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Zusammenfassung

Im Rahmen der vorliegenden Arbeit wurde die Wechselwirkung von selbstorganisiert

gewachsenen InAs-Quantenpunkten mit einem zweidimensionalen Lochgas (2DHG) un-

tersucht. Die Wafer der Proben entstanden bei der Dortmunder Firma Innolume GmbH

und wurden an der TU Berlin zu einer Transistorstruktur prozessiert. Die Beladung der

Quantenpunkte mit Löchern aus dem 2DHG lässt sich über das Anlegen einer Gate-

spannung steuern. Die beiden Systeme sind durch eine AlxGa1−xAs-Barriere getrennt.

Bei einer Temperatur von 4,2 K ist dabei der direkte Tunnelprozess der dominierende

Transfermechanismus zwischen 2DHG und Quantenpunkten.

An einer Probe mit Tunnelzeiten im Bereich von µs wurden Kapazitätsspannungs-

spektren (CV) untersucht. Zur Bestimmung der Energieniveaus aus den angelegten Ga-

tespannungen wurde eine Software verwendet, die Schrödinger- und Poisson-Gleichung

selbstkonsistent löst. Die Ergebnisse wurden um ein iteratives Verfahren erweitert, um

den Ein�uss der Quantenpunktbeladung mit Hilfe einer Ersatzschaltung zu simulieren.

Die Energieniveaus und ihre Dispersion im Magnetfeld wurden im Rahmen eines schwach

wechselwirkenden Einteilchenbildes diskutiert. Die hier untersuchten Energien zeigten

ein unerwartetes Verhalten gegenüber vergleichbaren Systemen, was auf eine andere

Morphologie der Quantenpunkte schlieÿen lässt.

An derselben Probe wurden zeitaufgelöste Transportmessungen durchgeführt. Zum ers-

ten Mal für Löchersysteme wurden aus diesen Messungen Spektren generiert, die eine

Au�ösung der einzelnen Ladezustände erlauben. Ein Vergleich dieser Spektren zu den

CV-Spektren zeigt die Äquivalenz beider Methoden.

Im Gegensatz zu CV-Messungen ermöglichen die Transportmessungen den Zugang zu

einer weiteren Probe mit Tunnelzeiten im Bereich einiger Sekunden. Dies erlaubt einen

Vergleich der Tunnelzeiten für die verschiedenen Barrieren der beiden Proben. Ein semi-

klassisches Modell für den Tunnelvorgang konnte die gemessenen Tunnelzeiten gut be-

schreiben. Das Modell wurde verwendet, um die Tunnelzeiten bei Variation der Barrie-

renbreite zu berechnen, was in das Wachstum neuer Probenstrukturen ein�ieÿen kann.
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Abstract

In the present work the interaction between self-organized InAs quantum dots (QD) and

a two-dimensional hole gas (2DHG) was investigated. The wafers were grown by Innolu-

me GmbH in Dortmund and processed into transistor structures by the TU Berlin. The

gate contact can be used to tune the number of hole charges stored in the dots which are

transferred from the 2DHG. The QDs and the 2DHG are separated by an AlxGa1−xAs-

barrier. At the temperature of 4.2 K direct tunneling is the dominant process of charge

transfer between the two systems.

A sample with tunneling times in the order of µs was investigated by capacitance-voltage-

spectroscopy (CV). In order to derive the energy levels from the applied gate voltage the

structure was simulated by a program which solves Schrödinger and Poisson equations

self-consistently. The results were extended by an iterative procedure to take the charging

of the QDs into account within the framework of an equivalent capacitance circuit.

The spacing of the energy levels and the shift in an applied magnetic �eld were discussed

within a weakly interacting particle model. The results showed an unexpected behavior

compared to similar systems, which can be attributed to a di�erence in morphology of

the investigated QDs.

Time resolved transport measurements were conducted on the same sample. Using these

new measurement technique, charging spectra were extracted for the �rst time from the

transients of the time-resolved change in the conductance of the 2DHG. A comparison of

these generated spectra to the CV-spectra demonstrates, that the transients are indeed

cause by tunneling events from di�erently charged QDs.

In contrast to the CV measurement, the time resolved method allows the investigation of

a second sample with tunneling times in the order of seconds. This yields the comparison

of tunneling times between samples with di�erent barriers. A semi-empirical model for

the tunneling process showed good agreement with experimental data. The model was

used to calculate tunneling times for di�erent barrier thickness, which can be considered

when growing new sample structures.
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1. Einleitung

In den späten 1920er Jahren wurde das Konzept der Bandstruktur von Felix Bloch vor-

gestellt. Es �ndet sich heute in jedem Lehrbuch über Festkörperphysik z.B. in [Ibach09]

oder [Kittel02]. Es erklärt die Existenz von Metallen, Isolatoren und Halbleitern und be-

schreibt ihre elektronischen Eigenschaften. In der Sprache der Wellenmechanik schlägt

es die Brücke zwischen den diskreten Energieniveaus isolierter Atome und der kontinu-

ierlichen Dispersion freier Elektronen. Die zugrunde liegende Annahme ist das unendlich

ausgedehnte Gitter der Atomrümpfe, deren Potential für die Elektronen invariant gegen-

über Translationen ist. In seiner Gültigkeit ist es auf das Volumenmaterial beschränkt,

also für den Fall eines, im Vergleich zu seiner Gitterkonstante groÿen Festkörpers.

Die moderne Nanotechnologie erlaubt die Präparation von Strukturen mit wenigen

10.000 Atomen, für die diese Annahme eines groÿen Volumens nicht mehr gegeben ist.

Ihre elektronischen Eigenschaften zeigen atomaren Charakter, weswegen sie als künst-

liche Atome bezeichnet werden. Sie schlagen wiederum die Brücke zwischen der Physik

einzelner Atome und der Physik des Festkörpers. Durch Variation der Materialsysteme

lassen sich Wechselwirkungsenergie und potentielle Energie der Elektronen verändern

und erlauben so einen neuen Blickwinkel auf beide Gebiete.

In dieser Arbeit stehen selbstorganisierte Quantenpunkte im Mittelpunkt. Sie bieten im

Unterschied zu lithographisch de�nierten Quantenpunkten den Vorteil gröÿerer Quan-

tisierungsenergien aufgrund ihrer kleineren Abmessungen. Dies erlaubt Untersuchun-

gen von Quantene�ekten bereits bei Temperaturen des �üssigen Heliums und darüber.

Letzteres ist der Grund für eine erho�te Anwendbarkeit in einem zukünftigen Speicher-

chip [Geller08] oder die Realisierung eines Quantencomputers bei höheren Temperaturen

[Hanson08], [Kroutvar04].

Gerade die Betrachtung der Valenzbandzustände in diesen Systemen ist von groÿem

Interesse. Zum einen wurden sehr hohe Einschlussenergien an Löchersystemen vorausge-

sagt [Marent07], die einen Einsatz als nicht �üchtige Speicher vielversprechend machen.
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Zum anderen wurden auÿergewöhnlich lange Spin Relaxationszeiten an Löchern in selbst-

organisiert gewachsenen Quantenpunkten gefunden [Heiss07], was diese Systeme für die

Quanten-Informationstechnologie interessant macht [Fischer08].

Die in dieser Arbeit untersuchten Proben stellen konzeptionell einen Flash-Speicher dar.

Als Speichermedium dient ein Ensemble aus & 106 Quantenpunkten, deren Speicherzu-

stand mit einer Gatespannung eingestellt und mit einem zweidimensionalen Leitkanal

ausgelesen werden kann. Das Anwendungsziel der Forschung wäre die Realisierung ei-

ner Speicherzelle mit einem einzelnen Quantenpunkt, dessen Ladungszustand auch bei

Raumtemperatur über Jahre erhalten bliebe. Von grundlagenphysikalischem Interesse

ist die Untersuchung von Vielteilchene�ekten an Systemen mit geringen Teilchenzahlen.

Die Anzahl der Verö�entlichungen über InAs Quantenpunkte ist reichhaltig, aber nur

wenige betrachten die Valenzbandzustände. In Verbindung mit einem dreidimensionalen

Rückkontakt wären die Arbeiten von [Reuter05a], [Kailuweit06] und [Bock03] zu erwäh-

nen; in Verbindung mit einem zweidimensionalen Lochgas ist die Arbeit von [Marent09]

zu nennen.

In dieser Arbeit wird die Wechselwirkung von selbstorganisiert gewachsenen InAs-Quan-

tenpunkten mit einem zweidimensionalen Lochgas untersucht. Dabei stehen die diskreten

Energieniveaus und die Tunneldynamik der Prozesse im Vordergrund. In Kapitel 2 dieser

Arbeit sollen die Grundlagen des zweidimensionalen Lochgases und der Quantenpunkte

sowie ihre Interaktion beschrieben werden. Kapitel 3 beschreibt die Proben und den ex-

perimentellen Aufbau und Kapitel 4 präsentiert und diskutiert die Ergebnisse. Kapitel 5

zeigt schlieÿlich Perspektiven für den weiteren Verlauf der Arbeiten auf.
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2. Grundlagen

2.1. Halbleiter-Nanostrukturen

Die moderne Mikroelektronik basiert auf der besonderen Eigenschaft von Halbleiterma-

terialien, dass sich ihre Leitfähigkeit und Eigenschaften wie Polarität oder Beweglichkeit

räumlich und zeitlich über Gröÿenordnungen beein�ussen lassen. Statische Ein�üsse, wie

Dotierung oder zeitlich veränderliche, wie Beleuchtung, elektrische Felder oder Tempe-

raturen wirken sich auf die Beweglichkeiten oder die Ladungsträgerkonzentrationen aus.

Die noch immer an Bedeutung gewinnende Nanotechnologie hat das Ziel, Eigenschaften

von Strukturen mit Dimensionen von wenigen bis einigen hundert Nanometern zu erfor-
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Abbildung 2.1.: Bandlücke über Gitterkonstante verschiedener elementarer und binärer

Halbleiter mit Verbindungslinien für ternäre Legierungen bei T = 300 K,

nach Daten aus [Levinshtein96] und [Chiang]. Die in dieser Arbeit un-

tersuchten Halbleiter sind blau markiert.
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schen. Dabei stehen je nach Forschungsgebiet unterschiedliche Systeme im Mittelpunkt

des Interesses.

Die Halbleiterindustrie ist bereits seit Jahren in den Bereich der Nanotechnologie vorge-

drungen. Hier sind dünne Schichten und Inseln verschiedener Materialien innerhalb eines

Halbleiter-Festkörpers von besonderem Interesse. Mit Hilfe epitaktischer Verfahren, wie

der Molekularstrahlepitaxie (MBE1) [Chang73] oder der metallorganischen Gasphase-

nepitaxie (MOCVD2), ist es möglich geworden, verschiedene Halbleitermaterialien auf-

einander zu wachsen. Präzisionen in der Gröÿenordnung von einzelnen Monolagen (ML)

sind dabei möglich. Eine besondere Bedeutung kommt hierbei den III-V-Halbleitern zu,

deren Gitterkonstanten dicht beieinander liegen, die aber durch Mischung der Kompo-

nenten in ternären und quaternären Legierungen eine nahezu beliebige Einstellung der

Energielücke erlauben (vgl. Abb. 2.1 oder Tab.2.1).

An den sehr scharf de�nierbaren Grenz�ächen solcher Heterostrukturen treten Diskon-

tinuitäten in den Leitungsbandkanten ∆EL und Valenzbandkanten ∆EV auf. Hierdurch

lassen sich Potentiallandschaften für die Ladungsträger scha�en (band gap engineering),

die sowohl für die Anwendung (HEMT3, HBT4, Halbleiterlaser, usw.) als auch von

grundlegendem Interesse sind. Man unterscheidet zwischen Typ I und Typ II-Systemen,

je nachdem ob die Vorzeichen der Diskontinuitäten verschieden oder gleich sind. So

stellt eine Typ I Schichtfolge wie AlAs/GaAs/AlAs in Wachstumsrichtung einen Po-

tentialtopf für Elektronen und Löcher dar, während ein Typ II-System wie die Folge

GaAs/GaSb/GaAs einen Potentialtopf für Löcher, aber einen Potentialwall für Elektro-

nen bildet5. Trotz der abrupten Übergänge und der Verletzung von Translationssym-

metrie lassen sich Nanostrukturen auch im Rahmen der E�ektiven-Masse-Näherung mit

einer Basis aus Bloch-Funktionen sehr gut beschreiben [Foreman95].

1MBE: molecular beam epitaxy
2MOCVD: metal organic chemical vapour deposition
3HEMT: high electron mobility transistor
4HBT: hetero-bipolartransistor
5Liegt das Valenzband in einem Gebiet höher, als das Leitungsband im anderen, wird von einem Typ

III Übergang gesprochen.
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AlxGa1−xAs (x>0,45) GaxIn1−xAs

Gitterkonstante a0/Å 5,653 + 0,008x 6,058− 0,405x

Bandlückenenergie EG/eV 1,9 + 0,13x+ 0,14x2 0,36 + 0,63x+ 0,43x2

relative Dielektrizitätszahl ε 12,9− 2,8x 15,1− 2,9x+ 0,7x2

e�ektive Elektronenmasse me/m0 0,85− 0,14x 0,023 + 0,037x

leichte Lochmasse mlh/m0 0,082 + 0,068x 0,026 + 0,056x

schwere Lochmasse mhh/m0 0,51 + 0,25x 0,41 + 0,1x

Tabelle 2.1.: Einige wichtige Festkörperparameter nach [Levinshtein96], der in dieser Ar-

beit untersuchten Halbleiter bei T = 300K.

2.1.1. Eindimensionaler Einschluss - 2DEG/2DHG

Eine Schicht GaAs in AlxGa1−xAs wirkt auf die Ladungsträger wie ein Potentialtopf

in Wachstumsrichtung z. Die Schrödinger-Gleichung in der E�ektiven-Masse-Näherung

lautet: [
−~2

2

(
1

m∗x

∂2

∂x2
+

1

m∗y

∂2

∂y2
+

1

m∗z

∂2

∂z2

)
+ V (z)

]
ψ(rrr) = Eψ(rrr). (2.1)

Ist die Dicke d dieser Schicht klein genug (. 10 nm), lässt sich das Energiespektrum der

Kristallimpulse kz in z Richtung nicht mehr als kontinuierlich annähern und es treten

Quantisierungse�ekte in Erscheinung. Zur Lösung der Schrödinger-Gleichung lässt sich

ein Separationsansatz für die drei Raumrichtungen wählen:

ψ(rrr) = ϕn(z)eikxx+ikyy. (2.2)

Parallel zur GaAs-Schicht bleibt der Bloch-Wellen-Charakter erhalten, kx und ky sind

weiterhin gute Quantenzahlen. Für die z-Richtung ergeben sich diskrete Niveaus, die

über die Quantenzahl n ≥ 1 indiziert sind. Mit der Vereinfachung eines unendlich hohen

Rechteck-Potentials ergeben sich für ϕn(z) Sinus- und Kosinus-Funktionen, die an der

Grenzschicht verschwinden (Abb. 2.2a). Für die Energieeigenwerte erhält man:

En(kx, ky) =
~2k2

x

2m∗x
+

~2k2
y

2m∗y
+

~2π2

2m∗z

n2

d2
. (2.3)

Für ein gegebenes n ergibt sich als Dispersionsrelation eine Parabel in kx und ky, die

als Subband bezeichnet wird. Die Anzahl N der Zustände in einem Energieintervall
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[E,E + dE] entspricht der Anzahl von äquidistanten Punkten in der kx-ky-Ebene, die

in dem Kreisring [k, k + dk] mit k =
√
k2
x + k2

y Platz �nden. Mit der Ableitung der

Dispersionsrelation folgt dE = ~2k dk/m∗ (mit isotroper Masse m∗). Wird die spin-

bedingte Doppelbesetzung der Zustände berücksichtigt, folgt für die Zustandsdichte eines

Subbandes6:

D(E) =
dN
dE

=
m∗

π~2
= konst. (2.4)

Ein realistischeres Modell beschreibt den Einschluss mit endlich hohen Wänden. In die-

sem Fall gibt es gebundene Lösungen nur für Energien kleiner als die Banddiskontinuität.

Auÿerdem verschwindet die Wellenfunktion nicht mehr vollständig an der Grenz�äche,

wodurch sich die Ladungsträger mit einer geringen Wahrscheinlichkeit auch in der Bar-

riere aufhalten können (Abb. 2.2b). Dies bewirkt eine Erhöhung der e�ektiven Masse

m∗ für die Bewegung längs der GaAs Schicht, da die Masse in der AlxGa1−xAs Schicht

höher ist und die e�ektive Masse mit der Verweildauer in Topf und Barriere gewichtet

werden muss.

6Im Leitungsband kann es mehr als ein Minimum der Energie im k-Raum geben (Valley-Entartung),

dann muss mit dieser Anzahl multipliziert werden.

a) d)c)b)

m* m1
*m2

* m2
*

E

n = 1

n = 2

Abbildung 2.2.: Schematische Leitungsbandkante und einhüllende Wellenfunktion für

einen eindimensionalen Einschluss. a) Potentialtopf mit unendlich hohen

Wänden bildet diskrete Energieniveaus. b) Bei endlich hohen Wänden

ragt die Wellenfunktion in das angrenzende Gebiet. c) Ein elektrisches

Feld verschiebt den Schwerpunkt der Wellenfunktion. d) Der Bandkan-

tenverlauf und die Wellenfunktion beein�ussen sich gegenseitig.
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Die Schrödinger-Gleichung (2.1) lässt sich auf Elektronen wie Löcher anwenden. Die

Entartung von Zuständen mit leichter und schwerer Lochmasse bei k = 0 wird dabei

durch den Einschluss aufgehoben, was zu einer energetischen Begünstigung der schweren

Löcher führt.

In einer solchen Heterostruktur lassen sich nun durch geeignete Dotierung hohe Ladungs-

trägerdichten n bzw. p in einer schmalen Schicht erzeugen, so dass man von zweidimen-

sionalen Elektronen- oder Lochgasen (2DEG, 2DHG7) spricht. Die Schichten lassen sich

mit hoher Reinheit wachsen und die Dotierung kann räumlich durch eine undotierte Puf-

ferschicht (Spacer) von den Potentialtöpfen getrennt werden. Hierdurch wird die Stör-

stellenstreuung stark unterdrückt und es können insbesondere bei tiefen Temperaturen

hohe Beweglichkeiten erreicht werden [Dingle78].

Für den undotierten Halbleiter im thermodynamischen Gleichgewicht folgt die Ladungs-

trägerdichte aus dem Produkt der Zustandsdichte D und der Fermi-Verteilung f für das

Leitungs- bzw. Valenzband:

n(z) =

∞∫
EL(z)

DL(E, z)f(E, T ) dE bzw. p(z) =

EV(z)∫
−∞

DV(E, z) [1− f(E, T )] dE. (2.5)

Die Lage der Bandkanten kann für verschiedene Orte im Halbleiter unterschiedlich sein.

Ist die Heterostruktur beispielsweise zwischen einem Schottky-Gatekontakt und der io-

nisierten Dotierung einem inneren Feld ausgesetzt kommt es zu einem zusätzlichen orts-

abhängigen Potential U(z) (Abb. 2.2c). Die Ladungsträgerdichte selbst geht in dieses

Potential über die Poisson-Gleichung ein (Abb. 2.2d):

d
dz
ε(z)ε0

d
dz
U(z) = −ρ(z) = −q |ψ(z)|2 . (2.6)

Daher muss die Schrödinger-Gleichung selbstkonsistent gelöst werden. In dieser Arbeit

wird ein Fortran-Programm (1D Poisson) von Prof. Gregory Snider8 verwendet, das La-

dungsträgerdichten und Bandkantenverlauf entlang der Wachstumsrichtung berechnen

kann. Abb. 2.3 zeigt den gerechneten Bandkantenverlauf und die Ladungsträgerdichten

72DEG: 2-dimensional electron gas, 2DHG: 2-dimensional hole gas
8Professor Gregory Snider, Department of Electrical Engineering, University of Notre Dame,

www.nd.edu/~gsnider
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Abbildung 2.3.: Mit dem 1D Poisson-Programm berechneter Bandkantenverlauf und La-

dungsträgerdichte am Beispiel einer GaAs-Al0,9Ga0,1As-Heterostruktur

mit a) Donator- und b) Akzeptor-Dotierung.

einer Heterostruktur von 8 nm GaAs in Al0,9Ga0,1As bei T = 4,2K für unterschiedli-

che Dotierungen in einem Abstand von 7 nm zum Quantentopf. Das innere Feld zwi-

schen Schottky-Kontakt und Dotierung verkippt die Bandkanten, wodurch der Schwer-

punkt der Ladungsträgerdichte verschoben wird. Das Anlegen einer Gatespannung an

den Schottky-Kontakt ändert das innere Feld, was Ein�uss auf die Ladungsträgerkonzen-

tration und damit auf die Leitfähigkeit σ der Schicht hat. Wird das chemische Potential

EF unter die Energie E1 des ersten Subbandes abgesenkt ist auch eine vollständige Ver-

armung möglich.

2.1.2. Dreidimensionaler Einschluss - Quantenpunkte

Wird die Bewegung von Ladungsträgern nicht nur in einer, sondern in allen drei Raum-

richtungen eingeschränkt, so spricht man von Quantenpunkten. In diesem Fall sind

nur noch diskrete Energieniveaus En besetzbar. Die Zustandsdichte hat dann die Form

D(E) =
∑

n δ(E − En). Eine mögliche Realisierung ist das Ätzen schmaler Strukturen

aus den oben beschriebenen Heteroschichten mit lithographischen Methoden [Reed86]

oder ihre lokale Verarmung durch entsprechend de�nierte Gateelektroden [Wu09]. Auch

während des Wachstums lassen sich Quantenpunkte erzeugen, indem noch in der Wachs-
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tumskammer die Struktur längs der Wachstumsrichtung gespalten und das Wachstum

senkrecht zur ersten Wachstumsrichtung fortgesetzt wird (cleaved edge overgrowth)

[Wegscheider97]. So entsteht zunächst ein zweidimensionaler Einschluss, ein weiterer

Spaltvorgang ermöglicht schlieÿlich die Bildung eines dreidimensional einschlieÿenden

Potentials. Die genannten Methoden erlauben zwar eine gute Kontrolle der Positionie-

rung und Kontaktierung der einzelnen Quantenpunkte, sind aber für groÿe Wafer mit

erheblichem technischen und zeitlichen Aufwand verbunden. Eine wesentlich einfachere

Methode direkt in der Wachstumskammer groÿ�ächig Quantenpunkte zu erzeugen, stellt

das selbstorganisierte Wachstum dar.

Weichen die Gitterkonstanten beim Wachsen von Heterostrukuren stärker voneinander

ab, als dies bei GaAs und AlAs der Fall ist, kommt es beim Aufwachsen zu Verspan-

nungen. Die 7%-ige Abweichung in den Gitterkonstanten von InAs und GaAs führt

beim Aufwachsen von In unter As2-Atmosphäre auf die Ga (001) Ober�äche dazu, dass

sich zunächst eine Benetzungsschicht (wetting layer) aus InAs bildet. Ab einer kriti-

schen Bedeckung von 1,5 ML InAs [Leonard94] kommt es jedoch zu einem Relaxations-

prozess, der zu der Bildung von dreidimensionalen Inseln führt. Dieses Verhalten wird

als Stranski-Krastanow-Wachstum bezeichnet, welches 1938 für das Materialsystem Ge

Abbildung 2.4.: a) Atomar aufgelöste in situ STM-Aufnahme einer InAs-Insel auf ei-

ner GaAs (001) Ober�äche nach [Marquez01]. b) Querschnitts-TEM-

Aufnahme einer InAs-Insel in GaAs-Matrix mit c) Graustufenpro�l für

den In-Anteil x in dem InxGa1−xAs-System nach [Walther01].
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auf Si (001) beschrieben wurde [Krastanow38]. Im Tröpfchenmodell9 nach [Blossey02]

lässt sich dieses Verhalten durch hohe Adhäsionskräfte am Materialübergang GaAs/InAs

verstehen, während bei zunehmender Bedeckung die freie Grenz�ächenenergie durch

Tropfenbildung minimiert werden kann. Die Herstellung ist sowohl mittels MBE [Mo90],

als auch MOCVD [Oshinowo94] möglich.

Form und Dichte der Inseln sind dabei stark von den Wachstumsparametern abhän-

gig. Neben der abgeschiedenen Indium-Menge spielen auch Wachstumsrate, Temperatur,

As2-Druck [Ledentsov96] oder die anschlieÿende Bedeckung [Lin94] eine wesentliche Rol-

le. Es wurden unterschiedliche Facettierungen beobachtet [Moison94, Nabetani94, Lee98]

mit einer durchschnittlichen Basisbreite von 20 nm und einer Höhe von 7 nm (vgl. Abb.

2.4a). Durch Di�usion kommt es zudem zu einem Austausch von In und Ga, was zu

einem Gradienten in der In-Dichte und dem einschlieÿenden Potential für die Ladungs-

träger führt (Abb. 2.4b,c). Auf diese Weise lassen sich mit geringem Aufwand bis zu

1011 Quantenpunkte pro cm2 erzeugen. Die Ensemblehomogenität ist dabei sehr hoch,

mit einer Gröÿenstreuung von etwa 10 % [Leonard94].

Für die elektronische Beschreibung hat sich die 8-Band k·p-Störungstheorie bewährt

[Fu97, Jiang97, Pryor98, Stier99], mit einem Pseudopotential für den Einschluss der

Quantenpunkte. Die Wellenfunktion wird um den Gammapunkt entwickelt und in einer

Basis aus 8 Bloch-Wellenfunktionen dargestellt. Die genaue atomistische Komposition

in einer Matrix eingebetteter Quantenpunkte ist jedoch experimenteller Bestimmung

schwer zugänglich, weswegen auch ein einfacheres Modell des harmonischen Oszillators

häu�ge Anwendung �ndet [Sikorski89, Alsmeier90, Wojs96, Warburton98]. Es ist als eine

Näherungslösung für eine in quadratischer Ordnung abbrechende Taylor-Entwicklung des

Potentials anzusehen. Die Schrödinger-Gleichung lautet dann:

[
ppp2

2m∗
+

1

2
m∗ω2rrr2

]
ψ(rrr) = E ψ(rrr). (2.7)

Für linsenförmige Quantenpunkte (vgl. auch Abb. 2.4) lässt sich die Rotationssymmetrie

durch Übergang zu Zylinderkoordinaten (r, ϕ, z) ausnutzen. Für �ache Linsen lassen sich

die energetischen Abstände für die z-Richtung als groÿ und daher nicht angeregt ansehen.

Die z-Abhängigkeit wird daher im folgenden nicht weiter betrachtet. Der Grundzustand

9Dieses Modell erklärt auch die Bildung von InAs Quantenringen
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des zweidimensionalen harmonischen Oszillators (Gleichung (2.7)) lautet:

ψs(r, ϕ) =
1√
πl0

e−r
2/2l20 . (2.8)

Für die charakteristische Oszillatorlänge l0 gilt:

l0 =

√
~

m∗ω
. (2.9)

Angeregte Zustände folgen aus den Ortsableitungen von ψs(r, ϕ) und lassen sich mit

Hilfe der Hermite-Polynome darstellen. Die Energieeigenwerte Enl sind mit der radialen

Quantenzahl n = 0, 1, 2, . . . und der Drehimpulsquantenzahl l = 0,±1,±2, . . . zweifach

indiziert:

Enl = ~ω(2n+ |l|+ 1). (2.10)

Ein in z-Richtung anliegendes Magnetfeld BBB = rotAAA lässt sich durch Ersetzung von ppp

durch den kinematischen Impuls berücksichtigen ppp→ ppp+qAAA. Mit der Zyklotronfrequenz

ωc = qB
m∗

und der e�ektiven Frequenz

ωe� =

√
ω2 +

(ωc
2

)2

, (2.11)

ergeben sich für die Energieeigenwerte die magnetfeldabhängigen Fock-Darwin-Energien

[Fock28]:

Enl(ωc) = ~ωe�(2n+ |l|+ 1) +
1

2
~ωcl. (2.12)

Wegen der diskreten Energiespektren werden Quantenpunkte auch als künstliche Atome

[Kastner93] bezeichnet. Für die Energieniveaus verwendet man daher auch die Bezeich-

nung s, p, d, ... Die Nomenklatur10 der Zustände (n, l) lautet: s → (0, 0), p+ → (0, 1),

p− → (0,−1), d+ → (0, 2), d− → (0,−2), d0 → (1, 0). Jeder Zustand ist dabei zudem

zweifach spinentartet, da die Spin-Zeeman-Aufspaltung wegen des kleinen e�ektiven g-

Faktors vernachlässigt werden kann.

10Im Gegensatz zur Atomphysik können hier in einer �Schale� unterschiedliche Drehimpulse l auftreten.
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2.2. Vielteilchene�ekte

Gleichung (2.12) beschreibt das Anregungsspektrum eines einzelnen Ladungsträgers im

Quantenpunkt. Be�nden sich N Ladungsträger mit den Koordinaten rrr1, rrr2, . . . , rrrN im

Potentialtopf, muss ihre Coulomb-Wechselwirkung untereinander berücksichtigt werden.

Die Vielteilchen-Schrödinger-Gleichung lautet:

[
N∑
i=1

ppp2
i

2m∗
+

N∑
i=1

1

2
m∗ω2

0rrr
2
i +

q2

8πεε0

N∑
i,j 6=i

1

|rrri − rrrj|

]
ψ(rrr1, . . . rrrN) = E ψ(rrr1, . . . rrrN).

(2.13)

Ist die Coulomb-Energie klein gegenüber der Quantisierungsenergie11, lässt sich der

Coulomb-Term als Störung des harmonischen Oszillators ansehen und in erster Ord-

nung Störungstheorie behandeln [Warburton98]. Die ungestörten Wellenfunktionen ha-

ben also die Form von Gleichung (2.8). Die Vielteilchen-Wellenfunktion wird dann in

einem Molekularfeld-Ansatz als antisymmetrisches Produkt (Slater-Determinanten) aus

Einteilchen-Funktionen dargestellt. Korrelationse�ekte werden vernachlässigt. So erhält

man für die direkte Coulomb-Energie (Hartree-Energie) EC
ij und die indirekte Austausch-

energie EX
ij zwischen den Einteilchenzuständen ψi und ψj, die Ladungsträgern an den

Orten rrr1 und rrr2 entsprechen:

EC
ij =

q2

4πεε0

∫ ∫
|ψi(rrr1)|2 |ψj(rrr2)|2

|rrr1 − rrr2|
d3r1d3r2 bzw. (2.14)

EX
ij =

q2

4πεε0

∫ ∫
ψ∗i (rrr1)ψ∗j (rrr2)ψi(rrr2)ψj(rrr1)

|rrr1 − rrr2|
d3r1d3r2. (2.15)

Der groÿe Vorteil dieses Modells nach Warburton et al. ist die analytische Auswertbarkeit

der Wechselwirkungsintegrale [Pfannkuche93]. Sie lassen sich als rationale Vielfache der

Coulomb-Energie EC
ss zwischen zwei s-artigen Wellenfunktionen (n = 0, l = 0) darstellen,

mit:

EC
ss =

q2

4πε0ε

√
π

2l20
. (2.16)

Eine Tabelle für die Wechselwirkungen zwischen Zuständen der s, p und d-Schalen �ndet

sich in [Warburton98]. Die Gesamtenergie EN einer Kon�guration (n1, l1 . . . nN , lN) des

11Für Elektronen in typischen InAs Quantenpunkten ist das Verhältnis ≈ 2/5.
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Vielteilchensystems ergibt sich in dieser Näherung aus dem Aufaddieren der einzelnen

Paar-Wechselwirkungen und den Quantisierungsenergien der Einteilchenzustände:

EN =
N∑
i

Ei
n,l +

1

2

N∑
i,j

(
EC
ij + EX

ij

)
. (2.17)

Denkt man sich den Quantenpunkt sukzessive mit Ladungsträgern gefüllt, so ergibt sich

für den Fall EC
ss � ~ω eine Besetzung des Grundzustands in der Reihenfolge:

s→ s→ p+ → p− → p+ → p− → . . .

In diesem Fall wird die Austauschenergie maximiert, was zu einer Verringerung der Ge-

samtenergie führt. Dies entspricht also einer Hundschen-Regel für künstliche Atome. Für

Elektronen konnte diese Regel experimentell bestätigt werden [Warburton98]. Für Lö-

cher wurde jedoch ein anderes Verhalten beobachtet [Reuter05a], was auf die frühzeitige

Besetzung der d-Schale hindeutet12:

s→ s→ p+ → p− → d+ → d− → . . .

Für den Fall EC
ss & ~ω lässt sich dies wiederum mit einem Energiegewinn durch Aus-

tauschwechselwirkung erklären. In diesem Fall ist jedoch die Annahme einer kleinen

Störung des harmonischen Oszillators durch die Coulomb-Wechselwirkung nicht mehr

gegeben und es müsste statt einer einzelnen, eine Linearkombination mehrerer Slater-

Determinanten berücksichtigt werden.

2.3. Beladungszustände der Quantenpunkte

Im Experiment be�nden sich die Quantenpunkte in einer kapazitiven Heterostruktur

(vgl Abb. 2.5) zwischen einem Rückkontakt als Ladungsträgerreservoir und einem Gate-

kontakt. Durch die hohe Ladungsträgerdichte im Reservoir ist die Fermi-Energie dort

�xiert (pinning). Durch Anlegen einer Spannung UG an die Gateelektrode lässt sich die

potentielle Energie Φ zwischen Quantenpunkten und Rückkontakt verschieben (siehe

auch Kapitel 3.2, Abb. 3.4).

12In Analogie zu Atomen, wo es durch die Abstoÿung der Hüllenelektronen zu einem energetischen

Überlappen der Schalen kommt (vgl. Übergangsmetalle).
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Für geringe Quantenpunktdichten lässt sich der E�ekt ihrer Beladung auf die Bandstruk-

tur vernachlässigen. Der Zusammenhang zwischen einer Energieänderung dΦ und einer

Spannungsänderung dUG lässt sich als linear annähern. Der Proportionalitätsfaktor wird

als Hebelarm λ bezeichnet. Die Gesamtstruktur entspricht einem Plattenkondensator,

der von der Quantenpunktschicht im Verhältnis d1 zu d2 geteilt wird. Der Hebelarm

ergibt sich dann aus dem geometrischen Verhältnis der Kapazitäten zu [Drexler94]:

λ =
d1
ε1ε0

+ d2
ε2ε0

d2
ε2ε0

= 1 +
ε2d1

ε1d2

. (2.18)

Eine Spannungsdi�erenz übersetzt sich so in eine Energieänderung durch:

dΦ =
e

λ
dUG. (2.19)

Beim Beladen der Quantenpunkte muss diese zusätzliche elektrostatische Energie be-

rücksichtigt werden. Für den N -fach beladenen Zustand folgt so die Gesamtenergie:

E(N,Φ) = EN −NΦ(UG). (2.20)

Für eine gegebene Energiedi�erenz Φ ist so jeweils eine bestimmte Anzahl Ladungs-

träger N im Quantenpunkt energetisch favorisiert. Zu einem Ladungstransfer zwischen

Rückkontakt und Quantenpunkt kann es nur dann kommen, wenn durch eine Span-

nungsänderung die Gesamtenergien des N und des N + 1-Teilchensystems gleich sind.

d2

d1

{
{ Gateelektrode

Quantenpunktschicht

Rückkontakt

UG

U2 = Φ/e

U1ε1

ε2

Abbildung 2.5.: Beim Anlegen einer Gatespannung verschiebt sich das Potential U2 zwi-

schen Quantenpunkten und Rückkontakt. Unter Vernachlässigung eines

Ladungstransfers ist der Zusammenhang linear und nur durch die Ab-

stände d1,2 und die relativen Dielektrizitätszahlen ε1,2 bestimmt.
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Ansonsten ist keine Umladung möglich und man spricht von einer Coulomb-Blockade.

Es muss also gelten:

E(N,Φ) = E(N + 1,Φ) (2.21)

Hieraus lassen sich die energetischen Abstände ∆ΦN→N+1 der Umladeprozesse berech-

nen:

∆ΦN→N+1 = Φ(EN+2 = EN+1)− Φ(EN+1 = EN) (2.22)

Die Beladung führt zu einer Änderung der Kapazität, die im Experiment beobachtet

werden kann (vgl. Abb.2.6). Durch eine Kapazitätsmessung bei verschiedenen Gatespan-

nungen kann also das Gleichgewicht zweier Vielteilchenzustände spektroskopiert werden.

Für unterschiedliche Besetzungsreihenfolgen ergeben sich verschiedene Abstände der er-

warteten Ladeenergien (vgl. Tabelle 2.2), die aus den Gleichungen (2.20) und (2.17)

folgen.

Im Allgemeinen wird bei einer Messung über ein Ensemble & 106 Quantenpunkten

gemittelt, deren Durchmesser um einen Mittelwert normalverteilt ist. Dies führt zu ei-

230

K
ap

az
itä

t [
pF

]

Gatespannung UG [V] Gatespannung -UG [V]

220

222

224

226

228

-1,0 1,00,50-0,5

118

120

122

124

-1,5 0,50-0,5-1,0 1,0

a) b)

Beladung der
Quantenpunkte

Beladung der
Benetzungsschicht

Beladung der
Quantenpunkte

Beladung der
Benetzungsschicht

Abbildung 2.6.: Die diskreten Ladeenergien der Vielteilchen-Grundzustände zeigen sich

in den Kapazitätsspektren für ein Elektronen-System a) und ein Loch-

system b) nach [Wibbelho�06].
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Besetzungsreihenfolge ∆Φ1→2 ∆Φ2→3 ∆Φ3→4 ∆Φ4→5 ∆Φ5→6

s→ s→ p+ → p− → p+ → p− EC
ss ~ω + 1

4E
C
ss

1
2E

C
ss

7
8E

C
ss

1
2E

C
ss

s→ s→ p+ → p− → d+ → d− EC
ss ~ω + 1

4E
C
ss

1
2E

C
ss ~ω + 3

16E
C
ss

15
32E

C
ss

s→ s→ p+ → p+ → p− → p− EC
ss ~ω + 1

4E
C
ss

11
16E

C
ss

1
2E

C
ss

11
16E

C
ss

Tabelle 2.2.: Additionsenergien für drei mögliche Beladungsreihenfolgen im Warburton-

Modell nach Gl. (2.22).

ner Verbreiterung der Zustandsdichte in der Quantenpunktschicht, wobei die einzelnen

Ladezustände auch durch eine Gauÿ-Funktion beschrieben werden können. Es kommt je-

doch zu einer leichten Asymmetrie, da der Zusammenhang zwischen Breite und Energie

reziprok ist.

2.4. Tunnelkopplung

Ein Quantenpunkt ist als Speicher für Ladungen anzusehen, die aus einem gekoppelten

Reservoir (hier: der Rückkontakt) transferiert werden können. Je nach System können

dies Elektronen oder Löcher sein. Bei tiefen Temperaturen steht dabei nicht genügend

Energie für eine thermische Anregung zur Verfügung. Für den Be- und Entladevorgang

Quantenpunkt 2DHG
Rückkontakt

V(
z)

-E

Wachstumsrichtung z

m*
GaAs m*

AlGaAs m*
GaAs EF

EV

Abbildung 2.7.: Die Wellenfunktion in den Quantenpunkten und in dem Rückkontakt

sind über das Potential V (z) − E tunnelgekoppelt. Mit den Material-

grenzen ändern sich Barrierenhöhe und e�ektive Massen (Für Löcher ist

die Energieachse invertiert).
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ist nur direktes Tunneln möglich. Liegt ein Potential zwischen Reservoir und Quanten-

punkt gerade so an, dass Bedingung (2.21) erfüllt ist, führt eine kleine Energieänderung

dΦ am Ort der Quantenpunkte zu einer Umladung dn.

Aufgrund der geringen Tunnelwahrscheinlichkeit ist dieser Prozess nicht instantan. Für

ein Ensemble aus n Quantenpunkten mit der Zustandsdichte D lässt sich die Beladung

durch ein Zerfallsgesetz [Luyken99b] mit einer charakteristischen Zeitkonstanten τ be-

schreiben:

dn

dt
= −D∆Φ

τ
. (2.23)

Einem Potentialsprung ∆Φ folgt damit ein exponentiell abklingender Tunnelstrom. Die

nach der Zeit t transferierte Ladung ist proportional zur Zustandsdichte D des Quanten-

punktensembles. Für ein angelegtes Wechselfeld der Form E = E0e
iωt ist die transferierte

Ladung von Frequenz und Tunnelrate abhängig. Je höher die Frequenz ω desto weniger

Ladungen können während eines Zyklus übertragen werden. Die Zeitkonstante τ in Glei-

chung (2.23) stellt die Dämpfungskonstante in einem Lorentz-Oszillator dar [Luyken99a].

Die Kapazität C = dQ/dU = qdn/dU folgt damit einer Lorentz-Kurve und es gilt:

C(ω)

C(0)
=

1

1 + ω2τ 2
. (2.24)

Die Tunnelzeit τ aus einem gebundenen Zustand in ein Kontinuum (Abb. 2.7) lässt sich

in einem semiklassischen Modell abschätzen. Mit der Frequenz f , mit der das gebundene

Teilchen gegen den Potentialwall stöÿt und der Wahrscheinlichkeit T , diesen durch einen

Tunnelprozess zu durchdringen, folgt für die Tunnelzeit:

τ =
1

fT
. (2.25)

Für schwach veränderliche Potentiale lässt sich die Wahrscheinlichkeit T mit Hilfe der

WKB-Methode13 abschätzen. Hierbei wird die Änderung der Phase φ der Wellenfunktion

entlang einer Strecke z betrachtet.

13WKB: Wentzel, Kramers und Brillouin
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Durch den Ansatz ψ ∝ eiφ(z) und Integration der Schrödinger-Gleichung folgt:

φ(z) = ±
z∫

0

k(z′)dz′. (2.26)

Für die Wellenfunktion erhält man:

ψ(z) ∝ 1√
k(z)

e
±i

z∫
0

k(z′)dz′

. (2.27)

Beim Tunnelprozess ist die kinetische Energie des Teilchens kleiner als die Barriere und

die Wellenfunktion klingt innerhalb der Barriere exponentiell ab. Der Wellenvektor ver-

läuft entlang imaginärer Achsen der Bandstruktur und folgt aus der lokalen kinetischen

Energie:

k(z) = iκ(z) = i

√
2m∗(V (z)− E)

~2
. (2.28)

Die Tunnelwahrscheinlichkeit T ergibt sich dann aus dem Quotienten der Aufenthalts-

wahrscheinlichkeit vor und hinter der Barriere zu:

T =
|ψ(d)|2

|ψ(0)|2
≈ e

−2
d∫
0

κ(z)dz
. (2.29)

Die Tunnelbarriere koppelt die Quantenpunktschicht mit dem zweidimensionalen Sys-

tem. Die Stärke der Kopplung lässt sich über Höhe und Breite der Barriere einstellen.

Über eine Gate-Elektrode angelegte Spannung UG stellt das chemische Potential zwi-

schen Quantenpunkten und 2D System und damit den Beladungszustand der Quanten-

punkte ein. Eine Änderung der Spannung UG führt jedoch auch zu einer Änderung der

Ladungsträgerdichte im zweidimensionalen Rückkontakt n2D(UG) und damit zu einer

Änderung der Leitfähigkeit σ = qµn2D. Eine geladene Quantenpunktschicht führt zu

einer Abschirmung der Gatespannung und zu einer Erhöhung der Störstellenstreuung

und verringert damit die Leitfähigkeit bzw. den gemessenen Strom I [Marquardt08],

[Marquardt09].

Ist die Tunnelzeit τ groÿ gegenüber dem RC-Glied des Messaufbaus und der Probe, so

ist die zeitliche Änderung des Stromes ∆I(t, UG)/I(t = 0, UG) für groÿe Zeiten propor-

tional zur transferierten Ladung zwischen Quantenpunkten und dem zweidimensionalen
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System. Betrachtet man die Stromänderung ∆I(t → ∞, UG) für kleine Änderungen in

der Gatespannung, lässt sich so die lokale Zustandsdichte des Quantenpunktensembles

spektroskopieren. Eine solche Transportspektroskopie ist dann vergleichbar mit einer

Kapazitätsspektroskopie wie sie in Abb. 2.6 a) und b) gezeigt ist. Abbildung 2.8 zeigt

den direkten Vergleich der zwei Messmethoden an einem Elektronensystem mit zweidi-

mensionalem Rückkontakt.

Diese Methode bietet gegenüber der Kapazitätsspektroskopie den wesentlichen Vor-

teil, dass sie prinzipiell auch bei geringen Ensemblegröÿen, bis hin zu Einzelpunkt-

spektroskopie geeignet ist. Der Strom I durch den Leitkanal ist proportional zur La-

dungsträgerdichte n2D im zweidimensionalen Rückkontakt und die Änderung des Stro-

mes ∆I ist proportional zur Quantenpunktdichte nQD.

Gatespannung UG  [V]
-0,8 0,40,20-0,2-0,4-0,6

s1

p4p3p2p1
s2

St
ro

m
di

ffe
re

nz
 ∆

I
K

ap
az

itä
t C a)

b)

Abbildung 2.8.: Vergleich einer a) Kapazitäts- und einer b) Leitfähigkeitsmessung für

das gleiche Elektronensystem nach [Marquardt09].
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I

∆I/I ~ nQD/n2D = konst.

I

<=>

Abbildung 2.9.: Das Verhältnis ∆I/I ist proportional zum Verhältnis der Ladungsträ-

gerdichten ∆nQD/∆n2DHG und damit von der Gate�äche unabhängig.

Transportmessungen ermöglichen daher prinzipiell die Spektroskopie ei-

nes einzelnen Quantenpunktes.

Für das Verhältnis des Messsignals folgt daher:

∆I(t→∞)

I
∝ nQD

n2D

. (2.30)

Dadurch ist das Messsignal unabhängig von der Gate�äche und damit von der Ensemble-

gröÿe (vgl. Abb. 2.9).

Auÿerdem ist die Signalqualität durch das Verhältnis der Ladungsträgerdichten be-

stimmt. Wählt man einen Rückkontakt mit entsprechend geringer Ladungsträgerdichte

lässt sich so eine wesentlich verbesserte Au�ösung erreichen, als bei einer Kapazitäts-

messung, wo der Hebelarm und unvermeidliche parasitäre Kapazitäten eine Reduktion

der Au�ösung bedingen (vgl. Abb.2.8).

Durch eine geeignete Wahl von Spannungspulsfolgen ist darüber hinaus auch die Messung

von angeregten (Nichtgleichgewicht-) Zuständen, für eine zuvor präparierte Beladungs-

zahl, möglich [Marquardt10].
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3. Experiment

3.1. Probenstruktur

Die Wafer der in dieser Arbeit untersuchten Proben wurden von der Firma Innolume

GmbH1 molekularstrahlepitaktisch gewachsen. Sie unterscheiden sich in der Stärke ihrer

Kopplung zwischen Quantenpunkten und dem Rückkontakt. Die Schichtfolge der Probe

1www.innolume.com
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Abbildung 3.1.: Schichtfolge im Bereich der Quantenpunkte und des Rückkontaktes des

Wafers der Probe DO1880 mit Leitungs- und Valenzbandkanten EL

bzw. EV sowie der Löcherkonzentration p (nach Rechnungen mit 1D-

Poisson).
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DO1880 im Bereich der Quantenpunkte und des Rückkontaktes2 zeigt Abbildung 3.1.

In die Tunnelbarriere ist eine Schicht Al0,9Ga0,1As eingefügt. Für die Probe DO1880

beträgt die Tiefe der Al0,9Ga0,1As-Barriere 5 nm, was zu einer hohen Tunnelrate und

damit zu einer starken Kopplung führt. Bei der Probe DO1881 wurde die Al0,9Ga0,1As-

Barriere auf 10 nm vergröÿert. Dies führt zu einer Unterdrückung der Tunnelrate um

Gröÿenordnungen, was einer schwachen Kopplung entspricht.

Bei den Quantenpunkten handelt es sich um verspannt aufgewachsene InAs Inseln in

einer GaAs Matrix. Ihre Flächendichte wird mit nQD ≈ 3 · 1010 cm−2 angegeben, was

auf eine InAs-Bedeckung von 1,8 bis 2 Monolagen schlieÿen lässt [Leonard94]. Der

Wert ist durch AFM Messungen an Proben bestimmt worden, bei denen die InAs-

Schichten unter gleichen Prozessbedingungen an der Ober�äche eines Substrates mit

einer 100 nm tiefen Pu�erschicht gewachsen wurden. Photolumineszenz Messungen an

den Wafern der beiden untersuchten Proben bei Raumtemperatur zeigten eine vergleich-

bare Exziton-Grundzustandsenergie von 1,06 eV, was einer Wellenlänge von 1170 nm

entspricht [Kurzmann10]. Dieser Wert liegt etwas unterhalb der durch Reuter et al.

[Reuter04, Reuter05b, Reuter05a] untersuchten Proben (1260 nm), was für eine höhe-

re Lokalisierungsenergie und damit etwas kleinere Quantenpunkte spricht. Diese höhere

Lokalisierungsenergie führt zu einer stärkeren Trennung der Ladeenergien und damit

zu einer Verbesserung der Au�ösbarkeit der Spektren. Als Rückkontakt dient ein 8 nm

breiter GaAs-Quantentopf in einer Al0,9Ga0,1As Matrix, der die Löcher von den Akzep-

torzentren in der Kohlensto�-Dotierung aufnimmt und von den geladenen Störstellen

durch einen 7 nm breiten Pu�er getrennt wird.

Die Prozessierung erfolgte an der Technischen Universität Berlin. Bei der hier verwen-

deten Gate�äche von etwa 0,2 mm2 umfasst das untersuchte Ensemble etwa 7 · 107

Quantenpunkte. Zur Herstellung der Ohmschen Kontakte wurde in Folge 7,5 nm Ni,

250 nm Zn und 350 nm Au aufgedampft und anschlieÿend für 3 Minuten bei 400◦C unter

Sticksto�atmosphäre einlegiert. Hierbei werden Zwischengitterplätze im GaAs durch die

Zn-Atome besetzt. Sie dringen durch ihre hohe Di�usivität [Chase97] bis zu dem Rück-

kontakt in einer Tiefe von ≈ 200 nm vor und stellen dort einen ohmschen Kontakt zu

dem 2DHG her. Für die Herstellung von p-Kontakten eignet sich sowohl Beryllium als

2Eine genauere Schichtfolge �ndet sich Anhang.
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auch Zink wobei wegen der hohen Giftigkeit von Beryllium meist nur Zink Anwendung

�ndet, obgleich Beryllium die besseren Di�usionseigenschaften [Yu91] zeigt. Für den Ga-

tekontakt wurden 7,5 nm Ni und 350 nm Au aufgebracht. In der hier verwendeten Maske

haben Gates und Rückkontakte einen Mindestabstand von 80 µm, so dass die laterale

Di�usion von Zink nicht zu einem Kurzschluss der Gates führt. Auf dem Weg zu klei-

neren Probenstrukturen muss die Prozessierungsmethode jedoch abgeändert werden, da

bereits Abstände von 5 bis 10 µm zu einem Kurzschlieÿen der Kontakte führen.

Die prozessierten Probenstücke wurden auf einem Träger befestigt und in einen Proben-

stab eingesetzt. Der Stab wird in einem �üssigen Heliumbad auf eine Temperatur von

4,2 K gebracht. Für die Messungen mit Magnetfeldern wurde ein Cryogenic Magnet-

kryostat verwendet, dessen supraleitende Magnetspulen Feldstärken von bis zu 12 T er-

lauben. Messungen über 12 T wurden in einem Kryostaten mit Bitter-Magnet-Technik

am High Field Magnet Laboratory der Radboud Universität in Nijmegen durchgeführt.

Ohmscher
Kontakt

Gate-Elektrode

Quantenpunkte

2DHGSubstrat

Mesa}{Tunnel-
barriere

Abbildung 3.2.: Schematische Darstellung der prozessierten Probe. Zur Herstellung der

Ohmschen Kontakte wurde Zn einlegiert, anschlieÿend die Ni/Au Gate-

Elektrode aufgebracht. Zuletzt erfolgt das Ätzen der Mesa bis unter das

2DHG.
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3.2. Kapazitätsspektroskopie

In der Kapazitätsspektroskopie (CV-Spektroskopie3) wird das chemische Potential zwi-

schen Rückkontakt und Quantenpunkten sequentiell durch das Anlegen einer Gleich-

spannung UG verändert und bei jedem Schritt die Kapazität C mittels einer aufmo-

dulierten Wechselspannung U(t) = UA sinωt gemessen. Der schematische Aufbau ist

in Abbildung 3.3 gezeigt. Auf die Ausgabe UG der Gleichspannungsquelle (Yokogawa

7651 ) wird die Wechselspannung U(t) des Lock-In-Verstärkers (EG&G 7260 ) über die

Kapazität CT moduliert. Um eine Verbesserung des Signal-Rausch-Verhältnisses zu er-

reichen, wird die Amplitude der Wechselspannung mit einem Widerstandsabgri� R1/R2

von UA = 500 mV auf U0 = 5 mV geteilt4.

In diesem Aufbau wird die Kapazität nicht direkt gemessen sondern der Wechselstrom

I. Der Lock-In-Verstärker ermöglicht die Bestimmung der Phase zwischen angelegter

Spannung U(t) und gemessenem Strom I, wodurch sich Real- I+ und Imaginärteil I−

3CV: capacitance voltage
4Näheres zu diesem Aufbau �ndet sich auch in den Arbeiten [Wibbelho�02, Ruÿ02, Lüttjohann03,

Wibbelho�06, Ruÿ06, Marquardt06].

Spannungsteiler SpannungsquelleLock-In-Verstärker

I U(t) UG

Temperaturbad

Magnetfeld B

R1 R2 R3

C
T

R1 = 100 kΩ, R2 = 1 kΩ, R3 = 10 MΩ, CT = 6,8 pF

Gate
QD

2DHG

~ =~

Abbildung 3.3.: Messaufbau für die Kapazitätsspektroskopie: Der Spannungsteiler ver-

ringert die Amplitude der Wechselspannung U(t) des Lock-In-Ver-

stärkers und koppelt sie mit der Gleichspannung UG.
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des komplexen Stromsignals I getrennt aufzeichnen lassen. Widerstand R und Kapazität

C der Probe ergeben sich dann aus den einzelnen Stromsignalen zu [Goodall85]:

R =
U0I+

I2
+ + I2

−
und C =

I2
+ + I2

−

ωU0I−
≈ I−
ωU0

. (3.1)

Die Heterostruktur der Probe lässt sich als eine Schaltung (siehe Abb. 3.4) von span-

nungsunabhängigen (geometrischen) Kapazitäten C1, C2 und der spannungsabhängigen

Quantenkapazität CQD ansehen [Luryi88, Lorke99, Ruÿ06]. Die Gesamtkapazität C er-

gibt sich damit zu:

C(UG) =

(
1

C1

+
1

C2 + CQD(UG)

)−1

. (3.2)

Um von der angelegten Gatespannung UG auf eine Energieskala dE = −eλ−1dUG umzu-

rechnen ist die Kenntnis der Spannung U2 nötig, die im Bereich der Quantenpunktschicht
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Abbildung 3.4.: Spannungsabfall im Bereich der Heterostruktur wird durch die geometri-

schen Kapazitäten der Probe C1, C2 und der Quantenpunktschicht CQD

bestimmt und lässt sich durch eine Ersatzschaltung beschreiben. Ein

konstanter Versatz durch die Schottky-Barriere ΦS wird in den Rech-

nungen ignoriert.
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abfällt (Abb. 3.4). Solange die Quantenpunkte nicht geladen werden lässt sich der Pro-

portionalitätsfaktor λ als konstant annehmen (Gl. (2.18)). Berücksichtigt man aber die

Kapazität der Quantenpunkte CQD folgt:

λ(UG) =
UG

U2(UG)
=

1
C1

+ 1
C2+CQD(UG)

1
C2+CQD(UG)

= 1 +
C2 + CQD(UG)

C1

. (3.3)

Die Kapazität der Quantenpunkte ist dabei über die lokale Zustandsdichte D gegeben:

CQD = e2D(E) = e2D(eU2). (3.4)

Da hier wieder die Spannung U2 eingeht muss Gleichung (3.3) entweder selbstkonsistent

oder iterativ gelöst werden, was in Abschnitt 4.1.2 durchgeführt werden soll.

3.3. Transporttransientenspektroskopie

Bei der Transportmessung wird der Ein�uss einer angelegten Gatespannung UG auf den

Strom�uss I durch den leitenden Kanal des 2DHGs zeitaufgelöst untersucht (Abb. 3.5).

Die Gatespannung UG wird als Rechteckpuls von einem Funktionsgenerator (Tektronix

Spannungsquelle

UG(t) USD

Temperaturbad

I(t)

Stromverstärker PC/Schnittstelle Funktionsgenerator

Gate
QD

2DHG

Abbildung 3.5.: Aufbauschema zur Messung der Transporttransienten: Anstatt der

sinusförmigen Wechselspannung wird ein Rechteckpuls UG(t) auf das

Gate ausgegeben und der Strom I(t) durch das 2DHG zeitaufgelöst

gemessen.
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AFG 3021B) generiert. Der Funktionsgenerator gibt den Puls und das Startsignal für die

Strommessung an die A/D-Wandlerkarte. Der Strom wird verstärkt (Femto DHPCA-200

(schnell) oder Stanford RS570 (rauscharm)), als Spannungssignal von der Wandlerkarte

aufgezeichnet und mit der PC-Software gemittelt. Um den zu messenden Strom I zu

erzeugen wird eine Seite des Rückkontaktes mit einer Spannungsquelle (Yokogawa 7651 )

auf konstanter Spannung USD ≈ 30mV gehalten.

Es wird ein Puls mit konstanter Di�erenz (∆UG ≈ 20mV) und sequentiell variiertem

Versatz durch den Bereich der Ladespannungen der Quantenpunkte angelegt. Ohne die

Anwesenheit der Quantenpunktschicht würde die Leitfähigkeit des 2DHG monoton mit

der negativen Gatespannung ansteigen, da die Ladungsträgerdichte nach Gl. (2.5) mit

steigender Energie anwächst. Die Spannungsdi�erenz führt über den Hebelarm λ zu

einer Energiedi�erenz am Ort der Quantenpunkte (∆E = ∆UG/λ, siehe Abb. 3.6). Die

Energiedi�erenz führt mit der lokalen Zustandsdichte des Quantenpunktensembles zu

Zeit t

∆n ∆n

∆E

∆I(t) ~ ∆n (1 - e-t/τ(E))

Strom I(t)

Energie E(t)

I

I

Zustandsdichte D
(E)

Zustandsdichte D
(E)

Abbildung 3.6.: Beim Anlegen eines Spannungspulses reagiert das System durch Trans-

fer von Ladungsträgern ∆n(E) ≈ D(E)∆E zwischen Rückkontakt und

Quantenpunktschicht. Diese Antwort des Systems kann zeitaufgelöst ge-

messen werden.
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einem Transfer der Ladungsträger ∆n(E) =
∫ E+∆E

E
D(E) dE zwischen Quantenpunkten

und 2DHG. Für genügend kleine Di�erenzen gilt ∆n(E) ≈ D(E)∆E.

Durch den Ladungstransfer ändert sich die über dem 2DHG abfallende Spannung und

damit die Leitfähigkeit des Kanals. Da der Ladungstransfer langsam gegenüber der nahe-

zu instantanen Leitfähigkeitsänderung im 2DHG ist, lässt sich der Transfer als Änderung

des Stroms ∆I(t) beobachten. Aus Gleichung (2.23) folgen Transienten der Form:

∆I(t, E) ∝ ∆n(E) ·
(
1− e−t/τ(E)

)
. (3.5)

In den Proportionalitätsfaktor geht die Steilheit
∣∣∣∂I(t,E)

∂E

∣∣∣
t=0

des Leitkanals ohne den

Ein�uss der Quantenpunktschicht ein. Die Tunnelzeit τ(E) ist über die Tunnelbarriere

und die Form der Zustandsdichte in den Quantenpunkten energieabhängig. Für den

Fall t � τ und einer kleinen, konstanten Energiedi�erenz ∆E ist die Amplitude der

Stromänderung ∆I(E) proportional zur lokalen Zustandsdichte D(E) des Quanten-

punktensembles:

∆I(t→∞, E) ∝ ∆n(E)

∆E
∝ D(E). (3.6)

Die Auftragung ∆I(UG) ist damit äquivalent zu einer Kapazitätsspannungsspektroskopie

C(UG). Ein spannungsabhängiger Untergrund entsteht hier durch einen energieabhän-

gigen Hebelarm, der zu einer Änderung in ∆E sowie einer energieabhängigen Steilheit

führt. Die Ladungsträgerdichte steigt linear mit der Gatespannung. Mit zunehmender

Ladungsträgerdichte können Störstellen besser abgeschirmt werden, was zu einer Erhö-

hung der Beweglichkeit führt. Insgesamt ist die Leitfähigkeit des Kanals nicht linear zur

Gatespannung und die Steilheit damit nicht konstant.
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4. Messungen und Auswertung

4.1. Probe mit starker Kopplung

Es soll zunächst die Probe mit der Bezeichnung DO1880 untersucht werden. Mit einer

5 nm Al0,9Ga0,1As Barriere liegen ihre Tunnelzeiten im Bereich weniger µs. Dies erlaubt

sowohl die bewährte Kapazitätsspektroskopie, wie auch die neuere Transportspektrosko-

pie auszuwerten und zu vergleichen.

4.1.1. Kapazitätsspektren

Zu Beginn soll das Kapazitätsspektrum der Probe (siehe Abschnitt 3.2) untersucht wer-

den. Die Form der Messkurve wird diskutiert und die Spannungen der Beladezustände

in den Quantenpunkten werden ermittelt.

Das resistive I+ und das kapazitive Stromsignal I− der Probe DO1880 ist in Abb. 4.1

gezeigt. Im resistiven Anteil des Stroms zeigt sich ein scharfes Maximum bei UG ≈ 3,3 V.

Dies ist ein Resonanze�ekt der Fermi-Energie mit dem ersten Subband-Niveau des

2DHG. In diesem Bereich beginnt die Besetzung des energetisch tiefsten Subbandes

mit Ladungsträgern, so dass dort auch die Kapazität stark ansteigt. Im übrigen Bereich

der Gatespannung ist der resistive Strom verschwindend klein. Im Bereich der Quanten-

punktbeladung von -0,5 bis 1,5 V kommt es noch zu schwach ausgeprägten Resonanzen

aufgrund der Kapazitätsänderung (vergröÿerter Einsatz in Abb. 4.1).

Im kapazitiven Anteil lassen sich drei Bereiche mit geringer Steigung erkennen. Für

Gatespannungen UG & 3,5 V ist das 2DHG vollständig verarmt, nur die Hintergrundka-

pazität des Aufbaus und der Probe bestimmen das Signal. Bei Gatespannungen . 0,5 V

kommt es zu einer Beladung der Benetzungsschicht und der GaAs-Matrix, in der die

InAs-Quantenpunkte eingebettet sind. Numerische Rechnungen zeigen eine sehr gute
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Übereinstimmung für das Verhältnis der Kapazitäten von zweidimensionalem Rückkon-

takt und GaAs-Matrix. Die GaAs-Matrix verhält sich dabei wie ein 2DHGmit konstanter

Kapazität.

In dem vergröÿerten Ausschnitt lassen sich deutlich sechs Maxima erkennen, die den

mittleren Beladeenergien der im Ensemble verbreiterten Niveaus der Quantenpunkte

entsprechen. Die Bestimmung der Spannungen, bei denen eine Umladung der Quanten-

punkte auftritt erfolgt nach drei Methoden (vgl. Abb. 4.2):

a) Es wird ein linerarer Untergrund subtrahiert und eine Superposition von Gauÿ-

Funktionen angepasst.

b) Es werden die Minima der zweiten Ableitung bestimmt.
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Abbildung 4.1.: Kapazitives und resistives Stromsignal der Probe DO1880: Gesamter

Spannungsbereich mit den Bereichen: Beladung von Benetzungsschicht

und GaAs-Matrix, Beladung der Quantenpunkte (vergröÿert) und Ver-

armung des 2DHG. Für die Lochzustände nimmt die Energie zu nega-

tiven Spannungen zu.
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c) Der Untergrund wird separat durch eine (sigmoidale) Boltzmann-Funktion und die

Beladespannungen mit Gauÿ-Funktionen angepasst.

Methoden b) und c) ermöglichen die Identi�kation von acht Ladezuständen h1 bis h8,

wobei die letzteren zwei stark durch den Untergrund überlagert werden. Im weiteren

Verlauf sollen nur die ersten sechs weiter betrachtet werden. Die verschiedenen Metho-

den ermöglichen eine Abschätzung des Fehlers durch den unbekannten Untergrund. Die

Ergebnisse mit Mittelwert und Fehlerabschätzung sind in Tabelle 4.1 zusammengefasst.

Die Form der Kurven für die einzelnen Beladungszustände in Abb. 4.2a zeigt eine leich-

te Asymmetrie, die zum einen daran liegt, dass die Basisbreite b der Quantenpunkte

normalverteilt ist, nicht aber die Ensembleenergien, die proportional zu 1/b2 ist. Zum

Anderen nimmt die energetische Breite es 2DHG mit steigender Ladungsträgerdichte

zu negativen Gatespannungen zu, was die Form der Verteilung beein�ussen kann. Dass

diese Ein�üsse aber eine geringe Rolle spielen müssen, zeigt die vergleichsweise gute

Anpassung durch Gauÿ-Funktionen in Abb. 4.2b.
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Abbildung 4.2.: Zur Bestimmung der Ladespannungen mit a) zweiter Ableitung und b)

Anpassung der Spektren mit Gauÿ-Funktionen. Jedes Maximum ent-

spricht einer Änderung der Ladung N in dem Quantenpunktensemble.

Die Anpassung zeigt nur eine geringe Abweichung von der Gauÿ-Form.
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Zustand Ua/V Ub/V U c/V Mittel/V Fehler/V

h1 1,34 1,36 1,34 1,35 0,02

h2 1,04 1,06 1,03 1,05 0,02

h3 0,64 0,65 0,63 0,64 0,01

h4 0,42 0,42 0,42 0,42 0,01

h5 0,19 0,2 0,21 0,2 0,01

h6 -0,02 -0,04 -0,04 -0,03 0,01

h7 � -0,29 -0,25 -0,27 0,03

h8 � -0,47 -0,51 -0,49 0,03

Tabelle 4.1.: Mittlere Ladespannungen zu den acht identi�zierbaren Zuständen der Pro-

be DO1880 nach verschiedenen Auswertungsmethoden.

Die genaue Form des Untergrunds der Spektren im Bereich der Quantenpunktbeladung

ist nicht bekannt. Eine spannungsabhängige Sperrschichtkapazität sollte, aufgrund der

sehr geringen Hintergrunddotierung nur eine unwesentliche Rolle spielen. Aufgrund des

�achen Verlaufs der Kapazität im Bereich von 2 bis 3 V ist eher anzunehmen, dass

der Untergrund durch die Beladung der Quantenpunkte selbst entsteht. Dies soll im

folgenden Abschnitt untersucht werden.

4.1.2. Berechnung des Hebelarms

In diesem Abschnitt soll die Umrechnung der gemessenen Spannungswerte in Energien

Erfolgen. Dabei soll an drei unterschiedlichen Methoden der Ein�uss der Beladung Dis-

kutiert werden. Für die Methoden a und b wird eine 1D-Poisson-Rechnung ohne und

mit Flächenladung durchgeführt. Für Methode c wird die Gesamtkapazität der Probe

mit einem iterativen Verfahren simuliert.

Die Umrechnung der Spannungsdi�erenzen in energetische Abstände am Ort der Quan-

tenpunkte lässt sich grob über das Verhältnis der Abstände Quantenpunkte/Gate und

Rückkontakt/Quantenpunktschicht abschätzen. Nach Gleichung (2.18) folgt ein Hebel-

arm von 7,6 bzw. 13,4 je nachdem, ob man eine starke, substratseitige Lokalisierung des

2DHG im Quantentopf annimmt oder eine Verteilung über den gesamten Topf zulässt

(siehe auch Abb. 2.3). Die Lokalisierung des 2DHG in z-Richtung und seine energetische
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Breite sind spannungsabhängig. Auÿerdem wirken die geladenen Quantenpunkte auf den

Verlauf der Bandkanten. Im folgenden soll dies genauer berechnet werden.

Die Valenzbandkanten und die Ladungsträgerdichte der Heterostruktur wurde hierzu

mit dem Programm 1D Poisson simuliert. Als Eingabedaten dienen die Herstelleranga-

ben zu Schichtdicken, Akzeptordichte und Quantenpunktdichte. Die Schottky-Barriere

zwischen der Au-Gateelektrode und dem GaAs wurde nach [Bock03] zu US = 0,77V

angenommen. Anstelle der Quantenpunkte wurde eine 1,2 nm dicke InxGa1−xAs Schicht

eingefügt, deren Indium-Anteil nach [O�ermans05] zu etwa 0,2 abgeschätzt wurde. Die

eingefügte Schicht dient hier nur als Benetzungsschicht und berücksichtigt die Erhö-

hung der Gesamtstruktur durch die InAs-Bedeckung. Die Quantenpunkte werden hier

nicht direkt berücksichtigt, da ihr dreidimensionaler Einschluss mit dem eindimensional

rechnenden Programm nicht zugänglich ist.

Der energetische Abstand zwischen Fermi-Energie und der Valenzbandoberkante von

GaAs am Ort der Quantenpunkte bei der Beladespannung eines Zustandes entspricht

der energetischen Tiefe des Zustandes und damit seiner Bindungsenergie (vgl. [Lei08]).

Diese Energie lässt sich in der Ausgabe des Programms direkt ablesen, der Hebelarm

kann durch die Steigung einer linearen Regression, durch die Auftragung Gatespannung

über Energie bestimmt werden. Durch Einfügen einer Flächenladung am Ort der Quan-

tenpunkte lässt sich zudem ihr Ein�uss auf den Hebelarm abschätzen. Ohne bzw. mit

Berücksichtigung der Beladung erhält man so einen Hebelarm von:

λa = 10,6 bzw.

λb = 14,1.

Der Ein�uss der Ladung in den Quantenpunkten auf die Bandkanten ist also nicht

unwesentlich, so dass für das vorliegende System das übliche Modell eines geometrischen

Hebelarms nach [Drexler94] und Gleichung 2.18 nur als erste Näherung zur Bestimmung

der Energieniveaus herangezogen werden kann.

Um den Ein�uss der Au�adung auf die Energieniveaus genauer zu untersuchen, wird die

Heterostruktur durch eine kapazitive Ersatzschaltung simuliert (Abb. 4.3). Die Quan-
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tenpunktschicht wird durch eine spannungsabhängige Kapazität CQD = e2D(E(UG))

in Abb. 3.4 berücksichtigt. Für die relativen Dielektrizitätszahlen ε1, ε2 wurden die

Werte aus Tabelle 2.1 in den beiden Bereichen d1, d2 der geometrischen Kapazitäten

gemittelt und das Abstandsverhältnis so gewählt, dass bei unbeladenen Quantenpunk-

ten der Hebelarm der 1D Poisson Rechnungen reproduziert wird. Als Zustandsdichte

D des Ensembles werden sechs Gauÿ-Funktionen Dhi(E) für die Beladung der Quan-

tenpunkte mit identischer Breite und Fläche und eine Gauÿ-Funktion für die Beladung

der GaAs-Matrix bzw. der Benetzungsschicht angenommen. Durch eine Anpassung der

Zustandsdichte lässt sich die gemessene Kapazität nachbilden.
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Abbildung 4.3.: a) Kapazität der Ersatzschaltung mit Messdaten (schwarz), b) Hebel-

arm λ(U) = U/U2 und c) angenommene Zustandsdichte D des Quan-

tenpunktensembles mit GaAs-Matrix. Zum Vergleich mit der Zustands-

dichte ist die Spannungsachse hier invertiert.
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Aus der Zustandsdichte folgen direkt die Energieniveaus der Zustände, sowie die Flä-

chendichte der Quantenpunkte:

nQD =

∫
Dhi(E) dE = 3,2 · 1010 cm−2.

Der Hebelarm zeigt eine starke Spannungsabhängigkeit im Bereich der Ladevorgänge

(Abb. 4.3b). Die Energieniveaus für die ermittelten Ladespannungen sind für die drei

beschriebenen Verfahren in Tabelle 4.2 aufgeführt. Die letzte Methode liefert keinen Ab-

solutwert, hier wurde der Mittelwert der ersten beiden Methoden für den Zustand h1

als Referenz gewählt. Ein Vergleich der Energien Eb und Ec zeigt, dass die Annahme

eines mittleren Hebelarms für alle Zustände zu einem Fehler von etwa 5% in den Ab-

solutwerten führt. Auf die Abstände wirkt sich der Fehler mit etwa 20% jedoch stärker

aus.

Die gefundene Energie des h1-Zustandes von -186 meV hat die Bedeutung einer Bin-

dungsenergie. Ihr Betrag liegt leicht unterhalb der Energien der von [Reuter05a] un-

tersuchten Proben. In Verbindung mit den höheren Photolumineszenzenergien bestätigt

dies die Annahme, dass es sich hier um etwas kleinere Quantenpunkte handeln muss.

Zustand Energiea/meV Energieb/meV Energiec/meV

h1 -184,5 -186,6 -186

h2 -155,9 -165,2 -166

h3 -117,6 -136,6 -134

h4 -96,6 -120,8 -120

h5 -75,7 -105,2 -106

h6 -53,6 -88,7 -93

h7 -31,0 -71,8 �

h8 -10,5 -56,5 �

Tabelle 4.2.: Energien der gemessenen Ladespannungen a) ohne, b) mit Berücksichtigung

einer Schichtladung und c) über Ersatzschaltung.
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4.1.3. Energien und Kon�gurationen

In diesem Abschnitt werden die Energien mit dem in Abschnitt 2.2 vorgestellten Warbur-

ton-Modell verglichen. Die gefundenen Abweichungen gegenüber erwarteten Werten las-

sen auf eine geringe Austauschwechselwirkung in den Quantenpunkten schlieÿen.

Im Warburton-Modell entsprechen die Kapazitätsmaxima der sequentiellen Besetzung

von Einteilchen-Zuständen des harmonischen Oszillators. Die Energieabstände verschie-

dener Kon�gurationsreihenfolgen wurden berechnet (vgl. Tab. 2.2) und mit den experi-

mentell ermittelten verglichen . Die zwei freien Parameter EC
ss und ~ω lassen sich aus den

ersten beiden Abständen ∆Φ1→2 bzw. ∆Φ2→3 bestimmen und zur Berechnung aller wei-

teren verwenden. Tabelle 4.3 zeigt die Energien der wahrscheinlichsten Kon�gurations-

möglichkeiten. Für die Coulomb- und die Lokalisierungsenergie ergeben sich:

EC
ss = 20 meV bzw.

~ω = 27 meV.

Keiner, der nach dem Warburton-Modell berechneten Abstände zeigt eine gute Über-

einstimmung mit den Messwerten. Sowohl die für Elektronen erwartete Reihenfolge

ssp+p−p+p−, wie auch die nach Reuter et al. [Reuter05a] durch Messungen im Magnet-

feld beobachtete Reihenfolge ssp+p−d+d− zeigen eine deutliche Schwankung in den drei

berechneten Abständen. Es wurden jedoch nahezu gleiche Abstände zwischen den Ener-

gien von h3 bis h6 gemessen.

Abstand Messung ssp+p−p+p− ssp+p−d+d− ssp+p+p−p−

∆Φ1→2 20 meV EC
ss EC

ss EC
ss

∆Φ2→3 32 meV ~ω + 1
4
EC
ss ~ω + 1

4
EC
ss ~ω + 1

4
EC
ss

∆Φ3→4 14 meV 10 meV 10 meV 14 meV

∆Φ4→5 14 meV 18 meV 31 meV 10 meV

∆Φ5→6 13 meV 10 meV 9 meV 14 meV

Tabelle 4.3.: Gemessene und erwartete Energieabstände für drei Kon�gurations-

möglichkeiten im Warburton-Modell.
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Die beste Übereinstimmung erhält man für eine Sequenz, in der erst beide p+ Zustände

gefüllt werden. Jedoch zeigt sich auch hier noch eine starke Abweichung bei der Befüllung

des ersten p− Zustandes (∆Φ4→5). Die energetische Favorisierung einer bestimmten Kon-

�guration lässt sich im Warburton-Modell durch einen Gewinn an Austauschenergie er-

klären, wenn sich das Verhältnis ~ω/EC
ss verringert (siehe Abb. 4.4). Für den h5-Zustand

wird eine Kon�gurationsänderung allerdings erst für ~ω/EC
ss ≤ 11/16 vorhergesagt. In

diesem Fall ist die Coulomb-Energie bereits deutlich gröÿer als die Lokalisierungsenergie,

was der Annahme einer kleinen Störung des harmonischen Oszillators widerspricht.

Der fehlende Gewinn durch Austauschenergie macht eine Besetzung der Reihenfolge

ssp+p+ energetisch ungünstig. Die nahezu gleichen Abstände von h3 bis h6 lieÿen sich

allerdings durch eine Überschätzung der Austauschenergien in diesem System erklären.
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Abbildung 4.4.: Gesamtenergie der N = 5 Kon�gurationen nach Gl. (2.17) im Grenz-

bereich des Warburton-Modells für ~ω < EC
ss. Im Bereich von 0,64 .

~ω/EC
ss . 0,69 ist die Kon�guration ssp+p−d+ am günstigsten. Für

~ω/EC
ss . 0,64 dominiert der Gewinn durch Austauschenergie und führt

zu einer vollständig parallelen Einstellung der Spins.
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Setzt man die Austauschenergien in den Rechnungen auf Null, ist die gesamte p-Schale

energetisch entartet. Für eine Besetzungsreihenfolge sspppp ergäben sich dann die ener-

getischen Abstände:

∆Φ1→2 = EC
ss,

∆Φ2→3 = ~ω +
1

2
EC
ss,

∆Φ3→4 = ∆Φ4→5 = ∆Φ5→6 =
11

16
EC
ss.

In diesem Fall lägen Coulomb- und Lokalisierungsenergien sehr dicht beieinander:

EC
ss = 20 meV bzw.

~ω = 22 meV.

Aus der direkten Coulomb-Energie und der Lokalisierungsenergie lassen sich nach Glei-

chungen (2.9) und (2.16) e�ektive Oszillatorlänge l0 und Lochmasse m∗ berechnen. Mit

Berücksichtigung der Austauschenergie erhält man l0 = 7 nm und m∗ = 0,06m0. Oh-

ne Austauschenergie ergeben sich l0 = 7 nm und m∗ = 0,07m0. Die e�ektiven Massen

entsprechen nach Tabelle 2.1 eher der leichten Lochmasse von Ga0,6In0,4As. Für einen

Einschluss würde man jedoch eine e�ektive Masse in der Gröÿenordnung der schweren

Lochmasse erwarten. Setzt man die schwere Lochmasse in Gleichung (2.9) ein, so ergäbe

sich eine sehr geringe Lokalisierungsenergie von ~ω = 4 meV.

Es ist möglich, dass die Löcher-Wellenfunktionen in der Basis des harmonischen Os-

zillators durch die Coulomb-Wechselwirkung stärker gestört werden als dies in erster

Ordnung Störungstheorie zu berücksichtigen ist. Korrelationse�ekte [Reuter05b] oder

eine Mischung von leichten und schweren Lochzuständen [Climente05] können zu einer

Favorisierung von anderen Besetzungsreihenfolgen führen [He05].

Neben den energetischen Abständen gibt auch die Aufspaltung der Energieniveaus in

einem magnetischen Feld Aufschluss über die möglichen Kon�gurationen. Jede neue Be-

setzung der Einteilchenzustände führt zu einer Änderung des Gesamtdrehimpulses des
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Vielteilchensystems, die proportional zu der Verschiebung der Ladeenergie im Magnet-

feld ist, da sich diese nach (2.21) gerade aus der Di�erenz der Vielteilchenenergien ergibt.

Für den einfachen Fall einer sequentiellen Befüllung der Niveaus ist sie gerade propor-

tional zum Drehimpuls des zuletzt besetzten Einteilchenzustands. Messungen in Feldern

von B = 0 bis 30 T (Abb. 4.5) zeigen eine geringe Änderung für die Ladezustände h1

und h2 von 0,01 ± 0,02 meV/T bzw. 0,03 ± 0,02 meV/T. Dies bestätigt, dass es sich

hierbei um drehimpulslose s-artige Zustände handelt.

Die Zustände h3 bis h5 zeigen für Feldstärken bis 12 T eine vergleichbar gröÿere Ver-

schiebung von etwa 0,1± 0,05 meV/T zu niedrigeren Energien. Dies ist mit dem Modell

der sequentiellen Schalenbesetzung schwer zu verstehen, da h5 energetisch deutlich stär-

ker sinken sollte, wenn es sich um die Besetzung der d-Schale handelt. Falls es sich aber
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Abbildung 4.5.: Dispersion der Ladeenergien im Magnetfeld von 0 bis 30 T. Die energe-

tisch tiefsten Niveaus h1 und h2 zeigen nahezu keine Abhängigkeit. Für

die Energien wurde ein konstanter Hebelarm von λ = 14,1 verwendet.
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um p-artige Zustände handelt, sollte die Steigung von wenigstens einem der Zustände

positiv sein. Bisher wurde der Spin in den Überlegungen vernachlässigt (siehe Gleichung

(2.12)), aber aufgrund der geringen Di�erenz in den Verschiebungen von h1 und h2 ist

von einem sehr geringen g-Faktor des Spins auszugehen, der diese Annahme rechtfertigt.

Eine weitere Besonderheit tritt in der Dispersion des h5-Zustandes bei etwa 12 T auf, wo

es zu einer deutlichen Änderung der Steigung kommt. Derartige Übergänge wurden bei

einem Wechsel der Kon�gurationen beobachtet [Tarucha96, Warburton98], wobei es zu

einer Kreuzung in der energetisch günstigsten Besetzung kommt, wenn beispielsweise der

Energiegewinn durch die Zeeman-Aufspaltung den Gewinn durch die Austauschwechsel-

wirkung überwiegt. Für diese Erklärung müsste jedoch auch ein energetisch abfallender

Zweig auftreten, der nicht beobachtet werden kann. Eine Mischung aus schweren und

leichten Lochzuständen mit Jz = 3/2 bzw. Jz = 1/2 in der p-Schale wäre auch denk-

bar. Aufgrund der hohen Quantisierungsenergie in z-Richtung, sollte der energetische

Abstand zwischen leichten und schweren Löchern jedoch groÿ gegenüber der Quantisie-

rungsenergie in x-y-Richtung sein.

Deutlich überproportional ist die Steigung des h6-Zustandes schon bei kleinen Feld-

stärken. Möglicherweise kommt es hier zu einer Änderung der Kon�guration auch ohne

angelegtes Magnetfeld. Bei all diesen Überlegungen muss berücksichtigt werden, dass es

sich bei dem Rückkontakt um ein zweidimensionales Lochgas handelt. Die Folge sind

Oszillationen der Fermi-Energie mit dem Magnetfeld. Zwar ist die Feldstärke bei jeder

Messung konstant, jedoch ändert die Gatespannung die Ladungsträgerdichte im 2DHG.

Dies kann zu einem spannungsabhängigen Untergrund führen, der bei den geringen be-

obachteten Dispersionen die Messungen überlagert.

4.1.4. Tunnelzeiten aus Kapazitätsspektren

Es soll nun die Abhängigkeit der Kapazitätsspektren auf eine Änderung der Wechsel-

spannungsfrequenz f untersucht werden. Hieraus werden die Zeitkonstanten τ der Tun-

nelprozesse beim Be- und Entladen der Quantenpunkte berechnet. Für die Probe DO1880

liegen sie im Bereich von 16 bis 28 µs.

Durch eine Erhöhung der Frequenz f der Wechselspannung kommt es zu einer Ver-
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gröÿerung des kapazitiven Stromes I− (vgl. Gl. (3.1). Im Bereich UG ≥ 1,5 V ist die

Kapazität der Quantenpunkte vernachlässigbar klein (Grenzfall CQD → 0 in Gl. (3.2)).

Wird die Frequenzabhängigkeit der geometrischen Kapazität der Probe vernachlässigt,

ist die Kapazität aller Messungen in diesem Bereich gleich. Werden die Spektren auf

diesen Bereich normiert, zeigt sich bei zunehmender Frequenz ein sinken der Amplitude

in den Beladezuständen der Spektren (siehe Einsatz in Abb. 4.6). Wird diese Amplitude

über die Frequenz aufgetragen zeigt das Verhalten die Form einer Lorenz-Kurve. Durch

eine Anpassung nach Gleichung (2.24) lassen sich so die Tunnelzeiten τ bestimmen.

Es zeigt sich, dass die gefundenen Zeiten (Tabelle 4.4) für alle Zustände sehr dicht bei-

einander liegen, im Gegensatz zu Proben mit einer reinen GaAs Barriere [Wibbelho�06].

Dies liegt daran, dass die Tunnelraten hauptsächlich durch die Höhe der Al0,9Ga0,1As

Barriere bestimmt werden und der energetische Abstand der Zustände eine geringere

Rolle im Vergleich zu der Barrierenhöhe spielt.
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Abbildung 4.6.: Frequenzabhängigkeit der einzelnen Maxima mit Anpassungsfunktion

nach Gl. (2.24). Die Tunnelzeiten τ ergeben sich aus den Parametern

der Anpassung.
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Zustand Tunnelzeit τ/µs Fehler/µs

h1 27,6 0,4

h2 22,5 0,4

h3 23,8 0,3

h4 19,9 0,3

h5 18,1 0,1

h6 16,2 0,4

Tabelle 4.4.: Tunnelzeiten aus der Approximation nach Gl. (2.24) der Kapazitätsampli-

tuden und Fehler aus Standardabweichung der Anpassung.

Der Anstieg in den Tunnelzeiten von h2 auf h3 lieÿe sich durch einen E�ekt der Ladung

auf die Bandkanten erklären. Die fehlende Kenntnis der Hintergrund-Kapazität verhin-

dert jedoch einen direkten Zugang zu den Kapazitäten der Quantenpunktschicht. Der

tatsächliche Fehler in den Zeiten wird bei über 2 µs liegen. Die zeitaufgelösten Trans-

portmessungen erlauben einen direkten Zugang zu den Tunnelzeiten, weswegen diese in

Kapitel 4.3 noch einmal genauer diskutiert werden sollen.

4.1.5. Statische Transportmessung

In diesem und dem folgenden Abschnitt wird die Abhängigkeit des Stromes I im 2DHG

von der Gatespannung UG untersucht. Zunächst soll dabei der statische Fall t → ∞
betrachtet werden. Die Struktur in der Ableitung der Kennlinie I(UG) deutet bereits auf

den Ein�uss der Quantenpunkte hin.

Die Abhängigkeit der Leitfähigkeit des 2DHG-Kanals von der Gatespannung UG zeigt

Abbildung 4.7 für den statischen Fall. Ohne die Quantenpunktschicht würde man mit

fallender Gatespannung einen linearen Anstieg der Ladungsträgerdichte, aufgrund der

konstanten Zustandsdichte des 2DHG erwarten. Da der Ein�uss von geladenen Stör-

stellen mit zunehmender Ladungsträgerdichte besser abgeschirmt werden kann, ist auch

die Beweglichkeit von der Gatespannung abhängig. Insgesamt erwartet man also ein

Potenzgesetz mit einem Exponenten . −1 für das Verhalten der Leitfähigkeit nach

[Shayegan88], [Kane93] oder [Lu07].
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Abbildung 4.7.: Statischer Strom I des 2DHG bei konstanter Source-Drain-Spannung

USD = 30 mV in Abhängigkeit von der Gatespannung UG für die Probe

DO1880. Der Ein�uss der Quantenpunktschicht zeigt sich in den Maxi-

ma der Ableitung.

Die starke Krümmung im Verlauf des Stromes in Abb. 4.7 ist durch den Ein�uss der

Quantenpunktschicht zu erklären. Die geladene Schicht schirmt die Gatespannung ab

und verringert somit die e�ektiv an dem 2D-Kanal anliegende Gatespannung. Auÿerdem

wirken die geladenen Quantenpunkte als Streuzentren und verringern die Beweglichkeit

[Ribeiro98]. Die Ableitung zeigt eine zu den Kapazitätsspektren vergleichbare Struktur,

was ein Indiz für die Auswirkungen der Quantenpunkte ist.

4.1.6. Transientenspektren

In diesem Abschnitt wird die Zeitentwicklung des Stromes I betrachtet. Durch die Än-

derung des Stromes lässt sich zeigen, dass es sich tatsächlich um den Ein�uss der Quan-

tenpunkte handelt.
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Als eine Alternative zur Kapazitätsmessung ist bei Proben mit zweidimensionalem Rück-

kontakt die Untersuchung der Be- und Entladetransienten möglich. Die Antwort des

Stromes auf die angelegte Gatespannung zeigt Abb. 4.8. Die starken Ausschläge beim

Ändern der Gatespannung durch den Pulsgenerator sind eine Reaktion des Stromver-

stärkers auf die abrupte Änderung des Stromes. Direkt nach einer Pulsänderung zeigt

sich ein Sättigungsverhalten mit einer kurzen Zeitkonstanten von etwa einer µs. Dieses

Verhalten geht auf das RC-Glied von Aufbau und Probe zurück. Es begrenzt die Au�ö-

sung für sehr kurze Zeiten und führt zu einer Erhöhung der Startzeit in der Auswertung.

Bei einem Widerstand von R ≈ 2 kΩ entspricht die Zeitkonstante einer Kapazität von:

CAufbau ≈ τ/R ≈ 50 nF.
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Abbildung 4.8.: Transienten für einen Be- und einen Entladepuls nach 30000 Mittelun-

gen. Der Ladungstransfer hat einen deutlichen Ein�uss auf den Strom.

Die Zeitliche Au�ösung wird durch die Kapazität der Probe begrenzt.
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Dieser Wert liegt in der Gröÿenordnung der Probe, der sich abschätzen lässt zu:

CProbe ≈ εε0A/d ≈ 20 nF.

Eine Verkleinerung der Gate�äche A sollte also zu einer Verbesserung der zeitlichen Auf-

lösung führen. Etwa 6 µs nach dem Puls dominiert der E�ekt durch den Ladungstransfer

zwischen Quantenpunkten und Rückkontakt die Transienten. Aus den Amplituden der

Stromänderung ∆I(UG) = |I(t1, UG)− I(t2, UG)| erhält man das in Abb. 4.9 gezeig-

te Spektrum. Es zeigt sechs Maxima in sehr guter Übereinstimmung mit den aus den

Kapazitätsspektren ermittelten Positionen. Der Untergrund entsteht hier gröÿtenteils

durch den Unterschied in den Zeitkonstanten der Tunnelprozesse. Da die Zeitau�ösung

für kurze Zeiten durch das RC-Glied begrenzt wird, werden schnellere Tunnelprozesse

in ihrem Beitrag unterschätzt, was in einem Vergleich zu Abb. 4.12 deutlich wird.
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Abbildung 4.9.: Di�erenz des Stromsignals ∆I = I(t = 506µs) − I(t = 1 ms) und Re-

konstruktion durch Gauÿ-Funktionen auf linearem Untergrund.
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Zustand UG,Trans./V UG,Kap./V

h1 1,34 1,35

h2 1,04 1,05

h3 0,64 0,64

h4 0,41 0,42

h5 0,18 0,20

h6 -0,05 -0,03

Tabelle 4.5.: Vergleich der Ladespannungen UG aus den Transport- und Kapazitäts-

messungen der Probe DO1880 zeigt eine sehr gute Übereinstimmung der

beiden unterschiedlichen Messmethoden.

4.2. Probe mit schwacher Kopplung

In diesem Kapitel wird die Probe DO1881 mit 10 nm breiter Al0,9Ga0,1As-Barriere un-

tersucht. Sie hat Tunnelzeiten im Bereich einiger Sekunden. Es wird gezeigt, dass Trans-

portmessungen an Proben mit diesen Tunnelzeiten möglich sind. Die Energien und der

Hebelarm werden mit 1D-Poisson-Rechnungen bestimmt. Ein Vergleich der Energien

mit der Probe DO1880 zeigt eine gute Übereinstimmung im Rahmen der experimentel-

len Genauigkeit

Proben mit einer starken Kopplung und Tunnelzeiten von . 1 ms eignen sich gut für

kapazitive Messmethoden. Die im folgenden untersuchte Probe DO1881 hat eine 5 nm

breitere Al0,9Ga0,1As Barriere. Kapazitive Messungen mit Wechselspannungen bei Fre-

quenzen unter einem Hz ergaben keine verwertbaren Ergebnisse. Die statische Kennlinie

I(UG) zeigt jedoch in der Ableitung ebenfalls die Struktur der Beladeniveaus der Quan-

tenpunkte (Abb. 4.10). Transportspektroskopie war also auch an diesen Proben möglich.

Aufgrund des ca. 50% gröÿeren Abstandes zwischen Quantenpunktschicht und 2DHG ist

die Störstellenstreuung verringert, und durch den kleineren Hebelarm rücken die Maxima

dichter zusammen.
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Abbildung 4.10.: Strom des 2DHG in Abhängigkeit von der Gatespannung für die Probe

DO1881. Die Ladespannungen der Quantenpunktschicht zeigt sich in

der Ableitung.

4.2.1. Transientenspektren

Aufgrund der langen Tunnelzeiten muss hier ein weitaus längerer Puls gewählt werden,

bevor sich die Stromtransiente sättigen kann (siehe Abb. 4.11). Hierdurch sind nur 5

bis 10 Mittelungen pro Spektrum möglich. Das Signal- zu Rausch-Verhältnis ist daher

schlechter als bei der Probe DO1880 mit starker Tunnelkopplung (vgl. Abb. 4.9 und

4.12).

Die Wachstumsparameter der beiden Proben sind bis auf die Barrierenbreite identisch

und die Energieniveaus der Quantenpunkte sollten daher vergleichbar sein. Eine rein

geometrische Überlegung nach Gleichung (2.18) führt für diese Struktur zu einem He-

belarm von 9,6 bzw. 6,3, je nach Lokalisierung des 2DHG im Quantentopf. Eine genauere

Rechnung mit dem 1D Poisson Programm, unter Berücksichtigung der Flächenladung

führt auf die Energien in Tabelle 4.6.
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Abbildung 4.11.: Be- und Entladetransiente einer Messung mit 7 Mittelungen der Probe

DO1881. Auf diesen Zeitskalen wirkt der Übergang beim Spannungs-

wechsel scharf (vgl. Abb. 4.8). Das RC-Glied spielt hier keine Rolle.

Der Hebelarm ergibt sich aus der linearen Regression zu:

λ = 12,1.

Ein Vergleich der Energieabstände zwischen den beiden untersuchten Proben zeigt ei-

ne vergleichbare Coulomb-Energie und eine geringfügig gröÿere Lokalisierungsenergie der

Probe DO1881. Im Rahmen der Fehlertoleranz kann aber nicht mit Sicherheit gesagt wer-

den, ob diese Unterschiede tatsächlich von kleineren Quantenpunkten in dem Wafer der

Probe DO1881 herrühren. In diesem Fall müsste sich auch die Coulomb-Wechselwirkung

verstärken. Da der Abstand der Quantenpunktschicht zu dem 2DHG hier gröÿer ist und

die Tunnelzeiten der beiden Proben verschieden sind, ergibt sich ein anderer Untergrund

für die Spektren der beiden Proben. Dies führt zu einer Verschiebung der Maxima. Zu-

dem ist auch der Hebelarm nicht hinreichend genau bestimmbar.

48



St
ro

m
di

ffe
re

nz
 ∆

I  
[n

A
]

Gatespannung UG  [V]
-0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0

40

20

h6 h5
h4

h3

h2

h1

Abbildung 4.12.: Di�erenz des Stromsignals ∆I = I(t = 61 s) − I(t = 115 s) und Re-

konstruktion durch Gauÿ-Funktionen auf linearem Untergrund, an der

schwach gekoppelten Probe DO1881.

4.3. Vergleich der Tunnelzeiten

Es sollen nun die Tunnelraten der beiden Proben genauer untersucht und verglichen

werden. Die Tunnelraten werden dabei aus den Transienten der Transportmessungen

ermittelt. Es wird gezeigt, wie sich durch die Form der Barriere die Tunnelzeiten beein-

�ussen lassen.

Die zeitaufgelösten Transportmessungen ermöglichen einen direkten Zugang zu der Zeit-

entwicklung der Umladeprozesse. Abbildung 4.13 zeigt eine halblogarithmische Auftra-

gung der Stromamplituden für eine Messung der Probe DO1881. Die Transienten zeigen

ein nahezu monoexponentielles Abklingverhalten, mit einer Verringerung der Tunnel-

zeiten zu höheren Beladungszahlen. Die gemessenen Tunnelzeiten τ in Tabelle 4.8 sind

aus mehreren Messungen über Be- und Entladetransienten gemittelt. Die Fehlertoleranz

sollte in etwa bei 20% liegen, da die exponentiellen Anpassungen nach Gl. (3.5) verschie-
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Zustand UG/V Energie/meV

h1 0,88 -178,8

h2 0,64 -158,8

h3 0,30 -127,3

h4 0,11 -113,2

h5 -0,08 -99,1

h6 -0,28 -84,0

Tabelle 4.6.: Ladespannungen und Energien nach Rechnungen mit 1D Poisson für die

Probe DO1881. Der Hebelarm folgt aus der linearen Regression zu λ = 12,1.

Abstand DO1880 /meV DO1881/meV

∆Φ1→2 21,4 20,0

∆Φ2→3 28,6 31,5

∆Φ3→4 15,8 14,1

∆Φ4→5 15,6 14,1

∆Φ5→6 16,5 15,1

EC
ss 21,4 20,0

~ω 23,3 26,5

Tabelle 4.7.: Vergleich der Energieabstände der beiden untersuchten Proben mit jeweils

konstantem Hebelarm von 14,1 (DO1880) bzw. 12,1 (DO1881).

dener Messungen starke Abweichungen in den Zeitkonstanten im Bereich von ≈ 50% des

Mittelwertes zeigen. Dies tritt auch bei den bereits 30.000 fach gemittelten Transienten

der Probe DO1880 auf. Ursächlich für die starken Schwankungen können bereits leichte

Spannungsdi�erenzen von Messungzyklus zu Messungzyklus sein und die vergleichsweise

groÿe Di�erenz von 20 mV zwischen Be- und Entladepuls. Diese Di�erenzen gehen dabei

exponentiell in die Tunnelwahrscheinlichkeit T ein.

Zur Berechnung der Tunnelwahrscheinlichkeit T nach Gleichung (2.29) wird die Barriere

V (z)−E durch das in Abb. 4.14 gezeigte, e�ektive Potential Veff(z) angenähert. Es wird

dabei vereinfachend eine konstante Dielektrizitätszahl zwischen Quantenpunktschicht
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und Rückkontakt angenommen. Nach den 1D-Poisson-Rechnungen kreuzt die Fermi-

Energie das Valenzband im Quantentopf des 2DHG im Abstand von etwa 3 nm zur

Al0,9Ga0,1As-Schicht (vgl. Abb. 3.1). Dies wird in der Form der Barriere berücksichtigt.

Als Bindungsenergien Ei der Zustände werden für beide Proben gleiche Quantenpunkte

angenommen und die nach der Ersatzschaltung ermittelten Werte verwendet (vgl. Ta-

belle 4.2, Ec). Für die Valenzbanddiskontinuität wird der Wert ∆EV = 429 meV und als

e�ektive Massen die mittleren leichten Lochmassen m∗lh für die jeweiligen Festkörper ver-

wendet1 Das Integral über κ lässt sich in die Bereiche für GaAs und Al0,9Ga0,1As trennen

1Die gute Übereinstimmung der Rechnungen deuten auf eine leichte Tunnelmasse hin. Durch eine

Streuung kann es beim Tunneln zu einem Übergang von der schweren zur leichten Lochmasse kom-

men [Xia88].
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Abbildung 4.13.: Logarithmische Auftragung der Amplituden der Entladetransienten

mit Anpassung nach Gl. (3.5) für eine Messung der Probe DO1881

bei den Spannungen der Maxima in den Spektren. Für höhere Belade-

zustände verkürzen sich die Tunnelzeiten τ .
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DO1880 τ/µs Ei/meV TWKB/10−9 f/THz 2πf~/meV

h1 20 186 1,02 48,8 201,9

h2 18 166 1,68 33,0 136,6

h3 16 134 3,92 15,9 65,9

h4 14 120 5,83 12,2 50,7

h5 12 106 8,84 9,4 39,0

h6 11 93 13,27 6,9 28,3

DO1881 τ/s Ei/meV TWKB/10−15 f/THz 2πf~/meV

h1 22 186 0,92 49,4 204,2

h2 18 166 1,71 32,4 134,1

h3 14 134 4,9 14,6 60,3

h4 11 120 7,96 11,4 47,2

h5 9 106 13,21 8,4 34,8

h6 8 93 21,61 5,8 23,9

Tabelle 4.8.: Vergleich der Tunnelraten aus den Transporttransientenmessungen für die

zwei untersuchten Proben mit errechneter Transmissionswahrscheinlichkeit

TWKB und Versuchsfrequenz f .

und analytisch auswerten. Zur Berechnung der Tunnelzeiten wird noch die Frequenz f

benötigt, mit der das quasiklassische Teilchen versucht, die Barriere zu überwinden.

In diesem Bild gibt es keine Möglichkeit, diese Frequenz direkt zu berechnen. Die in

Tabelle 4.8 gezeigten Frequenzen wurden aus den gemessenen Tunnelzeiten τ und den

errechneten Wahrscheinlichkeiten TWKB berechnet. Die berechneten Frequenzen für den

niedrigsten Zustand h1 entsprechen mit einem Energieäquivalent von 200 meV in etwa

der Quantisierungsenergie Ez = ~2π2/2m∗d2 ≈ 229 meV eines 2 nm Breiten Potential-

topfes mit der schweren Lochmasse von InAs. Hier muss allerdings berücksichtigt werden,

dass viele nicht exakt bestimmbare Gröÿen exponentiell in die Rechnungen eingehen,

weswegen die Frequenz hier nur die Bedeutung eines systemspezi�schen Parameters hat.

Die Rechnungen zeigen auÿerdem einen starken Rückgang der Frequenzen zu höheren

Beladungszahlen der Quantenpunkte. Dies ist höchstwahrscheinlich auf eine Überschät-
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zung der Tunnelwahrscheinlichkeit TWKB zurückzuführen. In das Modellpotential in Abb.

4.14 geht nur der, über die Gesamtstruktur gemittelte Verlauf der Valenzbandkante für

die jeweils angelegte Gatespannung ein. Für einen Ladungsträger, der in einen bereits

geladenen Quantenpunkt tunnelt, kommt es jedoch lokal zu einer Anhebung der Poten-

tiellen Energie durch die, in dem Quantenpunkt gespeicherte Ladung. Nach [Luyken99a]

entspricht der geladene Quantenpunkt elektrostatisch einer geladenen Kreisscheibe. Das

Potential entlang der Symmetrieachse z einer geladenen Kreisscheibe mit Radius R hat

die Form (siehe z.B.: [Tipler07]):

UKreisscheibe =
(N − 1)e

2πεε0R2

(√
R2 + z2 − z

)
+ V0

Beim Transfer des N -ten Ladungsträgers ist der Quantenpunkt N − 1-fach geladen. R

und V0 werden so gewählt, dass die Energiedi�erenz eUKreisscheibe zwischen Rückkontakt

und Quantenpunkt der gemessenen Coulomb-Blockade von 20 meV entspricht. In diesem

Fall beträgt R = 8,8 nm. Dieses Potential wird auf die Barriere addiert und die Tunnel-
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Abbildung 4.14.: Modell der Tunnelbarriere Veff(z) für die Berechnungen der Tunnel-

wahrscheinlichkeit TWKB. Ei bezeichnet die Energiedi�erenz zwischen

chemischen Potential und GaAs-Valenzbandkante bei den Ladevor-

gängen, ∆EV ist die Valenzbanddiskontinuität des Heteroübergangs

GaAs/Al0,9Ga0,1As.
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DO1880 τ/µs τtheoretisch/µs TWKB+Coulomb/10−9

h1 20 (20,0) 1,02

h2 18 16,9 1,21

h3 16 10,6 1,94

h4 14 10,3 1,98

h5 12 10,1 2,03

h6 11 10,1 2,02

DO1881 τ/s τtheoretisch/s TWKB+Cloulomb/10−15

h1 22 22,3 0,92

h2 18 18,0 1,14

h3 14 10,0 2,05

h4 11 9,7 2,10

h5 9 9,5 2,17

h6 8 9,5 2,16

Tabelle 4.9.: Vergleich der gemessenen mit den errechneten Tunnelzeiten unter Berück-

sichtigung der Coulomb-Blockade.

wahrscheinlichkeiten TWKB+Coulomb errechnet (siehe Tabelle 4.9). Die Frequenz des ersten

Beladezustandes h1 der Probe DO1880 wird nun verwendet um die Erwartungswerte für

die übrigen Zeiten zu ermitteln. Die Zeiten der s-Zustände h1 und h2 werden hierdurch

gut reproduziert, in den höheren Beladungszuständen zeigen sich etwas gröÿere Abwei-

chungen. In diesem klassischen Bild würde es zu einer Abstoÿung der, in dem Quan-

tenpunkt gespeicherten Ladungen kommen, die zu einer Ausdehnung der Kreisscheibe

führen. Für die nur schwach an das einschlieÿende Potential gebundenen Lochzustände

müsste dann die Coulomb-Blockade zu höheren Beladungszahlen N abnehmen.

Ein Vergleich der Frequenzen in Tabelle 4.8 zwischen den beiden unterschiedlichen Pro-

ben zeigt eine sehr gute Übereinstimmung für alle Ladezustände. Dies ist ein Indiz

dafür, dass der Beitrag der Barriere zu den Tunnelzeiten gut mit dem WKB-Modell

zu beschreiben ist. Die Wirkung einer Änderung der Breiten d in Barrieren der Form

GaAs/Al0,9Ga0,1As/GaAs (Abb. 4.14) lassen sich so berechnen. Abbildung 4.15 zeigt

die Gröÿenordnungen der erwarteten Tunnelzeiten dieser Strukturen für den energetisch
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Abbildung 4.15.: Erwartete Tunnelzeiten a) des h1- und b) des h6-Zustandes, für Bar-

rieren nach Abb. 4.14 bei verschieden breiten GaAs bzw. Al0,9Ga0,1As

Schichten. Die Konturlinien zeigen den Abstand zwischen drei Gröÿen-

ordnungen.

tiefsten Zustand h1 und den höchsten h6. Experimentell zugänglich sind die Bereiche

mit Zeiten von µs bis s. Bei reinen GaAs-Barrieren unterscheiden sich die Tunnelzeiten

der beiden Zustände deutlich, wie schon aufgrund der Energiedi�erenz der Barrieren

erwartet. Für technische Anwendungen sind kurze Tunnelzeiten (Zugri�szeit) und lange

Speicherzeiten (nicht �üchtiger Speicher) von groÿem Interesse, was für die Verwendung

hoher Barrieren spricht, da bei hohen Temperaturen die thermische Emission unter-

drückt wird [Marent07]. Für die Spektroskopie von Nichtgleichgewichtszuständen ist

eher eine stärkere Trennung der einzelnen Tunnelzeiten und damit eine niedrigere Bar-

riere von Interesse, da es trotz der geringen energetischen Breite des zweidimensionalen

Rückkontaktes bei schnellen Pulsen aufgrund des RC-Gliedes der Probe zu einer �Ver-

schmierung� kommt. Eine Beladung der Nichtgleichgewichtniveaus ist dennoch möglich,

wenn die Tunnelzeiten sich genügend stark unterscheiden.
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5. Zusammenfassung und Ausblick

Die diskreten Valenzbandniveaus von InAs-Quantenpunkten in einer GaAs-Matrix wur-

den mit Kapazitätsspannungsspektroskopie und Transporttransientenspektroskopie un-

tersucht. Zur Berechnung der Energieniveaus aus den angelegten Gatespannungen wur-

de der Bandkantenverlauf mit einer Software berechnet, die Schrödinger- und Poisson-

Gleichungen für die untersuchten Proben löst. Die Lösungen wurden erweitert, um

die Beladungse�ekte der Quantenpunkte zu berücksichtigen. Im Modell einer Ersatz-

schaltung von Kapazitäten wurde dabei das Quantenpunktensemble durch eine energie-

abhängige lokale Zustandsdichte simuliert. Es wurde gezeigt, dass ein spannungsunab-

hängiger Hebelarm zu einem nicht unwesentlichen Fehler bei der Umrechnung der Gate-

spannung in Energieabstände führen kann. Die Vernachlässigung der Beladungse�ekte

und die Annahme eines konstanten Hebelarms führt zu einer Überschätzung der Ener-

gieskala, die mit der Beladung zunimmt.

Die berechnete Bindungsenergie für den N = 1 Beladungszustand und die Coulomb-

Wechselwirkung zeigten eine Übereinstimmung im Bereich von 5 bis 10% mit vergleich-

baren Messungen nach [Bock03] oder [Reuter05a]. Bei höheren Beladezuständen zeigte

das System jedoch ein qualitativ anderes Verhalten als erwartet. Das durch [Reuter05a]

beobachtete Verhalten der unvollständigen p-Schalen Befüllung konnte an diesem Sys-

tem weder durch die Energieabstände, noch durch ihre Magnetfeldabhängigkeit bestätigt

werden. Ein Vergleich der Photolumineszenz-Wellenlängen und der Bindungsenergien

des unteren Lochniveaus (siehe Tab. A.2) legt den Schluss nahe, dass die hier untersuch-

ten Quantenpunkte geringfügig kleiner sind. Bereits diese kleinen Veränderungen in der

Morphologie der Quantenpunkte haben groÿe Auswirkungen auf die Schalenstruktur der

Löcher.

Die Frage, die hier o�en bleibt ist, ob sich das vorliegende System durch ein schwach

wechselwirkendes Einteilchenbild beschreiben lässt und ob sich die gleichen Abstände

der N = 3 bis N = 6 Niveaus durch die geringe Lokalisierungsenergie und Vielteilchen-

e�ekte erklären lassen. Zu diesem Zweck werden in einer Kooperation mit der Arbeits-
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gruppe von Prof. Dr. Dieter Bimberg1 Rechnungen durchgeführt, die auf dem 8-Band

k·p-Modell basieren. Erste Ergebnisse bestätigen bereits die Vermutung der Befüllung

der p+-Zustände und einer geringen Austauschwechselwirkung. In Verbindung mit der

experimentellen Abbildung der Wellenfunktionen (vgl. [Bester07]) sollen sie helfen, das

Verständnis der Vielteilchene�ekte in den untersuchten Proben zu verbessern.

Die gezeigten Magnetfeldmessungen sollten einen Aufschluss über die Drehimpulsände-

rungen der Lochzustände in den Quantenpunkten geben. Jedoch ist hier nicht auszu-

schlieÿen, dass die beobachteten Dispersionen nicht von einem E�ekt des Magnetowider-

stands in dem zweidimensionalen Rückkontakt überlagert werden. Um dies zu überprü-

fen soll versucht werden, die Beweglichkeit des zweidimensionalen Rückkontaktes einer

Probe mit einem Ionenstrahl zu verringern. An einer entsprechend präparierten Struktur

sollen die Dispersionen bis 12 T mit den bereits gemessenen verglichen werden.

Es konnte gezeigt werden, dass die Transportmessungen des zweidimensionalen Loch-

gases eine Spektroskopie der aus den Kapazitätsmessungen bekannten Zuständen er-

lauben. Dies sind die ersten Spektren dieser Art an einem Löchersystem. Auch konnte

gezeigt werden, dass die Transportmessungen für Proben mit langen Tunnelzeiten in

der Gröÿenordnung von Sekunden eignen und hierdurch einen weiteren Vorteil gegen-

über Kapazitätsmessungen bieten. Mit dieser Messmethode ist es nun möglich auch

Nichtgleichgewichtszustände zu spektroskopieren. Das Hauptproblem hierbei stellt die

Begrenzung der zeitlichen Au�ösbarkeit und die �Ausschmierung�, durch das mit der

Gröÿe der Gate�äche verbundene RC-Glied der Probe dar. In Zukunft sollen nun Proben

mit kleineren Gate�ächen prozessiert werden, die auch die Beobachtung von angeregten

Lochzuständen erlauben. Mit diesen Messungen lieÿe sich auch direkt die Quantisie-

rungsenergie bestimmen, die nahe an der Coulomb-Energie liegen sollte.

Im Rahmen einer weiteren Kooperation mit der TU Berlin wurden Transportmessungen

bei höheren Temperaturen untersucht, die in Hinblick auf eine Anwendung als Spei-

cherzelle vielversprechende Ergebnisse zeigen. Erste Proben mit GaSb Quantenpunkten

[Kamarudin10] und dreidimensionalem Rückkontakt sollen zunächst mit Kapazitäts-

messungen untersucht werden. In Kooperation mit der Arbeitsgruppe von Dr. Manus

Hayne2 sollen auch Wafer mit zweidimensionalem Rückkontakten hergestellt werden.

1Institut für Festkörperphysik, Technische Universität Berlin
2Semiconductor Physics and Nanostructures, Physics Department - Lancaster University, UK
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Diese Proben stellen einen vielversprechenden Kandidaten für den Prototypen eines

Flash-Speicher Konzepts mit Quantenpunkten dar.

Die Untersuchung der Tunnelzeiten hat gezeigt, dass die Zugabe von Al in der Tunnelbar-

riere zu einem starken Zusammenrücken der Tunnelzeiten der einzelnen Energieniveaus

führt. Ohne eine genaue Kenntnis der Wellenfunktionen sind die Rechnungen nicht di-

rekt übertragbar, lassen jedoch auch für andere Materialsysteme eine Abschätzung der

Gröÿenordnung der erwarteten Tunnelzeiten zu. Die hierbei gewonnenen Erkenntnisse

können bei dem Wachstum neuer Proben berücksichtigt werden. Für genauere Aussagen

und ein besseres Verständnis der Löchertunnelprozesse, sollen Rechnungen durchgeführt

werden, die die Form der Wellenfunktionen parallel zur Wachstumsrichtung in den zwei

gebundenen Zuständen QD bzw. 2DHG berücksichtigen. Hierdurch soll geklärt werden,

ob die Änderung in den Tunnelzeiten der Vielteilchenzustände durch eine dreidimen-

sionale Verbiegung der Bandstruktur oder durch eine Veränderung der Zustandsdichte

bedingt werden.

Die Lochzustände in selbstorganisiert gewachsenen Quantenpunkten sind vielverspre-

chende Systeme für die Grundlagenforschung der Quanten-Informationstechnologie, auf-

grund der hohen Kohärenz- und Relaxationszeiten des Löcherspins. Die bisher unter-

suchten Ensemblegröÿen lassen eine energetische Au�ösung der Spinaufspaltung nicht

zu. Eine geeignete Wahl von Spannungspulsen erlaubt die Präparation spinpolarisierter

Vielteilchenzustände, was prinzipiell die Messung von Spinrelaxationszeiten auch an grö-

ÿeren Ensemblen erlaubt. Auf lange Sicht sollen aber Proben mit so kleinen Gate�ächen

hergestellt werden, dass die rein elektrische Spektroskopie von einzelnen Quantenpunk-

ten gemessen werden kann. An diesen Proben sollte die Spinaufspaltung der Energieni-

veaus direkt messbar sein.
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A. Daten der Proben

A.1. Schichtfolge der DO1880(81)-Wafer

Ober�äche

10 nm GaAs

120 nm Al0.9Ga0.1As

5 nm GaAs

1,8 . . . 2 ML InAs

5 nm GaAs

5 nm (10 nm) Al0.9Ga0.1As

8 nm GaAs

7 nm Al0.9Ga0.1As

30 nm Al0.9Ga0.1As C-Dotiert, NA = 2 · 1018cm−3

1000 nm Al0.9Ga0.1As

300 nm GaAs

Substrat

Tabelle A.1.: Schichtfolge des Wafers für die Proben DO1880(81) nach Angabe des Her-

stellers Innolume GmbH.
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A.2. Kurzübersicht und Vergleich der Proben

DO1880(81) Proben nach Reuter et al.

InAs QDs 1,8. . . 2 ML 2. . . 2,1 ML

PL Grundzustand 1170 nm 1260 nm

unteres Lochniveau -186 meV -204 meV

Tunnelbarriere 5. . . 10 nm GaAs, 5(10) nm Al0.9Ga0.1As 17 nm GaAs

Rückkontakt 2DHG in 8 nm GaAs Topf 3D in 300 nm p-GaAs

Dotierung NA = 2 · 1018cm−3 (7 nm Spacer) NA = 6 · 1018cm−3

Dotierspezies Kohlensto� Kohlensto�

Übergitter kein, nur Al0.9Ga0.1As AlGaAs/GaAs 3 nm/1 nm

Tabelle A.2.: Vergleich der untersuchten Probenstrukturen mit den von Reuter et al.

[Reuter04, Reuter05a, Reuter05b].
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B. Eingabe-Dateien und Quellcode

B.1. Beispiel einer Eingabedatei für das Programm

1D-Poisson

# DO1880

surface schottky=.77 v1

GaAs t=100 dy=5 no electrons no holes

AlGaAs t=1000 dy=50 x=.9 no electrons no holes

AlGaAs t=200 dy=5 x=.9

GaAs t=50 dy=1

#sheetcharge=3.0e+10

InGaAs_GaAs t=12 dy=.2 x=.202

GaAs t=50 dy=1

AlGaAs t=50 dy=5 x=.9

GaAs t=80 dy=5

AlGaAs t=70 dy=5 x=.9

AlGaAs t=300 dy=5 x=.9 Na=2e18

AlGaAs t=100 dy=5 x=.9

AlGaAs t=900 dy=50 x=.9

AlGaAs t=9000 dy=500 x=.9 no electrons no holes

GaAs t=3000 dy=500 x=.9 no electrons no holes

substrate

v1 -2 4 0.02

schrodingerstart=1290

schrodingerstop=1705

temp=4.2K

Maxiterations=200

no status

dy=5
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B.2. C-Quellcode zur Simulation des

Kapazitätsspektrums

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

const double A1=0.0057;

const double w1=0.0092;

const double A2=20;

const double w2=0.055;

const double xc1=0.0355;

const double xc2=0.056;

const double xc3=0.087;

const double xc4=0.101;

const double xc5=0.115;

const double xc6=0.128;

const double xc7=0.24;

double density(double x){

return ((A1/(w1*sqrt(M_PI/2)))*exp(-2*((x-xc1)/w1)*((x-xc1)/w1))

+(A1/(w1*sqrt(M_PI/2)))*exp(-2*((x-xc2)/w1)*((x-xc2)/w1))

+(A1/(w1*sqrt(M_PI/2)))*exp(-2*((x-xc3)/w1)*((x-xc3)/w1))

+(A1/(w1*sqrt(M_PI/2)))*exp(-2*((x-xc4)/w1)*((x-xc4)/w1))

+(A1/(w1*sqrt(M_PI/2)))*exp(-2*((x-xc5)/w1)*((x-xc5)/w1))

+(A1/(w1*sqrt(M_PI/2)))*exp(-2*((x-xc6)/w1)*((x-xc6)/w1))

+(A2/(w2*sqrt(M_PI/2)))*exp(-2*((x-xc7)/w2)*((x-xc7)/w2)));

}

int main(void) {

// init

double U=0;

double C1=10.8118/138.566;

double C2=10.8118/14.434;

double C=1/(1/C1+1/C2);

double U2=U*C1/(C1+C2);

double D=0;

double dU=0.0001;

int i;

// print header
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FILE * pFile;

pFile = fopen ("cv_nsc.dat","w");

fprintf (pFile,"# A=%f, w=%f, xc1=%f, xc2=%f, xc3=%f, xc4=%f, xc5=%f, xc6=%f\n"

,A1,w1,xc1,xc2,xc3,xc4,xc5,xc6);

fprintf (pFile,"U\t U2\t C1\t C2\t D\t C\n");

fprintf(pFile,"%f\t %f\t %f\t %f\t %f\t %f\n",U,U2,C1,C2,D,C);

// run bias

for (i=1;i<=40000;i++){

U=U+dU;

U2=U2+dU*C1/(C1+C2);

D=density(U2);

C2=10.8118/14.434+D;

C=1/(1/C1+1/C2);

fprintf(pFile,"%f\t %f\t %f\t %f\t %f\t %f\n",U,U2,C1,C2,D,C);

}

return EXIT_SUCCESS;

}
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