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Analog Sauter-Schwinger effect in semiconductors for spacetime-dependent fields
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The Sauter-Schwinger effect predicts the creation of electron-positron pairs out of the quantum vacuum via
tunneling induced by a strong electric field. Unfortunately, as the required field strength is extremely large, this
fundamental prediction of quantum field theory has not been verified experimentally yet. Here, we study under
which conditions and approximations the interband tunneling in suitable semiconductors could be effectively

governed by the same (Dirac) Hamiltonian, especially for electric fields which depend on space and time. This
quantitative analogy would allow us to test some of the predictions (such as the dynamically assisted Sauter-
Schwinger effect) in this area by means of these laboratory analogs.
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I. INTRODUCTION

The are several fundamental predictions of quantum field
theory which have so far resisted a direct experimental veri-
fication. One of the most prominent examples is the Sauter-
Schwinger effect [1-4] predicting the creation of electron-
positron pairs out of the quantum vacuum via tunneling.
For a constant electric field E, the associated pair-creation
probability behaves as
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(often denoted by E in the literature), where m is the electron
mass and g > Othe elementary charge. The fact that expression
(1) does not admit a Taylor expansion in g already indicates
that this is a nonperturbative effect, which renders calculations
intrinsically difficult. Nevertheless, apart from the constant-
field case above, it is possible to derive the pair-creation prob-
ability for several scenarios with varying fields. For example, a
temporal Sauter pulse of the form E(¢) = Ey/ cosh?(wt) does
also facilitate an exact solution of the Dirac equation (see, e.g.,
Ref. [5]). In this situation, the absolute value of the exponent
(1) is reduced and thus the probability enhanced. Conversely,
for a spatial Sauter profile E(x) = Ey/ cosh?(kx), the absolute
value of the exponent increases, leading to a suppression of the
pair-creation probability.

As another interesting case, the superposition of a constant
(or slowly varying) strong field with a weaker time-dependent
field can result in an enhancement of the probability: the
dynamically assisted Sauter-Schwinger effect [6]. The depen-
dence of this effect on the shape of the weaker time-dependent
field and the momentum of the created electrons and positrons
has been studied in Refs. [7-10], for example. If the strong
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field is not constant but spatially varying (such as a spatial
Sauter profile), there is an interesting interplay or competition
between the spatial dependence of the stronger field and the
temporal dependence of the weaker field; see Ref. [11].

Most unfortunately, because the critical field strength (2)
is so large, these nonperturbative phenomena have not been
observed yet, and thus it was not possible to test the various
predictions mentioned above experimentally. This motivates
the quest for other, experimentally more accessible, laboratory
systems which display analogous effects, ideally governed
by the same Hamiltonian (under appropriate approximations)
and thus the same equations of motion. To use the famous
quote by R. Feynman: “The same equations have the same
solutions.” Due to their high degree of experimental control,
one such option are ultracold atoms in optical lattices; see also
Refs. [12—14]. Other possible options include graphene [15—
17] and trapped ions [18]. In the following, we study interband
tunneling in semiconductors as another promising example.
Note that the qualitative analogy between Landau-Zener tun-
neling in semiconductors [19-21] and the Sauter-Schwinger
effect in the case of a constant electric field has already been
discussed in, e.g., Refs. [16,22-26]. Here, the goal is to derive
a quantitative analogy (in the spirit of Feynman) and to specify
the underlying approximations and assumptions, with special
emphasis on fields depending on time (see also Ref. [26])
and space (as motivated above). The use of these analogies
is twofold: On the one hand, they allow us to test the above
predictions by means of laboratory analogs, which are easier
to access experimentally, and, on the other hand, they help us
to understand the physics of these laboratory systems better.

II. TIME-DEPENDENT CASE E = E(t)

Let us start with the simpler case of a homogeneous and
purely time-dependent external electric field in 141 space-
time dimensions. We choose to describe the external electric
field in temporal gauge E(t) = A(t) with the one-component
vector potential A(7). This potential couples to the electron
momentum operator via the covariant derivative d, 4+ iqA(¢)
(c = g9 = h = 1 in the following, unless otherwise stated).

©2018 American Physical Society
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The many-body Dirac Hamiltonian can be written as

o0
Hp(1) = / UM[=id, + gADo, +mo )P dx.  (3)
—0o0

This form is obtained by expressing the Dirac matrices in
terms of Pauli matrices via y° =0, and y' = ioy. The
field operator consequently has two components, W(z,x) =
(®+(t,x),\i1_(t,x)), which corresponds to the absence of spin
in 141 dimensions.

We transform this Hamiltonian to momentum space by
inserting the spatial Fourier transform

Y(t,x) = U (t,k)e’™ dk 4)

1 / 0
V21 J-co
of the field operator. The result reads as

N X ot ~
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The next step is to derive the crystal-momentum represen-
tation of the Hamiltonian for electrons in a semiconductor
which is exposed to the same external electric field. This
semiconductor Hamiltonian can then be compared to the Dirac
Hamiltonian (5).

A. Two-band semiconductor model

A direct, quantitative analogy between Dirac’s theory and
electrons in a semiconductor can only exist if the considered
semiconductor electrons can only occupy two adjacent energy
bands: the higher (lower) band then corresponds to the positive
(negative) relativistic continuum. In the ground state (no
external field and zero temperature), the lower band must be
completely filled with electrons (analog of the Dirac sea),
while the upper band must be empty. This is precisely the case
if we restrict the semiconductor model to the valence band
and the conduction band only. Our starting point is the well-
known Kane model [27], but we only include the light-hole
valence band in our theory and neglect the heavy-hole band
(since lighter particles are more likely to be excited via the
pair-creation mechanism we are interested in) and the split-off
valence band, which is energetically lowered due to spin-orbit
interaction; see, e.g., Refs. [28-31], which also employ and
describe this model.

Let us start with the basic Hamiltonian. Since the possible
electron group velocities within the valence and conduction
bands of typical semiconductors are far below the vacuum
speed of light, we may describe the semiconductor electrons
with the nonrelativistic Schrédinger equation. The Bloch
electrons, which we are interested in, are subject to the lattice-
periodic potential V (x) of the ion cores. We denote the lattice
constant by ¢, so the potential satisfies V(x 4+ £) = V(x).
For simplicity, we neglect electron-electron interactions; see
Sec. VI below. The Hamiltonian of the Bloch electrons in the
external field E(t) = A(¢) thus reads as

I:Isful](t) — / -&T{W + V(x)}'&dx’ (6)

where @(t,x) is the scalar electron field operator.

Note that the quadratic A term in this Hamiltonian can be ab-
sorbed via a suitable gauge transformation (see Appendix A),
so we may consider the simplified Hamiltonian

00 2
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o 2m m
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instead.

For the derivation of the two-band model, we restrict the
Hamiltonian A" to valence- and conduction-band electrons
only. This should be a good approximation for analogs of
the Sauter-Schwinger effect since an excitation of a valence-
band electron into the conduction band is associated with
a lower energy difference than any other possible transition
in the (initial) ground state. Larger energy differences lead
to exponential suppression in the context of nonperturbative
pair creation, so the two-band model should reproduce the
leading-order pair-creation probability in the initial ground
state correctly.

We apply the two-band approximation by assuming that
only the valence and conduction Bloch bands contribute to the
field operator:

/e
U(t,x) ~ / a_(t,K)f_(K.x)+a,(t,K)f(K,x)dK.
-/t

®)

In this equation, the functions f,(K,x) = (x|n,K) are the
position-space representations of the Bloch states |n, K) in the
unperturbed semiconductor crystal [A(#) = 0]. The band index
— (+) denotes the valence (conduction) band. There is one in-
dependent Bloch state per band for each quasimomentum K in
the first Brillouin zone, which is the range (—m /£, /£]. Hence,
our field operator (8) is per assumption a linear combination
of all Bloch states in the valence and the conduction bands at
each instant of time. The time-dependent “coefficients,” which
are in fact operators a4 (¢,K), are instantaneous annihilation
operators for electrons in the corresponding Bloch states
|, K). For this statement to hold, the Bloch states must be
normalized, so that they obey the orthonormality relation

(n,Kln",K') = /oo [ (K.x) fw (K, x) dx
—c0
= 8w 8(K' — K). ©)]
We use the convention
fu(K x) = e®u, (K ,x) (10)

throughout this paper, so our lattice-periodic Bloch factors
u,(K,x) are orthonormalized (at a fixed K) according to the
unit-cell Bloch-factor scalar product

’ 27[ ¢ *
<n7K|n 7K>u = 7 Mn(K,x)un/(K,x)d.x = ann" (11)
0

Inserting the approximation (8) into the full Hamiltonian
(7) yields the two-band semiconductor Hamiltonian H;, which
neglects the dynamics of all other Bloch bands. In the calcula-
tion of Hy, we use the fact that Bloch waves satisfy the energy
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eigenvalue equation

32
[—ﬁ + V(x)i|fn(K,x) = E(K) £ (K ). (12)

Furthermore, the Bloch-wave momentum matrix elements
(n,K| —idc|n’,K’) (also known as optical matrix elements)
appear in the new Hamiltonian. It is well known that these
matrix elements vanish unless K = K’ (see, e.g., Ref. [32];
a proof of this important theorem is given in Appendix B).
There are thus three independent momentum matrix elements
in the two-band model for each K: the interband element « is
given implicitly by (—, K| —id;| +,K’') = «(K)3(K' — K)
[cf. Eq. (B5)] and can be written

K(K) = (= K| —id:| +.K), 13)

with the product defined in Eq. (11). This quantity is complex
in general; however, we define the global phases of the Bloch
bands in a way such that the value ko = «(0) is real and positive:
ko > 0. The two intraband elements are related to the group
velocities v+(K) = dEL(K)/dK via

(£,K| —id| £ ,K') = mva(K)S(K' — K); (1)

see, e.g., Refs. [31,33].
The resulting two-band Hamiltonian in crystal-momentum
space reads as

Hi(t)

/e A qA | x
= / QT(t,K)<€+ qu U+ m Kk
m

ait,K)dK
-/l 8— +qu—)_( )

s5)

(we have omitted to write explicitly the dependencies of the
quantities in the matrix here) with

a(,K) = <ngg> (16)

Note that this Hamiltonian as well as the Dirac Hamiltonian
(5) have the form H (1) = f H(¢,k) dk, which means that each k
mode evolves independently, and k (or K in the semiconductor
case) is thus a conserved quantity as expected in a purely time-
dependent potential.

B. Diagonalization of the Hamiltonians

In order to bring both Hamiltonians Hp and A, into the
same form, so that we can compare them, we diagonalize the
2 x 2 matrices in the Hamiltonians. To this end, we transform
(“rotate”) the momentum-space field operators i(r,k) (Dirac
case) and the Bloch-electron operators a(¢,K) (semiconduc-
tor) to operators corresponding to the instantaneous energy
eigenstates, respectively.

In the Dirac case, the transformed field operators read as

d“’“)i(t,k) (17)

1 1
1+ d2(1,k) (—d(f’k) 1

with the abbreviations

T(t,k) =

_ k+qAQ@)
d(t,k) = m (18)

and

Q1,k) = /m? + [k + g A(1)]%. (19)

Note that Eq. (17) describes a unitary relation, which is also
a Bogoliubov transformation, so the two components of T
obey the canonical anticommutation relations. In terms of these
field operators, the Dirac Hamiltonian (5) assumes the diagonal
form

Hp(t) = /_ f(r,k)(g%’k) _Q(()tvk)>i(t,k)dk. (20)

o0

Before we diagonalize the matrix in the semiconductor
Hamiltonian (15), we want to make its diagonal elements
symmetric like in the Dirac case, in which the original diagonal
elements in Eq. (5) are &=m. In order to do this, we rewrite the
Hamiltonian as

Hi(t)

7/t AE+qAAY
= f ale. k) 7
—r/t ‘17/(

N /"“ EL(K) + E_(K) + qA®[v(K) + v_(K)]
—7/t 2

qA  x

m A~
_ A€+qAAu>‘—l(t’K) dK
2

x [al(t,K)a, (t,K) +al (t,K)a_(t,K)]dK. 1)

=l1foralltand K

In this equation, we have introduced the (K -dependent) band-
energy difference AE(K) = £.(K) — E_(K) and the group-
velocity difference Av(K) = v (K) — v_(K). Since K is a
conserved quantity, a'(z, K)a(t, K) must always be 1 because
there is exactly one electron per K value in our two-band
model, and the electron for a given K must be either in the
conduction band or in the valence band at each point in time.
The second K integral in the Hamiltonian (21) therefore yields
atime-dependent constant, which can be eliminated by a gauge
transformation on the scalar potential again, as described in
Appendix A.

The Bogoliubov transformation which diagonalizes the
redefined semiconductor Hamiltonian [first K integral in
Eq. (21)] has the same form as in the Dirac case [complex
version of Eq. (17)],

b(t.K) = ;< 1 b*(t’K)>&(t,K),
- 1+ 0@, K)2 \ (. K) )=
(22)
but with different auxiliary functions
21.K) = qAWK(K)/m (23)
[AE(K) + qA()AV(K)]/2 + 2(t,K)
and
Q,K)
_[AEK) + qADAVK) T M EAGIELS] ?
- 2 m ’
24)
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(b) Reduced zone scheme of a two-band semiconductor.

FIG. 1. Electron dispersion relations in the two systems under
consideration, without an external electric field (A = 0). (a) Dirac
case: the two branches of the relativistic energy-momentum relation.
(b) Semiconductor case: example for an electronic two-band structure
in the first Brillouin zone (reduced zone scheme). We assume
throughout this paper that the semiconductor has a direct band gap at
the center of the Brillouin zone, measuring £, = AE(0).

so the resulting Hamiltonian reads as

w/l
- At 2t,K) 0 )
Hy(t) = b'a.k b(t,K)dK.
@ /n/z ba )( 0 —2aK))Hb
(25)

Now that we have derived the diagonal forms of both
Hamiltonians, their physical differences including scales and
dependence on conserved (quasi)momentum are encoded in
the instantaneous energy eigenvalues €2 and £2.

C. Analogy between the modes k = 0 and K =0

Let us start to point out the quantitative analogy be-
tween the two Hamiltonians Hp (20) and I-AIS (25), at the
(quasi)momentum-space points k = K = 0. We assume for
the moment that there is no electric field (A = 0).

The energy bands in the Dirac case are the two square roots
of the relativistic energy-momentum relation; see Fig. 1(a).

The mode k£ = 0 thus coincides with the minimal mass gap 2m
in the absence of an external field.

The exact shapes of the valence band and the conduction
band in the semiconductor £ (K) are not fixed but depend on
the periodic potential V (x); however, we make the following
assumptions about the semiconductor band structure, which
shall be satisfied in the remainder of this paper:

(1) no band crossing [AE(K) > 0 for each K] and

(ii) a direct band gap at the center K = 0 of the Brillouin
zone; that is, £, = A£E(0) is the minimal value of AE(K).

An example for such a band structure is plotted in Fig. 1(b).

Now, we reintroduce the electric field and compare the
instantaneous energy eigenvalues in Egs. (19) and (24) at
k = K = 0 with each other. In the Dirac case, we get

Q(1,0) = v/ (mc2)? + [cq A1) (26)

with the speed of light written explicitly in this equation. In
the semiconductor case, we first note that both group velocities
[E+(K) derivatives] vanish at K = 0 and thus also Av(0) = 0.
Comparing the resulting £2(¢,0) = \/(5g/2)2 + [q Ao/ m]?
with Eq. (26), we immediately see that the quantity c, =
ko/m plays the role of an effective speed of light in the
semiconductor.

We also want to define a suitable effective mass m, such
that m,c? (the analog of the rest energy mc? in Dirac theory)
produces the term &, /2 in £2(¢,0) above. Hence, we set

m. = %‘gg @)
SO we may write
&
e =5 (28)
and
2.0 = |Jn.2P + [e.g AWP. (29)

Comparing Eqgs. (26) and (29) shows that the Hamiltonians
of both systems are equivalent in the large-wavelength limit
k = K = 0. The semiconductor just exhibits different scales,
which are given by the material constants £, and «¢. The same
effective constants have also been found in Refs. [28,29].
Note that we refer to the quantity (27) as “effective mass”
because it allows us to write £2(¢#,0) in a way formally
equivalent to 2(¢,0) above. Nevertheless, as we will see in
the next subsection, m, is indeed related to the parabolic
energy-band curvatures in the semiconductor, which is the
usual notion of effective masses in this area of physics.
Another point to notice here is that we could also define
an effective elementary charge via cq, = gko/m instead of the
effective speed of light (28) to make the analogy between the
modes k = K = 0 work (in which case the effective electron
mass in the semiconductor must be defined by the equation
mycr = &,/2). Or, we can shift the factor in ¢, into an effective
vector potential defined by g, A(¢) = g A.(¢). The concept of an
effective external potential in analogs of the Sauter-Schwinger
effect is known from ultracold atoms in optical lattices; see
Refs. [12,13]. However, we will see in the next subsection that
defining an effective speed of light as above (and thus leaving
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the external potential and elementary charge unchanged) is
required to extend the analogy in the semiconductor to more
modes than justk = K = 0.

D. Analogy for long-wavelength modes

We now want to extend the analogy to all small
(quasi)momenta, which means |k| < m in the Dirac case
and |K| < /¢ in the semiconductor case. In this range, the
dispersion curves in Fig. 1 are approximately parabolic in
both cases. This is also the range with the smallest energy
difference between the bands, and we consequently expect the
corresponding modes to generate the dominant contributions
to the total pair-creation yield via the Sauter-Schwinger effect.
Note that if the vector potential vanishes in the in and out states
[i.e., A(t — Fo00) = 0], then the conserved quantities k and K
correspond to the initial and the final kinetic (quasi)momentum
of the considered mode, respectively, so the long-wavelength
modes can be identified with electron states close to the
minimal band gaps in Fig. 1 in this case. Given a particular
external field E(¢), we can always satisfy this condition by
letting A(¢) start at zero for t — —oo, and, if A(¢) # O after
the field has been switched off (or has become very tiny), letting
A(t) approach zero again very slowly (adiabatically, such that
this process does not cause band transitions).

Concerning the analogy, let us start with the Dirac case
again. The Taylor expansion of €2 around k = 0O reads as

qA(t)
Q(t,0)

with ¢ written explicitly. In the second-order term, the small
quantity (k/m)? is suppressed by the prefactor 1/{2[1 +
q>A%(t)/m*]*/?} < 1/2. Hence, we will only consider the first
orders of k or K in 2 and £2 when comparing the Hamiltonians
for small (quasi)momenta, and we ignore all higher-order
terms.

In the semiconductor case, we get

Q(t,k) = Qt,0) + k + OK>) (30)

K
2(t,K) = £2(,0) + m

{ AED©0) + g A1) Av™D(0)
X E

4 8

2
+[—qi‘f)] KoReKm(O)} +O(K*. (D

Superscripts of the form “(n)” denote the nth derivative with
respect to K.

In order to evaluate these derivatives at K = 0, we first note
that the parabolic parts of the energy bands around the minimal
gap are usually written as (we arbitrarily locate the band gap
symmetrically around the zero energy level)

g 2
ELK)= 2+ + O(K?),
2 2m, .
& K?
E_(K) = —75’ -5+ O(K?), (32)
My

where m, , and m,; denote the (positive) effective masses
of conduction-band electrons and valence-band holes in the

crystal. These quantities can be calculated analytically from
the band structure by expanding the band energies in powers
of K up to the second order using k - p perturbation theory (see,
e.g., Ref. [34]). While doing so, we apply the two-band approx-
imation again, which means that we neglect contributions to
my. . and m, ; from other bands than the valence band and the
conduction band. Within this model, we get the well-known
relations (cf. Ref. [34])

11 2
me, m  m2E’
1 1 ¢
=—— 33
My m + m2&, (33)

according to k - p perturbation theory.

By adding these two equations, we find that the effective
mass m, (27) defined in the previous subsection is given by
the harmonic mean of the effective charge-carrier masses:

2
1 b

——1 (34)
Mye + m*,h

m, =

which equals twice the reduced mass. This relation (34)
between our effective mass m,, which is related to x( (off-
diagonal momentum matrix element) via Eq. (27), and the
parabolic curvatures of the energy bands is essential for
extending the analogy at K = 0 to a neighborhood of this point
with the same effective physical constants m, and c, as before.
Note that we are not required to assume m, , = m, j; here in
the time-dependent case in order to draw the analogy.

If we had defined an effective elementary charge ¢, instead
of ¢, (as mentioned in the previous subsection), Eq. (34) would
not be valid since we would have a different m, [given by
&,/ (2¢?)] then. For this reason, the analogy would not work
for nonzero (quasi)momenta.

Returning to the K derivatives in Eq. (31), we may utilize
Eq. (34) to write the energy-band difference in the semicon-
ductor as AE(K) = &, + K?/m, + O(K?). As expected at an
extremum, we get AEW(0) = 0. The group velocity difference
Av is given by the first K derivative of the energy difference,
so we get Av(D(0) = AEP(0) = 2/m,. The quadratic A term
vanishes since «"(0) = 0 (see Appendix C for the calcula-
tion). All in all, we arrive at

o gqu(t)/(th) 2
Q(t’K)_Q(t’O)+—Q(t,O) K + O(K?)
2
Eq.(28) c,qA() 2
= £2(1,0) + 000 K + O(K"). (35

Comparing this result with Eq. (30) confirms the analogy
between the Dirac case and the semiconductor case up to
the first order in the conserved (quasi)momentum around
k=K =0.

E. Analogy in the entire Brillouin zone

The analogy between the Hamiltonians can be extended to
the whole Brillouin zone, which means that each K mode in H,
can be mapped to a k mode in H), with a suitable effective speed
of light and electron mass. In the previous two subsections,
we have derived that these effective quantities are constant
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(K independent) for long-wavelength modes and that k and K
have an interchangeable meaning for these modes. However,
this coincidence between k and K is not universal since we
can always confine the crystal momentum of a Bloch electron
in the two-band semiconductor to the first Brillouin zone (a
consequence of restricting ourselves to two bands), while each
canonical wave vector in the Dirac case represents a unique
mode. The distinction becomes important when we go beyond
long-wavelength modes, which we will do in this section.

The question we aim to answer is as follows: Given
a semiconductor band structure, i.e., the functions AE(K),
Av(K)=dAE(K)/dK, and k(K) are fixed, and a mode
K € (—m/€,m /€], can we then find effective constants m,(K)
and ¢, (K) and a wave vector k = k(K) such that the eigenvalue
Q[t,k(K)] in the Dirac case [Eq. (19)] with these K -dependent
effective quantities equals the semiconductor analog £2(¢,K)
in Eq. (24)? We therefore want to solve the equation

m}(K)ei(K) + cZ(KK(K) + g AD
_ [M(K) +qA(t)Av(K>}2 N [qA(t)w(KnT
m

36
> (36)
for an arbitrary potential A(), so we compare the coefficients
with respect to the powers of A. This procedure yields three
equations, which uniquely fix the three unknown quantities

2 2
c,,(K):\/AU K) |K(K2)| ’ 37
4 m
ALKk (K)
m(K) = W (38)
_ AE(K)AV(K)
k(K) = 2K (39)

These K -dependent effective quantities are of course com-
patible with the results from the previous two subsections:
for K =0, we get ¢,(0) = xo/m, m,(0) = Egmz/(Zlcg), and
k(0) = 0, exactly what we found in Sec. IIC. Furthermore,
we find that the first K derivatives at K = 0 are cil)(O) =
mP(0) = 0 and kV(0) = 1; that is, for all long-wavelength
modes, the effective quantities are constant, and the crystal
momentum K in the semiconductor has the same meaning as
the momentum k in Dirac theory, which is basically the result
of Sec. IID.

In the remainder of this paper, we will focus on modes
with small conserved (quasi)momenta again. For brevity, we
write ¢, and m, without a parameter again to denote the
respective value at K = 0. Note that, in the gauge used
here, K is conserved exactly for purely time-dependent fields
A(t). This is somewhat different from other gauges where
K becomes effectively time dependent K — K + g A(?), and
thus the analogy between pair creation and Landau-Zener
tunneling during the temporal passage through an avoided level
crossing (at the gap K = 0) becomes even more apparent. In
our representation (where K is conserved), we may directly
translate the momentum spectra from QED calculations (e.g.,
for the dynamically assisted Sauter-Schwinger effect [7,8])
to the semiconductor scenario via Egs. (37), (38), and (39).
The only difference is that the range of K is reduced to the
Brillouin zone in the semiconductor case, and the density of

states is given per K interval (instead of k for real QED), which
introduces an additional factor of dk/d K.

However, when comparing to experimental results, another
important difference must be taken into account: the conserved
wave numbers K (and k) correspond to the canonical momenta,
which are generally different from the mechanical momenta.
The latter are not conserved, of course, because the electric field
accelerates the charged particles affer they have been created.
This acceleration then depends on the shape of the dispersion
relation, such that here the analogy to QED eventually breaks
down. Ergo, the analogy applies to the creation of particle-hole
pairs (for a given K), but not necessarily to their trajectory after
they have been created.

F. Analog Sauter-Schwinger effect and dynamical assistance
in gallium arsenide

The fact that the Hamiltonians A, p and ﬁx do coincide for
long-wavelength modes (except for scales) allows us to infer
that we may directly transfer all findings regarding nonpertur-
bative (tunneling) pair creation from quantum electrodynamics
to the semiconductor model (at least to leading order).

1. Constant electric field

Let us start with a constant electric field Eg, with A(z) =
Egt as the simplest example. In the Dirac case, this cor-
responds to the ordinary Sauter-Schwinger effect with the
associated critical electric field strength ES&D [see Eq. (2)].
In a semiconductor, interband tunneling due to a constant
external field is typically described via the Landau-Zener
model [19-21], but due to the analogy with quantum elec-
trodynamics (QED), we may also use the QED terminology

and consequently define the analog critical field strength

cim? ./Zm*f);ﬂ
Ecrit = q = 4q N

(40)

This expression, here simply derived from the analogy with
QED, can be found in many papers which study the behavior
of semiconductors/insulators in strong electric fields; see, e.g.,
Ref. [35].

As an example for a semiconductor with a direct band
gap at the Brillouin-zone center (as assumed in Sec. IIC),
we consider gallium arsenide (GaAs) here. The band gap
of GaAs measures about EgGaAS = 1.5 eV, and the effective

masses m?f;AS = 0.063m and mf‘}lAs = 0.076m (light holes;

see Ref. [36]) yield the value m?aAs ~ 0.069m according to
Eq. (34). The resulting critical field strength is thus ESAS ~
6.2 x 10% V/cm, a typical value for this type of semiconductor
according to, e.g., Ref. [37]. This value is roughly one order of
magnitude larger than the dielectric-breakdown field strength
of GaAs given in Ref. [36]. This relation seems reasonable
since interband tunneling starts below ES2A% of course, but it
is suppressed exponentially by the factor exp(—m ES3AS / Eyy).
For Eg, ~ ng‘tAs /10, this factor measures 10~'#. We do not
consider the (nonexponential) prefactor in the pair-creation
rate here, but one can easily imagine that the exponential term
suppresses any realistic prefactor for much smaller values of

Estat .
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2. Assisting temporal Sauter pulse

As a next example, we add a temporal Sauter pulse
Esauter/ cosh?(wt) to the constant background field E, and
assume that the pulse amplitude is much smaller than the
static field: Esauter/ Estat << 1. The effect of the weak pulse
on nonperturbative pair creation has been studied in Ref. [6].
According to that paper, the pulse is negligible if its character-
istic frequency scale w is smaller than a certain critical value
werit, Which depends on the background field strength but (in-
terestingly) not on the pulse amplitude. This critical frequency
scale is reached when the combined Keldysh parameter

QED
Vo = mw E(.l’lt - (4 1 )
> = =
q Ega Ega m

takes on the value /2. Above this threshold, the so-called
dynamically assisted Sauter-Schwinger effect sets in, which
means that the pulse exponentially enhances the pure Sauter-
Schwinger pair-creation rate induced by E.

Let us assume in our example that the background field is
one order of magnitude below the critical field strength. In the
Dirac case, that means Eg, = ECQrED /10, and we get a critical
frequency scale in the hard x-ray spectrum: wgi = 80 keV.
In our semiconductor example (Egc = ES;‘}AS /10), the result
weit = 0.12 eV lies in the infrared part of the spectrum.

3. Assisting harmonic oscillation

The last example profile consists of the constant background
field Egyy again plus a harmonic oscillation E\ygye cos(wt).
Similar to the Sauter pulse, such a wave can increase the
nonperturbative pair-creation rate exponentially as studied in
Ref. [10]. However, the critical value of the Keldysh parameter
(41) for dynamical assistance depends on the ratio Eyaye/ Estat
for this profile or, if w and Egy are fixed, we can inverse
this relation to determine a critical laser amplitude ECit_ as
a function of Eg, and w.

In the world-line instanton picture, the effect of the ad-
ditional oscillation is that it lowers the instanton action A,
which in turn increases the pair-creation rate since the rate
is proportional to exp(—.A). (We ignore the nonexponential
prefactor in the pair-creation rate here; however, it has been
shown in Ref. [38] that the behavior of the exponent A plays
the crucial role in the dynamical assistance mechanism.) Let
us (arbitrarily) define the threshold of dynamical assistance
as a configuration according to which the pair-creation rate
with the oscillation [oxexp(—.A,,)] is 50% larger than the rate
[ocexp(—.Ap)] in the constant background field E, alone.
We may derive from Egs. (52) and (57) in Ref. [10] that this
condition gives

—A, QED

€ A —exp T Ecm Il(yw) Evave ; 15’ (42)
e~ Eqat Vo Esa

where I(x) denotes a modified Bessel function of the first
kind. Assuming that only the oscillation amplitude is variable,
we solve this equation for Ey,y. to find the critical amplitude

. Inl.5 E ¥,
Ecm — stat w q 43
wave 27_[ EQED ]1 ( ) tat - ( )

crit

TABLE I. Comparison between the scales in the Dirac Hamilto-
nian and the analog quantities in the semiconductor model.

Dirac theory Two-band semiconductor

Electron mass m <~ m,, effective mass [Eqs. (27) and (34)]

GaAs: m, ~ 0.07m

¢ = /&, /(2m,), effective speed

GaAs: ¢, ~ 0.005¢

Speed of light ¢ <

Mass gap 2mc> <~ 2m,c? = &,, band gap
~ 1 MeV <~ GaAs: &, ~ 1.5eV
Sauter-Schwinger effect:
Eg =mclg o Eg=2mE0R/(4q)

~ 10" V/m RES GaAs E_, ~6x10°V/m
Dynamically assisted Sauter-Schwinger effect:
werit ~ 80 keV <~ GaAs: wq ~ 0.12 eV

Let us now transfer this QED result (43) to the semiconduc-
tor analog and do some estimations regarding the experimental
realization of assisted tunneling pair creation in GaAs. We
assume a rather pure sample of GaAs placed in a background
field Egy = ESﬁA* /10 again. The harmonic oscillation is
generated by a CO; laser with a wavelength of 10.6 um. The
corresponding photon energy 0.117 eV measures less than 8%
of the band gap, so pair creation via multiphoton processes
is strongly suppressed. The background field strength and the
laser frequency together yield the combined Keldysh param-
eter y,, = 1.56. While this value is fixed, we can easily vary
the laser amplitude. The critical amplitude (43) is then given
by EWave / Estar = 0.0097 in this example, which corresponds
to a laser-beam intensity of I = (EST)?/2 = 47 kW /cm?
References [39—41] (which consider only pulsed radlatlon
though) suggest that a GaAs sample of sufficient quality
will probably not be destroyed by this amount of incident
power; the damage threshold for CO,-laser pulses with a
half-width of 100 ns = 1077 s given in Ref. [41] is of the
order of 10 MW/ cm?, for example. We will also show later (in
Sec. IIID) that the threshold intensity is reduced significantly
in a space-dependent static background field of finite spatial
extent.

The analog quantities given in this section including the
values for GaAs are summarized in Table I.

III. SPACETIME-DEPENDENT CASE E = E(t,x)

In this section, we generalize the semiconductor model pre-
sented in the previous section to spacetime-dependent electric
fields and compare it to the corresponding Dirac Hamiltonian
again.

A. Hamiltonians

Here, we choose a different gauge E(t,x) = 9, P(¢,x), with
a vanishing vector potential A; that is, the field is described
by the spacetime-dependent scalar potential ®, which enters
the position-space Hamiltonians Hp (3) and H!' (6) as an
additional potential term —g®. The momentum-space form
of the Dirac Hamiltonian thus contains the convolution of the
spatial Fourier transform of the scalar potential ®(¢,k) and

the momentum-space field operator @ [see Eq. (4) for the
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conventions we use]:

Ao = | f(r,k)(’}f ) )i(nk)dk

q 00 P oo
- — v (I,k)/ Otk — k)
A/ 27 —0 —00
x U(1,k'ydk dk. (44)

As in the time-dependent case, we want to bring this
Hamiltonian into a form in which the matrix in the upper line
is diagonal. This is accomplished by inserting the same trans-
formed field operator i (17) as in the previous section (but with
A = 0of course). However, the very same transformation gives
rise to a matrix M in the lower (®) part of the Hamiltonian.
This matrix reads as

1
1+ 1+ d*K)

1 d 1 —d)
X(—d(k) 1>'(d(k/) 1 ) 45)

with the auxiliary function d defined in Eq. (18) but without
any time dependence here (A = 0). For the transformed Dirac
Hamiltonian, we thus get

M(k,K)

—0Q

o0 = [~ tan(%0 g ) tena

C] © "T © 4 / /
- — x (t,k)/ O(t,k — k'YM(k,k")
«/27'[ —0 —00
x Y(t,k") dk' dk, (46)

again with the same (but time-independent) eigenvalues 2
from Eq. (19).

Let us now derive the semiconductor Hamiltonian in the
spacetime-dependent field. We start with the full Hamiltonian
(6) again but with A = 0 and the additional potential term
—q®. After the insertion of the two-band approximation (8),
our semiconductor Hamiltonian reads as

) ae
A() = [ QT(t,K)<5+(()K) S?K)>Q(I,K)dK

/e

/e /e
—q/ a'(t,K) M(,K,K")

/0 —n/t
xat,K"YdK' dK 47)
with the matrix

(+.K|®|+,.K')

- (+.K[®| — K')
MK K = <<—,K|<I>| oK) )

(=.K|®| - .K')
(48)

Further transformations of the operators a are not necessary
in this case since the matrix in the upper line of H, is already
diagonal for the present gauge.

It is important to notice here that the diagonal elements €1
in H, are generally not symmetric (for all K) as in the Dirac
case (££2) in Eq. (46). In the purely time-dependent field, we
could make these diagonal elements in H, symmetric via a
suitable gauge transformation (see Sec. IIB). However, the
same approach is not valid in a spacetime-dependent field since

the @ part of the Hamiltonian couples particles with different
values of K with each other, so K is not a conserved quantity
anymore, and thus a'(r, K)a(t,K) = 1 is not valid in general
here for each K. As we will see in the next subsection, this
fact requires us to make an additional assumption concerning
the effective masses in the semiconductor in order to draw the
quantitative analogy to the Dirac Hamiltonian.

B. Analogy between the ®-independent parts
of the Hamiltonians

At this point, we can start to compare the upper lines of the
Hamiltonians Hp (46) and H, (47), which do not depend on
the potential ®. We focus on the vicinities of the band gaps at
k = K = 0 again.

Up to the lowest nonvanishing order of the small quantity
k/m near the gap, the diagonal elements in the Dirac case are

k> k\*
+Qk) =tme* £+ — 4+ O [(—) } (49)
2m mc

with ¢ written explicitly. According to our notion, the analogy
to ﬁs is valid if £ coincides with &1 [from Eq. (32)] up to the
quadratic order in k or K after substituting the physical scales
m and ¢ with effective constants. (As in Secs. IIC and IID in
the case of a purely time-dependent E field, the physical roles
of k and K are equivalent close to the gaps.)

We find that the analogy works with the same effective
constants ¢, (28) and m, (34), as in the A(t) case, but we
have to assume in addition that the effective electron mass
in the conduction band m, . equals the effective hole mass
my (in which case m, = m, , = m, ). Graphically, that
means that the parabolic curvatures of the energy curves £,
and £_ in Fig. 1(b) must be identical at the gap. From a
practical point of view, this is an important constraint regarding
the simulation of nonperturbative vacuum pair production in
spacetime-dependent fields in semiconductors, which can only

be met approximately. The effective masses in GaAs, m53As =

0.063m and mS‘ZAS = 0.076m (light holes), differ by about
20%, for example; compared to other common semiconductors
with a direct band gap, this is a quite good agreement (values
taken from Ref. [36]).

We will assume m, = m, , = m,_j in the remainder of this

section.

C. Analogy between the ® parts
for spatially slowly varying potentials

We still have to show that the analogy is also true for the ®
parts [lower lines in Egs. (46) and (47)] of the Hamiltonians
in the vicinity of the band gap. We thus have to compare
the matrix ®(r,k — k)M (k,k')/~/27 in the Dirac case with
M(t,K,K") in the semiconductor case since the other terms
in the ® parts are equivalent. These matrices cannot be the
same for arbitrary (quasi)momenta and potentials ®(z,x), so
we have to make reasonable assumptions about these quantities
and then compare the matrices (approximately).

Let us start with the Dirac case. As we can see in the
Hamiltonian (46), the Fourier components of the potential
® couple particle states which differ by k — k' in their wave
vectors. Since we want to concentrate on the parabolic vicinity
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of the band gap (the range |k| < m) and electron transitions
therein, we assume that the potential only has nonvanishing
Fourier components ®(¢,k) for small wave vectors which
satisfy |k/m| < 1. That is, the potential and thus the electric
field is slowly varying in space compared to the Compton
wavelength of an electron, and therefore an electron close to
the gap cannot be excited (directly) to a point far beyond the
gap in k space.

This assumption is also consistent with the fact that we
are interested in nonperturbative pair creation: for this reason,
the electric field should only incorporate photon energies far
below the mass gap 2m, which correspond to wave numbers
|k| < 2m, leading basically to the same assumption as above.

For a Dirac-sea electron with a k near the gap (|k/m| < 1),
which may be excited into another state with the small wave
vector k' (Jk’'/m| < 1) due to the potential, we may therefore
Taylor expand the matrix M (k,k’) and neglect terms of second
order in these small wave vectors. We get

, 1 0 k—k (0 1
iy = (5 1)+ 55 (0 )
2 "2 /
+O|: k ]—f—@[(k) }+O|:k2kz} (50)

with the speed of light written explicitly.

In the semiconductor case, we have to approximate the
matrix M for slowly varying potentials. These are potentials
which only include wavelengths much greater than the lattice
constant £. We therefore assume that its spatial Fourier trans-
form ®(¢,K) vanishes except for |K| < 27/£. In analogy to
the Dirac case, this K -space region coincides with the parabolic
vicinity of the semiconductor band gap; cf. Fig. 1(b).

We think that this long-wavelength assumption is prac-
tically always satisfied in the context of nonperturbative
electron-hole pair creation, which requires the photon energies
in the electric field to be much smaller than the band gap:
o K &,. Letus do a simple estimate to show this: Writing w as
27 /(nA), where n is the refractive index in our semiconductor
(for the frequency under consideration), the condition w < &,
becomes A > 27 /(n€&,). Itis generally justified to assume that
&, is (much) smaller than the Fermi energy &r = 72/ (2me?)
in the empty lattice. Inserting this relation into the above
inequality lets us conclude that A > 2w /(n€f), which can
also be written as A > (8/n)(£/ ¢c)f, where A¢ = 10-"2 mis
the Compton wavelength of the electron. For typical semicon-
ductors, £/L¢ is much greater than 1, while 8/n is of order
1. Hence, A > £ should be reasonable to assume provided
o K &, for all photons in the external field.

Since we are especially interested in GaAs here, let us
consider this case in particular: The assumption o & g =
1.5 eV corresponds to vacuum wavelengths much greater than
816 nm. The refractive index of GaAs around the band gap
measures about 3.7 (see Ref. [42] and cf., e.g., Ref. [36]),
so the wavelengths within the medium must be much greater
than approximately 220 nm, a length scale which is very
large compared to the lattice constant 0.565 nm of GaAs. The
assumption of a slowly varying potential in the semiconductor
case is thus not problematic in the context of nonperturbative
pair creation in GaAs, and, as argued above, this statement
presumably also holds in most other semiconductors.

This assumption together with the fact that we consider
quasimomenta obeying |K | < 27 /¢ and |K'| < 27 /€ lets us
derive the (still exact) expression

I .
M, K,K') = E@(I,K—K’)

(<+,K| +.K"),  (+.K| - ,K/>u>
(_’K|+’K/>u <_7K|_’K/>u

619}

for the matrix in Eq. (48); see Appendix D for the calculation.

Since we are close to the band gap, we may expand the Bloch
factors which appear in the (. . .), products [defined in Eq. (11)]
around K = 0 up to the first order in K or K’ using k - p
perturbation theory and the two-band approximation again (cf.
Appendix C). Inserting these expansions from Eq. (C2) and
also using the Bloch-factor orthonormality relation (11) yields

, S, K—K)[[/1 0 ko (K — K')
R L A
x (_01 é) + O[K?]
+ O[(K)]+ O[KK’]}. (52)

Let us now identify the correct effective scales: We consider
the expression 2m,c,. According to Eq. (28), this quantity is
equal to \/2m,&,, which in turn becomes m&, /k( by means of
Eq. (27). We can thus write M as

. ®e,K—-K)[(1 0\ K-K
Mt K 'y = FETZED {(O 1) P
X (_01 (1)) + O[K?]
+ OI(K)]+ O[KK’]}. (53)

Comparing this equation to Eq. (50) shows that the ® parts of
the Hamiltonians are equivalent close to the band gaps as well,
with the same scale substitutions as before. Hence, we have
derived the analogy between H), and H; also in the spacetime-
dependent case.

D. Dynamically assisted Sauter-Schwinger effect
in the spacetime-dependent case

We close this section by considering an experimentally
oriented setup, which is a spacetime-dependent version of the
dynamically assisted Sauter-Schwinger effect in a semicon-
ductor analog.

1. Assisting temporal Sauter pulse
A spacetime-dependent QED scenario has been studied
analytically in Ref. [11] via the world-line instanton method.
In this reference, the superposition of a spatial and a temporal
Sauter pulse is considered:

E, E»

E(t,x) = + .
(@) cosh®(kx)  cosh?(wt)

(54
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X
(a) Large potential step ¢gA® > x.

&

: : : - 7

X 0 x¥
(b) Slightly above threshold gA® = .

&

: -

(¢) No tunneling for gA® < x.

FIG. 2. Two energy bands separated by a gap x are bent by a
localized, space-dependent electric field centered at x = 0 (schemat-
ically, tanh profiles). The solid curves are the lower edge of the upper
energy band and the upper edge of the lower band, respectively.
We have x = 2m in QED and x = &, in the semiconductor analog.
(a) For field profiles which give rise to a large potential difference
gAd > yx, there are many different states between which tunneling
is possible (e.g., along the dashed line). (b) For gA® \( x, the
number of possible tunneling transitions approaches zero and the
spatial turning points x} diverge. In this A® range, the tunneling rate
can significantly be increased via additional electric low-frequency
pulses according to Ref. [11]. (c) If the energy step g AP is smaller
than the gap x, the bands are separated energetically as indicated by
the dashed constant-energy line, so tunneling becomes impossible.

If the spatial pulse is very broad [quasihomogeneous, cf. the
linear, middle part in the band diagram in Fig. 2(a)], the
“ordinary” dynamically assisted Sauter-Schwinger effect [6]

known from the purely time-dependent case in Sec. IIF is
recovered. This effect starts at

crit M Werit 7
= = —. 55
Yo qE, 2 (35)

The spatial turning points (between which tunneling happens)
read as x] = +m /(g E;) in this case.

This situation changes when we narrow the spatial pulse
E,/ coshz(kx) by increasing its k, while E| is kept constant and
subcritical here (E; < ESED). The total electrostatic energy
the pulse provides reads as g A® = 2q E; / k. When this energy
approaches the mass gap from above, g A® \ 2m, due to an
increasing k, we get aband diagram like in Fig. 2(b). The spatial
turning points grow according to x} ~ £|In(gAP — 2m)|
in this limit, so the tunneling rate due to the spatial pulse
alone is low then. These turning points are also the positions
in Euclidean spacetime where the corresponding instanton
trajectory (we are just referring to the spatial Sauter pulse at
the moment) crosses the spatial axis (x). The positions 1
where this instanton trajectory intersects the t axis (imaginary
time, T = it) are given by

m  arcsin y

=2 (56)
E
151 Yiy/ 1 — sz
according to Ref. [43], where
mk
=— (57)
143 7E,

is the Keldysh parameter of the spatial Sauter pulse. Hence, the
positions 71 divergelike 1 //g AP — 2m inthe limitg AP N\
2m, which is equivalent to y; ' 1; see Ref. [11].

The effect of the additional temporal Sauter pulse o
cosh_z(wt) is, in the instanton picture, that it gives rise to
“walls” at £tgn, = £7/(2w), which “reflect” the instanton
trajectory when touched. The value of @ for which the unper-
turbed (no temporal pulse) instanton trajectory just touches
these “walls” is precisely @i, the onset frequency scale
for dynamical assistance. The instanton-trajectory scalings
explained above let us conclude that weit ~ /gAP — 2m in
the limit gA® N\ 2m; cf. Ref. [11]. Hence, if gA® is only
slightly larger than 2m [Fig. 2(b)], even low-frequency pulses
should lead to an exponential enhancement of nonperturbative
(tunneling) pair creation via the dynamically assisted Sauter-
Schwinger effect. Since the space dependence of such pulses
is slow, their purely time-dependent treatment should be valid.

Now, let us transfer this situation to the semiconductor
analog. A localized, time-independent E field within a semi-
conductor gives rise to the same schematic band diagrams
depicted in Fig. 2. For example, the band bending may be
due to a suitable doping profile plus an additional external bias
if required. The exact form of the bands will not be that of a
hyperbolic tangent in general as in Fig. 2, which corresponds
to a spatial Sauter-pulse E field occosh?(kx). However, we
assume that the spatial E field within the semiconductor does
also decay exponentially for large |x|, just like a spatial Sauter
pulse does, but we do not prescribe an exact pulse shape near
the field maximum (the region around x = 0 in Fig. 2). Note
that this assumption is not compatible with the conventional
depletion approximation (see, e.g., Ref. [36]) according to

035203-10



ANALOG SAUTER-SCHWINGER EFFECT IN ...

PHYSICAL REVIEW B 97, 035203 (2018)

which the density of ionized dopants is piecewise constant,
which leads to parabolic potential curves within these ionized
regions and constant potential values outside. But, the idea
of sharp transitions between ionized and unionized regions is
generally considered unrealistic, and one expects “smeared”
transitions instead (see Ref. [36]). We think that it is physically
reasonable to assume exponential “tails” at the edges of such
transitions, which, together with the Boltzmann statistics of the
free charge carriers, should lead to a built-in field approaching
zero exponentially (far away from x = 0). Even if thermal
effects are negligible (low temperatures), we nevertheless still
expect the built-in field to decay exponentially due to quantum
effects: if we think of the ionized, spatially fixed dopants
on either side of the junction as creating an effective, finite
potential well for the respective majority carriers, the wave
functions of these carriers will leak into the forbidden region
(which begins somewhere on the other side of the junction),
an effect which is in accordance with the exponential decay of
the built-in field.

Assuming that the time-independent (built-in) field within
the semiconductor decays exponentially, we conclude that the
spatial turning points x7 scale like In(g A® — &, ) in the critical
limit g AD N\ &, [Fig. 2(b)], just like in the QED case above.
Now, let us imagine the unperturbed (no additional temporal
Sauter pulse) instanton trajectory in this limit: x} will be large,
so the instanton trajectory will be a huge closed loop over the
x range [x*,x}]. Except near x = 0, where we do not know
the exact pulse shape of the spatial field in the semiconductor,
the instanton trajectory is the same as that of a spatial Sauter
pulse (QED case above) because the E fields in both cases
decay exponentially; this functional form is sufficient to fix
the shape of the instanton trajectory. The imaginary-time (t)
positions where the instanton trajectory crosses the t axis will
thus also diverge like 1/,/gA® — &, in the limit g AP N\ &,.
This is because the exponential tails of the field let the instanton
trajectory grow so large in this limit that the details close to
the maximum field (around x = 0) are not important for the
scaling anymore. Consequently, we expect the same scaling
Wit ~ /qADP — &,, as in the QED case [11] to be exhibited
by an analog of the dynamically assisted Sauter-Schwinger
effect in a semiconductor with a localized, time-independent
inner field in the limit g A® N\ &, as well.

Note that this scaling law solely depends on the way the
electric field approaches zero asymptotically (here, exponen-
tially). See Refs. [44,45] for more information on universal
pair-creation phenomena in the no-tunneling limit.

2. Assisting harmonic oscillation

Another way to assist tunneling dynamically in this
spacetime-dependent scenario is via a harmonic oscillation
instead of a temporal Sauter pulse. This profile,

E,

B0 = st

+ E; cos(wt), (58)
is more appropriate to describe experiments in which pair
creation is assisted via laser beams, for example. The purely
time-dependent version of this profile (homogeneous back-
ground field instead of a spatial Sauter pulse) has been studied
in Ref. [10], also via the world-line instanton method. In

contrast to the temporal Sauter pulse, the oscillation does
not give rise to “walls” (singularities) parallel to the x axis
in Euclidean spacetime because cos(wt) = cosh(wt) is well
behaved for all imaginary times T = if. Hence, the onset of
dynamical assistance by the oscillation is not as sharply defined
as in the Sauter-pulse case. We have formulated the threshold
condition (43) for the oscillation amplitude E; in the case of
a homogeneous background field (k = 0 limit) in Sec. IIF3
(with Eg, — E; and Ey,e — E; here). Let us now estimate
how this critical oscillation amplitude E;m changes when the
background field becomes a spatial Sauter pulse (k > 0), while
the maximum background field strength E; and the oscillation
frequency w remain fixed.

We consider the instanton trajectory of the spatial Sauter
pulse again (see Ref. [43]). This closed loop in Euclidean
spacetime has its largest extent [from —ty to +79 with 79
from Eq. (56)] in the imaginary-time direction on the T axis
(x = 0), where the field strength of the spatial Sauter pulse
measures E1, and that of the oscillation would be E; cosh(wt).
We assume that this instanton trajectory will be noticeably
deformed (dynamical assistance) by the additional oscillation
if the amplitude E, is large enough such that the term
E, cosh(wtp) has a magnitude comparable to E;. Equation
(43) can be understood as defining a certain “threshold ratio”
between these two terms for the special case of a homogeneous
background field [k = 0, in which case tp = m /(g E})]:

ES™(k = 0)

cosh[wty(k = 0)] < const. 59)
El N——

Yo

When we now increase k (i.e., decrease the pulse width),
19(k) grows according to Eq. (56). As a simple estimate,
we determine the critical amplitude Eg“‘(k) for this nonzero
k by demanding that the constant on the right-hand side
of the above equation remains invariant. Hence, E;“t(k > 0)
must be smaller than ES"'(k = 0) to compensate the increase
of cosh[wty(k > 0)]. By considering the ratio between both
critical amplitudes, we can eliminate the constant and find

Egm(k) _ cosh Yo
Egril(k =0) - cosh[wty(k)] '

(60)

Note that this way to derive ng“(k) is not guaranteed to
preserve the property that we have originally imposed to
find the critical amplitude in the homogeneous-field case
(the oscillation enhances the pair-creation yield by 50%; see
Sec. ITF 3); rather, we have presented a simple way to estimate
how ES™(k) changes when increasing k from zero, and our
main intention here is to show that the critical amplitude
decreases when the spatial extent of the static background field
gets smaller.

By squaring Eq. (60) (and inserting 1), we finally find an
expression for the critical (laser-beam) intensity as a function
of the inverse Sauter-pulse length scale k:

cosh? y,,

Icrit(k) _ (61)

lei(k = 0) o2 [yw arcsin(yk)/(ykmn

where the threshold for a constant background field /.. (k = 0)
can be calculated via Eq. (43). Note that I.,(k) decreases for

035203-11



MALTE F. LINDER, AXEL LORKE, AND RALF SCHUTZHOLD

PHYSICAL REVIEW B 97, 035203 (2018)

Icrit(L)
kW/cm?

50t : Lai(L = o0)

40

10}

0 : ' : — —

0 100 200 300 400 nm

FIG. 3. Threshold CO,-laser-beam intensity (61) for dynami-
cal assistance of tunneling as a function of the width L =2x/k
of the static Sauter pulse E,/ coshz(kx) in GaAs. The parameter
values in this plot are E; = ES%%/10 ~ 60 MV/m, o = 0.117 eV
(30 ¥ = 1.56), and I (L — 00) = I (k = 0) = 47 kW /cm? (see
Sec. IIF3). Tunneling vanishes in the limit y;, 7 1 [cf. Fig. 2(b)],
which corresponds to L N\ Ly = 76 nm here.

increasing k until the critical amplitude becomes zero at a
certain k value with y;, = 1. This is precisely the k value at
which tunneling due to the spatial Sauter pulse alone vanishes
[cf. Fig. 2(b)], so the concept of assisted tunneling breaks down
there. Hence, by decreasing the width of the static background
field appropriately, we can make the threshold intensity for
dynamical assistance via the oscillation arbitrarily small in
principle; however, in order to really verify this effect under
controlled conditions in the laboratory, the tunneling currents
(assisted and nonassisted) should not become too tiny, so that
they remain measurable. This requirement poses a practical
limit on how narrow the spatial Sauter pulse (built-in field)
may become.

Let us exemplify the result of Eq. (61) for a semiconductor
analog by reconsidering the experimental setup from Sec. IIF3
(time-dependent case; i.e., homogeneous fields only): we said
there that tunneling pair creation in GaAs induced by a
constant background field E| = ECGrftAS /10 = 60 MV/m will
significantly be assisted by a CO;-laser wave E; cos(wt) (with
w = 0.117 eV fixed, so y, = 1.56) if the beam intensity is
about I (k = 0) = 47 kW /cm?. If we replace the constant
background field with a spatial Sauter pulse E;/cosh’(kx)
with an associated length scale L = 2n/k, Eq. (61) gives us
the L-dependent critical laser intensity plotted in Fig. 3.

We emphasize that the dynamical assistance mechanisms
from Refs. [6,10,11] considered here are fully nonperturbative
effects, which are based on a classical-field description of
the external fields. So, even though we assume the assisting
temporal Sauter pulse and the time-dependent oscillation to
be weak in amplitude (E; K€ E; < ESF{D), they still must
incorporate a large number of photons (high intensity) as to
allow for the classical field picture. The dynamically assisted
Sauter-Schwinger effect in semiconductors should thus not
be confused with the Franz-Keldysh effect [46,47] (see also
Refs. [48]), which is related to a shift in the photon-absorption

edge. The QED analog of this effect was considered in
Refs. [49-51].

IV. GENERALIZATION TO ELECTROMAGNETIC
FIELDS IN 2+1 DIMENSIONS

In this section, we briefly discuss the feasibility to generalize
the analogy between Bloch electrons and holes in semicon-
ductors and Dirac’s theory to 241 spacetime dimensions,
including known results.

The step from one to two spatial dimensions is interesting
because it also allows for external magnetic fields, not just
electric fields as in the one-dimensional case. The Dirac
field operator W still has two components in two dimensions
since there is a third Pauli matrix (o,) for the additional
required gamma matrix y2. This absence of spin simplifies
the calculations and is typically irrelevant in the context of
tunneling pair creation [43,48]. In two-dimensional space, the
magnetic field is scalar and acts like the B, component for
charge carriers confined to the (x, y) plane in three dimensions.
It is given by the components of the vector potential A(z,x,y)
via B = —0,A, + 0,A,.

Graphene (see Refs. [52,53]) is a well-known example for
a two-dimensional system which mimics relativistic electron
motion near the points where the conduction band touches
the valence band in the Brillouin zone (Dirac cones); see
also Ref. [31]. However, the associated effective electron rest
mass is zero, so the analog of the Schwinger limit ESED o
m? vanishes in graphene, and thus there is no characteris-
tic exponential suppression of the Sauter-Schwinger effect;
see Refs. [15,16]. But, by generating an offset (symmetry
breaking) between the two triangular carbon lattices, which in
combination make up the honeycomb structure of graphene,
it is possible to separate both energy bands by a finite-
energy gap. The Dirac cones of this so-called semiconducting
graphene become shaped like paraboloids near the gaps, which
corresponds to a nonvanishing effective rest mass. Semicon-
ducting graphene has already been produced successfully in the
laboratory via epitaxial growth as reported in Ref. [54], and it
has been studied in Ref. [17] as an analog for electron-positron
pair creation in constant and oscillating (in time) electric fields.

One possible problem with analogs of Dirac’s theory in
multiple space dimensions is that the vacuum is isotropic,
so m and c are scalar quantities, while material properties
of semiconductors, for example, can depend on direction
(effective mass tensor, direction-dependent effective speed of
light, etc.). Since these anisotropies have no counterpart in
Dirac theory, we focus on materials which behave isotropically
around the band gap (scalar effective quantities) or at least
whose anisotropies do not interfere for the electromagnetic
field profile under consideration.

A simple profile which is interesting to study in 241
dimensions consists of perpendicular electric (x direction) and
magnetic fields, both constant. In Dirac theory, the magnetic
field decreases the pair-creation rate induced by the E field
because we can always Lorentz-transform to a frame according
to which the magnetic field is zero and the pair-creating electric
field measures EZ — B?; see, e.g., Refs. [4,55]. That means that
Sauter-Schwinger pair creation vanishes completely for strong
enough magnetic fields (B = E/c or higher in SI units). In
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Ref. [29], the authors state that for the same reason the equiva-
lent effect also happens in a two-band semiconductor, but again
with the effective scales m — m, and ¢ — ¢, [Eqgs. (28) and
(34)]. (As in Sec. III B, we have to assume m, , = m, , = m,
here.) Their reasoning is that the electrons in the semiconductor
obey an effective Dirac equation (near the band gap) since
this type of equation models a simple two-band system. The
validity of a Dirac-type equation implies the existence of an
analog Lorentz transformation (with ¢ — c,), which is then
used to show that tunneling vanishes for B = E/c, in the
semiconductor. More detailed explanations of this Dirac-type
two-band model are given in Refs. [28,48], which also study
the crossed-field profile, and in Refs. [30,31].

We can understand the reduction of Landau-Zener tunneling
in a semiconductor due to a perpendicular B field as well by
starting with the same approach as in the previous sections,
which deal with the QED-semiconductor analogy in 141 di-
mensions. That is, we begin with the Schrédinger Hamiltonian
(6) again but for 2+1 dimensions and with the vector potential
A(x) = —Bxé, and the additional scalar potential ®(x) = Ex
(crossed constant fields). We then insert the (24 1)-dimensional
version of the two-band approximation (8). The resulting two-
band Hamiltonian contains first- and second-order derivatives
with respect to the component K, of the crystal momentum,
which arise from the Bloch-basis representations of x and
x2 (see, e.g., Refs. [32,56,57] for the calculation of these
matrix elements). As a simple, semiclassical approach, we then
consider just the center of the Brillouin zone K = 0 (where
we, again, assume the direct band gap to be located) and
derive the corresponding x-dependent band energies from the
Hamiltonian (idx, — x). What we find is an expression which
looks similar to the relativistic counterpart

Ei(x) = —qEx & /m?c* + (cq Bx)? (62)

(for the same crossed-field profile and k= 0) but with the
known effective constants ¢ — ¢, and m — m,, plus addi-
tional terms under the square root. However, these additional
terms can be neglected for typical values m, /m ~ 1072107,
c./c ~ 1073-1072 (see the data for GaAs in Table I, for
example), a not too strong tunneling-inducing electric field
E ~ 107'E_; ~ 107 V/m, a perpendicular magnetic field in
the range B < E/c, = 10 T, and x values of the order of the
unperturbed (by the B field) tunneling length &, /(g E). The
&+ (x) graphs in the semiconductor thus look like the relativistic
version, which was also found in Ref. [48].

We emphasize that the reduction of the tunneling current
in perpendicular B fields has just been explained by referring
to the local dispersion relations of the Dirac equation and the
two-band semiconductor model, respectively. So, although the
same effect happens in both systems, this does not necessarily
imply the analogy between the full underlying Hamiltoni-
ans/equations of motion.

V. CONCLUSIONS

We studied the quantitative analogy between the Sauter-
Schwinger effect and interband tunneling in suitable semicon-
ductors with special emphasis on fields which depend on space
and time. To this end, we compared the Dirac Hamiltonian
[Egs. (5) and (44)] in 141 dimensions with the effective two-

band Hamiltonian of a semiconductor [Egs. (15) and (47)]. In
the case of purely time-dependent electric fields E(¢), one may
derive a quantitative analogy for every k mode after a spatial
Fourier transform. In this case, the analog of the Schwinger
critical field (40) is determined by material constants such
as the band gap &, and the interband coupling xp, which
is related to the effective mass m, via Eq. (27). For GaAs,
for example, we obtain a value of approximately ESS ~
6.2 x 10® V/m, which is far below the QED critical field
ELP ~ 1.3 x 10'8 V/m and about one order of magnitude
above the typical breakdown field strength of a few (3-9)
107 V/m in GaAs according to Ref. [36]. This is a very natural
result because the analog of the QED critical field yields the
ultimate quantum limit until which the semiconductor can
retain its insulating behavior: no matter how perfect and free of
defects the sample is and how low the temperature, tunneling
will become strong at that field strength (unless it is suppressed,
e.g., by a magnetic field; see below).

This scenario of purely time-dependent electric fields E(¢)
would already allow us to study the analog of the dynamically
assisted Sauter-Schwinger effect [6] with an additional Sauter
pulse, for example, where the threshold frequency (for Eg, =
ESiA/10) lies around 0.12 eV (instead of 80 keV as in real
QED), which is favorable for an experimental verification.
For the experimentally probably more relevant case of an
additional sinusoidal field (instead of a Sauter pulse), we get the
additional requirement that the field strength of this additional
field should be large enough to assist tunneling. This indicates
an important difference to the well-known Franz-Keldysh
effect [46,47] corresponding to tunneling assisted by a single
photon (which can be treated perturbatively). A single photon
with an energy of 0.12 eV would not have a significant impact
because its energy is far below the band gap. However, a
field oscillating at this frequency with sufficient intensity can
assist tunneling, which shows that it is necessary to treat
this field beyond (first-order) perturbation theory; see also
Refs. [10,58].

For electric fields depending on space and time, E(¢,x),
more approximations are necessary to obtain a quantitative
analogy. For example, because electrons and positrons in real
QED are limited by the same speed of light, one has to
neglect the difference in the velocities of particles and holes
(more precisely, the curvature of their bands at the gap) in the
semiconductor and to approximate both by the same effective
mass of around 7% of the electron mass. This scenario E(¢,x)
includes additional interesting cases. For example, if the strong
and static field is inhomogeneous and close to the edge of the
tunneling regime, the frequency and/or field strength of the
additional weaker time-dependent field required for dynamical
assistance is reduced; see Sec. IIID and Ref. [11].

Finally, we discussed the generalization to 241 dimensions.
Apart from facilitating the distinction between transverse and
longitudinal fields (see also Ref. [10]), this case also allows
us to introduce a magnetic field. For the Sauter-Schwinger
effect in real QED, it is well known that an additional magnetic
field can suppress the tunneling probability. Here, we find an
analogous suppression for the tunneling in semiconductors; see
also Refs. [28,29,48]. For example, in GaAs with an electric
field of 1% of the critical field, E, = EgiatAs /100 (i.e., roughly
one order of magnitude below the breakdown field strength),
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a magnetic field of 1 Tesla can already suppress tunneling
significantly (Egy/cS% &~ 4.5 T will stop it completely).

In summary, our findings suggest that the analog of the
Sauter-Schwinger effect and its dependence on the spatial
and temporal field profile (e.g., dynamical assistance) should
be observable with present-day technology in suitable high-
quality semiconductors at low temperatures, where competing
mechanisms (due to defects, etc.) are suppressed sufficiently.

VI. OUTLOOK: INTERACTIONS

In all of our previous considerations, we neglected the
Coulomb interaction between the electrons. This approxima-
tion is well motivated experimentally since the picture of
noninteracting electrons (e.g., band structure, Drude model)
describes the experiments in bulk semiconductors typically
very well. Note that the situation is different in quantum dots,
for example, where the spatial confinement enhances Coulomb
interaction effects.

The same approximation is typically used in real QED,
where most of the calculations regarding the Sauter-Schwinger
effect neglect the interaction between the created electrons and
positrons. While this interaction is expected to be small, it is
probably fair to say that it is not fully understood yet.

In order to obtain a rough estimate, let us compare the
Coulomb force Fcoyiomp Of the electron-positron pair separated
by the tunneling distance to the force Fe = g E induced by
the external electric field:

F Coulomb 1 E

= — 0QED —orp -
Fext 4 ESIED

(63)

Thus, even for a very strong field of E = ESED /10, we find
a suppression of &2 x 107, which indicates that neglecting
these interactions is a good approximation.

If we now perform the same estimate for the semiconductor

case, we find

Feowomp 1 E ¢
= - —. 64
Fext 4 *QED Eqit co ©4)

Asaresult,duetoc/c, &~ 217 for GaAs (cf. Table I), the impact
of the Coulomb interactions is stronger in this situation. Intu-
itively speaking, the electrons are slower and thus have more
time to interact. This enhancement is even more pronounced
for graphene [52] where c¢/c, = 300. Nevertheless, even with
the very strong field £ = E CGrftAS /10, the Coulomb force is only
a 4% correction to the external force, such that neglecting it
should still be a good approximation.

Turning the argument around, high-precision experiments
in semiconductors could (at least qualitatively) illuminate the
impact of interactions, while the analogous experiments in real
QED are far more difficult.
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APPENDIX A: ABSORPTION OF THE A% TERM
IN THE SEMICONDUCTOR HAMILTONIAN

In the time-dependent case (Sec. II), the electric potential
is specified in temporal gauge, that is, E(f) = A(r) and the
scalar potential @ is set to zero. However, introducing also the
scalar potential ® explicitly for the moment, the electric field
becomes E = A 4 9, P, so a purely time-dependent scalar
potential ® = ®(¢) does not have any physical significance.
The scalar potential couples to time derivatives (d, — 9, —
iq®) and therefore leads to the additional term —g® in the
Hamiltonian (6):

00 i 2
Flf““(t)=/ W{—[ 9. ;;A(t)] +V(x)—qd>}$dx.

(A1)

We may thus absorb the quadratic A term in this equation by
setting ®(t) = g A*(t)/(2m) and obtain the simplified Hamil-
tonian (7).

APPENDIX B: BLOCH-WAVE MOMENTUM
MATRIX ELEMENTS

1. Underlying formula

Let us first derive a general equation for a type of inte-
gral which appears regularly in calculations in the Bloch-
wave basis. Assume that g(x) is an {-periodic function,
ie., g(x +¢€) = g(x), and we want to calculate the integral
ffooo exp(ikx)g(x) dx with a real k satisfying |k| < 27 /€.

We start by writing the £-periodic g as a Fourier series

oo
g = ) g,

j=—o0

B

with complex Fourier coefficients g;. Insertion into the above
integral yields

oo 0 o)
/ o g(x)dx = Z g’i/ RUSSITT
—00 ’ —0oQ

j=—00
> 2
=2 g:olk+—7j). B2
7T]'=X_:<>og] ( " ¢ J> ®y

Since |k| < 27/, the delta distribution vanishes except for
the case j = 0; cf., e.g., Ref. [59]. The corresponding Fourier
coefficient g, coincides with the average of g over a unit cell,
so we get the result

00 ¢
/ o g ) dx = 27” / g)ydx 8(k).  (B3)
_ 0

o0

2. Momentum matrix elements

We start to calculate the matrix elements by inserting the
general Bloch wave form (10):

(n,K| —id|n",K")

= /oo fn*(K’x)(_iax)ﬁl’(K,’x)dx
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o
= / 'K _K)Xu:‘l(K,x)
—0oQ0

(B4)

7 / .8Mn/(K/,.X)
X | K'u,y(K' ,x)—i—— |dx.

0x

Since the Bloch factors are ¢ periodic with respect to x and
|K' — K| < 2 /¢ (because K and K’ are restricted to the first
Brillouin zone), we may apply Eq. (B3) and find

(n’K| - i8x|}’l/,K/>
= [K <n9K|n/vK)u + <an| - iax|n,7K>u] S(K, - K)
[ ——

)

nn’

(BS)

(cf., e.g., Ref. [32]). Note that we used the unit-cell scalar
product defined in Eq. (11) to write the remaining single-cell
integrals. Furthermore, the first product just gives a Kronecker
delta due to the Bloch-factor orthonormalization (11).

APPENDIX C: TAYLOR EXPANSION OF «(K)
AROUND K =0

We are interested in the first-order K dependence of «
[Eq. (13)], so we need to evaluate the first K derivative of « at
K = 0. Together with the definition of the single-cell product
in Eq. (11), we get (K derivatives are denoted as superscript
numbers in parentheses)

kD) = @(0,x) | =i, |u4(0,x)),

+ (u_(0,x) | —id, |u0,x)),.  (C1)

The K derivatives of the Bloch factors at K =0 can be
calculated by expanding u.(K,x) in powers of K via k- p
perturbation theory. Again, we apply the two-band approxima-
tion, so we only take into account corrections from the valence
band and the conduction band. The resulting expansions

s (K.x) = us(0,x) £ @h(o,x) +OKY  (C2)
mé’g

(cf. Ref. [34]) inserted above immediately give

kM(0) = <—£u+(0,x) —id, u+(0,x)>
mé&, "
+ <u_(0,x) —id, K—Ou_(O,x)>
mé&, "
_ ko _
=z Av(0)=0 (C3)

since the group velocities vi(K) = (+,K| —id,| £ ,K), /m
vanish at the direct band gap at K = 0 in both energy bands.

The Taylor series of x around K = 0 thus does not include
a linear term (according to k - p perturbation theory and the
two-band model): k(K) = ko + O(K?).

APPENDIX D: MATRIX ELEMENTS OF M(¢,K,K’)
FOR SPATIALLY SLOWLY VARYING POTENTIALS

The elements of the matrix M(¢,K,K’) in Eq. (48) are
expressions of the form (n,K|®|n’,K’). For slowly varying
potentials, this general scalar product can be calculated. We
start by inserting the Bloch-wave form (10) and the spatial
Fourier transform [cf. Eq. (4)] of the potential. After changing
the order of integration, we get

(n,K|®|n',K' (t,k)

1 oo
o
27T —00
0o ,
% / el(k+K 7K)XMZ(K,.X)
—o0

x up(K',x)dx dk. (D1)

Let us now reconsider our assumptions: The slowly varying
potential satisfies &(t,k) = 0 unless |k| < 21 /€, so we only
need to calculate the x integral (correctly) for small values of k.
Furthermore, we are interested in the quasimomentum region
near the band gap to draw the analogy to Dirac theory; that
is, we evaluate the matrix elements between values of K and
K’ near the Brillouin-zone center and thus |[K’ — K| is signifi-
cantly smaller than 277 /¢, the total zone width. Altogether, we
may assume |k + K’ — K| < 2 /¢ and thus apply the formula
in Eq. (B3) again:

(n,K|®|n',K') = O(t,k) 8k + K' — K)

1 0

.

X 27”/0[ wi (K, x)uy (K',x)dx dk.
(D2)

Now, the k integral can easily be calculated and the single-
cell x integral is expressed via the Bloch-factor scalar product
introduced in Eq. (11). That yields our end result

K jop Ky = 2K KD
n, n, =—

V2r

Note that this equation is exact as long as the condition
mentioned above is true.

(n,K|n',K"),. (D3)
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