Irradiation of graphene field effect transistors with highly charged ions

P. Ernst *, R. Kozubek, L. Madauß, J. Sonntag, A. Lorke, M. Schleberger

Fakultät für Physik and CENIDE, Universität Duisburg-Essen, 47048 Duisburg, Germany

Abstract

In this work, graphene field-effect transistors are used to detect defects due to irradiation with slow, highly charged ions. In order to avoid contamination effects, a dedicated ultra-high vacuum set up has been designed and installed for the in situ cleaning and electrical characterization of graphene field-effect transistors during irradiation. To investigate the electrical and structural modifications of irradiated graphene field-effect transistors, their transfer characteristics as well as the corresponding Raman spectra are analyzed as a function of ion fluence for two different charge states. The irradiation experiments show a decreasing mobility with increasing fluences. The mobility reduction scales with the potential energy of the ions. In comparison to Raman spectroscopy, the transport properties of graphene show an extremely high sensitivity with respect to ion irradiation: a significant drop of the mobility is observed already at fluences below 15 ions/μm², which is more than one order of magnitude lower than what is required for Raman spectroscopy.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The irradiation with energetic ions may be used to obtain permanent modifications of surfaces [1–6,7–11] or so-called 2D materials such as graphene, carbon nanomembranes, MoS₂, and hexagonal BN [4,12–19]. For 2D materials in particular, slow highly charged ions (HCI) beams seem to be the appropriate tool as these projectiles deposit their potential energy, i.e. the sum of the ionization energies of the missing electrons, in a very small volume close to the surface. However, despite ongoing research in this field [1,20,2,21,17], the underlying interaction mechanisms are still not very well understood, in particular with respect to 2D materials. In the case of HCI it is rather difficult to distinguish between the influence of the key parameters, i.e. the kinetic energy E_{kin} and the potential energy E_{pot}, as a complete deceleration of the ions is not feasible [22]. One method is to keep one parameter fixed and vary the other to find a threshold value for a given modification. With respect to graphene, such a threshold has already been determined by atomic force microscopy (AFM) [17], while this has yet to be done with Raman spectroscopy. Both methods are very powerful tools to investigate irradiation effects in graphene but have their disadvantages as well. The AFM may detect individual impact sites on the order of one per μm², provided they are large enough. Raman spectroscopy on the other hand is sensitive to the smallest defects [23–25], but is only effective at relatively high fluences, starting from 10^{10} ions/cm² (corresponding to 100 ions/μm²) onwards. In addition, most experiments are performed ex situ under ambient conditions, i.e. the samples have to be taken out of the irradiation chamber and as a consequence undergo additional, uncontrolled changes. In this paper we present an alternative method to estimate ion-induced radiation damage, which is sensitive in a fluence regime that bridges the two aforementioned methods. We use field-effect transistors (FET) made from single layer graphene [26,27]. We show that by analyzing the transfer characteristics of graphene FETs (G-FETs) before and after irradiation, conclusions with respect to ion-induced defects in graphene may be drawn.

2. Experiment

2.1. Experiment

For this experiment, single layer graphene was mechanically exfoliated onto oxidized (285 nm SiO₂), degenerately p-doped Si wafers. Metallic contacts were provided by photolithography and vacuum evaporation of a 5 nm thick Ti adhesion layer and a 100 nm thick gold layer. The graphene quality is checked by μ-Raman spectroscopy (Renishaw, λ = 532 nm, $P = 1$ mW) before and after photolithography, and after irradiation as well (see Section 3.1). Fig. 1 shows a schematic sketch of our devices with the typical channel length and width of $L = 5$ μm and $W = 5$ μm, respectively. In this configuration, the degenerately doped Si works as a global backgate (U_{GS}), whereas the gold contacts are used as
both the drain and the source contact. The transfer characteristic $I_{DS}(U_{GS})$ reflecting the electrical properties of the G-FETs is measured before, during and after irradiation with HCIs. The current I_{DS} between drain and source is driven by a constant potential difference U_{DS}, in order to calculate the electron and hole mobility, respectively, the following equation can be used [28]

$$\mu = \sigma \frac{L}{W C_{i}}.$$

The differential conductance is given by $\sigma = \frac{I_{DS}}{U_{DS}}$ and the sheet capacitance $C_{i} = \frac{q}{\varepsilon} = 1.212 \cdot 10^{-8}$ F/cm2, with $\varepsilon = 3.9$ [28] being the dielectric constant of SiO$_2$ with a thickness of $d = 285$ nm. Additionally, the charge carrier density can be calculated by $n = \frac{C_{i}}{e} (U_{Dirac} - U_{GS})$ [29]

$$n = \frac{C_{i}}{e} (U_{Dirac} - U_{GS})$$

where e is the elementary charge and U_{Dirac} is the voltage, at which the Dirac point (characterized by $n \approx p \approx 0$, i.e. minimum conductivity) is observed.

In order to be able to measure the transfer characteristic during irradiation with HCl, a dedicated ultra high vacuum (UHV) setup was used for the G-FETs was built. To this end, the G-FETs were bonded on a custom-made, UHV compatible chip carrier. Furthermore, the G-FETs were cleaned by heating at around $T = 150 \degree$C before irradiation to partly remove intercalated water and residual photoresist (see Section 4.1) stemming from the preparation procedure [30,31]. All samples were irradiated using the Duisburg HCl beamline HICS [32], which is based on an electron beam ion trap (EBIT) that can produce 129Xe ions with a charge state q from $q+1$ to $45+$ and a corresponding maximum potential energy of about e.g. $E_{pot} = 58.8$ keV. The kinetic energy $E_{kin} = q(U_{acc} - U_{dec})$ can be controlled via a deceleration stage and is given by the charge state of the ion q, the acceleration voltage U_{acc}, and the deceleration voltage U_{dec}. The charge state selection is done with a dipole magnet, whereas a multi-stage lens system ensures a focused ion beam with a spot size of less than $1 \mm^2$ diameter. A Faraday-Cup is used to measure the beam current.

In previous experiments, the threshold charge state for ion-induced modifications of graphene was found to be 129Xe$^{35+}$ (corresponding to a potential energy of $E_{pot} \approx 15$ keV) at a kinetic energy of $E_{kin} \approx 260$ keV [17]. Therefore, we have chosen two charge states, one below and one above this threshold, namely 129Xe$^{35+}$ ($E_{pot} \approx 8$ keV) and 129Xe$^{32+}$ ($E_{pot} \approx 19$ keV), while keeping the kinetic energy fixed at $E_{kin} \approx 200$ keV. For both charge states, the transfer characteristic is measured as a function of the ion fluence in the range of 0 to about 2500 ions/cm2. The back-gate-voltage is varied from $U_{Gmin} = -20$ V to $U_{Gmax} = +20$ V, while the drain-source-voltage is held constant at $U_{DS} = 50$ mV for all measurements.

3. Results

3.1. Raman-spectra

Raman spectroscopy can be used as a non-destructive method to analyze the structural quality of graphene and in particular, the existence, density and type of defects [33–36]. A typical Raman spectrum of exfoliated, high-quality graphene shows two prominent peaks [24,25]: The in-plane vibrational G mode at ≈ 1580 cm$^{-1}$ and the 2D mode at ≈ 2690 cm$^{-1}$. The full width at half maximum (FWHM) of the 2D peak can be used to determine the layer thickness. A FWHM ≈ 25 cm$^{-1}$ indicates single layer graphene, whereas a FWHM ≈ 52 cm$^{-1}$ is typically found for bilayer graphene [37]. The 2D mode is sometimes also called the second-order in-plane overtone of the D mode vibration. The presence of the first order D mode at ≈ 1350 cm$^{-1}$ is indicative for lattice defects or disorder, respectively [38]. The D mode as well as the 2D mode at ≈ 1620 cm$^{-1}$ can be used for defect analysis [39,33,34]. In Fig. 2 Raman spectra from our samples are shown, the first taken from pristine graphene (black line), the second from graphene after photolithography (blue line), and finally from irradiated graphene (red line). The FWHM of the 2D mode of pristine graphene (black line) is about ≈ 27 cm$^{-1}$ and thus indicates single layer graphene. The absence of the D-Peak (black line) proves the high quality of the graphene flakes after exfoliation [40].

For a quantitative comparison of irradiation-induced disorder, we analyze the area ratios of the D and G mode, A_{D}/A_{G} [41,33]. Already due to the photolithography process (blue line) this ratio typically increases up to $A_{D}/A_{G} = 0.3$. After irradiation with 129Xe$^{3+}$ ions (>2500 ions/µm2), an area ratio of $A_{D}/A_{G} = 3.5$ is measured (red line). Note, that in order to guarantee a sufficient signal/noise ratio of the relevant Raman peaks, graphene has to be irradiated with a fluence of at least $100–500$ ions/µm2, depending on the charge state.

4. Electrical characterization before irradiation

Without cleaning, the G-FETs fabricated as described above, are typically p-doped [26]. This becomes apparent in the transfer characteristic $I_{DS}(U_{GS})$ measurements, shown in Fig. 3a, where the Dirac-point is shifted to a high, positive backgate voltage. After the cleaning process, which consists of heating the sample in...
UHV at 150 °C for 24 h, the Dirac-point typically lies between $U_{GS\text{min}} = -20$ V and $U_{GS\text{max}} = +20$ V. Because of the limited thermal stability of the chip carrier, the temperatures used here are slightly lower compared to published values [30,31]. The heating time can be used to achieve a given doping level and Dirac-point position in a wide range [42], e.g. the initially p-doped G-FET may become non-doped with a Dirac-Point close to $U_{GS} = 0$ V, or even n-doped for longer heating times. For an analysis of relative changes due to ion irradiation, the absolute value of the Dirac point is not so important, but the stability of the Dirac point, as well as a stable charge carrier mobility μ, of non-irradiated devices, are of course crucial. To test this, we have prepared a G-FET with a Dirac-Point close to $U_{GS} = 0$ V and stored it inside the UHV chamber for several days (base pressure $p = 5 \cdot 10^{-9}$ mbar). In Fig. 3c one can see that the transfer characteristic curves vary only very slightly. After taking the G-FET out of the UHV, it returned to its initial p-doped state which is typical for exposure to ambient conditions (see Fig. 3b).

Note that the transfer characteristics shown in Fig. 3 are typical for G-FETS, but the absolute values for individual G-FETS may vary significantly. In order to eliminate this uncontrollable variation of the initial values and still be able to compare ion-induced effects in G-FETS with different initial transfer characteristics, we use relative values instead. For example, the last measurement before irradiation (purple line in Fig. 3c) is used to calculate the reference mobilities of this G-FET: $\mu_{\text{reference}+} = 2055 \text{ cm}^2/\text{V}s$ and $\mu_{\text{reference}-} = 1427 \text{ cm}^2/\text{V}s$. After the reference values have been determined from the cleaned G-FET, the relative charge carrier mobility after irradiation is given by:

$$\mu_{\text{rel}} = \frac{\mu_{\text{after}}}{\mu_{\text{reference}}}$$

This means that any effect of HCI irradiation on the charge carrier mobilities is measured with respect to the data measured just before irradiation. This procedure is valid as in between individual irradiation steps, the FET is not taken out of the UHV. In this way the individual quality of a given G-FETS is factored out and even non-ideal G-FETS with below average mobility values can be used for the experiment.

4.1. Electrical characterization after irradiation

After irradiation with highly charged ions, the G-FETS typically show a reduction of both, electron and hole mobility. Fig. 4a shows the relative electron (red) and hole (black) mobility during irradiation with 129Xe$^{2+}$ and Fig. 4b for irradiation with 129Xe$^{3+}$. From the data it can be clearly seen that the reduction of mobility scales with the potential energy of the ions. At the same fluence, e.g. about 1000 ions/μm2, the relative electron and hole mobility after 129Xe$^{3+}$-irradiation ($^{32}H_{\text{relative}+} = 0.29$) is significantly smaller than after irradiation with 129Xe$^{2+}$ ($^{25}H_{\text{relative}+} = 0.55$). Another remarkable result is the extreme sensitivity of the G-FET: The mobility is already affected at fluences <15 ions/μm2. Additionally, the residual charge carrier density (blue) is plotted as a function of the ion fluence in Fig. 4. Obviously, the ongoing irradiation with HCI leads to an increasing hole density (initial state of the G-FETS: 129Xe$^{3+}$-irradiation p-doped with $n = 2.9 \cdot 10^{11}$ cm$^{-2}$ and 129Xe$^{3+}$-irradiation n-doped with $n = -4 \cdot 10^{11}$ cm$^{-2}$).

4.2. Annealing after irradiation

Finally, we annealed (2 h at 110 °C) the G-FETS after irradiation to test if we could recover the initial state. From Fig. 5 one can see that the hole mobility stays nearly constant at $\mu = 198 \text{ cm}^2/\text{V}s$ and that the only significant change is the shift of the Dirac-Point to lower backgate voltages from $U_{GS} = 12.75$ V to $U_{GS} = 4.375$ V. This indicates that the ion irradiation causes structural damage to the graphene lattice, which cannot be cured by moderate thermal annealing.

5. Discussion

Our data shows that G-FETS can indeed be used for the investigation of HCI-induced defects in graphene. In addition, G-FETS are much more sensitive than Raman spectroscopy. The transport properties are already affected at fluences on the order of 10 ions/μm2, which is the domain of spatially resolved methods such as AFM. A detailed analysis of the relation between defect structure and electronic transport properties seems thus feasible with G-FETS. The processing of our devices already gives rise to a certain number of defects which can be seen from the Raman data. This might represent a drawback, as the graphene is no longer pristine when exposed to the ion beam. On the other hand, the devices are stable in UHV and can be controlled in a reproducible way by in situ heating with respect to the initial doping level. Thus, we could show that the observed effects during irradiation are exclusively related to the irradiation and not to other transient effects.
Furthermore, by analyzing relative values, we present a method to eliminate the uncertainty with respect to the individual quality of a given G-FET.

The transfer characteristic $I_{DS}(U_{GS})$ measurements show, that HCIs do modify the electrical properties of graphene. In comparison with previous experiments with graphene irradiated by swift heavy ions (SHI) we observe a clearly different behavior. When graphene is irradiated with SHI, at low fluences an increase in charge carrier mobility has been observed [43], while for HCl we definitely observe a decrease. Both types of projectiles interact predominantly with the electronic system of the target and it has therefore been proposed, that the mechanism of defect creation might be similar [8]. However, when interacting with graphene, we need to consider the difference in energy deposition between the two projectiles. High energy charged ions typically dissipate almost all their potential energy in the surface [44]. In contrast, due to their large kinetic energy in the range of up to several MeV per atomic mass unit, SHI will penetrate not only the graphene layer, but will reach deep into the bulk material for some ten microns or more. The intense energy deposition into the electronic system of the bulk material will at one point be transferred to the lattice and may lead to a so-called thermal spike [45,46]. This localized heating of the substrate could lead to a local annealing of graphene [47] which would be absent in HCI irradiation.

Our data shows a clear dependence of the mobility reduction on the charge state, i.e. a projectile with a higher charge state is more efficient than an ion with a lower charge state. This is in agreement with previous results where it could be shown that size of the defective region is directly related to the potential energy of the HCI [17]. These defective regions are typically a few nm2 in size. Future systematic experiments with G-FETS will reveal if and how the size of defect regions scales with the change of the transport properties. In particular, it would be interesting to determine the threshold charge state for the mobility reduction to be effective.

Acknowledgement

We thank the DFG for financial support within the framework of the SPP 1459 Graphene. We thank Dr.-Ing. Artur Poloczek and Dipl.Ing Gregor Keller at the HLT, Duisburg for sample preparation.

References

