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Zusammenfassung

Im Rahmen der vorliegenden Arbeit wurde die Wechselwirkung von selbstorganisiert
gewachsenen InAs-Quantenpunkten mit einem zweidimensionalen Lochgas (2DHG) un-
tersucht. Die Wafer der Proben entstanden bei der Dortmunder Firma Innolume GmbH
und wurden an der TU Berlin zu einer Transistorstruktur prozessiert. Die Beladung der
Quantenpunkte mit Léchern aus dem 2DHG lédsst sich {iber das Anlegen einer Gate-
spannung steuern. Die beiden Systeme sind durch eine Al,Ga;_,As-Barriere getrennt.
Bei einer Temperatur von 4,2 K ist dabei der direkte Tunnelprozess der dominierende
Transfermechanismus zwischen 2DHG und Quantenpunkten.

An einer Probe mit Tunnelzeiten im Bereich von ps wurden Kapazitatsspannungs-
spektren (CV) untersucht. Zur Bestimmung der Energieniveaus aus den angelegten Ga-
tespannungen wurde eine Software verwendet, die Schrédinger- und Poisson-Gleichung
selbstkonsistent 16st. Die Ergebnisse wurden um ein iteratives Verfahren erweitert, um
den Einfluss der Quantenpunktbeladung mit Hilfe einer Ersatzschaltung zu simulieren.
Die Energieniveaus und ihre Dispersion im Magnetfeld wurden im Rahmen eines schwach
wechselwirkenden Einteilchenbildes diskutiert. Die hier untersuchten Energien zeigten
ein unerwartetes Verhalten gegeniiber vergleichbaren Systemen, was auf eine andere
Morphologie der Quantenpunkte schlieffen ldsst.

An derselben Probe wurden zeitaufgeloste Transportmessungen durchgefiihrt. Zum ers-
ten Mal fiir Lochersysteme wurden aus diesen Messungen Spektren generiert, die eine
Auflésung der einzelnen Ladezusténde erlauben. Ein Vergleich dieser Spektren zu den
CV-Spektren zeigt die Aquivalenz beider Methoden.

Im Gegensatz zu CV-Messungen ermdoglichen die Transportmessungen den Zugang zu
einer weiteren Probe mit Tunnelzeiten im Bereich einiger Sekunden. Dies erlaubt einen
Vergleich der Tunnelzeiten fiir die verschiedenen Barrieren der beiden Proben. Ein semi-
klassisches Modell fiir den Tunnelvorgang konnte die gemessenen Tunnelzeiten gut be-
schreiben. Das Modell wurde verwendet, um die Tunnelzeiten bei Variation der Barrie-

renbreite zu berechnen, was in das Wachstum neuer Probenstrukturen einfliefsen kann.






Abstract

In the present work the interaction between self-organized InAs quantum dots (QD) and
a two-dimensional hole gas (2DHG) was investigated. The wafers were grown by Innolu-
me GmbH in Dortmund and processed into transistor structures by the TU Berlin. The
gate contact can be used to tune the number of hole charges stored in the dots which are
transferred from the 2DHG. The QDs and the 2DHG are separated by an Al,Ga;_,As-
barrier. At the temperature of 4.2 K direct tunneling is the dominant process of charge
transfer between the two systems.

A sample with tunneling times in the order of ps was investigated by capacitance-voltage-
spectroscopy (CV). In order to derive the energy levels from the applied gate voltage the
structure was simulated by a program which solves Schrédinger and Poisson equations
self-consistently. The results were extended by an iterative procedure to take the charging
of the QDs into account within the framework of an equivalent capacitance circuit.
The spacing of the energy levels and the shift in an applied magnetic field were discussed
within a weakly interacting particle model. The results showed an unexpected behavior
compared to similar systems, which can be attributed to a difference in morphology of
the investigated QDs.

Time resolved transport measurements were conducted on the same sample. Using these
new measurement technique, charging spectra were extracted for the first time from the
transients of the time-resolved change in the conductance of the 2DHG. A comparison of
these generated spectra to the CV-spectra demonstrates, that the transients are indeed
cause by tunneling events from differently charged QDs.

In contrast to the CV measurement, the time resolved method allows the investigation of
a second sample with tunneling times in the order of seconds. This yields the comparison
of tunneling times between samples with different barriers. A semi-empirical model for
the tunneling process showed good agreement with experimental data. The model was
used to calculate tunneling times for different barrier thickness, which can be considered

when growing new sample structures.
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1. Einleitung

In den spaten 1920er Jahren wurde das Konzept der Bandstruktur von Felix Bloch vor-
gestellt. Es findet sich heute in jedem Lehrbuch iiber Festkorperphysik z.B. in [Ibach09]
oder [Kittel02]. Es erkléart die Existenz von Metallen, Isolatoren und Halbleitern und be-
schreibt ihre elektronischen Eigenschaften. In der Sprache der Wellenmechanik schlagt
es die Briicke zwischen den diskreten Energieniveaus isolierter Atome und der kontinu-
ierlichen Dispersion freier Elektronen. Die zugrunde liegende Annahme ist das unendlich
ausgedehnte Gitter der Atomriimpfe, deren Potential fiir die Elektronen invariant gegen-
iiber Translationen ist. In seiner Giiltigkeit ist es auf das Volumenmaterial beschrinkt,
also fiir den Fall eines, im Vergleich zu seiner Gitterkonstante grofien Festkorpers.

Die moderne Nanotechnologie erlaubt die Préparation von Strukturen mit wenigen
10.000 Atomen, fiir die diese Annahme eines grofsen Volumens nicht mehr gegeben ist.
Ihre elektronischen Eigenschaften zeigen atomaren Charakter, weswegen sie als kiinst-
liche Atome bezeichnet werden. Sie schlagen wiederum die Briicke zwischen der Physik
einzelner Atome und der Physik des Festkorpers. Durch Variation der Materialsysteme
lassen sich Wechselwirkungsenergie und potentielle Energie der Elektronen verdndern

und erlauben so einen neuen Blickwinkel auf beide Gebiete.

In dieser Arbeit stehen selbstorganisierte Quantenpunkte im Mittelpunkt. Sie bieten im
Unterschied zu lithographisch definierten Quantenpunkten den Vorteil grofserer Quan-
tisierungsenergien aufgrund ihrer kleineren Abmessungen. Dies erlaubt Untersuchun-
gen von Quanteneffekten bereits bei Temperaturen des fliissigen Heliums und dariiber.
Letzteres ist der Grund fiir eine erhoffte Anwendbarkeit in einem zukiinftigen Speicher-
chip |Geller08] oder die Realisierung eines Quantencomputers bei héheren Temperaturen
|Hanson08|, [Kroutvar(04].

Gerade die Betrachtung der Valenzbandzustinde in diesen Systemen ist von grofsem
Interesse. Zum einen wurden sehr hohe Einschlussenergien an Lochersystemen vorausge-

sagt [Marent07], die einen Einsatz als nicht fliichtige Speicher vielversprechend machen.



Zum anderen wurden aufergewthnlich lange Spin Relaxationszeiten an Lochern in selbst-
organisiert gewachsenen Quantenpunkten gefunden [Heiss07], was diese Systeme fiir die
Quanten-Informationstechnologie interessant macht [Fischer08|.

Die in dieser Arbeit untersuchten Proben stellen konzeptionell einen Flash-Speicher dar.
Als Speichermedium dient ein Ensemble aus > 10° Quantenpunkten, deren Speicherzu-
stand mit einer Gatespannung eingestellt und mit einem zweidimensionalen Leitkanal
ausgelesen werden kann. Das Anwendungsziel der Forschung wire die Realisierung ei-
ner Speicherzelle mit einem einzelnen Quantenpunkt, dessen Ladungszustand auch bei
Raumtemperatur iiber Jahre erhalten bliebe. Von grundlagenphysikalischem Interesse

ist die Untersuchung von Vielteilcheneffekten an Systemen mit geringen Teilchenzahlen.

Die Anzahl der Verdffentlichungen iiber InAs Quantenpunkte ist reichhaltig, aber nur
wenige betrachten die Valenzbandzustinde. In Verbindung mit einem dreidimensionalen
Riickkontakt wiren die Arbeiten von [Reuter0bal, [Kailuweit06] und [Bock03] zu erwéh-
nen; in Verbindung mit einem zweidimensionalen Lochgas ist die Arbeit von [Marent09]
ZU nennen.

In dieser Arbeit wird die Wechselwirkung von selbstorganisiert gewachsenen InAs-Quan-
tenpunkten mit einem zweidimensionalen Lochgas untersucht. Dabei stehen die diskreten
Energieniveaus und die Tunneldynamik der Prozesse im Vordergrund. In Kapitel 2 dieser
Arbeit sollen die Grundlagen des zweidimensionalen Lochgases und der Quantenpunkte
sowie ihre Interaktion beschrieben werden. Kapitel 3 beschreibt die Proben und den ex-
perimentellen Aufbau und Kapitel 4 prasentiert und diskutiert die Ergebnisse. Kapitel 5

zeigt schlieflich Perspektiven fiir den weiteren Verlauf der Arbeiten auf.



2. Grundlagen

2.1. Halbleiter-Nanostrukturen

Die moderne Mikroelektronik basiert auf der besonderen Eigenschaft von Halbleiterma-
terialien, dass sich ihre Leitfahigkeit und Figenschaften wie Polaritit oder Beweglichkeit
rdumlich und zeitlich iiber Gréfenordnungen beeinflussen lassen. Statische Einfliisse, wie
Dotierung oder zeitlich verdnderliche, wie Beleuchtung, elektrische Felder oder Tempe-
raturen wirken sich auf die Beweglichkeiten oder die Ladungstrigerkonzentrationen aus.
Die noch immer an Bedeutung gewinnende Nanotechnologie hat das Ziel, Eigenschaften

von Strukturen mit Dimensionen von wenigen bis einigen hundert Nanometern zu erfor-
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Abbildung 2.1.: Bandliicke iiber Gitterkonstante verschiedener elementarer und binédrer
Halbleiter mit Verbindungslinien fiir ternére Legierungen bei 7" = 300 K,
nach Daten aus |Levinshtein96] und [Chiang]. Die in dieser Arbeit un-

tersuchten Halbleiter sind blau markiert.



schen. Dabei stehen je nach Forschungsgebiet unterschiedliche Systeme im Mittelpunkt

des Interesses.

Die Halbleiterindustrie ist bereits seit Jahren in den Bereich der Nanotechnologie vorge-
drungen. Hier sind diinne Schichten und Inseln verschiedener Materialien innerhalb eines
Halbleiter-Festkorpers von besonderem Interesse. Mit Hilfe epitaktischer Verfahren, wie
der Molekularstrahlepitaxie (MBE!) [Chang73| oder der metallorganischen Gasphase-
nepitaxie (MOCVD?), ist es moglich geworden, verschiedene Halbleitermaterialien auf-
einander zu wachsen. Prizisionen in der Grofenordnung von einzelnen Monolagen (ML)
sind dabei moglich. FEine besondere Bedeutung kommt hierbei den III-V-Halbleitern zu,
deren Gitterkonstanten dicht beieinander liegen, die aber durch Mischung der Kompo-
nenten in terndren und quaterndren Legierungen eine nahezu beliebige Einstellung der
Energieliicke erlauben (vgl. Abb. 2.1 oder Tab.2.1).

An den sehr scharf definierbaren Grenzflichen solcher Heterostrukturen treten Diskon-
tinuitdten in den Leitungsbandkanten AFp, und Valenzbandkanten AFEy auf. Hierdurch
lassen sich Potentiallandschaften fiir die Ladungstriager schaffen (band gap engineering),
die sowohl fiir die Anwendung (HEMT? HBT*, Halbleiterlaser, usw.) als auch von
grundlegendem Interesse sind. Man unterscheidet zwischen Typ I und Typ II-Systemen,
je nachdem ob die Vorzeichen der Diskontinuitaten verschieden oder gleich sind. So
stellt eine Typ I Schichtfolge wie AlAs/GaAs/AlAs in Wachstumsrichtung einen Po-
tentialtopf fiir Elektronen und Loécher dar, wihrend ein Typ II-System wie die Folge
GaAs/GaSb/GaAs einen Potentialtopf fiir Locher, aber einen Potentialwall fiir Elektro-
nen bildet®. Trotz der abrupten Uberginge und der Verletzung von Translationssym-
metrie lassen sich Nanostrukturen auch im Rahmen der Effektiven-Masse-Naherung mit

einer Basis aus Bloch-Funktionen sehr gut beschreiben [Foreman95].

IMBE: molecular beam epitaxy

2MOCVD: metal organic chemical vapour deposition

SHEMT: high electron mobility transistor

4HBT: hetero-bipolartransistor

SLiegt das Valenzband in einem Gebiet hoher, als das Leitungsband im anderen, wird von einem Typ

I1T Ubergang gesprochen.



Al,Ga;_,As (x>0,45) Ga,In,_,As

Gitterkonstante aO/A 5,653 4 0,008x 6,058 — 0,405x
Bandliickenenergie Eg/eV 1,9+ 0,13z + 0,142> 0,36 + 0,632 + 0,432
relative Dielektrizititszahl & 12,9 — 2.8z 15,1 — 2,92 + 0,722
effektive Elektronenmasse m,/my 0,85 — 0,14z 0,023 4+ 0,037x
leichte Lochmasse myy, /mg 0,082 + 0,068x 0,026 + 0,056z

schwere Lochmasse myy/mg 0,51 + 0,25z 0,41 +0,1x

Tabelle 2.1.: Einige wichtige Festkorperparameter nach [Levinshtein96|, der in dieser Ar-
beit untersuchten Halbleiter bei 7' = 300 K.

2.1.1. Eindimensionaler Einschluss - 2DEG/2DHG

Eine Schicht GaAs in Al,Ga;_,As wirkt auf die Ladungstriger wie ein Potentialtopf
in Wachstumsrichtung z. Die Schrédinger-Gleichung in der Effektiven-Masse-Ndherung

lautet:

(109 19 1 9
_ = - — 174 =F ) 2.1
[ 2 (m;‘; Ox? * m3 Oy? - m} 822) * (2)} v(r) vir) (21)
Ist die Dicke d dieser Schicht klein genug (< 10nm), lasst sich das Energiespektrum der
Kristallimpulse k, in z Richtung nicht mehr als kontinuierlich anndhern und es treten

Quantisierungseffekte in Erscheinung. Zur Losung der Schrodinger-Gleichung lasst sich

ein Separationsansatz fiir die drei Raumrichtungen wéhlen:

U(r) = pu(z)e!t . (2:2)

Parallel zur GaAs-Schicht bleibt der Bloch-Wellen-Charakter erhalten, k, und k, sind
weiterhin gute Quantenzahlen. Fiir die 2-Richtung ergeben sich diskrete Niveaus, die
iiber die Quantenzahl n > 1 indiziert sind. Mit der Vereinfachung eines unendlich hohen
Rechteck-Potentials ergeben sich fiir ¢, (2z) Sinus- und Kosinus-Funktionen, die an der
Grenzschicht verschwinden (Abb. 2.2a). Fiir die Energieeigenwerte erhélt man:

Rk PR RPrtn?

E = —. 2.

Fiir ein gegebenes n ergibt sich als Dispersionsrelation eine Parabel in k, und k,, die

als Subband bezeichnet wird. Die Anzahl N der Zustdnde in einem Energieintervall



[E, E + dE] entspricht der Anzahl von dquidistanten Punkten in der k,-k,-Ebene, die
in dem Kreisring [k, k + dk] mit k = \/k2 + k2 Platz finden. Mit der Ableitung der
Dispersionsrelation folgt dE = h?kdk/m* (mit isotroper Masse m*). Wird die spin-
bedingte Doppelbesetzung der Zustande beriicksichtigt, folgt fiir die Zustandsdichte eines
Subbandes®:

_dN_m*

D(E) =4 = 72

= konst. (2.4)

Ein realistischeres Modell beschreibt den Einschluss mit endlich hohen Wianden. In die-
sem Fall gibt es gebundene Losungen nur fiir Energien kleiner als die Banddiskontinuitat.
Auferdem verschwindet die Wellenfunktion nicht mehr vollstindig an der Grenzfléche,
wodurch sich die Ladungstriger mit einer geringen Wahrscheinlichkeit auch in der Bar-
riere aufhalten kénnen (Abb. 2.2b). Dies bewirkt eine Erhohung der effektiven Masse
m* fiir die Bewegung langs der GaAs Schicht, da die Masse in der Al,Ga;_,As Schicht
hoher ist und die effektive Masse mit der Verweildauer in Topf und Barriere gewichtet

werden muss.

5Im Leitungsband kann es mehr als ein Minimum der Energie im k-Raum geben (Valley-Entartung),

dann muss mit dieser Anzahl multipliziert werden.
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Abbildung 2.2.: Schematische Leitungsbandkante und einhiillende Wellenfunktion fiir
einen eindimensionalen Einschluss. a) Potentialtopf mit unendlich hohen

Winden bildet diskrete Energieniveaus. b) Bei endlich hohen Winden

ragt die Wellenfunktion in das angrenzende Gebiet. ¢) Ein elektrisches
Feld verschiebt den Schwerpunkt der Wellenfunktion. d) Der Bandkan-

tenverlauf und die Wellenfunktion beeinflussen sich gegenseitig.



Die Schrédinger-Gleichung (2.1) ldsst sich auf Elektronen wie Locher anwenden. Die
Entartung von Zustédnden mit leichter und schwerer Lochmasse bei £k = 0 wird dabei

durch den Einschluss aufgehoben, was zu einer energetischen Begiinstigung der schweren
Locher fiihrt.

In einer solchen Heterostruktur lassen sich nun durch geeignete Dotierung hohe Ladungs-
tragerdichten n bzw. p in einer schmalen Schicht erzeugen, so dass man von zweidimen-
sionalen Elektronen- oder Lochgasen (2DEG, 2DHGT) spricht. Die Schichten lassen sich
mit hoher Reinheit wachsen und die Dotierung kann rdumlich durch eine undotierte Puf-
ferschicht (Spacer) von den Potentialtopfen getrennt werden. Hierdurch wird die Stor-
stellenstreuung stark unterdriickt und es konnen insbesondere bei tiefen Temperaturen
hohe Beweglichkeiten erreicht werden |Dingle78|.

Fiir den undotierten Halbleiter im thermodynamischen Gleichgewicht folgt die Ladungs-
tragerdichte aus dem Produkt der Zustandsdichte D und der Fermi-Verteilung f fiir das

Leitungs- bzw. Valenzband:

By (2)

n(z) = / DL(E, =) f(E,T)dE bzw. p(z) = / Dy(E,2)[1— f(E,T)] dE. (2.5)

EL(Z) —00

Die Lage der Bandkanten kann fiir verschiedene Orte im Halbleiter unterschiedlich sein.
Ist die Heterostruktur beispielsweise zwischen einem Schottky-Gatekontakt und der io-
nisierten Dotierung einem inneren Feld ausgesetzt kommt es zu einem zusdtzlichen orts-
abhéngigen Potential U(z) (Abb. 2.2¢). Die Ladungstrigerdichte selbst geht in dieses
Potential iiber die Poisson-Gleichung ein (Abb. 2.2d):

(e V() = —pl2) = —a W) (2.0
Daher muss die Schrédinger-Gleichung selbstkonsistent gelost werden. In dieser Arbeit
wird ein Fortran-Programm (1D Poisson) von Prof. Gregory Snider® verwendet, das La-
dungstriagerdichten und Bandkantenverlauf entlang der Wachstumsrichtung berechnen

kann. Abb. 2.3 zeigt den gerechneten Bandkantenverlauf und die Ladungstrigerdichten

"2DEG: 2-dimensional electron gas, 2DHG: 2-dimensional hole gas
8Professor Gregory Snider, Department of Electrical Engineering, University of Notre Dame,

www.nd.edu/"gsnider
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Abbildung 2.3.: Mit dem 1D Poisson-Programm berechneter Bandkantenverlauf und La-
dungstrigerdichte am Beispiel einer GaAs-Aly¢Gag 1 As-Heterostruktur
mit a) Donator- und b) Akzeptor-Dotierung.

einer Heterostruktur von 8 nm GaAs in Aly¢Gag1As bei T' = 4,2K fiir unterschiedli-
che Dotierungen in einem Abstand von 7nm zum Quantentopf. Das innere Feld zwi-
schen Schottky-Kontakt und Dotierung verkippt die Bandkanten, wodurch der Schwer-
punkt der Ladungstrigerdichte verschoben wird. Das Anlegen einer Gatespannung an
den Schottky-Kontakt &ndert das innere Feld, was Einfluss auf die Ladungstragerkonzen-
tration und damit auf die Leitfahigkeit o der Schicht hat. Wird das chemische Potential
Erx unter die Energie F; des ersten Subbandes abgesenkt ist auch eine vollstindige Ver-

armung moglich.

2.1.2. Dreidimensionaler Einschluss - Quantenpunkte

Wird die Bewegung von Ladungstrigern nicht nur in einer, sondern in allen drei Raum-
richtungen eingeschrankt, so spricht man von Quantenpunkten. In diesem Fall sind
nur noch diskrete Energieniveaus £, besetzbar. Die Zustandsdichte hat dann die Form
D(E) =Y, 6(FE — E,). Eine mégliche Realisierung ist das Atzen schmaler Strukturen
aus den oben beschriebenen Heteroschichten mit lithographischen Methoden [Reed86]
oder ihre lokale Verarmung durch entsprechend definierte Gateelektroden [Wu09]. Auch

wihrend des Wachstums lassen sich Quantenpunkte erzeugen, indem noch in der Wachs-



tumskammer die Struktur lings der Wachstumsrichtung gespalten und das Wachstum
senkrecht zur ersten Wachstumsrichtung fortgesetzt wird (cleaved edge overgrowth)
|[Wegscheider97|. So entsteht zunéchst ein zweidimensionaler Einschluss, ein weiterer
Spaltvorgang ermdglicht schlieflich die Bildung eines dreidimensional einschlieftenden
Potentials. Die genannten Methoden erlauben zwar eine gute Kontrolle der Positionie-
rung und Kontaktierung der einzelnen Quantenpunkte, sind aber fiir groke Wafer mit
erheblichem technischen und zeitlichen Aufwand verbunden. Eine wesentlich einfachere
Methode direkt in der Wachstumskammer groftflichig Quantenpunkte zu erzeugen, stellt

das selbstorganisierte Wachstum dar.

Weichen die Gitterkonstanten beim Wachsen von Heterostrukuren starker voneinander
ab, als dies bei GaAs und AlAs der Fall ist, kommt es beim Aufwachsen zu Verspan-
nungen. Die 7%-ige Abweichung in den Gitterkonstanten von InAs und GaAs fiihrt
beim Aufwachsen von In unter Ass-Atmosphére auf die Ga (001) Oberfliche dazu, dass
sich zunédchst eine Benetzungsschicht (wetting layer) aus InAs bildet. Ab einer kriti-
schen Bedeckung von 1,5 ML InAs [Leonard94]| kommt es jedoch zu einem Relaxations-
prozess, der zu der Bildung von dreidimensionalen Inseln fiihrt. Dieses Verhalten wird

als Stranski-Krastanow-Wachstum bezeichnet, welches 1938 fiir das Materialsystem Ge

03 04 05 06
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Abbildung 2.4.: a) Atomar aufgeloste in situ STM-Aufnahme einer InAs-Insel auf ei-
ner GaAs (001) Oberfliche nach [Marquez01]. b) Querschnitts-TEM-
Aufnahme einer InAs-Insel in GaAs-Matrix mit ¢) Graustufenprofil fiir
den In-Anteil z in dem In,Ga;_,As-System nach [Walther01].



auf Si (001) beschrieben wurde [Krastanow38|. Im Tropfchenmodell® nach [Blossey02]
ldsst sich dieses Verhalten durch hohe Adhésionskrifte am Materialiibergang GaAs/InAs
verstehen, wiahrend bei zunehmender Bedeckung die freie Grenzflichenenergie durch
Tropfenbildung minimiert werden kann. Die Herstellung ist sowohl mittels MBE [Mo90],
als auch MOCVD |Oshinowo94| mdéglich.

Form und Dichte der Inseln sind dabei stark von den Wachstumsparametern abhén-
gig. Neben der abgeschiedenen Indium-Menge spielen auch Wachstumsrate, Temperatur,
Asy-Druck [Ledentsov96] oder die anschliefende Bedeckung [Lin94| eine wesentliche Rol-
le. Es wurden unterschiedliche Facettierungen beobachtet [Moison94, Nabetani94, Lee9§]
mit einer durchschnittlichen Basisbreite von 20 nm und einer Héhe von 7 nm (vgl. Abb.
2.4a). Durch Diffusion kommt es zudem zu einem Austausch von In und Ga, was zu
einem Gradienten in der In-Dichte und dem einschlieflenden Potential fiir die Ladungs-
trager fiihrt (Abb. 2.4b,c). Auf diese Weise lassen sich mit geringem Aufwand bis zu

2

10'! Quantenpunkte pro cm? erzeugen. Die Ensemblehomogenitiit ist dabei sehr hoch,

mit einer Grofenstreuung von etwa 10 % [Leonard94].

Fiir die elektronische Beschreibung hat sich die 8-Band k-p-Storungstheorie bewihrt
[Fu97, Jiang97, Pryor98, Stier99|, mit einem Pseudopotential fiir den Einschluss der
Quantenpunkte. Die Wellenfunktion wird um den Gammapunkt entwickelt und in einer
Basis aus 8 Bloch-Wellenfunktionen dargestellt. Die genaue atomistische Komposition
in einer Matrix eingebetteter Quantenpunkte ist jedoch experimenteller Bestimmung
schwer zugénglich, weswegen auch ein einfacheres Modell des harmonischen Oszillators
héufige Anwendung findet [Sikorski89, Alsmeier90, Wojs96, Warburton98|. Es ist als eine
Néaherungslosung fiir eine in quadratischer Ordnung abbrechende Taylor-Entwicklung des

Potentials anzusehen. Die Schrodinger-Gleichung lautet dann:

u’n —+ %m*w%‘z} W) = E(r). (2.7)

Fiir linsenformige Quantenpunkte (vgl. auch Abb. 2.4) lisst sich die Rotationssymmetrie
durch Ubergang zu Zylinderkoordinaten (r, ¢, z) ausnutzen. Fiir flache Linsen lassen sich
die energetischen Absténde fiir die z-Richtung als grofs und daher nicht angeregt ansehen.

Die z-Abhéngigkeit wird daher im folgenden nicht weiter betrachtet. Der Grundzustand

9Dieses Modell erklirt auch die Bildung von InAs Quantenringen
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des zweidimensionalen harmonischen Oszillators (Gleichung (2.7)) lautet:

1 _r2/912
%(7‘7 ()0) - me /2l0. (28)

Fiir die charakteristische Oszillatorldnge [y gilt:

h

miw’

lo = (2.9)

Angeregte Zustinde folgen aus den Ortsableitungen von 4(r, ¢) und lassen sich mit
Hilfe der Hermite-Polynome darstellen. Die Energieeigenwerte F,,; sind mit der radialen
Quantenzahl n = 0,1,2,... und der Drehimpulsquantenzahl [ = 0, +1,+2, ... zweifach

indiziert:

B = hw(2n + |l + 1). (2.10)

Ein in 2-Richtung anliegendes Magnetfeld B = rot A ldsst sich durch Ersetzung von p

durch den kinematischen Impuls beriicksichtigen p — p+ gA. Mit der Zyklotronfrequenz

m*

We und der effektiven Frequenz

2
et = 1| w? + (%) , (2.11)

ergeben sich fiir die Energieeigenwerte die magnetfeldabhéngigen Fock-Darwin-Energien
|[Fock28|:

1
En(we) = hweg(2n + 1] + 1) + §hwcl. (2.12)

Wegen der diskreten Energiespektren werden Quantenpunkte auch als kiinstliche Atome
|Kastner93| bezeichnet. Fiir die Energieniveaus verwendet man daher auch die Bezeich-
nung s,p,d, ... Die Nomenklatur!® der Zustinde (n,l) lautet: s — (0,0), p, — (0,1),
p— — (0,—1), dy — (0,2), d_ — (0,—-2), dy — (1,0). Jeder Zustand ist dabei zudem
zweifach spinentartet, da die Spin-Zeeman-Aufspaltung wegen des kleinen effektiven g-

Faktors vernachlassigt werden kann.

10Tm Gegensatz zur Atomphysik kénnen hier in einer ,Schale® unterschiedliche Drehimpulse | auftreten.
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2.2. Vielteilcheneffekte

Gleichung (2.12) beschreibt das Anregungsspektrum eines einzelnen Ladungstrigers im
Quantenpunkt. Befinden sich N Ladungstriger mit den Koordinaten rq,rs,...,ry im
Potentialtopf, muss ihre Coulomb-Wechselwirkung untereinander beriicksichtigt werden.

Die Vielteilchen-Schrodinger-Gleichung lautet:

N

PP a1 2 X

v * 2.2

25 Ti > ) = Ed(r. . .ry).
(2.13)

Ist die Coulomb-Energie klein gegeniiber der Quantisierungsenergie!!, liisst sich der

=1

Coulomb-Term als Stérung des harmonischen Oszillators ansehen und in erster Ord-
nung Storungstheorie behandeln [Warburton98|. Die ungestorten Wellenfunktionen ha-
ben also die Form von Gleichung (2.8). Die Vielteilchen-Wellenfunktion wird dann in
einem Molekularfeld-Ansatz als antisymmetrisches Produkt (Slater-Determinanten) aus
Einteilchen-Funktionen dargestellt. Korrelationseffekte werden vernachlissigt. So erhilt
man fiir die direkte Coulomb-Energie (Hartree-Energie) Ef; und die indirekte Austausch-
energie Ef]( zwischen den Einteilchenzustdnden 1; und v;, die Ladungstragern an den

Orten r; und r, entsprechen:

Ef = / / bl 710 [ (2.14)
J 471'680 |T1 — 7'2|
r ’I" i\ r
ElX _ // 1/] 1 2 @D( Q)w]( 1)d37"1d3T2. (215)
4 471'680 |7‘1 — 7

Der grofte Vorteil dieses Modells nach Warburton et al. ist die analytische Auswertbarkeit
der Wechselwirkungsintegrale [Pfannkuche93|. Sie lassen sich als rationale Vielfache der
Coulomb-Energie ES, zwischen zwei s-artigen Wellenfunktionen (n = 0,1 = 0) darstellen,

mit:

2
¢ q T

= —, 2.16
5 Amege\ 212 (2.16)

Eine Tabelle fiir die Wechselwirkungen zwischen Zustinden der s, p und d-Schalen findet

sich in [Warburton98|]. Die Gesamtenergie Ey einer Konfiguration (ny,l; ...ny,y) des

"Fiir Elektronen in typischen InAs Quantenpunkten ist das Verhiltnis ~ 2/5.
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Vielteilchensystems ergibt sich in dieser Naherung aus dem Aufaddieren der einzelnen

Paar-Wechselwirkungen und den Quantisierungsenergien der Einteilchenzustande:

EN_Z Lt Z (B + EY). (2.17)

Denkt man sich den Quantenpunkt sukzessive mit Ladungstragern gefiillt, so ergibt sich

fiir den Fall ES, < hw eine Besetzung des Grundzustands in der Reihenfolge:

§—=S =Py =D =Dy =P — ...

In diesem Fall wird die Austauschenergie maximiert, was zu einer Verringerung der Ge-
samtenergie fiihrt. Dies entspricht also einer Hundschen-Regel fiir kiinstliche Atome. Fiir
Elektronen konnte diese Regel experimentell bestétigt werden [Warburton98|. Fiir Lo-
cher wurde jedoch ein anderes Verhalten beobachtet [ReuterObal, was auf die frithzeitige

Besetzung der d-Schale hindeutet!?:

§—=Ss—=>pr—p.—dy—d — ...

Fiir den Fall ES, > hw lisst sich dies wiederum mit einem Energiegewinn durch Aus-
tauschwechselwirkung erkléren. In diesem Fall ist jedoch die Annahme einer kleinen
Storung des harmonischen Oszillators durch die Coulomb-Wechselwirkung nicht mehr
gegeben und es miisste statt einer einzelnen, eine Linearkombination mehrerer Slater-

Determinanten beriicksichtigt werden.

2.3. Beladungszustande der Quantenpunkte

Im Experiment befinden sich die Quantenpunkte in einer kapazitiven Heterostruktur
(vgl Abb. 2.5) zwischen einem Riickkontakt als Ladungstriagerreservoir und einem Gate-
kontakt. Durch die hohe Ladungstrigerdichte im Reservoir ist die Fermi-Energie dort
fixiert (pinning). Durch Anlegen einer Spannung Ug an die Gateelektrode ldsst sich die
potentielle Energie ® zwischen Quantenpunkten und Riickkontakt verschieben (siehe
auch Kapitel 3.2, Abb. 3.4).

12In Analogie zu Atomen, wo es durch die AbstoRung der Hiillenelektronen zu einem energetischen

Uberlappen der Schalen kommt (vgl. Ubergangsmetalle).
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Fiir geringe Quantenpunktdichten lasst sich der Effekt ihrer Beladung auf die Bandstruk-
tur vernachlissigen. Der Zusammenhang zwischen einer Energiednderung d® und einer
Spannungsidnderung dUg lésst sich als linear annédhern. Der Proportionalitatsfaktor wird
als Hebelarm A bezeichnet. Die Gesamtstruktur entspricht einem Plattenkondensator,
der von der Quantenpunktschicht im Verhéltnis d; zu dy geteilt wird. Der Hebelarm

ergibt sich dann aus dem geometrischen Verhiltnis der Kapazitdten zu [Drexler94]:

fie _ef0 _q oy 2L (2.18)

Eine Spannungsdifferenz iibersetzt sich so in eine Energieinderung durch:

dd = ;dUg. (2.19)

Beim Beladen der Quantenpunkte muss diese zusitzliche elektrostatische FEnergie be-

riicksichtigt werden. Fiir den N-fach beladenen Zustand folgt so die Gesamtenergie:

E(N,®) = Ex — N&(Ug). (2.20)

Fiir eine gegebene Energiedifferenz ® ist so jeweils eine bestimmte Anzahl Ladungs-
trager N im Quantenpunkt energetisch favorisiert. Zu einem Ladungstransfer zwischen
Riickkontakt und Quantenpunkt kann es nur dann kommen, wenn durch eine Span-

nungsinderung die Gesamtenergien des N und des N + 1-Teilchensystems gleich sind.

o °
Gateelektrode
dl 81 Ul
Quantenpunktschicht
d, { €, & U,= Dle

>.\ @» ' Riickkontakt
NN

Abbildung 2.5.: Beim Anlegen einer Gatespannung verschiebt sich das Potential U zwi-
schen Quantenpunkten und Riickkontakt. Unter Vernachlissigung eines
Ladungstransfers ist der Zusammenhang linear und nur durch die Ab-

stande d; o und die relativen Dielektrizitdtszahlen ¢; o bestimmt.
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Ansonsten ist keine Umladung méglich und man spricht von einer Coulomb-Blockade.

Es muss also gelten:

E(N,®) = E(N +1,9) (2.21)

Hieraus lassen sich die energetischen Abstinde A®y .1 der Umladeprozesse berech-

nen:

ACI)N_,N_H = @(E]\H_Q = EN+1) — (P(EN—H = EN) (222)

Die Beladung fithrt zu einer Anderung der Kapazitiit, die im Experiment beobachtet
werden kann (vgl. Abb.2.6). Durch eine Kapazitidtsmessung bei verschiedenen Gatespan-
nungen kann also das Gleichgewicht zweier Vielteilchenzustinde spektroskopiert werden.
Fiir unterschiedliche Besetzungsreihenfolgen ergeben sich verschiedene Abstédnde der er-
warteten Ladeenergien (vgl. Tabelle 2.2), die aus den Gleichungen (2.20) und (2.17)
folgen.

Im Allgemeinen wird bei einer Messung iiber ein Ensemble > 10° Quantenpunkten

~

gemittelt, deren Durchmesser um einen Mittelwert normalverteilt ist. Dies fiihrt zu ei-

230 p—r———— — —rT
a) b)
Beladung der 124r  poladune der I
228} B hich : S
enetzungsschicht Benetzungsschicht
= 206} { 122f '
E Beladung der
= Beladung der Quantenpunkte
§224 Quantenpunkte 1 120
4
222} T
118}
220 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N
-1,0 -0,5 0 0,5 1,0 -,5 -1,0 -0,5 0 0,5 1,0
Gatespannung U, [V] Gatespannung -U,, [V]

Abbildung 2.6.: Die diskreten Ladeenergien der Vielteilchen-Grundzustinde zeigen sich
in den Kapazitatsspektren fiir ein Elektronen-System a) und ein Loch-
system b) nach [Wibbelhoff06].
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Besetzungsreihenfolge Adq_9 Adgy_5 Ads_yy Ady_ 5 Ads_s6

S—=8—=pL P —pL—Dp_ ESS hw+%ESCS %ESS %ESS %ESCS

d d EC¢  mw+3ir¢ 1EC  mw4+ 3EC  LEC
§—=8 =Py P-4y — 4 ss +4 ss 2ss +16 ss 32°ss
S—=8—= Py — Py — P — P EC hw—i—iEg, %Eg %ESS %ESS

Tabelle 2.2.: Additionsenergien fiir drei mogliche Beladungsreihenfolgen im Warburton-
Modell nach Gl. (2.22).

ner Verbreiterung der Zustandsdichte in der Quantenpunktschicht, wobei die einzelnen
Ladezusténde auch durch eine Gauf-Funktion beschrieben werden kénnen. Es kommt je-
doch zu einer leichten Asymmetrie, da der Zusammenhang zwischen Breite und Energie

reziprok ist.

2.4. Tunnelkopplung

Ein Quantenpunkt ist als Speicher fiir Ladungen anzusehen, die aus einem gekoppelten
Reservoir (hier: der Riickkontakt) transferiert werden kénnen. Je nach System koénnen
dies Elektronen oder Locher sein. Bei tiefen Temperaturen steht dabei nicht geniigend

Energie fiir eine thermische Anregung zur Verfiigung. Fiir den Be- und Entladevorgang

Quantenpunkt 2DHG
Riickkontakt
m*GaAs m*AlGaAs _’@—A EF
I
Wachstumsrichtung z 5

S > v

@ /

~

/

Abbildung 2.7.: Die Wellenfunktion in den Quantenpunkten und in dem Riickkontakt
sind iiber das Potential V(z) — E tunnelgekoppelt. Mit den Material-
grenzen dndern sich Barrierenhohe und effektive Massen (Fiir Locher ist

die Energieachse invertiert).
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ist nur direktes Tunneln méglich. Liegt ein Potential zwischen Reservoir und Quanten-
punkt gerade so an, dass Bedingung (2.21) erfiillt ist, fiihrt eine kleine Energieinderung

d® am Ort der Quantenpunkte zu einer Umladung dn.

Aufgrund der geringen Tunnelwahrscheinlichkeit ist dieser Prozess nicht instantan. Fiir
ein Ensemble aus n Quantenpunkten mit der Zustandsdichte D lésst sich die Beladung
durch ein Zerfallsgesetz [Luyken99b| mit einer charakteristischen Zeitkonstanten 7 be-
schreiben:

dn DA®

TR (2.23)
Einem Potentialsprung A® folgt damit ein exponentiell abklingender Tunnelstrom. Die

nach der Zeit ¢ transferierte Ladung ist proportional zur Zustandsdichte D des Quanten-
punktensembles. Fiir ein angelegtes Wechselfeld der Form &£ = &,e™? ist die transferierte
Ladung von Frequenz und Tunnelrate abhéngig. Je hoher die Frequenz w desto weniger
Ladungen kénnen wahrend eines Zyklus iibertragen werden. Die Zeitkonstante 7 in Glei-
chung (2.23) stellt die Dampfungskonstante in einem Lorentz-Oszillator dar [Luyken99al.

Die Kapazitit C = dQ/dU = qdn/dU folgt damit einer Lorentz-Kurve und es gilt:

Clw) 1
C(0)  1+w2r?

(2.24)

Die Tunnelzeit 7 aus einem gebundenen Zustand in ein Kontinuum (Abb. 2.7) ldsst sich
in einem semiklassischen Modell abschitzen. Mit der Frequenz f, mit der das gebundene
Teilchen gegen den Potentialwall stéfst und der Wahrscheinlichkeit T, diesen durch einen

Tunnelprozess zu durchdringen, folgt fiir die Tunnelzeit:

1
— T
Fiir schwach veranderliche Potentiale lasst sich die Wahrscheinlichkeit T mit Hilfe der

WEKB-Methode'? abschiitzen. Hierbei wird die Anderung der Phase ¢ der Wellenfunktion

entlang einer Strecke z betrachtet.

T (2.25)

I3WKB: Wentzel, Kramers und Brillouin
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Durch den Ansatz ¥ o €?(*) und Integration der Schrédinger-Gleichung folgt:

z

() = + / k(). (2.26)
0
Fiir die Wellenfunktion erhalt man:

1 =i[k()d
e 0
k(z)

Beim Tunnelprozess ist die kinetische Energie des Teilchens kleiner als die Barriere und

(z) o

(2.27)

die Wellenfunktion klingt innerhalb der Barriere exponentiell ab. Der Wellenvektor ver-
lauft entlang imaginédrer Achsen der Bandstruktur und folgt aus der lokalen kinetischen

Energie:

k(2) = in(z) = i\/ 2m*(V7E;) - (2.28)

Die Tunnelwahrscheinlichkeit 7" ergibt sich dann aus dem Quotienten der Aufenthalts-

wahrscheinlichkeit vor und hinter der Barriere zu:

2 — dﬁzdz
DI 2o (2.29)

T RO

Die Tunnelbarriere koppelt die Quantenpunktschicht mit dem zweidimensionalen Sys-

tem. Die Starke der Kopplung lisst sich iiber Hohe und Breite der Barriere einstellen.

Uber eine Gate-Elektrode angelegte Spannung Ug stellt das chemische Potential zwi-
schen Quantenpunkten und 2D System und damit den Beladungszustand der Quanten-
punkte ein. Eine Anderung der Spannung Ug fiihrt jedoch auch zu einer Anderung der
Ladungstrigerdichte im zweidimensionalen Riickkontakt nop(Ug) und damit zu einer
Anderung der Leitfihigkeit ¢ = gunop. Eine geladene Quantenpunktschicht fiithrt zu
einer Abschirmung der Gatespannung und zu einer Erhohung der Storstellenstreuung
und verringert damit die Leitfdhigkeit bzw. den gemessenen Strom I [Marquardt08|,
[Marquardt09).

Ist die Tunnelzeit 7 grof gegeniiber dem RC-Glied des Messaufbaus und der Probe, so

ist die zeitliche Anderung des Stromes AI(t,Ug)/I(t = 0,Ug) fiir groke Zeiten propor-

tional zur transferierten Ladung zwischen Quantenpunkten und dem zweidimensionalen
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System. Betrachtet man die Strominderung AI(t — oo, Ug) fiir kleine Anderungen in
der Gatespannung, ldsst sich so die lokale Zustandsdichte des Quantenpunktensembles
spektroskopieren. Eine solche Transportspektroskopie ist dann vergleichbar mit einer
Kapazitéitsspektroskopie wie sie in Abb. 2.6 a) und b) gezeigt ist. Abbildung 2.8 zeigt
den direkten Vergleich der zwei Messmethoden an einem Elektronensystem mit zweidi-

mensionalem Riickkontakt.

Diese Methode bietet gegeniiber der Kapazitédtsspektroskopie den wesentlichen Vor-
teil, dass sie prinzipiell auch bei geringen Ensemblegrdfsen, bis hin zu Einzelpunkt-
spektroskopie geeignet ist. Der Strom I durch den Leitkanal ist proportional zur La-
dungstrigerdichte nop im zweidimensionalen Riickkontakt und die Anderung des Stro-

mes AI ist proportional zur Quantenpunktdichte ngp.

Kapazitiat C

Stromdifferenz Al

M 1 M 1 M
-0,8 -0,6 -0,4 -0,2 0 0,2 0,4
Gatespannung U, [V]

Abbildung 2.8.: Vergleich einer a) Kapazitits- und einer b) Leitfihigkeitsmessung fiir
das gleiche Elektronensystem nach [Marquardt09].
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a Al/l ~ nQD/n2D = konst.

< <

Abbildung 2.9.: Das Verhiltnis Al/I ist proportional zum Verhéltnis der Ladungstra-
gerdichten Angp/Anspuc und damit von der Gatefliche unabhéngig.
Transportmessungen ermoglichen daher prinzipiell die Spektroskopie ei-

nes einzelnen Quantenpunktes.

Fiir das Verhéltnis des Messsignals folgt daher:

AT
(t=o0)  nap (2.30)
I Nap

Dadurch ist das Messsignal unabhéngig von der Gatefliche und damit von der Ensemble-
grofe (vgl. Abb. 2.9).

Auferdem ist die Signalqualitit durch das Verhéltnis der Ladungstrigerdichten be-
stimmt. W&hlt man einen Riickkontakt mit entsprechend geringer Ladungstréigerdichte
lasst sich so eine wesentlich verbesserte Auflosung erreichen, als bei einer Kapazitats-
messung, wo der Hebelarm und unvermeidliche parasitdre Kapazitdaten eine Reduktion
der Auflosung bedingen (vgl. Abb.2.8).

Durch eine geeignete Wahl von Spannungspulsfolgen ist dariiber hinaus auch die Messung
von angeregten (Nichtgleichgewicht-) Zusténden, fiir eine zuvor priaparierte Beladungs-
zahl, moglich [Marquardt10].
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3. Experiment

3.1. Probenstruktur

Die Wafer der in dieser Arbeit untersuchten Proben wurden von der Firma Innolume
GmbH! molekularstrahlepitaktisch gewachsen. Sie unterscheiden sich in der Stérke ihrer

Kopplung zwischen Quantenpunkten und dem Riickkontakt. Die Schichtfolge der Probe

Lwww.innolume.com

2,5F Alo,9Gao, As GaAs  GaAs AlO’QGaO’ As  GaAs A10)9Ga0, (As
120 nm 5 nm 5 nm 5 nm 8 nm 1000 nm
20k
L E &
L 1
— 1)5 B g
> | ' 2
= =
e 130 B I_J I 2,0 —
E p ],
® 05k {10 £
) | 2
2 ol Ze 1.2
/M 0,0 B I/_-=070 E
o
] .3
0,5 -Ev InAs i —
Quantenpunkte
-10F Cap Matrix Barriere Riickkontakt Spacer Dotierung
& Oberfliache Wachstumsrichtung z Substrat-»-

Abbildung 3.1.: Schichtfolge im Bereich der Quantenpunkte und des Riickkontaktes des
Wafers der Probe DO1880 mit Leitungs- und Valenzbandkanten FEp
bzw. Ey sowie der Locherkonzentration p (nach Rechnungen mit 1D-

Poisson).
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DO1880 im Bereich der Quantenpunkte und des Riickkontaktes? zeigt Abbildung 3.1.
In die Tunnelbarriere ist eine Schicht Aly9Gag;As eingefiigt. Fiir die Probe DO1880
betrégt die Tiefe der AlygGagiAs-Barriere 5nm, was zu einer hohen Tunnelrate und
damit zu einer starken Kopplung fiihrt. Bei der Probe DO1881 wurde die Aly 9Gag 1 As-
Barriere auf 10nm vergrofert. Dies fiihrt zu einer Unterdriickung der Tunnelrate um

Grofsenordnungen, was einer schwachen Kopplung entspricht.

Bei den Quantenpunkten handelt es sich um verspannt aufgewachsene InAs Inseln in
einer GaAs Matrix. Thre Flichendichte wird mit ngp & 3 - 10'%cm™ angegeben, was
auf eine InAs-Bedeckung von 1,8 bis 2 Monolagen schliefen lésst [Leonard94|. Der
Wert ist durch AFM Messungen an Proben bestimmt worden, bei denen die InAs-
Schichten unter gleichen Prozessbedingungen an der Oberfliche eines Substrates mit
einer 100 nm tiefen Pufferschicht gewachsen wurden. Photolumineszenz Messungen an
den Wafern der beiden untersuchten Proben bei Raumtemperatur zeigten eine vergleich-
bare Exziton-Grundzustandsenergie von 1,06 eV, was einer Wellenldnge von 1170 nm
entspricht |[Kurzmannl0|. Dieser Wert liegt etwas unterhalb der durch Reuter et al.
[Reuter04, Reuter05b, Reuter05a] untersuchten Proben (1260 nm), was fiir eine hihe-
re Lokalisierungsenergie und damit etwas kleinere Quantenpunkte spricht. Diese hohere
Lokalisierungsenergie fiihrt zu einer stirkeren Trennung der Ladeenergien und damit
zu einer Verbesserung der Auflosbarkeit der Spektren. Als Riickkontakt dient ein 8 nm
breiter GaAs-Quantentopf in einer Al 9Gag;As Matrix, der die Locher von den Akzep-
torzentren in der Kohlenstoff-Dotierung aufnimmt und von den geladenen Storstellen

durch einen 7 nm breiten Puffer getrennt wird.

Die Prozessierung erfolgte an der Technischen Universitat Berlin. Bei der hier verwen-
deten Gatefliche von etwa 0,2mm? umfasst das untersuchte Ensemble etwa 7 - 107
Quantenpunkte. Zur Herstellung der Ohmschen Kontakte wurde in Folge 7,5nm Ni,
250 nm Zn und 350 nm Au aufgedampft und anschliefend fiir 3 Minuten bei 400°C unter
Stickstoffatmosphire einlegiert. Hierbei werden Zwischengitterpliatze im GaAs durch die
Zn-Atome besetzt. Sie dringen durch ihre hohe Diffusivitit [Chase97] bis zu dem Riick-
kontakt in einer Tiefe von ~ 200nm vor und stellen dort einen ohmschen Kontakt zu

dem 2DHG her. Fiir die Herstellung von p-Kontakten eignet sich sowohl Beryllium als

2Eine genauere Schichtfolge findet sich Anhang.
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auch Zink wobei wegen der hohen Giftigkeit von Beryllium meist nur Zink Anwendung
findet, obgleich Beryllium die besseren Diffusionseigenschaften [Yu91] zeigt. Fiir den Ga-
tekontakt wurden 7,5 nm Ni und 350 nm Au aufgebracht. In der hier verwendeten Maske
haben Gates und Riickkontakte einen Mindestabstand von 80 pm, so dass die laterale
Diffusion von Zink nicht zu einem Kurzschluss der Gates fiithrt. Auf dem Weg zu klei-
neren Probenstrukturen muss die Prozessierungsmethode jedoch abgedndert werden, da

bereits Abstdnde von 5 bis 10 ym zu einem Kurzschlieften der Kontakte fiihren.

Die prozessierten Probenstiicke wurden auf einem Triger befestigt und in einen Proben-
stab eingesetzt. Der Stab wird in einem fliissigen Heliumbad auf eine Temperatur von
4,2 K gebracht. Fiir die Messungen mit Magnetfeldern wurde ein Cryogenic Magnet-
kryostat verwendet, dessen supraleitende Magnetspulen Feldstirken von bis zu 12 T er-
lauben. Messungen iiber 12 T wurden in einem Kryostaten mit Bitter-Magnet-Technik

am High Field Magnet Laboratory der Radboud Universitdt in Nijmegen durchgefiihrt.

Gate-Elektrode

Ohmscher

Kontakt
\

Quantenpunkte

Tunnel- » Mesa
barriere

Substrat 2DHG

Abbildung 3.2.: Schematische Darstellung der prozessierten Probe. Zur Herstellung der
Ohmschen Kontakte wurde Zn einlegiert, anschliefend die Ni/Au Gate-
Elektrode aufgebracht. Zuletzt erfolgt das Atzen der Mesa bis unter das
2DHG.
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3.2. Kapazitatsspektroskopie

In der Kapazititsspektroskopie (CV-Spektroskopie®) wird das chemische Potential zwi-
schen Riickkontakt und Quantenpunkten sequentiell durch das Anlegen einer Gleich-
spannung Ug verdndert und bei jedem Schritt die Kapazitdt C' mittels einer aufmo-
dulierten Wechselspannung U(t) = Up sinwt gemessen. Der schematische Aufbau ist
in Abbildung 3.3 gezeigt. Auf die Ausgabe Ug der Gleichspannungsquelle ( Yokogawa
7651) wird die Wechselspannung U (t) des Lock-In-Verstéirkers (EGEG 7260) iiber die
Kapazitdt Ct moduliert. Um eine Verbesserung des Signal-Rausch-Verhéltnisses zu er-
reichen, wird die Amplitude der Wechselspannung mit einem Widerstandsabgriff R;/R;
von Uy = 500mV auf Uy = 5mV geteilt?.

In diesem Aufbau wird die Kapazitit nicht direkt gemessen sondern der Wechselstrom
I. Der Lock-In-Verstarker ermoglicht die Bestimmung der Phase zwischen angelegter

Spannung U(t) und gemessenem Strom I, wodurch sich Real- I, und Imaginirteil 7_

3CV: capacitance voltage
4Ni#heres zu diesem Aufbau findet sich auch in den Arbeiten [Wibbelhoff02, Ruf02, Liittjohann03,

Wibbelhoff06, Ru06, Marquardt06].

Lock-In-Verstérker Spannungsteiler ~ Spannungsquelle
C
~ ~) I- L —
! Y _[I] U,
® [ ] ) () R 1 RZ }e3 ° °
Gate < ¢ Temperaturbad
QD 0 TMagnetfeld B
. @
“® 2DHG

R =100kQ, R, =1kQ, R, =10 MQ, C,= 6,8 pF
Abbildung 3.3.: Messaufbau fiir die Kapazitiatsspektroskopie: Der Spannungsteiler ver-

ringert die Amplitude der Wechselspannung U(¢) des Lock-In-Ver-

starkers und koppelt sie mit der Gleichspannung Ug.
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des komplexen Stromsignals I getrennt aufzeichnen lassen. Widerstand R und Kapazitit

C' der Probe ergeben sich dann aus den einzelnen Stromsignalen zu [Goodall85|:

Ul 4+ I
R=—* und C = ~ 3.1
r+r " WUl Wl (3:1)

Die Heterostruktur der Probe lésst sich als eine Schaltung (siehe Abb. 3.4) von span-
nungsunabhéngigen (geometrischen) Kapazititen Cy, Cy und der spannungsabhéngigen
Quantenkapazitdt Cqp ansehen [Luryi88, Lorke99, Ruk06]. Die Gesamtkapazitat C' er-
gibt sich damit zu:

1 1 !
C(Ug) = (a + CQ+CQD(UG)) : (3.2)

Um von der angelegten Gatespannung Ug auf eine Energieskala dE = —eA™'dUg umzu-

rechnen ist die Kenntnis der Spannung U, noétig, die im Bereich der Quantenpunktschicht

dl 1 dz /
e, I/

> 8 (D
™ ] :
= 2 C =¢cg/d
= g 2 290" %2
g s 7

S o C = slso/a’1

(]
§ UG >0V I I

|
el,
CQD

Wachstumsrichtung z

Abbildung 3.4.: Spannungsabfall im Bereich der Heterostruktur wird durch die geometri-
schen Kapazititen der Probe C, C; und der Quantenpunktschicht Cqp
bestimmt und lasst sich durch eine Ersatzschaltung beschreiben. Ein
konstanter Versatz durch die Schottky-Barriere &g wird in den Rech-

nungen ignoriert.
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abfillt (Abb. 3.4). Solange die Quantenpunkte nicht geladen werden ldsst sich der Pro-
portionalititsfaktor A als konstant annehmen (Gl. (2.18)). Beriicksichtigt man aber die
Kapazitat der Quantenpunkte Cqp folgt:

1 1
)\(U ) _ UG _ C_1 + CQ+CQD(UG) -1 + CQ + CQD(UG)
7 U(Uc) e Cy '
CQ+CQD(Ug)

(3.3)
Die Kapazitit der Quantenpunkte ist dabei iiber die lokale Zustandsdichte D gegeben:

Caop = ’D(E) = e*D(ely). (3.4)

Da hier wieder die Spannung U, eingeht muss Gleichung (3.3) entweder selbstkonsistent

oder iterativ gelost werden, was in Abschnitt 4.1.2 durchgefiihrt werden soll.

3.3. Transporttransientenspektroskopie

Bei der Transportmessung wird der Einfluss einer angelegten Gatespannung Ug auf den
Stromfluss I durch den leitenden Kanal des 2DHGs zeitaufgelost untersucht (Abb. 3.5).

Die Gatespannung Ug wird als Rechteckpuls von einem Funktionsgenerator ( Tektronix

Stromverstdrker ~ PC/Schnittstelle Funktionsgenerator Spannungsquelle

_ I —
> 1) U1 U,
® ® [ ] ® T ® [ ] [ ]
Gate
R
< = 2DHG

Temperaturbad

Abbildung 3.5.: Aufbauschema zur Messung der Transporttransienten: Anstatt der
sinusformigen Wechselspannung wird ein Rechteckpuls Ug(t) auf das
Gate ausgegeben und der Strom I(¢) durch das 2DHG zeitaufgelost

gemessen.
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AFG 3021B) generiert. Der Funktionsgenerator gibt den Puls und das Startsignal fiir die
Strommessung an die A /D-Wandlerkarte. Der Strom wird verstarkt (Femto DHPCA-200
(schnell) oder Stanford RS570 (rauscharm)), als Spannungssignal von der Wandlerkarte
aufgezeichnet und mit der PC-Software gemittelt. Um den zu messenden Strom [ zu
erzeugen wird eine Seite des Riickkontaktes mit einer Spannungsquelle ( Yokogawa 7651)

auf konstanter Spannung Usp ~ 30 mV gehalten.

Es wird ein Puls mit konstanter Differenz (AUg ~ 20mV) und sequentiell variiertem
Versatz durch den Bereich der Ladespannungen der Quantenpunkte angelegt. Ohne die
Anwesenheit der Quantenpunktschicht wiirde die Leitfahigkeit des 2DHG monoton mit
der negativen Gatespannung ansteigen, da die Ladungstriagerdichte nach Gl. (2.5) mit
steigender Energie anwichst. Die Spannungsdifferenz fiihrt iiber den Hebelarm A zu
einer Energiedifferenz am Ort der Quantenpunkte (AE = AUg/A, siehe Abb. 3.6). Die

Energiedifferenz fiihrt mit der lokalen Zustandsdichte des Quantenpunktensembles zu

An Energie E(f) An
AE
N N
Z Strom () g
5 5
73 73
e e
o o
= =
(@) (@)

Zeit t

Abbildung 3.6.: Beim Anlegen eines Spannungspulses reagiert das System durch Trans-
fer von Ladungstrigern An(E) ~ D(E)AE zwischen Riickkontakt und
Quantenpunktschicht. Diese Antwort des Systems kann zeitaufgelost ge-

messen werden.
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= §+AE D(FE) dFE zwischen Quantenpunkten

und 2DHG. Fiir geniigend kleine Differenzen gilt An(F) ~ D(E)AE.

einem Transfer der Ladungstriger An(E)

Durch den Ladungstransfer dndert sich die iiber dem 2DHG abfallende Spannung und
damit die Leitfdhigkeit des Kanals. Da der Ladungstransfer langsam gegeniiber der nahe-
zu instantanen Leitfihigkeitsinderung im 2DHG ist, ldsst sich der Transfer als Anderung
des Stroms AI(t) beobachten. Aus Gleichung (2.23) folgen Transienten der Form:

AI(t,E) oc An(E) - (1 —e /75, (3.5)
In den Proportionalititsfaktor geht die Steilheit ‘%‘ des Leitkanals ohne den
t=0

Einfluss der Quantenpunktschicht ein. Die Tunnelzeit 7(FE) ist iiber die Tunnelbarriere
und die Form der Zustandsdichte in den Quantenpunkten energieabhingig. Fiir den
Fall t > 7 und einer kleinen, konstanten Energiedifferenz AFE ist die Amplitude der
Stroménderung AI(FE) proportional zur lokalen Zustandsdichte D(F) des Quanten-

punktensembles:

An(E)
AFE

Die Auftragung AI(Ug) ist damit dquivalent zu einer Kapazitétsspannungsspektroskopie

Al(t — 00, E) x D(E). (3.6)

C(Ug). Ein spannungsabhéngiger Untergrund entsteht hier durch einen energieabhén-
gigen Hebelarm, der zu einer Anderung in AE sowie einer energieabhiingigen Steilheit
fiihrt. Die Ladungstrigerdichte steigt linear mit der Gatespannung. Mit zunehmender
Ladungstriagerdichte kdnnen Storstellen besser abgeschirmt werden, was zu einer Erho-
hung der Beweglichkeit fiihrt. Insgesamt ist die Leitfahigkeit des Kanals nicht linear zur

Gatespannung und die Steilheit damit nicht konstant.
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4. Messungen und Auswertung

4.1. Probe mit starker Kopplung

Es soll zunachst die Probe mit der Bezeichnung DO1880 untersucht werden. Mit einer
5 nm Aly 9Gag 1 As Barriere liegen ihre Tunnelzeiten im Bereich weniger ps. Dies erlaubt
sowohl die bewahrte Kapazititsspektroskopie, wie auch die neuere Transportspektrosko-

pie auszuwerten und zu vergleichen.

4.1.1. Kapazitatsspektren

Zu Beginn soll das Kapazitéatsspektrum der Probe (siehe Abschnitt 3.2) untersucht wer-
den. Die Form der Messkurve wird diskutiert und die Spannungen der Beladezustande

in den Quantenpunkten werden ermittelt.

Das resistive I, und das kapazitive Stromsignal I_ der Probe DO1880 ist in Abb. 4.1
gezeigt. Im resistiven Anteil des Stroms zeigt sich ein scharfes Maximum bei Ug ~ 3,3 V.
Dies ist ein Resonanzeffekt der Fermi-Energie mit dem ersten Subband-Niveau des
2DHG. In diesem Bereich beginnt die Besetzung des energetisch tiefsten Subbandes
mit Ladungstrigern, so dass dort auch die Kapazitit stark ansteigt. Im iibrigen Bereich
der Gatespannung ist der resistive Strom verschwindend klein. Im Bereich der Quanten-
punktbeladung von -0,5 bis 1,5 V kommt es noch zu schwach ausgeprigten Resonanzen

aufgrund der Kapazitiatsanderung (vergroferter Einsatz in Abb. 4.1).

Im kapazitiven Anteil lassen sich drei Bereiche mit geringer Steigung erkennen. Fiir
Gatespannungen Ug 2 3,5V ist das 2DHG vollsténdig verarmt, nur die Hintergrundka-
pazitit des Aufbaus und der Probe bestimmen das Signal. Bei Gatespannungen < 0,5V
kommt es zu einer Beladung der Benetzungsschicht und der GaAs-Matrix, in der die

InAs-Quantenpunkte eingebettet sind. Numerische Rechnungen zeigen eine sehr gute
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Ubereinstimmung fiir das Verhiltnis der Kapazititen von zweidimensionalem Riickkon-
takt und GaAs-Matrix. Die GaAs-Matrix verhilt sich dabei wie ein 2DHG mit konstanter
Kapazitat.

In dem vergroferten Ausschnitt lassen sich deutlich sechs Maxima erkennen, die den
mittleren Beladeenergien der im Ensemble verbreiterten Niveaus der Quantenpunkte
entsprechen. Die Bestimmung der Spannungen, bei denen eine Umladung der Quanten-
punkte auftritt erfolgt nach drei Methoden (vgl. Abb. 4.2):

a) Es wird ein linerarer Untergrund subtrahiert und eine Superposition von Gaufk-

Funktionen angepasst.

b) Es werden die Minima der zweiten Ableitung bestimmt.

) v ) ) v ) )
N' e ————
£ |5 & -
g %% T T T T T v-g
|43 2 | B
z |5 < = 2
SE e o =
< o T
=8 E
M ms 2 N 2 N N N
R R / R / ! R L R
\ — ' '
N+ T T T T— T
=
=
n
5
2
3
(2
Il ' Il ' Il ' Il ' Il ' Il
-2 -1 0 1 2 3 4

Gatespannung U, [V]

Abbildung 4.1.: Kapazitives und resistives Stromsignal der Probe DO1880: Gesamter
Spannungsbereich mit den Bereichen: Beladung von Benetzungsschicht
und GaAs-Matrix, Beladung der Quantenpunkte (vergrofert) und Ver-
armung des 2DHG. Fiir die Lochzustdnde nimmt die Energie zu nega-

tiven Spannungen zu.
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¢) Der Untergrund wird separat durch eine (sigmoidale) Boltzmann-Funktion und die

Beladespannungen mit Gaufs-Funktionen angepasst.

Methoden b) und c¢) erméglichen die Identifikation von acht Ladezusténden hl bis h8,
wobei die letzteren zwei stark durch den Untergrund iiberlagert werden. Im weiteren
Verlauf sollen nur die ersten sechs weiter betrachtet werden. Die verschiedenen Metho-
den ermoglichen eine Abschétzung des Fehlers durch den unbekannten Untergrund. Die

Ergebnisse mit Mittelwert und Fehlerabschéitzung sind in Tabelle 4.1 zusammengefasst.

Die Form der Kurven fiir die einzelnen Beladungszustinde in Abb. 4.2a zeigt eine leich-
te Asymmetrie, die zum einen daran liegt, dass die Basisbreite b der Quantenpunkte
normalverteilt ist, nicht aber die Ensembleenergien, die proportional zu 1/b? ist. Zum
Anderen nimmt die energetische Breite es 2DHG mit steigender Ladungstrigerdichte
zu negativen Gatespannungen zu, was die Form der Verteilung beeinflussen kann. Dass
diese Einfliisse aber eine geringe Rolle spielen miissen, zeigt die vergleichsweise gute
Anpassung durch Gauk-Funktionen in Abb. 4.2b.

a) | ¥ T v T v T v T b) T v T v hz hl T
]
3
(;. -—-/\/\ ~'
. g
=
N
S He—t—r—t—t—rH &
£ | |h8h7 [h6 |h5 |4 [h3 b2 |hl| 2
2 N iS
| N s
ST | =
5]
M Ll N 1 N 1 N 1 N 1 A ( 1 R
-0,5 0,0 0,5 1,0 1,5 0,0 0,5 1,0 1,5
Gatespannung U, [V] Gatespannung U, [V]

Abbildung 4.2.: Zur Bestimmung der Ladespannungen mit a) zweiter Ableitung und b)
Anpassung der Spektren mit Gauk-Funktionen. Jedes Maximum ent-
spricht einer Anderung der Ladung N in dem Quantenpunktensemble.

Die Anpassung zeigt nur eine geringe Abweichung von der Gaufs-Form.
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Zustand U*/V UP/V U¢/V  Mittel/V Fehler/V

hl 1,34 1,36 1,34 1,35 0,02
h2 1,04 1,06 1,03 1,05 0,02
h3 064 0,65 0,63 0,64 0,01
hd 042 042 0,42 0,42 0,01
h5 0,19 02 0,21 0,2 0,01
h6 -0,02 -0,04 -0,04 0,03 0,01
h7 -~ 20,29 -0,25 0,27 0,03
h8 ~ 047 -0,51 0,49 0,03

Tabelle 4.1.: Mittlere Ladespannungen zu den acht identifizierbaren Zustanden der Pro-

be DO1880 nach verschiedenen Auswertungsmethoden.

Die genaue Form des Untergrunds der Spektren im Bereich der Quantenpunktbeladung
ist nicht bekannt. Eine spannungsabhingige Sperrschichtkapazitiat sollte, aufgrund der
sehr geringen Hintergrunddotierung nur eine unwesentliche Rolle spielen. Aufgrund des
flachen Verlaufs der Kapazitit im Bereich von 2 bis 3 V ist eher anzunehmen, dass
der Untergrund durch die Beladung der Quantenpunkte selbst entsteht. Dies soll im

folgenden Abschnitt untersucht werden.

4.1.2. Berechnung des Hebelarms

In diesem Abschnitt soll die Umrechnung der gemessenen Spannungswerte in Energien
Erfolgen. Dabei soll an drei unterschiedlichen Methoden der Einfluss der Beladung Dis-
kutiert werden. Fiir die Methoden a und b wird eine 1D-Poisson-Rechnung ohne und
mit Fliachenladung durchgefiihrt. Fiir Methode ¢ wird die Gesamtkapazitat der Probe

mit einem iterativen Verfahren simuliert.

Die Umrechnung der Spannungsdifferenzen in energetische Abstinde am Ort der Quan-
tenpunkte lisst sich grob iiber das Verhéltnis der Abstinde Quantenpunkte/Gate und
Riickkontakt/Quantenpunktschicht abschitzen. Nach Gleichung (2.18) folgt ein Hebel-
arm von 7,6 bzw. 13,4 je nachdem, ob man eine starke, substratseitige Lokalisierung des
2DHG im Quantentopf annimmt oder eine Verteilung iiber den gesamten Topf zuldsst

(siehe auch Abb. 2.3). Die Lokalisierung des 2DHG in z-Richtung und seine energetische
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Breite sind spannungsabhingig. Auferdem wirken die geladenen Quantenpunkte auf den

Verlauf der Bandkanten. Im folgenden soll dies genauer berechnet werden.

Die Valenzbandkanten und die Ladungstriagerdichte der Heterostruktur wurde hierzu
mit dem Programm 1D Poisson simuliert. Als Eingabedaten dienen die Herstelleranga-
ben zu Schichtdicken, Akzeptordichte und Quantenpunktdichte. Die Schottky-Barriere
zwischen der Au-Gateelektrode und dem GaAs wurde nach [Bock03| zu Us = 0,77V
angenommen. Anstelle der Quantenpunkte wurde eine 1,2 nm dicke In,Ga;_,As Schicht
eingefiigt, deren Indium-Anteil nach [Offermans05| zu etwa 0,2 abgeschitzt wurde. Die
eingefiigte Schicht dient hier nur als Benetzungsschicht und beriicksichtigt die Erho-
hung der Gesamtstruktur durch die InAs-Bedeckung. Die Quantenpunkte werden hier
nicht direkt beriicksichtigt, da ihr dreidimensionaler Einschluss mit dem eindimensional

rechnenden Programm nicht zuganglich ist.

Der energetische Abstand zwischen Fermi-Energie und der Valenzbandoberkante von
GaAs am Ort der Quantenpunkte bei der Beladespannung eines Zustandes entspricht
der energetischen Tiefe des Zustandes und damit seiner Bindungsenergie (vgl. [Lei08]).
Diese Energie lisst sich in der Ausgabe des Programms direkt ablesen, der Hebelarm
kann durch die Steigung einer linearen Regression, durch die Auftragung Gatespannung
iiber Energie bestimmt werden. Durch Einfiigen einer Flichenladung am Ort der Quan-
tenpunkte ldsst sich zudem ihr Einfluss auf den Hebelarm abschétzen. Ohne bzw. mit

Beriicksichtigung der Beladung erhilt man so einen Hebelarm von:

A = 10,6 bzw.
A= 14,1

Der Einfluss der Ladung in den Quantenpunkten auf die Bandkanten ist also nicht
unwesentlich, so dass fiir das vorliegende System das iibliche Modell eines geometrischen
Hebelarms nach [Drexler94| und Gleichung 2.18 nur als erste Ndherung zur Bestimmung

der Energieniveaus herangezogen werden kann.

Um den Einfluss der Aufladung auf die Energieniveaus genauer zu untersuchen, wird die

Heterostruktur durch eine kapazitive Ersatzschaltung simuliert (Abb. 4.3). Die Quan-
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tenpunktschicht wird durch eine spannungsabhiingige Kapazitit Cqop = e€*D(E(Ug))
in Abb. 3.4 beriicksichtigt. Fiir die relativen Dielektrizitdtszahlen e;, €5 wurden die
Werte aus Tabelle 2.1 in den beiden Bereichen d1, d2 der geometrischen Kapazititen
gemittelt und das Abstandsverhéltnis so gewéhlt, dass bei unbeladenen Quantenpunk-
ten der Hebelarm der 1D Poisson Rechnungen reproduziert wird. Als Zustandsdichte
D des Ensembles werden sechs Gauk-Funktionen Dy, (E) fiir die Beladung der Quan-
tenpunkte mit identischer Breite und Fliache und eine Gaufs-Funktion fiir die Beladung
der GaAs-Matrix bzw. der Benetzungsschicht angenommen. Durch eine Anpassung der

Zustandsdichte ldsst sich die gemessene Kapazitit nachbilden.

Kapazitit C

10E . 1 : 1 1
1 2 3 4
Spannung U [V]

Q ' 1 ' L ' L

Q c) Benetzungsschicht und GaAs-Matrix

=

= Beladeniveaus des Quantenpunkt Ensembles

= hl h2 h3 h4 h5 h6

<

z ap

N . 1 . ] A ]
0,05 0,10 0,15

Spannung am Ort der Quantenpunkte U, [V]

Abbildung 4.3.: a) Kapazitit der Ersatzschaltung mit Messdaten (schwarz), b) Hebel-
arm A\(U) = U/U, und c¢) angenommene Zustandsdichte D des Quan-
tenpunktensembles mit GaAs-Matrix. Zum Vergleich mit der Zustands-

dichte ist die Spannungsachse hier invertiert.
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Aus der Zustandsdichte folgen direkt die Energieniveaus der Zustdnde, sowie die Fla-

chendichte der Quantenpunkte:

ngp = /D,u-(E) dE =32-10"cm 2.

Der Hebelarm zeigt eine starke Spannungsabhéngigkeit im Bereich der Ladevorginge
(Abb. 4.3b). Die Energieniveaus fiir die ermittelten Ladespannungen sind fiir die drei
beschriebenen Verfahren in Tabelle 4.2 aufgefiihrt. Die letzte Methode liefert keinen Ab-
solutwert, hier wurde der Mittelwert der ersten beiden Methoden fiir den Zustand hl
als Referenz gewihlt. Ein Vergleich der Energien E® und E° zeigt, dass die Annahme
eines mittleren Hebelarms fiir alle Zustinde zu einem Fehler von etwa 5% in den Ab-
solutwerten fithrt. Auf die Abstédnde wirkt sich der Fehler mit etwa 20% jedoch stérker

aus.

Die gefundene FEnergie des h1-Zustandes von -186 meV hat die Bedeutung einer Bin-
dungsenergie. Ihr Betrag liegt leicht unterhalb der Energien der von [Reuter05a] un-
tersuchten Proben. In Verbindung mit den héheren Photolumineszenzenergien bestétigt

dies die Annahme, dass es sich hier um etwas kleinere Quantenpunkte handeln muss.

Zustand Energie®/meV Energie®/meV Energie¢/meV

h1 “184,5 -186,6 -186
h2 ~155,9 -165,2 _166
h3 1176 ~136,6 _134
h4 -96,6 -120,8 “120
h5 75,7 -105,2 -106
h6 53,6 88,7 93
h7 -31,0 71,8 -
h8 10,5 56,5 -

Tabelle 4.2.: Energien der gemessenen Ladespannungen a) ohne, b) mit Beriicksichtigung

einer Schichtladung und ¢) iiber Ersatzschaltung.
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4.1.3. Energien und Konfigurationen

In diesem Abschnitt werden die Energien mit dem in Abschnitt 2.2 vorgestellten Warbur-
ton-Modell verglichen. Die gefundenen Abweichungen gegeniiber erwarteten Werten las-

sen auf eine geringe Austauschwechselwirkung in den Quantenpunkten schliefsen.

Im Warburton-Modell entsprechen die Kapazitdtsmaxima der sequentiellen Besetzung
von Einteilchen-Zustidnden des harmonischen Oszillators. Die Energieabsténde verschie-
dener Konfigurationsreihenfolgen wurden berechnet (vgl. Tab. 2.2) und mit den experi-
mentell ermittelten verglichen . Die zwei freien Parameter £, und hiw lassen sich aus den
ersten beiden Abstinden A®_,5 bzw. A®, .3 bestimmen und zur Berechnung aller wei-
teren verwenden. Tabelle 4.3 zeigt die Energien der wahrscheinlichsten Konfigurations-

moglichkeiten. Fiir die Coulomb- und die Lokalisierungsenergie ergeben sich:

ES = 20meV  bzw.
hw = 27meV.

Keiner, der nach dem Warburton-Modell berechneten Abstinde zeigt eine gute Uber-
einstimmung mit den Messwerten. Sowohl die fiir Elektronen erwartete Reihenfolge
sspyp_psp—, wie auch die nach Reuter et al. [Reuter05a| durch Messungen im Magnet-
feld beobachtete Reihenfolge ssp,p_d.,d_ zeigen eine deutliche Schwankung in den drei
berechneten Abstédnden. Es wurden jedoch nahezu gleiche Abstéinde zwischen den Ener-

gien von h3 bis h6 gemessen.

Abstand Messung sspyip_pip_  SSpip_did_  SSpipip_p_

APi_5 20 meV ES ES ES
A®y s 32méV  hw+1EL  hw+31ES hw+ 1ES
Ads ., 14 meV 10 meV 10 meV 14 meV
Ad,y .5 14 meV 18 meV 31 meV 10 meV
Ads_¢ 13 meV 10 meV 9 meV 14 meV

Tabelle 4.3.: Gemessene und erwartete Energieabstinde fiir drei Konfigurations-

moglichkeiten im Warburton-Modell.
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Die beste Ubereinstimmung erhilt man fiir eine Sequenz, in der erst beide p, Zustinde
gefiillt werden. Jedoch zeigt sich auch hier noch eine starke Abweichung bei der Befiillung
des ersten p_ Zustandes (A®,_,5). Die energetische Favorisierung einer bestimmten Kon-
figuration ldsst sich im Warburton-Modell durch einen Gewinn an Austauschenergie er-
kldren, wenn sich das Verhiltnis hw/ES, verringert (siche Abb. 4.4). Fiir den h5-Zustand
wird eine Konfigurationséinderung allerdings erst fiir hw/ES, < 11/16 vorhergesagt. In
diesem Fall ist die Coulomb-Energie bereits deutlich grofser als die Lokalisierungsenergie,

was der Annahme einer kleinen Stérung des harmonischen Oszillators widerspricht.

Der fehlende Gewinn durch Austauschenergie macht eine Besetzung der Reihenfolge
sspyp energetisch ungiinstig. Die nahezu gleichen Absténde von h3 bis h6 liefen sich

allerdings durch eine Uberschitzung der Austauschenergien in diesem System erkliren.

13,5F

, 13,0

EC

—
o
(9]

12,0

Gesamtenergie E, /

11,5

L 1 L
0,60 0,65 0,70 0,75 0,80
Lokalisierungsenergie hw/E€

Abbildung 4.4.: Gesamtenergie der N = 5 Konfigurationen nach Gl. (2.17) im Grenz-
bereich des Warburton-Modells fiir hw < ES. Im Bereich von 0,64 <
hw/ES < 0,69 ist die Konfiguration sspyp_d, am giinstigsten. Fiir

88 v

hw/ES < 0,64 dominiert der Gewinn durch Austauschenergie und fiihrt

88 ~v

zu einer vollstindig parallelen Einstellung der Spins.
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Setzt man die Austauschenergien in den Rechnungen auf Null, ist die gesamte p-Schale
energetisch entartet. Fiir eine Besetzungsreihenfolge sspppp ergiiben sich dann die ener-

getischen Absténde:

A, = Eg,
1
A(I)2_>3 = hw+—E§;,
2
11
ADz y = Ay 5 = Ads_ 5 = EESCS

In diesem Fall ldgen Coulomb- und Lokalisierungsenergien sehr dicht beieinander:

ES = 20meV bzw.
Ihw = 22meV.

Aus der direkten Coulomb-Energie und der Lokalisierungsenergie lassen sich nach Glei-
chungen (2.9) und (2.16) effektive Oszillatorlédnge [y und Lochmasse m* berechnen. Mit
Beriicksichtigung der Austauschenergie erhélt man [y = 7nm und m* = 0,06 my. Oh-
ne Austauschenergie ergeben sich [y = 7nm und m* = 0,07 mg. Die effektiven Massen
entsprechen nach Tabelle 2.1 eher der leichten Lochmasse von Gagglng4As. Fiir einen
Einschluss wiirde man jedoch eine effektive Masse in der Grofenordnung der schweren
Lochmasse erwarten. Setzt man die schwere Lochmasse in Gleichung (2.9) ein, so ergibe

sich eine sehr geringe Lokalisierungsenergie von hw = 4meV.

Es ist moglich, dass die Locher-Wellenfunktionen in der Basis des harmonischen Os-
zillators durch die Coulomb-Wechselwirkung stirker gestort werden als dies in erster
Ordnung Storungstheorie zu beriicksichtigen ist. Korrelationseffekte |[Reuter05b| oder
eine Mischung von leichten und schweren Lochzustdnden |Climente05| kénnen zu einer

Favorisierung von anderen Besetzungsreihenfolgen fithren [He05].
Neben den energetischen Abstéinden gibt auch die Aufspaltung der Energieniveaus in

einem magnetischen Feld Aufschluss iiber die moglichen Konfigurationen. Jede neue Be-

setzung der Einteilchenzusténde fiihrt zu einer Anderung des Gesamtdrehimpulses des
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Vielteilchensystems, die proportional zu der Verschiebung der Ladeenergie im Magnet-
feld ist, da sich diese nach (2.21) gerade aus der Differenz der Vielteilchenenergien ergibt.
Fiir den einfachen Fall einer sequentiellen Befiillung der Niveaus ist sie gerade propor-
tional zum Drehimpuls des zuletzt besetzten Einteilchenzustands. Messungen in Feldern
von B = 0 bis 30 T (Abb. 4.5) zeigen eine geringe Anderung fiir die Ladezustinde h1
und h2 von 0,01 £ 0,02meV /T bzw. 0,03 £ 0,02meV/T. Dies bestétigt, dass es sich

hierbei um drehimpulslose s-artige Zustédnde handelt.

Die Zustédnde h3 bis h5 zeigen fiir Feldstdarken bis 12 T eine vergleichbar grofere Ver-
schiebung von etwa 0,1 £ 0,05 meV /T zu niedrigeren Energien. Dies ist mit dem Modell
der sequentiellen Schalenbesetzung schwer zu verstehen, da h5 energetisch deutlich stér-

ker sinken sollte, wenn es sich um die Besetzung der d-Schale handelt. Falls es sich aber

I v I v I v I v I v I
I h7 5F 5 5 5 -039meV/T -0,3

-80F 0,43 meV/T 1
16 M 400

-100 |- -0,07 meV/T 0,40 meV/T 0,09 meV/T

h5

120k ha -0,07 meV/T

-0,09 meV/T 4 0,6
qapp P EEEE =33y v E33 33

Energie [meV]
Gatespannung U, [V]

-160 | 0,03 meV/T
=== = o8 =ss=—==

-180 | 0,01 meV/T
==s === ass-s-sao—as-—=—a—yg

0 5 10 15 20 25 30
Magnetfeld B [T]

Abbildung 4.5.: Dispersion der Ladeenergien im Magnetfeld von 0 bis 30 T. Die energe-
tisch tiefsten Niveaus hl und h2 zeigen nahezu keine Abhéngigkeit. Fiir

die Energien wurde ein konstanter Hebelarm von A\ = 14,1 verwendet.
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um p-artige Zustinde handelt, sollte die Steigung von wenigstens einem der Zustinde
positiv sein. Bisher wurde der Spin in den Uberlegungen vernachlissigt (siehe Gleichung
(2.12)), aber aufgrund der geringen Differenz in den Verschiebungen von hl und h2 ist

von einem sehr geringen g-Faktor des Spins auszugehen, der diese Annahme rechtfertigt.

Eine weitere Besonderheit tritt in der Dispersion des hb-Zustandes bei etwa 12 T auf, wo
es zu einer deutlichen Anderung der Steigung kommt. Derartige Ubergiinge wurden bei
einem Wechsel der Konfigurationen beobachtet [Tarucha96, Warburton98|, wobei es zu
einer Kreuzung in der energetisch giinstigsten Besetzung kommt, wenn beispielsweise der
Energiegewinn durch die Zeeman-Aufspaltung den Gewinn durch die Austauschwechsel-
wirkung iiberwiegt. Fiir diese Erklarung miisste jedoch auch ein energetisch abfallender
Zweig auftreten, der nicht beobachtet werden kann. Eine Mischung aus schweren und
leichten Lochzustdnden mit J, = 3/2 bzw. J, = 1/2 in der p-Schale wére auch denk-
bar. Aufgrund der hohen Quantisierungsenergie in z-Richtung, sollte der energetische
Abstand zwischen leichten und schweren Lochern jedoch grofs gegeniiber der Quantisie-

rungsenergie in z-y-Richtung sein.

Deutlich iiberproportional ist die Steigung des h6-Zustandes schon bei kleinen Feld-
stirken. Moglicherweise kommt es hier zu einer Anderung der Konfiguration auch ohne
angelegtes Magnetfeld. Bei all diesen Uberlegungen muss beriicksichtigt werden, dass es
sich bei dem Riickkontakt um ein zweidimensionales Lochgas handelt. Die Folge sind
Ostzillationen der Fermi-Energie mit dem Magnetfeld. Zwar ist die Feldstarke bei jeder
Messung konstant, jedoch dndert die Gatespannung die Ladungstrigerdichte im 2DHG.
Dies kann zu einem spannungsabhingigen Untergrund fiihren, der bei den geringen be-

obachteten Dispersionen die Messungen iiberlagert.

4.1.4. Tunnelzeiten aus Kapazitatsspektren

Es soll nun die Abhingigkeit der Kapazititsspektren auf eine Anderung der Wechsel-
spannungsfrequenz f untersucht werden. Hieraus werden die Zeitkonstanten 7 der Tun-
nelprozesse beim Be- und Entladen der Quantenpunkte berechnet. Fiir die Probe DO1880

liegen sie im Bereich von 16 bis 28 ps.

Durch eine Erhéhung der Frequenz f der Wechselspannung kommt es zu einer Ver-
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groferung des kapazitiven Stromes I_ (vgl. Gl. (3.1). Im Bereich Ug > 1,5V ist die
Kapazitit der Quantenpunkte vernachlissigbar klein (Grenzfall Cqop — 0 in Gl (3.2)).
Wird die Frequenzabhéngigkeit der geometrischen Kapazitdt der Probe vernachlissigt,
ist die Kapazitat aller Messungen in diesem Bereich gleich. Werden die Spektren auf
diesen Bereich normiert, zeigt sich bei zunehmender Frequenz ein sinken der Amplitude
in den Beladezusténden der Spektren (sieche Einsatz in Abb. 4.6). Wird diese Amplitude
iiber die Frequenz aufgetragen zeigt das Verhalten die Form einer Lorenz-Kurve. Durch

eine Anpassung nach Gleichung (2.24) lassen sich so die Tunnelzeiten 7 bestimmen.

Es zeigt sich, dass die gefundenen Zeiten (Tabelle 4.4) fiir alle Zustéinde sehr dicht bei-
einander liegen, im Gegensatz zu Proben mit einer reinen GaAs Barriere [Wibbelhoff06.
Dies liegt daran, dass die Tunnelraten hauptséchlich durch die Hohe der AlyoGagiAs
Barriere bestimmt werden und der energetische Abstand der Zusténde eine geringere

Rolle im Vergleich zu der Barrierenhche spielt.

Ladeamplitude [normiert]

N 1 N 1 2 1 2 1 2 1
0 2000 4000 6000 8000 10000
Frequenz f [Hz]
Abbildung 4.6.: Frequenzabhéngigkeit der einzelnen Maxima mit Anpassungsfunktion

nach Gl. (2.24). Die Tunnelzeiten 7 ergeben sich aus den Parametern

der Anpassung.
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Zustand Tunnelzeit 7/ps  Fehler/ps

h1 27,6 0,4
h2 22,5 0,4
h3 23,8 0,3
h4 19,9 0,3
h5 18,1 0,1
h6 16,2 0,4

Tabelle 4.4.: Tunnelzeiten aus der Approximation nach Gl. (2.24) der Kapazitatsampli-

tuden und Fehler aus Standardabweichung der Anpassung.

Der Anstieg in den Tunnelzeiten von h2 auf h3 liefe sich durch einen Effekt der Ladung
auf die Bandkanten erkldren. Die fehlende Kenntnis der Hintergrund-Kapazitéit verhin-
dert jedoch einen direkten Zugang zu den Kapazititen der Quantenpunktschicht. Der
tatsichliche Fehler in den Zeiten wird bei iiber 2 ps liegen. Die zeitaufgelosten Trans-
portmessungen erlauben einen direkten Zugang zu den Tunnelzeiten, weswegen diese in

Kapitel 4.3 noch einmal genauer diskutiert werden sollen.

4.1.5. Statische Transportmessung

In diesem und dem folgenden Abschnitt wird die Abhéngigkeit des Stromes / im 2DHG
von der Gatespannung Ug untersucht. Zunéchst soll dabei der statische Fall t — oo
betrachtet werden. Die Struktur in der Ableitung der Kennlinie (Ug) deutet bereits auf

den Einfluss der Quantenpunkte hin.

Die Abhéangigkeit der Leitfahigkeit des 2DHG-Kanals von der Gatespannung Ug zeigt
Abbildung 4.7 fiir den statischen Fall. Ohne die Quantenpunktschicht wiirde man mit
fallender Gatespannung einen linearen Anstieg der Ladungstrigerdichte, aufgrund der
konstanten Zustandsdichte des 2DHG erwarten. Da der Einfluss von geladenen Stor-
stellen mit zunehmender Ladungstriagerdichte besser abgeschirmt werden kann, ist auch
die Beweglichkeit von der Gatespannung abhingig. Insgesamt erwartet man also ein

Potenzgesetz mit einem Exponenten < —1 fiir das Verhalten der Leitfahigkeit nach
[Shayegan88|, [Kane93| oder [Lu07].
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Abbildung 4.7.: Statischer Strom [ des 2DHG bei konstanter Source-Drain-Spannung
Usp = 30mV in Abhéngigkeit von der Gatespannung Ug fiir die Probe
DO1880. Der Einfluss der Quantenpunktschicht zeigt sich in den Maxi-
ma der Ableitung.

Die starke Kriimmung im Verlauf des Stromes in Abb. 4.7 ist durch den Einfluss der
Quantenpunktschicht zu erkldren. Die geladene Schicht schirmt die Gatespannung ab
und verringert somit die effektiv an dem 2D-Kanal anliegende Gatespannung. Aufterdem
wirken die geladenen (Quantenpunkte als Streuzentren und verringern die Beweglichkeit
|[Ribeiro98]. Die Ableitung zeigt eine zu den Kapazitétsspektren vergleichbare Struktur,

was ein Indiz fiir die Auswirkungen der Quantenpunkte ist.

4.1.6. Transientenspektren

In diesem Abschnitt wird die Zeitentwicklung des Stromes I betrachtet. Durch die An-
derung des Stromes ldsst sich zeigen, dass es sich tatsichlich um den Einfluss der Quan-

tenpunkte handelt.
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Als eine Alternative zur Kapazitatsmessung ist bei Proben mit zweidimensionalem Riick-
kontakt die Untersuchung der Be- und Entladetransienten mdoglich. Die Antwort des
Stromes auf die angelegte Gatespannung zeigt Abb. 4.8. Die starken Ausschlige beim
Andern der Gatespannung durch den Pulsgenerator sind eine Reaktion des Stromver-
stirkers auf die abrupte Anderung des Stromes. Direkt nach einer Pulsinderung zeigt
sich ein Sattigungsverhalten mit einer kurzen Zeitkonstanten von etwa einer ps. Dieses
Verhalten geht auf das RC-Glied von Aufbau und Probe zuriick. Es begrenzt die Auflo-
sung fiir sehr kurze Zeiten und fiithrt zu einer Erhéhung der Startzeit in der Auswertung.

Bei einem Widerstand von R ~ 2k{2 entspricht die Zeitkonstante einer Kapazitit von:

CAufbau ~ T/R ~ 50nF.

14,85 T T T T

14,80

14,70 f - TA, -

D
o P
1465 [ U,=134V \/1( i
1

S E—
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S '

=

[

s

[\

<

Strom 7 [pA]

14,60 —_— -
0,0 0,2 0,4 0,6 0,8 1,0

Zeit t [ms]

Abbildung 4.8.: Transienten fiir einen Be- und einen Entladepuls nach 30000 Mittelun-
gen. Der Ladungstransfer hat einen deutlichen Einfluss auf den Strom.

Die Zeitliche Auflésung wird durch die Kapazitit der Probe begrenzt.
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Dieser Wert liegt in der Gréfenordnung der Probe, der sich abschétzen lasst zu:

Cprobe = £60A/d =~ 20 nF.

Eine Verkleinerung der Gatefliche A sollte also zu einer Verbesserung der zeitlichen Auf-
16sung fiihren. Etwa 6 ps nach dem Puls dominiert der Effekt durch den Ladungstransfer
zwischen Quantenpunkten und Riickkontakt die Transienten. Aus den Amplituden der
Stroménderung AI(Ug) = |I(t1,Ug) — I(t2,Ug)| erhdlt man das in Abb. 4.9 gezeig-
te Spektrum. Es zeigt sechs Maxima in sehr guter Ubereinstimmung mit den aus den
Kapazitatsspektren ermittelten Positionen. Der Untergrund entsteht hier groftenteils
durch den Unterschied in den Zeitkonstanten der Tunnelprozesse. Da die Zeitauflosung
fiir kurze Zeiten durch das RC-Glied begrenzt wird, werden schnellere Tunnelprozesse

in ihrem Beitrag unterschitzt, was in einem Vergleich zu Abb. 4.12 deutlich wird.

! ! v ! !
25
= 20
£
3
N 15
o
=
g 10
S
A
5
0 2 1 2 1 2 1 2 1

-0,5 0,0 0,5 1,0 1,5
Gatespannung U, [V]

Abbildung 4.9.: Differenz des Stromsignals Al = I(t = 506 us) — I(t = 1ms) und Re-

konstruktion durch Gauf-Funktionen auf linearem Untergrund.
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Zustand UG,Trans./V UG,Kap./v

h1 1,34 1,35
h2 1,04 1,05
h3 0,64 0,64
h4 0,41 0,42
h5 0,18 0,20
h6 0,05 0,03

Tabelle 4.5.: Vergleich der Ladespannungen Ug aus den Transport- und Kapazitéts-
messungen der Probe DO1880 zeigt eine sehr gute Ubereinstimmung der

beiden unterschiedlichen Messmethoden.

4.2. Probe mit schwacher Kopplung

In diesem Kapitel wird die Probe DO1881 mit 10 nm breiter Aly9Gag;As-Barriere un-
tersucht. Sie hat Tunnelzeiten im Bereich einiger Sekunden. Es wird gezeigt, dass Trans-
portmessungen an Proben mit diesen Tunnelzeiten mdoglich sind. Die Energien und der
Hebelarm werden mit 1D-Poisson-Rechnungen bestimmt. Ein Vergleich der Energien
mit der Probe DO1880 zeigt eine gute Ubereinstimmung im Rahmen der experimentel-

len Genauigkeit

Proben mit einer starken Kopplung und Tunnelzeiten von < 1ms eignen sich gut fiir
kapazitive Messmethoden. Die im folgenden untersuchte Probe DO1881 hat eine 5 nm
breitere AlyoGag1As Barriere. Kapazitive Messungen mit Wechselspannungen bei Fre-
quenzen unter einem Hz ergaben keine verwertbaren Ergebnisse. Die statische Kennlinie
I(Ug) zeigt jedoch in der Ableitung ebenfalls die Struktur der Beladeniveaus der Quan-
tenpunkte (Abb. 4.10). Transportspektroskopie war also auch an diesen Proben moglich.
Aufgrund des ca. 50% groferen Abstandes zwischen Quantenpunktschicht und 2DHG ist
die Storstellenstreuung verringert, und durch den kleineren Hebelarm riicken die Maxima

dichter zusammen.
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Abbildung 4.10.: Strom des 2DHG in Abhéngigkeit von der Gatespannung fiir die Probe
DO1881. Die Ladespannungen der Quantenpunktschicht zeigt sich in
der Ableitung.

4.2.1. Transientenspektren

Aufgrund der langen Tunnelzeiten muss hier ein weitaus langerer Puls gewahlt werden,
bevor sich die Stromtransiente séittigen kann (sieche Abb. 4.11). Hierdurch sind nur 5
bis 10 Mittelungen pro Spektrum mdoglich. Das Signal- zu Rausch-Verhéltnis ist daher
schlechter als bei der Probe DO1880 mit starker Tunnelkopplung (vgl. Abb. 4.9 und
4.12).

Die Wachstumsparameter der beiden Proben sind bis auf die Barrierenbreite identisch
und die Energieniveaus der Quantenpunkte sollten daher vergleichbar sein. Eine rein
geometrische Uberlegung nach Gleichung (2.18) fiihrt fiir diese Struktur zu einem He-
belarm von 9,6 bzw. 6,3, je nach Lokalisierung des 2DHG im Quantentopf. Eine genauere
Rechnung mit dem 1D Poisson Programm, unter Beriicksichtigung der Flichenladung
fithrt auf die Energien in Tabelle 4.6.
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Abbildung 4.11.: Be- und Entladetransiente einer Messung mit 7 Mittelungen der Probe
DO1881. Auf diesen Zeitskalen wirkt der Ubergang beim Spannungs-
wechsel scharf (vgl. Abb. 4.8). Das RC-Glied spielt hier keine Rolle.

Der Hebelarm ergibt sich aus der linearen Regression zu:

A =12.1.

Ein Vergleich der Energieabstinde zwischen den beiden untersuchten Proben zeigt ei-
ne vergleichbare Coulomb-Energie und eine geringfiigig grofere Lokalisierungsenergie der
Probe DO1881. Im Rahmen der Fehlertoleranz kann aber nicht mit Sicherheit gesagt wer-
den, ob diese Unterschiede tatséchlich von kleineren Quantenpunkten in dem Wafer der
Probe DO1881 herriihren. In diesem Fall miisste sich auch die Coulomb-Wechselwirkung
verstirken. Da der Abstand der Quantenpunktschicht zu dem 2DHG hier gréfer ist und
die Tunnelzeiten der beiden Proben verschieden sind, ergibt sich ein anderer Untergrund
fiir die Spektren der beiden Proben. Dies fiihrt zu einer Verschiebung der Maxima. Zu-

dem ist auch der Hebelarm nicht hinreichend genau bestimmbar.
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Abbildung 4.12.: Differenz des Stromsignals Al = [(t = 61s) — I(t = 115s) und Re-
konstruktion durch Gaufk-Funktionen auf linearem Untergrund, an der
schwach gekoppelten Probe DO1881.

4.3. Vergleich der Tunnelzeiten

Es sollen nun die Tunnelraten der beiden Proben genauer untersucht und verglichen
werden. Die Tunnelraten werden dabei aus den Transienten der Transportmessungen
ermittelt. Es wird gezeigt, wie sich durch die Form der Barriere die Tunnelzeiten beein-

flussen lassen.

Die zeitaufgelosten Transportmessungen ermdoglichen einen direkten Zugang zu der Zeit-
entwicklung der Umladeprozesse. Abbildung 4.13 zeigt eine halblogarithmische Auftra-
gung der Stromamplituden fiir eine Messung der Probe DO1881. Die Transienten zeigen
ein nahezu monoexponentielles Abklingverhalten, mit einer Verringerung der Tunnel-
zeiten zu hoheren Beladungszahlen. Die gemessenen Tunnelzeiten 7 in Tabelle 4.8 sind
aus mehreren Messungen iiber Be- und Entladetransienten gemittelt. Die Fehlertoleranz

sollte in etwa bei 20% liegen, da die exponentiellen Anpassungen nach Gl. (3.5) verschie-
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Zustand Ug/V  Energie/meV

hl 0,88 “178,8
h2 0,64 “158,8
h3 0,30 127,33
ha 0,11 -113,2
h5  -0,08 99,1
h6  -0,28 84,0

Tabelle 4.6.: Ladespannungen und Energien nach Rechnungen mit 1D Poisson fiir die

Probe DO1881. Der Hebelarm folgt aus der linearen Regression zu A = 12,1.

Abstand DO1880 /meV  DO1881/meV

AD, 21,4 20,0
Ady s 28,6 31,5
AD; 15.8 14,1
AD,_,s 15,6 14,1
Ads g 16,5 15,1

EC 21,4 20,0

hw 23,3 26,5

Tabelle 4.7.: Vergleich der Energieabstéinde der beiden untersuchten Proben mit jeweils
konstantem Hebelarm von 14,1 (DO1880) bzw. 12,1 (DO1881).

dener Messungen starke Abweichungen in den Zeitkonstanten im Bereich von ~ 50% des
Mittelwertes zeigen. Dies tritt auch bei den bereits 30.000 fach gemittelten Transienten
der Probe DO1880 auf. Urséchlich fiir die starken Schwankungen kénnen bereits leichte
Spannungsdifferenzen von Messungzyklus zu Messungzyklus sein und die vergleichsweise
grofse Differenz von 20 mV zwischen Be- und Entladepuls. Diese Differenzen gehen dabei

exponentiell in die Tunnelwahrscheinlichkeit 7" ein.

Zur Berechnung der Tunnelwahrscheinlichkeit 7" nach Gleichung (2.29) wird die Barriere
V(2) — E durch das in Abb. 4.14 gezeigte, effektive Potential Vg (2) angenédhert. Es wird

dabei vereinfachend eine konstante Dielektrizitdtszahl zwischen Quantenpunktschicht
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und Riickkontakt angenommen. Nach den 1D-Poisson-Rechnungen kreuzt die Fermi-
Energie das Valenzband im Quantentopf des 2DHG im Abstand von etwa 3 nm zur
Alg 9Gag 1 As-Schicht (vgl. Abb. 3.1). Dies wird in der Form der Barriere beriicksichtigt.
Als Bindungsenergien E; der Zustinde werden fiir beide Proben gleiche Quantenpunkte
angenommen und die nach der Ersatzschaltung ermittelten Werte verwendet (vgl. Ta-
belle 4.2, E°). Fiir die Valenzbanddiskontinuitidt wird der Wert AEy = 429 meV und als
effektive Massen die mittleren leichten Lochmassen mj; fiir die jeweiligen Festkorper ver-

wendet' Das Integral iiber x lisst sich in die Bereiche fiir GaAs und Aly9Gag 1 As trennen

'Die gute Ubereinstimmung der Rechnungen deuten auf eine leichte Tunnelmasse hin. Durch eine
Streuung kann es beim Tunneln zu einem Ubergang von der schweren zur leichten Lochmasse kom-
men [Xia88|.

log Al [normiert]

10 20 30

Zeit ¢ [s]

Abbildung 4.13.: Logarithmische Auftragung der Amplituden der Entladetransienten
mit Anpassung nach Gl. (3.5) fiir eine Messung der Probe DO1881
bei den Spannungen der Maxima in den Spektren. Fiir hohere Belade-

zustande verkiirzen sich die Tunnelzeiten 7.
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DO1880 7/ps E;/meV  Twgp/107° f/THz 27 fh/meV

h1 20 186 1,02 48,8 201,9
h2 18 166 1,68 33,0 136,6
h3 16 134 392 159 65,9
h4 14 120 583 12,2 50,7
h5 12 106 8,84 9,4 39,0
h6 11 93 13,27 6,9 28,3

DO1881 7/s E;/meV Twgs/107% f/THz 27 fh/meV

hl 22 186 0,92 494 204,2
h2 18 166 1,71 324 134,1
h3 14 134 49 146 60,3
h4 11 120 796 114 47,2
h5 9 106 13,21 8,4 34,8
h6 8 93 21,61 5.8 23,9

Tabelle 4.8.: Vergleich der Tunnelraten aus den Transporttransientenmessungen fiir die
zwei untersuchten Proben mit errechneter Transmissionswahrscheinlichkeit

Twks und Versuchsfrequenz f.

und analytisch auswerten. Zur Berechnung der Tunnelzeiten wird noch die Frequenz f

benétigt, mit der das quasiklassische Teilchen versucht, die Barriere zu iiberwinden.

In diesem Bild gibt es keine Moglichkeit, diese Frequenz direkt zu berechnen. Die in
Tabelle 4.8 gezeigten Frequenzen wurden aus den gemessenen Tunnelzeiten 7 und den
errechneten Wahrscheinlichkeiten Tyykpg berechnet. Die berechneten Frequenzen fiir den
niedrigsten Zustand hl entsprechen mit einem Energiedquivalent von 200 meV in etwa
der Quantisierungsenergie £, = h*1?/2m*d? ~ 229meV eines 2 nm Breiten Potential-
topfes mit der schweren Lochmasse von InAs. Hier muss allerdings beriicksichtigt werden,
dass viele nicht exakt bestimmbare Grofen exponentiell in die Rechnungen eingehen,

weswegen die Frequenz hier nur die Bedeutung eines systemspezifischen Parameters hat.

Die Rechnungen zeigen auferdem einen starken Riickgang der Frequenzen zu héheren

Beladungszahlen der Quantenpunkte. Dies ist hochstwahrscheinlich auf eine Uberschiit-
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zung der Tunnelwahrscheinlichkeit Twkp zuriickzufiihren. In das Modellpotential in Abb.
4.14 geht nur der, iiber die Gesamtstruktur gemittelte Verlauf der Valenzbandkante fiir
die jeweils angelegte Gatespannung ein. Fiir einen Ladungstriger, der in einen bereits
geladenen Quantenpunkt tunnelt, kommt es jedoch lokal zu einer Anhebung der Poten-
tiellen Energie durch die, in dem Quantenpunkt gespeicherte Ladung. Nach [Luyken99a|
entspricht der geladene Quantenpunkt elektrostatisch einer geladenen Kreisscheibe. Das
Potential entlang der Symmetrieachse z einer geladenen Kreisscheibe mit Radius R hat
die Form (siehe z.B.: [Tipler07]):
Ukreisscheibe = M (V R? + 2% — 2) +W
2meegR?

Beim Transfer des N-ten Ladungstrigers ist der Quantenpunkt N — 1-fach geladen. R
und Vj werden so gewéahlt, dass die Energiedifferenz eUk eisscheibe ZWischen Riickkontakt
und Quantenpunkt der gemessenen Coulomb-Blockade von 20 meV entspricht. In diesem

Fall betragt R = 8,8 nm. Dieses Potential wird auf die Barriere addiert und die Tunnel-

0,6 T T v T T T
E 0’5 I \ i
Qg dAlGaAs ]
] 074 B 7
5
5
£ 073 B -
qé dGaAs AEV
2 02F -
=
0,1 = El O -
i A 3 nm
0.0 2 1 2 |\ 1 .
0 5 10 15 20

Barrierenbreite [nm]

Abbildung 4.14.: Modell der Tunnelbarriere V.g(z) fiir die Berechnungen der Tunnel-
wahrscheinlichkeit Tywkg. E; bezeichnet die Energiedifferenz zwischen
chemischen Potential und GaAs-Valenzbandkante bei den Ladevor-

gingen, AFEy ist die Valenzbanddiskontinuitit des Heteroiibergangs
G&AS/Alo’gGaOJAS.
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DO]-880 T/}IS 7-‘cheoretisch/ps T’VVKB-i—Coulomb/]-079

h1 20 (20,0) 1,02
h2 18 16,9 121
h3 16 10,6 1,94
h4 14 10,3 1,98
h5 12 10,1 2,03
h6 1 10,1 2,02
DO1881  7/S  Tincoretisch/S TWKB+Cloulomb/ 107"
hi 99 993 0,02
h2 18 18,0 1,14
h3 14 10,0 2,05
h4 11 9,7 2,10
h5 9 9,5 2,17
h6 8 9,5 2,16

Tabelle 4.9.: Vergleich der gemessenen mit den errechneten Tunnelzeiten unter Beriick-

sichtigung der Coulomb-Blockade.

wahrscheinlichkeiten Twkg+coulomb €rrechnet (siehe Tabelle 4.9). Die Frequenz des ersten
Beladezustandes h1 der Probe DO1880 wird nun verwendet um die Erwartungswerte fiir
die iibrigen Zeiten zu ermitteln. Die Zeiten der s-Zustéinde hl und h2 werden hierdurch
gut reproduziert, in den hoheren Beladungszustinden zeigen sich etwas grofere Abwei-
chungen. In diesem klassischen Bild wiirde es zu einer Abstofung der, in dem Quan-
tenpunkt gespeicherten Ladungen kommen, die zu einer Ausdehnung der Kreisscheibe
fiihren. Fiir die nur schwach an das einschliefende Potential gebundenen Lochzustinde

miisste dann die Coulomb-Blockade zu héheren Beladungszahlen N abnehmen.

Ein Vergleich der Frequenzen in Tabelle 4.8 zwischen den beiden unterschiedlichen Pro-
ben zeigt eine sehr gute Ubereinstimmung fiir alle Ladezustinde. Dies ist ein Indiz
dafiir, dass der Beitrag der Barriere zu den Tunnelzeiten gut mit dem WKB-Modell
zu beschreiben ist. Die Wirkung einer Anderung der Breiten d in Barrieren der Form
GaAs/Aly9Gag1As/GaAs (Abb. 4.14) lassen sich so berechnen. Abbildung 4.15 zeigt

die Grokenordnungen der erwarteten Tunnelzeiten dieser Strukturen fiir den energetisch
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Abbildung 4.15.: Erwartete Tunnelzeiten a) des hl- und b) des h6-Zustandes, fiir Bar-
rieren nach Abb. 4.14 bei verschieden breiten GaAs bzw. AlyoGag 1As
Schichten. Die Konturlinien zeigen den Abstand zwischen drei Grofen-

ordnungen.

tiefsten Zustand hl und den hochsten h6. Experimentell zugénglich sind die Bereiche
mit, Zeiten von ps bis s. Bei reinen GaAs-Barrieren unterscheiden sich die Tunnelzeiten
der beiden Zustdnde deutlich, wie schon aufgrund der Energiedifferenz der Barrieren
erwartet. Fiir technische Anwendungen sind kurze Tunnelzeiten (Zugriffszeit) und lange
Speicherzeiten (nicht fliichtiger Speicher) von grofsem Interesse, was fiir die Verwendung
hoher Barrieren spricht, da bei hohen Temperaturen die thermische Emission unter-
driickt wird [Marent07]. Fiir die Spektroskopie von Nichtgleichgewichtszustdnden ist
eher eine stiarkere Trennung der einzelnen Tunnelzeiten und damit eine niedrigere Bar-
riere von Interesse, da es trotz der geringen energetischen Breite des zweidimensionalen
Riickkontaktes bei schnellen Pulsen aufgrund des RC-Gliedes der Probe zu einer ,Ver-
schmierung® kommt. Eine Beladung der Nichtgleichgewichtniveaus ist dennoch moglich,

wenn die Tunnelzeiten sich geniigend stark unterscheiden.
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5. Zusammentassung und Ausblick

Die diskreten Valenzbandniveaus von InAs-Quantenpunkten in einer GaAs-Matrix wur-
den mit Kapazitatsspannungsspektroskopie und Transporttransientenspektroskopie un-
tersucht. Zur Berechnung der Energieniveaus aus den angelegten Gatespannungen wur-
de der Bandkantenverlauf mit einer Software berechnet, die Schrédinger- und Poisson-
Gleichungen fiir die untersuchten Proben 16st. Die Losungen wurden erweitert, um
die Beladungseffekte der Quantenpunkte zu beriicksichtigen. Im Modell einer Ersatz-
schaltung von Kapazititen wurde dabei das Quantenpunktensemble durch eine energie-
abhingige lokale Zustandsdichte simuliert. Es wurde gezeigt, dass ein spannungsunab-
hangiger Hebelarm zu einem nicht unwesentlichen Fehler bei der Umrechnung der Gate-
spannung in Energieabstdnde fiihren kann. Die Vernachlissigung der Beladungseffekte
und die Annahme eines konstanten Hebelarms fiihrt zu einer Uberschitzung der Ener-
gieskala, die mit der Beladung zunimmt.

Die berechnete Bindungsenergie fiir den N = 1 Beladungszustand und die Coulomb-
Wechselwirkung zeigten eine Ubereinstimmung im Bereich von 5 bis 10% mit vergleich-
baren Messungen nach [Bock03] oder |[Reuter05al. Bei hoheren Beladezustinden zeigte
das System jedoch ein qualitativ anderes Verhalten als erwartet. Das durch [Reuter05a]
beobachtete Verhalten der unvollstdndigen p-Schalen Befiillung konnte an diesem Sys-
tem weder durch die Energieabstdnde, noch durch ihre Magnetfeldabhéngigkeit bestétigt
werden. Fin Vergleich der Photolumineszenz-Wellenldngen und der Bindungsenergien
des unteren Lochniveaus (sieche Tab. A.2) legt den Schluss nahe, dass die hier untersuch-
ten Quantenpunkte geringfiigig kleiner sind. Bereits diese kleinen Verdnderungen in der
Morphologie der Quantenpunkte haben grofe Auswirkungen auf die Schalenstruktur der
Locher.

Die Frage, die hier offen bleibt ist, ob sich das vorliegende System durch ein schwach
wechselwirkendes Einteilchenbild beschreiben lidsst und ob sich die gleichen Absténde
der N = 3 bis N = 6 Niveaus durch die geringe Lokalisierungsenergie und Vielteilchen-

effekte erkldren lassen. Zu diesem Zweck werden in einer Kooperation mit der Arbeits-
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gruppe von Prof. Dr. Dieter Bimberg! Rechnungen durchgefiihrt, die auf dem 8-Band
k-p-Modell basieren. Erste Ergebnisse bestitigen bereits die Vermutung der Befiillung
der p,-Zustdnde und einer geringen Austauschwechselwirkung. In Verbindung mit der
experimentellen Abbildung der Wellenfunktionen (vgl. [Bester07]) sollen sie helfen, das
Verstandnis der Vielteilcheneffekte in den untersuchten Proben zu verbessern.

Die gezeigten Magnetfeldmessungen sollten einen Aufschluss iiber die Drehimpulsénde-
rungen der Lochzustinde in den Quantenpunkten geben. Jedoch ist hier nicht auszu-
schlieften, dass die beobachteten Dispersionen nicht von einem Effekt des Magnetowider-
stands in dem zweidimensionalen Riickkontakt iiberlagert werden. Um dies zu iiberprii-
fen soll versucht werden, die Beweglichkeit des zweidimensionalen Riickkontaktes einer
Probe mit einem Tonenstrahl zu verringern. An einer entsprechend priparierten Struktur

sollen die Dispersionen bis 12 T mit den bereits gemessenen verglichen werden.

Es konnte gezeigt werden, dass die Transportmessungen des zweidimensionalen Loch-
gases eine Spektroskopie der aus den Kapazitdtsmessungen bekannten Zustédnden er-
lauben. Dies sind die ersten Spektren dieser Art an einem Lochersystem. Auch konnte
gezeigt werden, dass die Transportmessungen fiir Proben mit langen Tunnelzeiten in
der Grofenordnung von Sekunden eignen und hierdurch einen weiteren Vorteil gegen-
iiber Kapazitidtsmessungen bieten. Mit dieser Messmethode ist es nun moglich auch
Nichtgleichgewichtszustdnde zu spektroskopieren. Das Hauptproblem hierbei stellt die
Begrenzung der zeitlichen Auflosbarkeit und die ,,Ausschmierung®, durch das mit der
Grofse der Gatefliche verbundene RC-Glied der Probe dar. In Zukunft sollen nun Proben
mit, kleineren Gateflichen prozessiert werden, die auch die Beobachtung von angeregten
Lochzustédnden erlauben. Mit diesen Messungen liefse sich auch direkt die Quantisie-

rungsenergie bestimmen, die nahe an der Coulomb-Energie liegen sollte.

Im Rahmen einer weiteren Kooperation mit der TU Berlin wurden Transportmessungen
bei hoheren Temperaturen untersucht, die in Hinblick auf eine Anwendung als Spei-
cherzelle vielversprechende Ergebnisse zeigen. Erste Proben mit GaSh Quantenpunkten
[Kamarudin10] und dreidimensionalem Riickkontakt sollen zunichst mit Kapazitéts-
messungen untersucht werden. In Kooperation mit der Arbeitsgruppe von Dr. Manus

Hayne? sollen auch Wafer mit zweidimensionalem Riickkontakten hergestellt werden.

L Institut fiir Festkorperphysik, Technische Universitiit Berlin
2 Semiconductor Physics and Nanostructures, Physics Department - Lancaster University, UK
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Diese Proben stellen einen vielversprechenden Kandidaten fiir den Prototypen eines
Flash-Speicher Konzepts mit Quantenpunkten dar.

Die Untersuchung der Tunnelzeiten hat gezeigt, dass die Zugabe von Al in der Tunnelbar-
riere zu einem starken Zusammenriicken der Tunnelzeiten der einzelnen Energieniveaus
fithrt. Ohne eine genaue Kenntnis der Wellenfunktionen sind die Rechnungen nicht di-
rekt iibertragbar, lassen jedoch auch fiir andere Materialsysteme eine Abschitzung der
Grobenordnung der erwarteten Tunnelzeiten zu. Die hierbei gewonnenen Erkenntnisse
koénnen bei dem Wachstum neuer Proben beriicksichtigt werden. Fiir genauere Aussagen
und ein besseres Verstdndnis der Lochertunnelprozesse, sollen Rechnungen durchgefiihrt
werden, die die Form der Wellenfunktionen parallel zur Wachstumsrichtung in den zwei
gebundenen Zustinden QD bzw. 2DHG beriicksichtigen. Hierdurch soll geklirt werden,
ob die Anderung in den Tunnelzeiten der Vielteilchenzustinde durch eine dreidimen-
sionale Verbiegung der Bandstruktur oder durch eine Veranderung der Zustandsdichte

bedingt werden.

Die Lochzustinde in selbstorganisiert gewachsenen Quantenpunkten sind vielverspre-
chende Systeme fiir die Grundlagenforschung der Quanten-Informationstechnologie, auf-
grund der hohen Kohérenz- und Relaxationszeiten des Locherspins. Die bisher unter-
suchten Ensemblegrofen lassen eine energetische Auflosung der Spinaufspaltung nicht
zu. Eine geeignete Wahl von Spannungspulsen erlaubt die Praparation spinpolarisierter
Vielteilchenzustande, was prinzipiell die Messung von Spinrelaxationszeiten auch an gro-
fseren Ensemblen erlaubt. Auf lange Sicht sollen aber Proben mit so kleinen Gateflichen
hergestellt werden, dass die rein elektrische Spektroskopie von einzelnen Quantenpunk-
ten gemessen werden kann. An diesen Proben sollte die Spinaufspaltung der Energieni-

veaus direkt messbar sein.
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A. Daten der Proben

A.1. Schichtfolge der DO1880(81)-Wafer

Oberflache

10 nm GaAs

120 nm  AlygGagAs
5nm GaAs
1,8 ... 2 ML InAs
5nm GaAs

5nm (10 nm) Aly9GagAs
8 nm GaAs

7nm AlyggGag As

30 nm  AlyoGag1As C-Dotiert, Ny = 2-10¥cm=3

1000 nm AlyoGagAs

300 nm GaAs

Substrat

Tabelle A.1.: Schichtfolge des Wafers fiir die Proben DO1880(81) nach Angabe des Her-

stellers Innolume GmbH.
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A.2. Kurziibersicht und Vergleich der Proben

DO1880(81) Proben nach Reuter et al.
InAs QDs 1,8...2 ML 2...2,1 ML
PL Grundzustand 1170 nm 1260 nm
unteres Lochniveau -186 meV -204 meV
Tunnelbarriere 5...10 nm GaAs, 5(10) nm Alp9Gag1As 17 nm GaAs
Riickkontakt 2DHG in 8 nm GaAs Topf 3D in 300 nm p-GaAs
Dotierung Na =2-10%cm ™3 (7 nm Spacer) Np =6-10%¥cm =3
Dotierspezies Kohlenstoff Kohlenstoff
Ubergitter kein, nur AlgoGag.1As AlGaAs/GaAs 3 nm/1 nm

Tabelle A.2.: Vergleich der untersuchten Probenstrukturen mit den von Reuter et al.
|Reuter04, Reuter05a, Reuter05b].
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B. Eingabe-Dateien und Quellcode

B.1. Beispiel einer Eingabedatei fiir das Programm

1D-Poisson

# D01880

surface schottky=.77 vl

GaAs t=100 dy=5 no electrons no holes

AlGaAs t=1000 dy=50 x=.9 no electrons no holes
AlGaAs t=200 dy=5 x=.9

GaAs t=50 dy=1

#sheetcharge=3.0e+10

InGaAs_GaAs t=12 dy=.2 x=.202

GaAs t=50 dy=1

AlGaAs t=50 dy=5 x=.9

GaAs t=80 dy=5

AlGaAs t=70 dy=5 x=.9

AlGaAs t=300 dy=5 x=.9 Na=2el8

AlGaAs t=100 dy=5 x=.9

AlGaAs t=900 dy=50 x=.9

AlGaAs t=9000 dy=500 x=.9 mno electrons no holes
GaAs t=3000 dy=500 x=.9 no electrons no holes

substrate

vl -2 4 0.02
schrodingerstart=1290
schrodingerstop=1705
temp=4.2K
Maxiterations=200

no status

dy=5



B.2. C-Quellcode zur Simulation des

Kapazitatsspektrums

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

const double A1=0.0057;
const double w1=0.0092;
const double A2=20;
const double w2=0.055;
const double xc1=0.0355;
const double xc2=0.056;
const double xc3=0.087;
const double xc4=0.101;
const double xcb=0.115;
const double xc6=0.128;
const double xc7=0.24;

double density(double x){

return ((A1l/(wlxsqrt(M_PI/2)))*exp(-2*((x-xcl)/wl)*((x-xcl)/wl))
+(A1/ (wixsqrt (M_PI/2))) *xexp (-2* ((x-xc2) /wl)*((x-xc2)/wl))

+(A1/ (wixsqrt (M_PI/2)))*exp(-2* ((x-xc3) /wl)* ((x-xc3)/wl))

+(A1/ (wixsqrt (M_PI/2))) *xexp (-2* ((x-xc4) /wl)*((x-xc4) /wl))

+(A1/ (wixsqrt (M_PI/2))) *xexp (-2* ((x-xcb) /wl)*((x-xcb) /wl))

+(A1/ (wixsqrt (M_PI/2))) *xexp (-2* ((x-xc6) /wl)*((x-xc6) /wl))

+(A2/ (w2*sqrt (M_PI/2)))*xexp (-2* ((x-xc7) /w2) * ((x-xc7) /w2)));

}

int main(void) {

// init

double U=0;

double C1=10.8118/138.566;
double C2=10.8118/14.434;
double C=1/(1/C1+1/C2);
double U2=UxC1/(C1+C2);
double D=0;

double dU=0.0001;

int 1i;

// print header

72



FILE * pFile;

pFile = fopen ("cv_nsc.dat","w");

fprintf (pFile,"# A=)f, w=)f, xcl=l/f, xc2=)f, xc3=Yf, xc4=)f, xcb=Vf, xc6=)f\n"
,A1,wl,xc1,xc2,xc3,%xc4,xch,xc6);

fprintf (pFile,"U\t U2\t C1i\t C2\t D\t C\n");

fprintf (pFile,"%f\t %f\t %f\t %f\t %f\t %f\n",U,U02,C1,C2,D,C);
// run bias

for (i=1;i<=40000;i++){

U=U+dU;

U2=U2+dU*C1/(C1+C2);

D=density(U2);

C2=10.8118/14.434+D;

C=1/(1/C1+1/C2);

fprintf (pFile,"%f\t %f\t %f\t %f\t %f\t %f\n",U,U02,C1,C2,D,C);
}

return EXIT_SUCCESS;

}
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