate Geometrie durchgeführt.
Die Ergebnisse dieser Messungen sind in den Abbildungen 4.34 und 4.35 dargestellt.
Abbildung 4.34 zeigt den Leitfähigkeitsverlauf bei B=0 T.
Man erkennt, dass sich über die komplette Flanke der Gatespannung UG,2 eine Struktur
ausbildet (UG,1 = −6.5 V), die eine Ähnlichkeit zum bekannten Kapazitätsverlauf be-
sitzt. Diese Vermutung wurde aber durch eine weitere Messung bei 10 T nicht bestätigt.
Die Struktur aus Abb. 4.35 besitzt bei einem Magnetfeld von 10 T keine interessanten
Verläufe im 1D-Regime, welche auf einen Quantenpunkteinfluss deuten.
Das zu beobachtende Abflachen der Leitfähigkeit im Bereich kleiner negativer Gate-
spannungen UG,1 und UG,2 wird durch das hohe Magnetfeld verursacht (s.o. „1D“-
SdH-Oszillationen). Im Leitfähigkeits-Konturplot aus Abb. 4.35 über den gesamten Ga-
tespannungsbereich zeigt sich eine nahezu ideale Symmetrie, wobei die Diagonale die
Symmetrieachse darstellt. Ab etwa -1.8 V steigt die Leitfähigkeit sehr stark an und grenzt
damit das 1D-Regime und das Parallelleitungs-Regime ab. Dies weist auf weitaus ho-
mogenere Split-Gates hin, als dies bei den 400 nm-Split-Gates der Fall ist.
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B=10T

1000nm

Abbildung 4.35: Identische Messung an 1000 nm-Split-Gate Geometrie bei 10 T. Der Einfluss
der Quantenpunkte ist in dieser Auftragung nicht auszumachen.
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4.4.3 Magneto-Transportmessungen an Split-Gate Geometrie

In diesem Abschnitt werden die Ergebnisse diskutiert, welche durch Magneto-Transport-
messungen an den Split-Gate Geometrien erhalten wurden. Diese Messungen sind im
AC-Modus durchgeführt worden, wobei die Gatespannungen UG,1 und UG,2 auf glei-
chem Potenzial lagen und nicht unabhängig voneinander verändert wurden.
Mit Magneto-Transportmessungen an einer Split-Gate Geometrie kann der Einfluss der
Quantenpunkte auf die Beweglichkeit des 2DEGs verstärkt werden. Analog zu den
σ(UG)-Messungen erwartet man bei einer räumlichen Dimensionsreduzierung (2D→1D)
einen größeren Einfluss der Quantenpunkte auf das Transportverhalten des 2D-
Elektronengas. Als Beispiel ist zu nennen, dass mit der Erfüllung der Kommensura-
bilitätsbedingung‡‡ ein Ansteigen des Widerstandes verknüpft ist, der in den Längs-
und Querwiderständen in Abhängigkeit des Magnetfeldes zu beobachten ist. Diese Wi-
derstandänderungen hinsichtlich der Kommensurabilitätsbedingung sind in der Grup-
pe von Dieter Weiss in Regensburg an einem 2D-Elektronengas mit einem geordneten
Anti-Dot-Gitter durchgeführt worden (siehe z.B.[70]).
In Abbildung 4.36 ist logarithmisch der Längs-Widerstand an einer 400nm-Split-Gate
Geometrie bei verschiedenen Gatespannungen in Abhängigkeit des Magnetfeldes auf-
getragen. Es sind mit steigenden negative Gatespannungen schwächer werdende SdH-
Oszillationen zu beobachten, bis der Kanal elektrostatisch abgeschnürt wird (ab etwa
-3.2 V).
Der mittlere Abstand l zwischen den Quantenpunkten beträgt ungefähr 85 nm (siehe
Kapitel 4.1).
Die Formel, welche den Zyklotrondurchmesser beschreibt, lautet:

lzkl =
2h̄

√
2πN2D

eB
(4.12)

Setzt man nun den mittleren Quantenpunktabstand in die Formel ein, erhält man das
entsprechende Magnetfeld. Ein Durchmesser von l=85 nm entspricht einem Magnet-
feld von 3.4 T. Bei diesem Magnetfeld ist der größte Einfluss der Quantenpunkte als
Streupotenzial zu erwarten. Wie in Abb. 4.36 zu beobachten ist, dominieren in diesem
Magnetfeldintervall schon die SdH-Oszillationen, die jeden Einfluss der Quantenpunk-
te überdecken.
Es kann daher gefolgert werden, dass kein Einfluss der Quantenpunkte auf das lon-
gitudinale Transportverhalten an einem 1D-Kanal in Abhängigkeit des Magnetfeldes
zu beobachten ist. Auch für kleinere Magnetfelder (im klassischen Bereich) sind keine
Widerstandsanstiege zu beobachten. Während der Verlauf des Längswiderstandes, wie

‡‡Diese Bedingung ist erfüllt, wenn der Zyklotrondurchmesser der Elektronen z.B. mit den mittleren
Abstand (bzw. ein Vielfaches) der Quantenpunkte übereinstimmt. Für Ladungsträger ist es in diesem
Fall energetisch günstiger geschlossene Kreisbahnen um die lokalen Potenziale zu vollziehen und
nehmen somit nicht mehr am Stromtransport teil. Dies führt zu einem Anstieg des longitudinalen
Widerstandes.
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Abbildung 4.36: SdH-Oszillationen bei verschiedenen Gatespannungen. Sobald der Kanal
abgeschnürt wird (ab etwa -3.2 V) bilden sich erwartungsgemäß keine SdH-Oszillationen mehr
aus.

in Abb. 4.36, dargestellt den zu erwartenden Verlauf bei steigenden Gatespannungen
nimmt, sind bei der Quanten-Hall-Messungen interessante Effekte zu beobachten.
Für Gatespannungen kleiner als die Abschnürspannung von -3.2 V sind die erwarte-
ten Hallplateaus ausgebildet, welche sich durch steigende Gatespannungen nur gering
voneinander unterscheiden. Wird aber nun die Gatespannung größer als die Abschnür-
spannung, so sieht der Verlauf des Querwiderstandes ρxy im Magnetfeld wie eine Art
Superposition aus SdH-Oszillationen und den Hall-Plateaus aus.
Der Source/Drain-Strom besitzt bei diesen Spannungen nur noch einen Wert von etwa
10 nA (Source/Drain Strom ISD bei 0 V: 67 nA).
Dieser Reststrom ist dann unabhängig von der weiter steigenden Gatespannung. In
diesem „Abschnürungs“-Regime ist der Widerstand der Probe vergleichbar mit dem
Vorwiderstand (Rvor=68 MΩ), der am Lock-In-Spannungsausgang in Serie geschaltet
wurde (siehe Kapitel 3.3.2). Aus diesem Grund kann in diesem Regime der Vorwider-
stand in den Längsleitfähigkeits-Berechnungen nicht mehr vernachlässigt werden und
die Messung gibt nicht mehr ρxx wieder. Es ist also festzuhalten, dass diese Oszillatio-
nen eine Kombination aus SdH-Oszillationen und Hall-Plateaus darstellen.
Abschließend lässt sich sagen, dass in dem hier untersuchten Probensystem der Ein-

fluss der Quantenpunkte durch eine räumlichen Dimensionsreduzierung des Leitfähig-
keitskanals verstärkt werden kann. Mittels der Split-Gate Technik wurden in σ(UG)-
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Abbildung 4.37: Quanten-Hall Effekt bei verschiedenen Split Gatespannungen. Sobald der
Kanal abgeschnürt ist, bildet sich eine Art Superposition aus SdH-Oszillationen und Hall-
Plateaus aus. Auch die Spinentartung scheint dadurch aufgehoben.
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4 Auswertung und Diskussion

Transportmessungen Modulationen in der 1D-Leifähigkeit gemessen, die ihren Ursprung
in dem Einfluss der Quantenpunkte haben (Kapitel 4.4.1). Auch ist festzustellen, dass
der Einfluss der Quantenpunkte am 1D-Kanal über Magneto-Transportexperimenten
nicht zu messen ist (Kapitel 4.4.3).
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Ziel dieser Arbeit war es, den Einfluss von selbstorganisierten InAs-Quantenpunkten
auf ein 2D-Elektronengas zu untersuchen.
Über die CV-Spektroskopie wurde zunächst die Dispersion der Quantenpunkt-Energie-
zustände im Magnetfeld ermittelt.
Es konnten mit Hilfe dieser Kapazitätsspektroskopie zudem weitere probenspezifische
Parameter wie z.B. die effektive Masse der Ladungsträger im InAs-Quantenpunkt oder
auch die Quantenpunktdichte und die einzelnen Coulomb-Blockadeenergien experi-
mentell bestimmt werden. Die Ergebnisse aus diesen Messungen stimmen im Allge-
meinen mit Werten aus vergleichbaren Arbeiten überein.
Weiterhin wurden Transportexperimente an verschiedenen Messstrukturen durchge-
führt, um den Einfluss der Quantenpunkte auf die Beweglichkeit des 2DEGs zu unter-
suchen.
An „makroskopischen“ Leitfähigkeitskanälen, welche in Form einer Hallbar-Geometrie
realisiert wurden, ist der Quantenpunkteinfluss auf das 2DEG so gering, dass er nur in
der ersten Ableitung der Längsleitfähigkeit, der Ladungsträgerdichte und auch in der
Beweglichkeit erkennbar ist. Russ et al. konnte einen Formalismus entwickeln, welcher
auf Basis dieser Transportmessungen die Ladungsträgerdichte dem jeweiligem Quan-
tensystem zuordnen kann. In dieser Arbeit wurde gezeigt, dass diese Messungen so-
wohl in einer AC-Messung, als auch im DC-Modus möglich sind.
Darauf aufbauend war das Ziel dieser Arbeit, den Einfluss der Quantenpunkte auf das
2DEG durch laterale Dimensionsreduzierung zu verstärken.
Es wurden zwei verschiedene Methoden genutzt, um eine Einschnürung des 2D-
Elektronengas zu erreichen.
In der ersten diskutierten Methode wurde ein 1D-Kanal aus einem 2DEG geätzt und
nachfolgend mit einem Top-Gate versehen. Der Einfluss der Quantenpunkte in der Leit-
fähigkeit an dieser Struktur ist nicht ersichtlich. Die äquidistanten Peaks in der Ablei-
tung deuten aber auf ein 1D-Leitfähigkeitsverhalten. Weiterhin ist der Einfluss der ge-
ladenen Benetzungsschicht im Leitfähigkeitsverlauf beobachtbar. Aufgrund von tech-
nischen Probleme ist es im Rahmen dieser Arbeit nur einmal gelungen eine funktionie-
rende Steg-Struktur herzustellen.
Durch Optimierung der Mesa-Maske sollte es möglich sein, den Einfluss der 2D-Leit-
fähigkeitsbereiche, die durch das Top-Gate beeinflusst werden zu reduzieren und so

103



5 Zusammenfassung und Ausblick

den schwachen Einfluss der Quantenpunkte in einer Leitfähigkeitsmessung zu studie-
ren. In weiteren Arbeiten sollte dann auch der Übergang von einer Zweipunkt- zu einer
Vierpunkt-Messung durchgeführt werden, um so noch sensitiver für schwache Einflüs-
se zu sein. Unter Umständen wird der Einfluss der Quantenpunkte dann in Quanten-
Hall-Messungen an geätzten 1D-Kanälen sichtbar, da der Leitfähigkeitskanal sehr stark
in der Breite reduziert ist und so das Transportverhalten leichter durch Störpotenziale
beeinflusst werden kann.
Eine weitere Methode zur 1D-Kanal-Definition war die Split-Gate Technik. Mit dieser
Methode ist man in der Lage einen 1D-Kanal durch kontrolliertes lokales Verarmen des
2DEGs zu realisieren. In dieser Arbeit wurden zwei Split-Gate Geometrien mit einem
400 nm und 1000 nm Abstand verwendet.
In der σ(UG)-Messung an dieser Split-Gate-Geometrie mit einem Gateabstand von
400 nm ist ein Einbruch in der Leitfähigkeit zu beobachten. Vergleicht man diesen Ga-
tespannungsbereich mit CV-Spektren dieser Probe, stellt man fest, dass in diesem Be-
reich das erste s-Niveau der Quantenpunkte geladen wird. Es ist also festzustellen, dass
dieser negativ differentielle Leitwert eine direkte Folge des vom Quantenpunkt ausge-
henden Coulomb-Potenzial darstellt. Dieser Leitfähigkeitseinbruch ist nur sehr schwer
ohne den Einfluss der Quantenpunkte zu erklären. Weitere Messungen an ähnlichen
Proben und Strukturen bestätigten diese Messungen jedoch nicht, möglicherweise, da
in diesen Proben kein Quantenpunkt an der entscheidenden Stelle sitzt.
In weiteren Arbeiten sollte diese Methode an optimierten Heterostrukturen weiter ver-
folgt werden. Diese Optimierung sieht z.B. eine Erhöhung der Beweglichkeit des 2DEGs
vor, so dass das 2DEG sensitiver auf äußere Einflüsse reagiert.
Weiterhin ist es sinnvoll den Einfluss der Quantenpunkte auf das 2DEG zu verstärken,
indem die Tunnelbarriere möglichst klein gewählt wird, bis zum Grenzfall bei dem die
Quantenpunkte fast exakt mit dem 2DEG zusammenfallen. In diesem Spezialfall sind
dann auch weitere interessante Effekte wie die Tunnelresonanz im 1D-Kanal zu studie-
ren. Der Nachteil bei Heterostrukturen mit kleiner Tunnelbarriere (dTunnel≤15 nm) zum
2DEG ist der Verlust des kontrollierten kapazitiven Ladens der Quantenpunkte, da die
Aufenthaltswahrscheinlichkeit der 2DEG-Elektronen mit den Quantenpunkten räum-
lich überlappt. Eine systematische Untersuchung von Proben mit unterschiedlichen
Tunnelbarriere scheint in diesem Zusammenhang sinnvoll. Außerdem sollten stets He-
terostrukturen mit gleichen Wachstumsparamtern einmal mit und ohne Quantenpunkte
gewachsen werden, um so den Einfluss von Quantenpunkten im Vergleich zweifelsfrei
zu verifizieren.
In weiteren Untersuchungen sollten auch komplexere Messstrukturen hergestellt wer-
den. Es ist z.B. denkbar, eine Art Zusammenführung der Steg- und der Split-Gate Geo-
metrie zu einer einzigen Struktur zu vollziehen, welche die Vorteile beider Strukturen in
sich vereinigt. So wäre mit dieser Struktur möglich, den Leitfähigkeitskanal kontrolliert
in der Breite zu variieren und über ein Top-Gate den Ladungszustand der Quanten-
punkte zu beeinflussen.
Generell sollten Experimente an eindimensionalen Kanälen bei möglichst tiefen Tempe-
raturen (T<4 K) durchgeführt werden, um den größtmöglichen Einfluss der Quanten-
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punkte auf das 2DEG zu garantieren. Dies war in dieser Arbeit aufgrund von techni-
schen Schwierigkeiten nicht immer der Fall. Die gesamten Transportmessungen mit der
neuartigen 1D-Kanal-Verschiebungsmethode konnten nur bei 4 K durchgeführt wer-
den. Trotz der recht hohen Temperaturen zeigen diese Messungen an einer Split-Gate
Geometrie (Gate-Abstand 400 nm) interessante Ergebnisse in der Leitfähigkeit. Im Leit-
fähigkeitsbereich des 1D-Regimes sind Modulationen zu erkennen, die die Leitfähigkeit
ansteigen lassen. Diese Modulationen wurden mit dem Einfluss der s- und p-Niveaus
identifiziert. Dies wird durch eine Aufspaltung der p-Niveaus im hohen Magnetfeld
bestätigt. Diese dem linearen Hintergrund aufgeprägten Strukturen nehmen einen na-
hezu parabolischen Verlauf in Richtung einer Gatespannung und sind unabhängig von
der zweiten Gatespannung. Diese ersten Resultate aus der Verschiebungs-Messung an
einer Split-Gate Geometrie sind vielversprechend und es bedarf der Weiterführung in
zukünftigen Arbeiten.
Desweiteren wurden in dieser Arbeit Transportmessungen in Abhängigkeit des Ma-
gnetfeldes an Split-Gate Strukturen durchgeführt. Die Ergebnisse dieser Messungen
zeigen keinen Verstärkungseffekt des Einflusses der Quantenpunkte als Störpotenzial
auf die Längs- und Quer-Widerstände. Dies ist eventuell darauf zurückzuführen, dass
der mittlere Quantenpunktabstand l der untersuchten Probe mit etwa 100 nm zu klein
ist, so dass das entsprechende Magnetfeld, bei welchem die Kommensurabilitätsbedin-
gung erfüllt ist, zu hoch ist (Bzyk ≈3 T), und der Effekt der Quantenpunkte von SdH-
Oszillationen überdeckt ist. Es ist also denkbar, dass Hallmessungen an Proben mit ei-
ner Quantenpunktdichte von etwa l>200 nm und dem entsprechenden Magnetfeld von
Bzyk<1.5 T Einflüsse der Quantenpunkte zeigen könnten, da das Zyklotron-Magnetfeld
Bzyk in den klassischen Bereich fällt, der nicht durch SdH-Oszillationen überdeckt ist.
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A Probenparameter

In diesem Abschnitt sind die Schichtfolgen der untersuchten Proben zusammengestellt.
Die Heterostrukturen wurden von Prof. Dr. A. Wieck und Dr. D. Reuter an der Ruhr-
Universität Bochum gewachsen .

Probenmaterial 11316:

Wachstumsprotokoll
Schicht Wiederholung Wachstumstemp. [°C] Dicke [nm]
GaAs 650.0 200.0
AlAs Start:40x 650.0 2.0
GaAs Ende 650.0 2.0

Al0.35Ga0.65As 650.0 300.0
δ-Si 650.0 0.0ML

Al0.35Ga0.65As 650.0 10.0
GaAs 635.0 25.0
InAs 555.0 0.01ML
GaAs 545.0 8.0
GaAs 635.0 22.0
AlAs Start:29x 635.0 3.0
GaAs Ende 635.0 1.0
GaAs 635.0 5.0
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Probenmaterial 11080:

Wachstumsprotokoll
Schicht Wiederholung Wachstumstemp. [°C] Dicke [nm]
GaAs 620.0 200.0
AlAs Start:40x 620.0 2.0
GaAs Ende 620.0 2.0

Al0.34Ga0.66As 620.0 300.0
δ-Si 620.0 0.0ML

Al0.34Ga0.66As 620.0 10.0
GaAs 620.0 25.0
InAs 530.0 2.6ML
GaAs 530.0 8.0
GaAs 620.0 22.0
AlAs Start:29x 635.0 3.0
GaAs Ende 635.0 1.0
GaAs 635.0 5.0
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B Probenpräparation

In diesem Abschnitt werden die Präparationsparameter wiedergegeben.
Stets wurden im ersten Schritt die Rückkontakte zum 2DEG präpariert und einlegiert.
Im Folgenden wurde dann mit Elektronenstrahl- bzw. Fotolithografie lokale Bereiche
belichtet und entwickelt, die dann entweder metallisiert oder geätzt wurden.

Präparierung der Rückkontakte

• Reinigung: Vor jedem Prozessschritt wurde die Probe gründlich gereinigt, indem
sie in drei verschieden polare organische Lösungsmittel gebadet wurde.
Zudem wurde die Probe in ein Ultraschallbad gereinigt.

– Aceton: t=5 min, davon 2 min ins Ultraschallbad auf Stufe 5

– Methanol: t=3 min

– Isopropanol: t=1 min

• Fotolitografie: Nach der Reinigung erfolgten die Vorbereitungen für die Fotoli-
thografie. Die Ausmaße der Rückkontakte waren größer als 1.1 µm und konnten
demnach mit der optischen Kontaktlithografie hergestellt werden.

– Lack: AZ1518 von Microchemicals

– Aufschleudern des Lackes: 6000 Umdreh./min, t=30 s

– Aushärten auf Heizplatte: T=100 °C, t=1 min

– Belichten am Maskaligner: t=15 s
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B Probenpräparation

– Entwickeln mit AZ400K:H2O (4:1) von Microchemicals, t=45 s

– Stopper: Reinstwasser, t=30 s

• Metallisieren:

– Aufdampfdruck: p≈ 1 · 10−7 mbar

– Schichtmaterial:

1. Nickel, d=15 nm, Aufdampfrate R=0.05 nm/s

2. AuGe, d=150 nm, Aufdampfrate R=0.2 nm/s

3. Au, d=15 nm, Aufdampfrate R=0.15 nm/s

– Lift-Off:

* Acetonbad mit anschließendem Ultraschallbad

* Spülen mit Isopropanol

• Ätzen:

– Ätzlösung: H2O(100):H2SO4(3):H2O2(1)), t≈5 min

– Stopper: Reinstwasser, t=30 s

– Reinigung im Acetonbad mit anschließendem Ultraschallbad

– Spülen mit Isopropanol

• Einlegierung:

– Schutzgas: ArH2

– Heizen der Probe:

1. T=200 °C, t=5 min

2. T=400 °C, t=2 min
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3. T=450 °C, t=30 s

Präparation der Gateelektroden
Die Split-Gate-Elektroden haben einen Abstand von <1 µm und mussten mit der Elek-
tronenstrahllithografie geschrieben werden.
Im Gegensatz dazu haben die Gateelektroden auf dem Hallbar und der Stegstruktur
Ausmaße von >100 µm und konnten so mit der Fotolithografie definiert werden. So-
wohl die Gatematerialien und Schichtdicken sind stets identisch. Im Folgenden wer-
den die Parameter für die Gateelektrodenherstellung mittels Elektronenstrahllithogra-
fie wiedergegeben.
Die Parameter der Fotolithografie sind aus dem vorherigen Abschnitt zu entnehmen.

• Reinigung:

– Aceton: t=5 min, davon 2 min ins Ultraschallbad auf Stufe 5

– Methanol: t=3 min

– Isopropanol: t=1 min

• Elektronenstrahllitografie: Die Ausmaße der Split-Gates sind mit <1.1 µm nur
mit der Elektronenstrahllithografie auflösbar. Auch die Mesastruktur der Steg-
Geometrie ist kleiner als 1 µm und musste mittels EBL geschrieben werden. An-
stelle von einem Positiv-Lack wurde ein Negativ-Lack aufgeschleudert, so dass
die belichteten Bereiche gegenüber dem Entwickler resistent blieben.

– Split-Gate:

* Lack: Copolymer PMMA/MA 33 % von Allresist

* Aufschleudern des Lackes: 6000 Umdreh./min, t=30 s

* Aushärten auf Heizplatte: T=150 °C, t=10 min

* Belichten am Rasterelektronenmikroskop Leo 1530: Spannung: 5 kV, Do-
sis: 20 µC

cm2 , Blende : 10 µm

* Entwickeln mit AR 600-50 von Allresist, t=2 min

* Stopper: AR 600-60 von Allresist, t=30 s
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B Probenpräparation

– Steg-Mesa:

* Lack: ma-N von Allresist

* Aufschleudern des Lackes: 6000 Umdreh./min, t=30 s

* Aushärten auf Heizplatte: T=90 °C, t=3 min

* Belichten am Rasterelektronenmikroskop Leo 1530: Spannung: 10 kV, Do-
sis: 40 µC

cm2 , Blende : 40 µm

* Entwickeln mit ma-D-532 von Allresist, t=2 min

* Stopper: Reinstwasser, t=30 s

* Remover: mr-Rem 660, t=30 s

• Metallisieren:

– Aufdampfdruck: p≈ 1 · 10−7 mbar

– Schichtmaterial:

1. NiCr, d=30 nm, Aufdampfrate R=0.05 nm/s

– Lift-Off:

* Acetonbad mit anschließendem Ultraschallbad

* Spülen mit Isopropanol

Maskenfertigung
Im ersten Schritt wurde ein Quarzstück mit einer einseitig beschichteter Chrom-Schicht
mit Ausmaßen von etwa 3.5 cm×3.5 cm zu geschnitten.

• Reinigung:

– Aceton: t=10 min, davon 5 min ins Ultraschallbad auf Stufe 7

– Isopropanol: t=3 min

• Elektronenstrahllitografie:
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– Doppellack:

1. PMMA 200K 4 % von Allresist

2. PMMA 950K 1 % von Allresist

– Aufschleudern der Lacke: 6000 Umdreh./min, t=30 s

– Aushärten auf Heizplatte:

1. T=150 °C, t=10 min

2. T=150 °C, t=5 min

– Belichten am Rasterelektronenmikroskop Leo 1530:Spannung: 20 kV, Dosis:
150 µC

cm2 , Blende : 30 µm

– Entwickeln mit AR 600-50 von Allresist, t=2 min

– Stopper: AR 600-60 von Allresist, t=30 s

• Ätzen

– Ätzlösung, t≈4 min:

* Cer-IV-Ammoniumnitrat (50 g)

* C2H4O2 (10 ml)

* H2O (200 ml)

• Stopper: Reinstwasser, t=30 s

• Reinigung im Acetonbad mit anschließendem Ultraschallbad

• Spülen mit Isopropanol

113



B Probenpräparation

114



Literaturverzeichnis

[1] C. Weisbuch und B. Vinter, Academic Press, Inc., (1991).

[2] S. Fafard, K. Hinzer, S. Raymond, M. Dion, J. McCaffrey, Y. Feng und S.
Charbonneau, Science 274, 1350 (1996).

[3] M. A. Topinka, B. J. LeRoy, S. E. J. Shaw, E. J. Heller, R. M. Westervelt, K. D.
Maranowski und A. C. Gossard, Science 289, 2323 (2000).

[4] E. Buks, R. Schuster, M. Heiblum, S. Mahalu und V. Umansky, Nature 391,
871 (1998).

[5] W. J. Skocpol, L. D. Jackel, E. L. Hu, R. E. Howard und L. A. Fetter, Phys.
Rev. Lett. 49, 951 (1982).

[6] K. Koike, S. Sasa, M. Inoue und M. Yano, J. Vac. Sci. Technol. B 21, 710 (2003).

[7] T.J. Thornton, M. Pepper, H. Ahmed, D. Andrew und G. J. Davies, Phys.
Rev. Lett. 34, 232 (1986).

[8] H. Z. Zheng, H. P. Wei, D. C Tsui und G. Weimann, Phys. Rev. B 34, 5635
(1986).

[9] C. Kittel: Introduction to Solid State Physics, (2002).

[10] M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore und A. E.
Wetsel, Phys. Rev. Lett. 60, 535 (1988).

[11] S. Tarucha, D. G. Austing, T. Honda, R. J. van der Hage und L. D. Kouwen-
hoven, Phys. Rev. Lett. 77, 3613 (1996).

[12] W. Hansen, T. P. Smith, K. Y. Lee, J. A. Brum, C. M. Knoedler, J. M. Hong
und D. P. Ken, Phys. Rev. Lett. 62, 2168 (1989).

[13] U. Meirav, M. A. Kastner und S. J. Wind, Phys. Rev. Lett. 60, 771 (1990).

[14] V. A. Shchukin und D. Bimberg, Rev. Mod. Phys. 71, 1125 (1999).

115



Literaturverzeichnis

[15] F. C. Frank und J. H. van der Merwe, Proc. Roy. Soc. London Ser. A 198, 216
(1946).

[16] M. Volmer und A. Weber, Z. Phys. Chem. 119, 277 (1926).

[17] L. N. Stranski und L. van Krastanov, Akad. Wiss. Lit. Mainz. Math.-Nat. Kl.
IIb 146, 797 (1939).

[18] I. Kegel, T. H. Metzger, A. Lorke, J. Peisl, J. Stangl, G. Bauer, J. M. Garcia, P
und M. Petroff, Phys. Rev. Lett. 85, 1694 (2000).

[53] H. Drexler, D. Leonard, W. Hansen, J. P. Kotthaus und P. M. Petroff, Phys.
Rev. Lett. 73, 2252 (1994).

[20] R. Rinaldi, P. V. Giugno, R. Cingolani, H. Lipsanen, M. Sopanen, J. Tulkki
und J. Ahopelto, Phys. Rev. Lett. 77, 342, (1996).

[21] C. G. Darwin, Proc. Cambridge Phil. Soc. 27, 86 (1930).

[22] V. Fock, Z. Phys. 47, 446 (1928).

[23] M. Fricke, A. Lorke, M. Haslinger, J. P. Kotthaus, G. Medeiros-Ribeiro und P.
M. Petroff, The Physics of Semiconductor, M. Scheffler, R. Zimmermann , Eds.,
World Scientific, Singapore, 1609 (1996).

[24] C. Cohen-Tannoudji und B. Diu, F. Laloë, Quantum Mechanics, Vol. 1, Wiley
& Sons (1977).

[25] O. S. Wibbelhoff, A. Lorke, D. Reuter und A. D. Wieck, Appl. Phys. Lett. 86,
092104 (2005).

[26] E. E. Vdovin, A. Levin, A. Patanë, L. Eaves, P. C. Main, Yu. N. Khanin, Yu.
V. Dubrovskii, M. Henini und G. Hill, Science 200, 122 (2000).

[27] A. Patanè, R. J. A. Hill, L. Eaves, P. C. Main, M. Henini, M. L. Zambrano,
A. Levin, N. Mori, C. Hamaguchi, Yu. V. Dubrovskii, E. E. Vdovin, D. G.
Austing, S. Tarucha, und G. Hill. Phys. Rev. B 65, 165308 (2002).

[28] C. W. Beenakker, Phys. Rev. B 44, 1646 (1991).

[29] H. Grabert und Z. Phys. B. 85, 3219 (1991).

[30] M. J. Kelly, Low-Dimensional Semiconductors, Clarendon Press-Oxford (1995).

[31] S. Roddaro, V. Piazza, F. Beltram, W. Wegschneider, C. Liang und M. Pepper,
J. Appl. Phys. 92, 5304 (2002).

[32] M. Büttiker, Phys. Rev. B 38, 9375 (1988).

[33] B. J. van Wees, H. van Houten, C. W. Beenakker, J. G. Williamson, L. P. Kou-
wenhoven, D. van Marel und C. T. Foxon, Phys. Rev. Lett. 60 848 (1988).

116



Literaturverzeichnis

[34] D. A. Wharam, M. Pepper, H. Ahmed, J. E. Frost, D. G. Hasko, D. C. Peacock,
D. A. Ritchie und G. A. Jones, J. Phys. C 21 (1988).

[35] M. Fricke, A. Lorke, J. P. Kotthaus, G. Medeiros-Ribeiro und P. M. Petroff,
Europhys. Lett. 36, 197 (1996).

[36] K. von Klitzing, G. Dorda und M. Pepper, Phys. Rev. Lett. 45, 496 (1980).

[37] H. L. Störmer, A. C. Gossard, W. Wiegmann und K. Baldwin, Appl. Phys.
Lett. 39, 912 (1981)

[38] H. L. Störmer, Nobel Lecture, Rev. Mod. Phys. 71, 875 (1999).

[39] J. H. Davies, The Physics of Low-Dimensional Semiconductors, Cambridge Uni-
versity Press (1998).

[40] T. Ando, A. B. Fowler und F. Stern, Rev. Mod. Phys. 54, 437 (1982).

[41] F. Stern und W. E. Howard, Phys. Rev. 163, 816 (1967).

[42] H. Kroemer, Quantum Mechanics, Prentice-Hall (1994).

[43] K. Buth und U. Merkt, Ann. Phys. 11, 843 (2002).

[44] L. J. Challis, Contemporay Physics 33, 111 (1992).

[45] E. Abrahams, P. W. Anderson, P. A. Lee und T. V. Ramakrishnan, Phys. Rev.
Lett. 42, 673 (1979).

[46] P. W. Anderson, Phys. Rev. 109, 1492 (1958).

[47] B. Laikhtman und E. L. Altshuler, Ann. Phys. 232, 332 (1994).

[48] S. M. Reimann und M. Manninen, Rev. Mod. Phys. 74, 1283 (2002).

[60] D. G. Austing, S. Sasaki, S. Tarucha, S. M. Reimann, M. Kostinen und M.
Manninen, Phys. Rev. B 60, 11514 (1999).

[50] R. Williams, Modern GaAs Processing Methods, Artech House (1990).

[51] S. Luryi, Appl. Phys. Lett. 52, 501 (1988).

[52] O. S. Wibbelhoff, Dissertation, Universität Duisburg-Essen (2006).

[53] H. Drexler, D. Leonard, W. Hansen, J. P. Kotthaus, P. M. Petroff, Phys. Rev.
Lett. 73, 2252 (1994)

[54] R. J. Warburton, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. Medeiros-Ribeiro
und P. M. Petroff, Phys. Rev. Lett. 79, 5282 (1997).

[55] A. Lorke, Habilitationsschrift, LMU München (1999).

117



Literaturverzeichnis

[56] R. J. Warburton, B. T. Miller, C. S. Dürr, C. Bödefeld, K. Karrai, J. P. Kott-
haus, G. Medeiros-Ribeiro, P. M. Petroff und S. Huant, Phys. Rev. B 58, 16221
(1998).

[57] M. Russ, Dissertation, Universität Duisburg-Essen (2006).

[58] M. Russ, Diplomarbeit, Universität Duisburg-Essen (2002).

[59] O. S. Wibbelhoff, Diplomarbeit, Universität Duisburg-Essen (2002).

[60] D. G. Austing, S. Sasaki, S. Tarucha, S. M. Reimann, M. Koskinen und M.
Manninen, Phys. Rev. B 60, 11514 (1999).

[61] M. Ruß, A. Lorke, D. Reuter und P. Schafmeister, Physica E 22, 506 (2004).

[62] S. Sze, Physics of semiconductor devices, (1981).

[63] M. Russ, J. C. Meier, A. Lorke, D. Reuter und A. D. Wieck, Phys. Rev. B 73,
115334 (2006).

[64] E. Ribeiro, E. Müller, T. Heinzel, H. Auderset, K. Ensslin, G. Medeiros-
Ribeiro und P. M. Petroff, Phys. Rev. B 58, 1506 (1998).

[65] R. J. Haug, R. R. Gerhardts, K. v. Klitzing und K. Ploog, Phys. Rev. Lett. 59,
1349 (1987).

[66] S. E. Laux, D. J. Frank und F. Stern, Surf. Science, 196, 101 (1987).

[67] J. A. Nixon und J. H. Davies, Phys. Rev. B 41, 7929 (1990).

[68] J. H. Davies, The physics of low-dimensionale semiconductors, Cambridge Uni-
versity Press (1998).

[69] A. Szafer und A. D. Stone, Phys. Rev. Lett. 62, 300 (1989).

[70] J. Eroms, M. Zitzlsperger, D. Weiss, J. H. Smet, C. Albrecht, R. Fleischmann,
M. Behet, J. De Boeck und G. Borghs, Phys. B 256, 409 (1998).

118



Und zu guter Letzt...

...möchte ich mich bei einer ganzen Reihe von Menschen bedanken, die mich während
der Diplomarbeitsphase, aber auch während der gesamten Studienzeit, unterstützt ha-
ben.
Beginnen möchte ich bei Herrn Prof. Dr. A. Lorke. Es war eine große Freude, in sei-
ner Arbeitsgruppe zunächst als wiss. Hilfskraft tätig zu sein, und danach auch dort die
Diplomarbeit schreiben zu dürfen. Stets war er bemüht, Diplomanden mit kreativen
Hinweisen weiterzuhelfen.
Desweiteren geht ein großer Dank und Gruß nach Bochum an Prof. Dr. A. Wieck und
Dr. D. Reuter, die die hervorragenden Proben gestellt haben, die Basis dieser Arbeit
sind.
Ein mindestens ebenso großer Dank geht an Dr. Marco Russ, von dem ich die gesamten
Präparationstechniken erlernen durfte und der stets ein offenes Ohr für Diskussionen
und Fragen hatte.
Ein Dankeschön geht auch an Dr. Cedrik Meier, mit dem es eine Freude ist, über pri-
vate und fachliche Themen zu diskutieren.
Bei Peter Pfänder möchte ich mich für die Einführung in die Heliox-Technik bedanken.
Für die Hilfestellung bei den AFM-Aufnahmen bedanke ich mich bei Natascha Ke-
dyarova.
Ein großer Dank geht an die gesamte Arbeitsgruppe Lorke, die stets bemüht waren das
Leben aller Diplomanden zu erleichtern.
Insbesondere möchte ich mich bei den wiss. Hilfskräften, Doktoranden, (Ex-)Diplomanden
und PostDocs bedanken, die immer gute Laune und Diskussionsbereitschaft mitbrach-
ten. Diese Leute waren dafür verantwortlich, dass meine Diplomarbeitsphase eine sehr
schöne und erfahrungsreiche Zeit wurde.
In willkürlicher Anordnung sind dies im Einzelnen:
Andreas Gondorf, Matthias Offer, Hanna Onneken, Nadine van der Schoot, Dr. Ra-
mona Nünthel, David Krix, Stephan Lüttjohann, Christian Notthoff, Ingo Plümel,
Dr. Oliver Wibbelhoff und Therese Schnitzler.
Ein ganz großer Dank geht an meine Familie insbesondere an meine Eltern Margrit
und Friedrich Marquardt, die mich über die gesamte Studienzeit in jeder Situation un-
terstützt haben und ohne die diese Arbeit nicht existieren würde.
Ein großes Dankeschön geht an meine Verlobte Sandra Skorzisko, die ein wichtiger Ge-

119



genpol zu dem manchmal doch stressigen Uni-Alltag war. Ihre Geborgenheit und Liebe
war stets sowohl Motivation als auch Erholung in reinster Form. Danke.



Hiermit versichere ich, die vorliegende Arbeit selbstständig und unter ausschließlicher
Verwendung der angegebenen Literatur und Hilfsmittel erstellt zu haben.

Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen Prüfungsbe-
hörde vorgelegt und auch nicht veröffentlicht.

Duisburg, 29. September 2006
Unterschrift


	 Einleitung
	Grundlagen
	Niedrigdimensionale Elektronensysteme
	Nulldimensionale Elektronensysteme - Quantenpunkte
	Eindimensionale Elektronensysteme 
	Zweidimensionale Elektronensysteme 


	Probenpräparation und experimentelle Messmethoden
	Probenpräparation
	Probenmaterial
	Probenprozessierung

	Tieftemperatur - Messplatz
	4He-Badkryostat
	3He-Kryostat

	Experimentelle Messmethoden
	Kapazitäts-Spannungs-Spektroskopie 
	Transportmessungen 


	Auswertung und Diskussion
	Probencharakterisierung mittels CV-Spektroskopie 
	Transportmessungen an Hallbar-Geometrie
	(UG)-Transportmessungen an Hallbar-Geometrie 
	Magneto-Transportmessungen an Hallbar-Geometrie

	Transportmessungen an Steg-Struktur
	Transportmessungen an Split-Gate-Geometrie 
	(UG)-Transportmessungen an Split-Gate-Geometrie 
	(UG)-Transportmessungen an Split-Gate mit unabhängigen UG,1,2
	Magneto-Transportmessungen an Split-Gate Geometrie 


	Zusammenfassung und Ausblick
	Probenparameter
	Probenpräparation
	Und zu guter Letzt...

