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In this work, graphene field-effect transistors are used to detect defects due to irradiation with slow,
highly charged ions. In order to avoid contamination effects, a dedicated ultra-high vacuum set up has
been designed and installed for the in situ cleaning and electrical characterization of graphene field-
effect transistors during irradiation. To investigate the electrical and structural modifications of irradiated
graphene field-effect transistors, their transfer characteristics as well as the corresponding Raman spectra
are analyzed as a function of ion fluence for two different charge states. The irradiation experiments show
a decreasing mobility with increasing fluences. The mobility reduction scales with the potential energy of
the ions. In comparison to Raman spectroscopy, the transport properties of graphene show an extremely
high sensitivity with respect to ion irradiation: a significant drop of the mobility is observed already at
fluences below 15 ions/lm2, which is more than one order of magnitude lower than what is required
for Raman spectroscopy.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

The irradiation with energetic ions may be used to obtain per-
manent modifications of surfaces [1–6,5,7–11] or so-called 2D
materials such as graphene, carbon nanomembranes, MoS2, and
hexagonal BN [4,12–19]. For 2D materials in particular, slow highly
charged ion (HCI) beams seem to be the appropriate tool as these
projectiles deposit their potential energy, i.e. the sum of the ioniza-
tion energies of the missing electrons, in a very small volume close
to the surface. However, despite ongoing research in this field
[1,20,2,21,17], the underlying interaction mechanisms are still not
very well understood, in particular with respect to 2D materials.
In the case of HCI it is rather difficult to distinguish between the
influence of the key parameters, i.e. the kinetic energy Ekin and
the potential energy Epot , as a complete deceleration of the ions is
not feasible [22]. One method is to keep one parameter fixed and
vary the other to find a threshold value for a given modification.
With respect to graphene, such a threshold has already been deter-
mined by atomic force microscopy (AFM) [17], while this has yet to
be done with Raman spectroscopy. Bothmethods are very powerful
tools to investigate irradiation effects in graphene but have their
disadvantages as well. The AFM may detect individual impact sites
on the order of one per lm2, provided they are large enough. Raman
spectroscopy on the other hand is sensitive to the smallest defects
[23–25], but is only effective at relatively high fluences, starting
from 1010 ions/cm2 (corresponding to 100 ions/lm2) onwards. In
addition, most experiments are performed ex situ under ambient
conditions, i.e. the samples have to be taken out of the irradiation
chamber and as a consequence undergo additional, uncontrolled
changes. In this paper we present an alternativemethod to estimate
ion-induced radiation damage, which is sensitive in a fluence
regime that bridges the two aforementioned methods. We use
field-effect transistors (FET) made from single layer graphene
[26,27]. We show that by analyzing the transfer characteristics of
graphene FETs (G-FETs) before and after irradiation, conclusions
with respect to ion-induced defects in graphene may be drawn.
2. Experiment

2.1. Experiment

For this experiment, single layer graphene was mechanically
exfoliated onto oxidized (285 nm SiO2), degenerately p-doped Si
wafers. Metallic contacts were provided by photolithography and
vacuum evaporation of a 5 nm thick Ti adhesion layer and a
100 nm thick gold layer. The graphene quality is checked by
l-Raman spectroscopy (ReniShaw, k ¼ 532 nm, P ¼ 1 mW) before
and after photolithography, and after irradiation as well (see
Section 3.1). Fig. 1 shows a schematic sketch of our devices with
the typical channel length and width of L ¼ 5 lm and W ¼ 5 lm,
respectively. In this configuration, the degenerately doped Si works
as a global backgate (UGS), whereas the gold contacts are used as
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Fig. 1. Schematic sketch of a graphene field-effect transistor (G-FET).
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Fig. 2. Typical Raman-spectra from pristine graphene (black line), after pho-
tolithography (blue line) and after irradiation with HCIs (red Line). The different
Raman modes are marked. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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both the drain and the source contact. The transfer characteristic
IDSðUGSÞ reflecting the electrical properties of the G-FETs is mea-
sured before, during and after irradiation with HCIs. The current
IDS between drain and source is driven by a constant potential dif-
ference UDS. In order to calculate the electron and hole mobility,
respectively, the following equation can be used [28]

l� ¼ r L
WCiUDS

: ð1Þ

The differential conductance is given by r ¼ @IDS
@UGS

and the sheet

capacitance Ci ¼ �0�
d ¼ 1:212 � 10�8 F/cm2, with � ¼ 3:9 [28] being

the dielectric constant of SiO2 with a thickness of d = 285 nm.
Additionally, the charge carrier density can be calculated by [29]

n ¼ Ci

e
ðUDirac � UGSÞ ð2Þ

where e is the elementary charge and UDirac is the voltage, at which
the Dirac point (characterized by n � p � 0, i.e. minimum conduc-
tivity) is observed.

In order to be able to measure the transfer characteristic during
irradiation with HCI, a dedicated ultra high vacuum (UHV) set up
for the G-FETs was built. To this end, the G-FETs were bonded onto
a custom-made, UHV compatible chip carrier. Furthermore, the
G-FETs were cleaned by heating at around T ¼ 150 �C before irradi-
ation to partly remove intercalated water and residual photoresist
(see Section 4.1) stemming from the preparation procedure
[30,31]. All samples were irradiated using the Duisburg HCI beam-
line HICS [32], which is based on an electron beam ion trap (EBIT)
that can produce 129Xe ions with a charge state q from 1+ to 45+
and a corresponding maximum potential energy of about e.g.
Epot ¼ 58:8 keV . The kinetic energy Ekin ¼ qðUacc � UdecÞ can be con-
trolled via a deceleration stage and is given by the charge state of
the ion q, the acceleration voltage Uacc , and the deceleration voltage
Udec. The charge state selection is done with a dipole magnet,
whereas a multi-stage lens system ensures a focused ion beam
with a spot size of less than 1 mm2 diameter. A Faraday-Cup is
used to measure the beam current.

In previous experiments, the threshold charge state for ion-
induced modifications of graphene was found to be 129Xe30+ (corre-
sponding to a potential energy of Epot � 15 keV) at a kinetic energy
of Ekin � 260 keV [17]. Therefore, we have chosen two charge
states, one below and one above this threshold, namely 129Xe25+

(Epot � 8 keV) and 129Xe32+ (Epot � 19 keV), while keeping the
kinetic energy fixed at Ekin � 200 keV. For both charge states, the
transfer characteristic is measured as a function of the ion fluence
in the range of 0 to about 2500 ions/cm2. The back-gate-voltage is
varied from UGSmin ¼ �20 V to UGSmax ¼ þ20 V, while the drain-
source-voltage is held constant at UDS ¼ 50 mV for all
measurements.
3. Results

3.1. Raman-spectra

Raman spectroscopy can be used as a non-destructive method
to analyze the structural quality of graphene and in particular,
the existence, density and type of defects [33–36]. A typical Raman
spectrum of exfoliated, high-quality graphene shows two
prominent peaks [24,25]: The in-plane vibrational G mode at
�1580 cm�1 and the 2D mode at �2690 cm�1. The full width at
half maximum (FWHM) of the 2D peak can be used to determine
the layer thickness. A FWHM � 25 cm�1 indicates single layer gra-
phene, whereas a FWHM � 52 cm�1 is typically found for bilayer
graphene [37]. The 2D mode is sometimes also called the second-
order in-plane overtone of the D mode vibration. The presence of
the first order D mode at � 1350 cm�1 is indicative for lattice
defects or disorder, respectively [38]. The D mode as well as the
D0 mode at �1620 cm�1 can be used for defect analysis
[39,33,34]. In Fig. 2 Raman spectra from our samples are shown,
the first taken from pristine graphene (black line), the second from
graphene after photolithography (blue line), and finally from irra-
diated graphene (red line). The FWHM of the 2D mode of pristine
graphene (black line) is about � 27 cm�1 and thus indicates single
layer graphene. The absence of the D-Peak (black line) proves the
high quality of the graphene flakes after exfoliation [40].

For aquantitative comparisonof irradiation-induceddisorder,we
analyze the area ratios of the D and G mode, AD=AG [41,33]. Already
due to the photolithography process (blue line) this ratio typically
increases up to AD=AG ¼ 0:3. After irradiation with 129Xe32+ ions
(>2500 ions/lm2), an area ratio of AD=AG ¼ 3:5 is measured (red
line). Note, that in order to guarantee a sufficient signal/noise ratio
of the relevantRamanpeaks, graphenehas tobe irradiatedwith aflu-
ence of at least 100–500 ions/lm2, depending on the charge state.
4. Electrical characterization before irradiation

Without cleaning, the G-FETs fabricated as described above, are
typically p-doped [26]. This becomes apparent in the transfer char-
acteristic IDSðUGSÞ measurements, shown in Fig. 3a, where the
Dirac-point is shifted to a high, positive backgate voltage. After
the cleaning process, which consists of heating the sample in



Fig. 3. A typical transfer characteristic under ambient condition before (a) and after irradiation (b) shows a well p-doped G-FET. The transfer characteristic curves vary only
very slightly for the G-FET after annealing at 150 �C and stored for 10 days within the UHV chamber (c).
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UHV at 150 �C for 24 h, the Dirac-point typically lies between
UGSmin ¼ �20 V and UGSmax ¼ þ20 V. Because of the limited thermal
stability of the chip carrier, the temperatures used here are slightly
lower compared to published values [30,31]. The heating time can
be used to achieve a given doping level and Dirac-point position in
a wide range [42], e.g. the initially p-doped G-FET may become
non-doped with a Dirac-Point close to UGS ¼ 0 V, or even n-doped
for longer heating times. For an analysis of relative changes due
to ion irradiation, the absolute value of the Dirac point is not so
important, but the stability of the Dirac point, as well as a stable
charge carrier mobility l� of non-irradiated devices, are of course
crucial. To test this, we have prepared a G-FET with a Dirac-Point
close to UGS ¼ 0 V and stored it inside the UHV chamber for several
days (base pressure p ¼ 5 � 10�9 mbar). In Fig. 3c one can see that
the transfer characteristic curves vary only very slightly. After tak-
ing the G-FET out of the UHV, it returned to its inital p-doped state
which is typical for exposure to ambient conditions (see Fig. 3b).

Note that the transfer characteristics shown in Fig.3 are typical
for G-FETs, but the absolute values for individual G-FETs may vary
significantly. In order to eliminate this uncontrollable variation of
the initial values and still be able to compare ion-induced effects
in G-FETs with different initial transfer characteristics, we use rel-
ative values instead. For example, the last measurement before
irradiation (purple line in Fig. 3c) is used to calculate the reference
mobilities of this G-FET: lreferenceþ ¼ 2055 cm2

Vs and lreference� ¼ 1427
cm2

Vs . After the reference values have been determined from the
cleaned G-FET, the relative charge carrier mobility after irradiation
is given by:

lrel ¼
lafter

lreference
ð3Þ

This means that any effect of HCI irradiation on the charge car-
rier mobilities is measured with respect to the data measured just
before irradiation. This procedure is valid as in between individual
irradiation steps, the FET is not taken out of the UHV. In this way
the individual quality of a given G-FETs is factored out and even
non-ideal G-FETs with below average mobility values can be used
for the experiment.
4.1. Electrical characterization after irradiation

After irradiation with highly charged ions, the G-FETs typically
show a reduction of both, electron and hole mobility. Fig. 4a shows
the relative electron (red) and hole (black) mobility during irradi-
ation with 129Xe32+ and Fig. 4b for irradiation with 129Xe25+. From
the data it can be clearly seen that the reduction of mobility scales
with the potential energy of the ions. At the same fluence, e.g.
about 1000 ions/lm2, the relative electron and hole mobility after
129Xe32+-irradiation (32þlrelative;þ ¼ 0:29) is significantly smaller

than after irradiation with 129Xe25+ (25þlrelative;þ ¼ 0:55). Another
remarkable result is the extreme sensitivity of the G-FET: The
mobility is already affected at fluences <15 ions/lm2. Additionally,
the residual charge carrier density (blue) is plotted as a function of
the ion fluence in Fig. 4. Obviously, the ongoing irradiation with
HCI leads to an increasing hole density (initial state of the
G-FETs: 129Xe32+-irradiation p-doped with n ¼ 2:9 � 1011 cm�2 and
129Xe32+-irradiation n-doped with n ¼ �4 � 1011 cm�2).

4.2. Annealing after irradiation

Finally, we annealed (2 h at 110 �C) the G-FETs after irradiation
to test if we could recover the initial state. From Fig. 5 one can see
that the hole mobility stays nearly constant at lþ ¼ 198 cm2

Vs and
that the only significant change is the shift of the Dirac-Point to
lower backgate voltages from UGS ¼ 12:75 V to UGS ¼ 4:375 V. This
indicates that the ion irradiation causes structural damage to the
graphene lattice, which cannot be cured by moderate thermal
annealing.
5. Discussion

Our data shows that G-FETs can indeed be used for the investi-
gation of HCI-induced defects in graphene. In addition, G-FETs are
much more sensitive than Raman spectroscopy. The transport
properties are already affected at fluences on the order of
10 ions/lm2, which is the domain of spatially resolved methods
such as AFM. A detailed analysis of the relation between defect
structure and electronic transport properties seems thus feasible
with G-FETs. The processing of our devices already gives rise to a
certain number of defects which can be seen from the Raman data.
This might represent a drawback, as the graphene is no longer pris-
tine when exposed to the ion beam. On the other hand, the devices
are stable in UHV and can be controlled in a reproducible way by
in situ heating with respect to the initial doping level. Thus, we
could show that the observed effects during irradiation are exclu-
sively related to the irradiation and not to other transient effects.



Fig. 4. The relative mobility for holes (black) and electrons (red) as well as the carrier density (blue, right scale) is plotted against the fluence of bombarded 129Xe32+-ions,
whereas solid lines are a guide to the eye. The relative electron and hole mobility after 129Xe32+-irradiation (a) is significantly smaller than after irradiation with 129Xe25+ (b). It
is also remarkable, that the influence of highly charged ions is already measurable at low fluences (<15 ions/lm2). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Furthermore, by analyzing relative values, we present a method to
eliminate the uncertainty with respect to the individual quality of a
given G-FET.

The transfer characteristic IDSðUGSÞ measurements show, that
HCIs do modify the electrical properties of graphene. In compar-
ison with previous experiments with graphene irradiated by swift
heavy ions (SHI) we observe a clearly different behavior. When gra-
phene is irradiated with SHI, at low fluences an increase in charge
carrier mobility has been observed [43], while for HCI we definitely
observe a decrease. Both types of projectiles interact predomi-
nantly with the electronic system of the target and it has therefore
been proposed, that the mechanism of defect creation might be
similar [8]. However, when interacting with graphene, we need
to consider the difference in energy deposition between the two
projectiles. Highly charged ions typically dissipate almost all their
potential energy in the surface [44]. In contrast, due to their large
kinetic energy in the range of up to several MeV per atomic mass
unit, SHI will penetrate not only the graphene layer, but will reach
deep into the bulk material for some ten microns or more. The
intense energy deposition into the electronic system of the bulk
material will at one point be transferred to the lattice and may lead
to a so-called thermal spike [45,46]. This localized heating of the
substrate could lead to a local annealing of graphene [47] which
would be absent in HCI irradiation.

Our data shows a clear dependence of the mobility reduction on
the charge state, i.e. a projectile with a higher charge state is more
efficient than an ion with a lower charge state. This is in agreement
with previous results where it could be shown that size of the
defective region is directly related to the potential energy of the
HCI [17]. These defective regions are typically a few nm2 in size.
Future systematic experiments with G-FETs will reveal if and
how the size of defect regions scales with the change of the trans-
port properties. In particular, it would be interesting to determine
the threshold charge state for the mobility reduction to be
effective.
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