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Abstract: Microcrystallites are promising minute mirrorless
laser sources. A variety of luminescent organic compounds
have been exploited along this line, but dendrimers have been
inapplicable owing to their fragility and extremely poor
crystallinity. Now, a dendrimer family that overcomes these
difficulties is presented. First-, second-, and third-generation
carbazole (Cz) dendrimers with a carbon-bridged oligo(phe-
nylenevinylene) (COPV2) core (GnCOPV2, n = 1–3) assem-
ble to form microcrystals. The COPV2 cores align uni/
bidirectionally in the crystals while the Cz units in G2- and
G3COPV2 align omnidirectionally. The dendrons work as
light-harvesting antennas that absorb non-polarized light and
transfer it to the COPV2 core, from which a polarized
luminescence radiates. Furthermore, these crystals act as laser
resonators, where the lasing thresholds are strongly coupled
with the crystal morphology and the orientation of COPV2,
which is in contrast with the conventional amorphous den-
drimers.

Luminescent organic microcrystallites are attractive minute
laser sources that have been thoroughly investigated since the
early stage of laser science.[1–8] Their luminescent properties
can be readily modulated by modifying the p-conjugation of
the constituent dye molecules or deforming the macroscopic
morphology of the crystallites. Well-aligned transition dipoles
of the constituent molecules and flat end facets of micro-
crystals are advantageous in enhancing their optical gain and
suppressing radiation leakage.[9] To date, applications of

microcrystal lasers cover diverse optics fields including full-
color displays,[10] single-mode lasing,[11–13] phototransistors,[14]

and photo energy conversion.[15]

Among the vast family of organic laser dyes, dendrimers
are one of the highly promising classes.[16] Dendrimers are
compositionally discrete macromolecules having multi-
branched dendrons in vicinity to the central core. By virtue
of their high solubility, high quantum yields, light harvesting
potential, and remarkable tolerance toward luminescent
quenching upon solidification, dendrimers have been utilized
for research on photophysics and photochemistry.[17, 18]

Lasing from dendrimers has been achieved in solution and
in the amorphous solid state by incorporating them into
certain optical cavities such as photonic crystal resonators[19,20]

and distributed Bragg reflectors.[21, 22] However, fabrication of
crystalline optical microcavities from dendrimers still remains
a formidable challenge, owing to their fragility and poor
crystallinity. The sterically bulky morphology and the prom-
inent conformational flexibility of the dendrons make the
orderly packed crystalline state quite unfavorable both
entropically and enthalpically. Although there are several
reports highlighting crystalline dendrimers,[23, 24] they are
usually quite fragile and readily degrade upon evaporation
of the included solvents. Therefore, dendrimers in the
crystalline state have rarely been utilized for laser applica-
tions, which requires sufficiently stable materials against
photo and thermal stimuli. Ideal dendrimer crystals with
certain robustness would be attractive in the field of optics
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and materials science, because single-crystalline state makes
both chemical and physical properties spatially anisotropic.

Recently, we reported a p-conjugated dendrimer that
partially overcomes these difficulties.[25] We have been focus-
ing on a series of carbazole (Cz) dendrimers[26] with the aim of
enhancing their light-harvesting and electroluminescent prop-
erties.[27] In the course of this study, we found that a third-
generation Cz dendrimer with a triazine core self-assembles
into polycrystalline solids.[25] To our surprise, these crystals
maintained their structural integrity even after the removal of
the included solvent molecules, affording a non-solvated
microporous framework. Nonetheless, their morphology was
unsatisfactory for laser optics applications.

Herein, we present a family of dendrimers that form
single-crystalline laser resonators. We newly design aromatic
dendrimers GnCOPV2 (n = 1–3) by introducing branched Cz
dendrons to a highly fluorescent laser dye, carbon-bridged
oligo(phenylenevinylene) (COPV2). Contrary to the conven-
tional dendrimers, slow precipitation of GnCOPV2 from their
solutions affords crystalline solids. The crystallinity is high
enough to be applied to single-crystal X-ray structure analysis.
The Cz dendrons work as light-harvesting antennas that
absorb non-polarized light and transfer it into the fluorescent
COPV2 core, generating a polarized emission along the
longer axis of the core. Upon strong optical pumping, these
microcrystals display amplified spontaneous emission (ASE)
and lasing without noticeable mechanical and optical degra-
dation. The lasing properties were closely related to the
morphology of the crystals and the orientation of the COPV2
moiety.

G1COPV2 bears two N-substituted Cz units on both
termini of a COPV2 moiety with four phenyl and four n-
octylphenyl substituents for sterically protecting and solubi-
lizing groups (Figure 1a). G2COPV2 and G3COPV2 com-
prise a COPV2 core carrying two multi-branched Cz den-
drons with t-butyl groups at the outermost Cz units (Fig-
ure 1a). The Cz dendrons and COPV2 core were synthesized
according to previous studies[27–30] and were connected
together via Pd-catalyzed amination reaction. Molecular
structures of GnCOPV2 were characterized by 1H NMR
spectroscopy (Supporting Information, Figures S1–S6) and
mass spectrometry (Supporting Information, Figures S7–S9).

Figure 1b shows electronic absorption and photolumines-
cence (PL) spectra of CHCl3 solutions of GnCOPV2. The
absorption spectra display two series of absorption bands at
310–360 and 380–460 nm, which correspond to the S0-S1

transitions of the Cz dendron[31] and COPV2 units,[32, 33]

respectively. In contrast, upon excitation at 290 nm, PL
spectra display PL bands only from the COPV2 unit at 430–
550 nm, involving 0–0, 0–1, and 0–2 vibronic structures of
COPV2.[34] The absence of PL from the Cz units indicates
intramolecular energy transfer from the Cz dendrons to the
COPV2 core (for PL properties with direct excitation of the
COPV2 core; Supporting Information, Figure S10 and
Table S1). The efficient energy transfer was anticipated
because the fluorescence band of Cz and the absorption
band of COPV2 overlap substantially.[26, 29]

GnCOPV2 readily precipitated into powdery solids
through a slow diffusion of a nonsolvent vapor into the

solution. As shown in the Supporting Information, Fig-
ure S11, G1COPV2 precipitated under all solvent/nonsolvent
conditions examined, yielding well-defined polygonal micro-
rods. Powder X-ray diffraction (PXRD) patterns display
distinct peak sets, characteristic of polycrystals (Supporting
Information, Figure S12). Analogously, G2COPV2 formed
crystalline solids except for the case with a CHCl3/MeOH
combination in which amorphous spherical aggregates
formed (Supporting Information, Figures S13 and S14).
Interestingly, even the third-generation dendrimer
G3COPV2 with a molecular weight as large as 4599 gmol�1

formed crystalline solid in 4 out of 8 solvent/nonsolvent
conditions (Supporting Information, Figure S15). The resul-
tant transparent polygonal grains display weak but distin-
guishable peaks in the PXRD profiles, indicating that these
micrograins are substantially in a crystalline state (Supporting
Information, Figure S16).

In optimum precipitation conditions, flawless crystals of
GnCOPV2 were obtained, which were suitable for single-
crystal X-ray structure analysis (for details, see the Supporting
Information). Rod-shaped crystals of G1COPV2 adopt
a space group of P21/c and contain CHCl3 and MeCN
molecules as solvents of crystallization (Figure 2a; Support-
ing Information, Figure S17, Table S2). The dihedral angle
between COPV2 and adjacent Cz is 59.848. G1COPV2

Figure 1. a) Molecular structures of GnCOPV2 (n = 1–3). b) Electronic
absorption (2.0 mm, in CHCl3, dashed curves) and normalized PL
(lex = 290 nm, 2.0 mm, in CHCl3, solid curves) spectra of GnCOPV2
(n = 1–3). The vibrational levels of each PL band are denoted in red
numbers.
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molecules contact with each other dominantly via multiple
intermolecular C�H···p interactions (Supporting Informa-
tion, Figure S17c). G2COPV2 forms a platelet crystallite with
a space group of Pbca (Figure 2 b; Supporting Information,
Figure S18, Table S3). The crystal of G3COPV2 adopts
a space group P1̄ (Figure 2c; Supporting Information, Fig-
ure S19, Table S4). Remarkably, to the best of our knowledge,
G3COPV2 is the largest purely organic dendrimer ever
analyzed by single-crystal X-ray crystallography in terms of
the molecular weight, while several metal–organic dendrim-
ers with molecular weights heavier than G3COPV2 have been
reported together with their single-crystal structures.[35,36]

The excellent crystallinity of GnCOPV2 is attributed to
two distinct structural features of the Cz dendrons. First, N-
substituted Cz is a highly planar and rigid molecular unit,
which is favorable for decreasing the entropic loss upon
crystallization. Second, the branches were introduced at the 3-
and 6-positions of Cz so that Cz can maintain its C2v

symmetry. Such relatively high structural symmetry is favor-
able for assembling into crystalline solids because it sup-
presses the entropic loss upon crystallization.

To investigate fluorescence and lasing properties, the size
and shape of the microcrystals were further optimized (for
details, see the Supporting Information). The morphologies of
the resultant microcrystals were visualized by scanning
electron microscopy (SEM, Figure 3d, f, and h) and fluores-
cence microscopy (FM, Figure 3 j–l). The crystalline mono-
domain nature was confirmed by polarized optical microsco-
py (POM), where the brightness and contrast of the micro-
crystals under cross-polarized condition are highly dependent
on the in-plane rotation of the sample (Supporting Informa-
tion, Figures S20–S22).

The molecular alignment in these crystals was assigned
based on the single-crystal X-ray analysis (Supporting Infor-
mation, Figures S17–S19). In the rod-shaped microcrystal of
G1COPV2, the crystallographic a axis (or [100] direction)
orients parallel to the longer axis of the microrod (Figure 3e).
Therein, COPV2 cores align almost parallel to the crystallo-
graphic [100] direction in a zigzag manner (Figure 3a). In
contrast, the p-planes of G2COPV2 and G3COPV2 are
nearly orthogonal to the longer axes of the microcrystals
(Figure 3b and c), which, respectively coincide with their
crystallographic a axis ([100] direction, Figure 3g) and b axis
([010] direction, Figure 3 i).

Since the COPV2 cores are uni/bidirectionally aligned in
the microcrystals of GnCOPV2, the polarization profiles of
their emission upon excitation of the COPV2 core with non-
polarized light (lex = 460–495 nm) exhibited polarization
anisotropy along the alignment of the COPV2 cores (Fig-
ure 3m–o, blue). Here, 08 of the analyzer and polarizer was
set to coincide with the [100] (for G1COPV2 and G2COPV2)
or [010] (for G3COPV2) directions of the microcrystals.
Virtually identical profiles are obtained for all the GnCOPV2
microcrystals when the Cz units were excited with non-
polarized light (lex = 350–390 nm) because of the energy
transfer from Cz to COPV2 (Figure 3m–o, green). Then, we
utilize polarized excitation light and detect the emission
intensities while rotating the polarizer. Emission profiles
upon excitation of COPV2 cores (lex = 460–495 nm) exhibit
anisotropy along the COPV2 cores (Figure 3m–o, orange).
On the other hand, the emission profiles upon excitation of Cz
units (lex = 350–390 nm) exhibit much less anisotropy for
G2COPV2 and G3COPV2 (Figure 3 m–o, red). These results
indicate that the omnidirectionally oriented Cz units of
G2COPV2 and G3COPV2 absorb incident light with little
preference of the polarization angle. Meanwhile, the Cz units
of G1COPV2 align unidirectionally in the crystal and only
light with a suitable polarization direction is absorbed,
leading to the emission anisotropy.

These microcrystals were subjected to photoexcitation
with a femtosecond (fs) pulse laser (lex = 397 nm, pulse width:
300 fs, repetition rate: 1 kHz, in detail, see the Supporting
Information, Figure S23). Upon strong pumping, the facets or
edges of the crystals emit green luminescence (Figure 4a–c
insets). Upon pumping a microcrystal of G1COPV2 with
a pumping intensity (P) of 369 mJ cm�2, a set of prominent PL
peaks emerges at around 488 nm with the broad PL band,
which originates from the 0–1 vibrational band of G1COPV2
(Figure 4a). The observed sharp and broad PL lines are
attributed to stimulated emission and ASE, respectively. A
plot of the PL intensity at 488 nm versus P displays a nonlinear
profile with a lasing threshold (Pth) at 318 mJ cm�2 (Figure 4d).
As the size of the microcrystal increases, the free spectral
range decreases with a linear correlation with the inverse of
the crystal length (Supporting Information, Figure S24).

Analogous lasing behavior was observed for crystals of
G2COPV2 and G3COPV2 with Pth of 66 and 293 mJ cm�2,
respectively (Figures 4b, c, e, f; Supporting Information,
Figures S24, S25). The marked difference of the Pth values for
GnCOPV2 is attributed to two factors: 1) a difference of the
COPV2 orientation in the crystallites, and 2) optical leakage

Figure 2. Crystal structures of a) G1COPV2, b) G2COPV2, and
c) G3COPV2, viewed along the crystallographic a, b, and c axes. The
peripheral moieties other than the COPV2 core and adjacent Cz units
are omitted for clarity. The COPV2 core is colored in red.[37]
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at the crystal edges. For efficient light confinement in a rod-
like crystal with counter end facets, an orthogonal orientation
of the p-plane of COPV2 with the longer axis of the
crystallites is preferable. As revealed by X-ray structure
analysis, the p-plane of the COPV2 cores orient parallel to the
longer axis direction in the G1COPV2 crystal (Figure 3 a)
while it is orthogonal in the G2COPV2 (Figure 3 b) and
G3COPV2 crystals (Figure 3 c). Therefore, the comparatively
high Pth for G1COPV2 is attributed to its unfavorable
molecular orientation.

We investigated the optical pathways and the degree of
light leakage by the two-dimensional finite-difference time-
domain (2D-FDTD) simulations (Supporting Information,
Figures S26 and S27). The simulated electric field distribution
in the microrod crystal of G1COPV2 suggests a Fabry–P�rot
(F-P) mode resonance (Figure 5a). Therein, a certain degree
of confined light leaks at both end facets. On the other hand,
the electric field distribution in the platelet crystal of
G2COPV2 displays a bow-tie mode, where light inside the
crystal is diagonally reflected at the crystal facets (Figure 5b).
Such diagonal reflection drastically suppresses the light
leakage and thereby contributes to the facile lasing with low

Pth. The microcrystal of G3COPV2 displays whispering
gallery mode (WGM) characteristics along the one side of
the crystal curvature and exhibit orthogonal reflection at the
crystal edges when a light source is located at the upper
periphery (Figure 5c, in details, see the Supporting Informa-
tion, Figure S26). The light confinement efficiency of
G3COPV2 is even worse when the light source is located at
the center of the crystal (Figure 5 d; Supporting Information,
Figure S26).

The light leakage from the microcrystals was further
supported qualitatively by microscopic observations upon
local excitation with a focused laser (lex = 450 nm, Fig-
ure 5e,f). When the center of the microcrystal of G3COPV2
was excited, the luminescent light leaks substantially at the
crystalline edges (Figure 5 f). In contrast, when the center of
the microcrystal of G2COPV2 was excited, the two end facets
glowed moderately (Figure 5e), indicating that light is con-
fined much more efficiently in the microcrystal of G2COPV2
than in that of G3COPV2. The high confinement efficiency,
together with the preferable molecular orientation, contrib-
utes to the lowest Pth of the microcrystal of G2COPV2 among
GnCOPV2 (Supporting Information, Figure S25).

Figure 3. a)–c) Molecular orientation of the COPV2 cores in the microcrystals of G1COPV2 (a), G2COPV2 (b), and G3COPV2 (c). d)–i) SEM
images and schematic representations of the microcrystals of G1COPV2 (d, e), G2COPV2 (f, g), and G3COPV2 (h, i) with arrows indicating
crystallographic directions. Scale bars in insets: 10 mm. j)–l) FM images of the microcrystals of G1COPV2 (j), G2COPV2 (k), and G3COPV2 (l).
m)–o) Plots of polarization-dependent normalized gray values of the luminescence intensity for microcrystals of G1–G3COPV2 in (j–l),
respectively. The analyzer angle-dependent emission intensities were plotted upon excitation with non-polarized light at 460–495 nm (blue) and
350–390 nm (green), while the polarizer angle-dependent emission intensities were plotted upon excitation with polarized light at 460–495 nm
(orange) and 350–390 nm (red).
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In conclusion, we synthesized a dendrimer family featur-
ing high crystallinity, applicable to single-crystal X-ray
structure analysis. It is noteworthy that the third-generation
dendrimer with a molecular weight as high as 4600 gmol�1 is
the largest organic dendrimer ever analyzed by single-crystal
X-ray analysis. The excellent crystallinity of GnCOPV2 is
attributed to the Cz units that have high rigidity and planar
morphology with C2v symmetry. The obtained microcrystals
were robust enough against optical pumping. The emission
polarization, lasing properties, and light confinement modes
tightly couple with the alignment of the constituent den-
drimers and the morphology of the crystals. The present
research opens up new applications of dendrimers in a field of
laser optics.
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