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Quantum polyspectra for modeling and evaluating quantum transport measurements: A unifying
approach to the strong and weak measurement regime

M. Sifft ,1 A. Kurzmann,2 J. Kerski ,2 R. Schott,3 A. Ludwig ,3 A. D. Wieck ,3 A. Lorke ,2 M. Geller,2 and D. Hägele1

1Ruhr University Bochum, Faculty of Physics and Astronomy, Experimental Physics VI (AG), Germany
2Faculty of Physics and CENIDE, University of Duisburg-Essen, Lotharstraße 1, 47057 Duisburg, Germany

3Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum, Germany

(Received 17 November 2020; revised 28 June 2021; accepted 29 June 2021; published 6 August 2021)

Quantum polyspectra of up to fourth order are introduced for modeling and evaluating quantum transport
measurements offering a powerful alternative to methods of the traditional full counting statistics. Experimental
time traces of the occupation dynamics of a single quantum dot are evaluated via simultaneously fitting their
second-, third-, and fourth-order spectra. The scheme recovers the same electron tunneling and spin relaxation
rates as previously obtained from an analysis of the same data in terms of factorial cumulants of the full counting
statistics and waiting-time distributions. Moreover, the evaluation of time traces via quantum polyspectra is
demonstrated to be feasible also in the weak measurement regime even when quantum jumps can no longer be
identified from time traces and methods related to the full counting statistics cease to be applicable. A numerical
study of a double dot system shows strongly changing features in the quantum polyspectra for the transition
from the weak measurement regime to the Zeno regime where coherent tunneling dynamics is suppressed.
Quantum polyspectra thus constitute a general unifying approach to the strong and weak regime of quantum
measurements with possible applications in diverse fields as nanoelectronics, circuit quantum electrodynamics,
spin noise spectroscopy, or quantum optics.
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I. INTRODUCTION

Quantum measurements are at the heart of many fields
in physics like quantum electronics, quantum optics, circuit
quantum electrodynamics [1], or the quickly developing field
of quantum sensing [2]. In many cases, the detector output
of a measurement scheme results in stochastic time traces
with information on the measured quantum system hidden
in the data. Various schemes for recovering that information
are employed depending on the specifics of both the quantum
system and the measurement setup. In the field of quantum
electronics, the dynamics of electron occupation of semicon-
ductor quantum dots can, e.g., be measured via a so-called
quantum point contact (QPC) in the vicinity of the quantum
dot. The charge state of the quantum dot is immediately
revealed by the strength of the probe current [3]. Alterna-
tively, the occupation of an illuminated quantum dot has been
measured via its resonance fluorescence [4] (see Fig. 1). The
resulting time traces z(t ) of the detector output exhibit for
both schemes telegraph noise due to quantum jumps in the
occupation dynamics (see inset of Fig. 2). Jumps relating to
an electron leaving the dot are then often analyzed via the
so-called full counting statistics (FCS) p(N, t ), where p is the
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probability that N electrons have left the quantum dot in the
time interval t [5,6]. The counting statistic p(n, t ) is given for
a simple tunnel barrier and fixed t by a Poisson-distribution.
A deviating super-Poisson behavior has been reported, e.g.,
in single-electron tunneling through quantum dots [7] and in
single-electron tunneling at high magnetic fields [4]. Early
theory for the full counting statistics in the case of incoherent
tunneling and without any coherent quantum dynamics was
given by Belzig [8]. These examples considered the property
of only one observable. The correlation of two observables,
namely the single electron dynamics in a quantum dot and
a probe current through an adjacent quantum point contact,
was reported in 2007 [9]. Depending on the problem,
classical rate equations or the so-called n-resolved master
equation have been used to calculate cumulants of the count-
ing statistics [10,11], factorial cumulants [12,13], or second-
and third-order spectra of the frequency-resolved counting
statistics [14]. All these approaches to characterizing quantum
transport dynamics assume and require a strong continuous
quantum measurement where the quantum system is imme-
diately forced to reveal its state of occupation. Consequently,
coherent quantum mechanical superpositions of the two al-
ternatives of an occupied and unoccupied quantum dot are
always destroyed by the measurement.

The other limit of a quantum measurement, a weak
continuous measurement, is, e.g., realized by spin noise spec-
troscopy which has been demonstrated on ensembles of spins
in gases, semiconductors, and even on single spins [15–17].
Here, the Faraday-rotation of a probe laser beam is mea-
sured to reveal spin fluctuations [18]. Owing to the weak
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measurement, the spins are not projected onto spin eigen-
states but may coherently process in an external magnetic
field. The power spectrum of the time-resolved Faraday-signal
z(t ) reveals a peak at the precession frequency and a broad
background due to Gaussian shot noise of the probe laser.
Spin noise theories of the power spectrum have been given
in terms of the spin-spin correlation function [19], Langevin
approaches [20], or path integral methods for weak quantum
measurements [21,22].

The purpose of this article is to demonstrate that the
evaluation of both strong and weak measurement regimes
can be unified in a common framework also including the
intermediate regime. While transport experiments in the in-
termediate regime have been reported, their evaluation had
been limited to second-order spectra and was lacking com-
parison with theory [23]. The framework here is based on
frequency-resolved higher-order correlation functions (so-
called polyspectra [24]) of the detector output z(t ). Only
recently, compact quantum mechanical expressions were
found for quantum polyspectra up to fourth order from contin-
uous measurement theory [25,26]. We will treat a real-world
example from nanoelectronics where we use polyspectra to
characterize the stochastic measurement traces and compare
them with quantum polyspectra calculated from the stochas-
tic master equation [27]. As a result, we obtain important
parameters of the system like tunneling times and spin re-
laxation rates. An efficient method for evaluating quantum
mechanical expressions of quantum polyspectra is described
in Appendix C. The formulas required for the calculation
of higher-order spectra from experimental time traces can
be found in Appendix B including cumulant estimators and
correct usage of spectral window functions.

The stochastic master equation (SME) is an approach to
continuous quantum measurements that provides a stochas-
tic differential equation for both the system’s density matrix
and the detector output z(t ) [27–30]. The coherent evolution,
environment-induced damping in Markov approximation, the
detector output, a stochastic measurement-induced backaction
on the system, and a measurement-induced damping (Zeno
effect) are modeled. Thus, the SME is able to unify the full
regime from weak to strong measurements. We, therefore,
consider the SME a very general most direct link between the
measurable quantity z(t ) and the properties of the quantum
system which enter the master equation. As z(t ) can in prin-
ciple be fully characterized in terms of multitime moments
〈z(tn)..z(t1)〉, an uncompromising approach to its evaluation
requires quantum mechanical expressions for such moments.
While multitime correlators of detector output had been de-
rived in many different contexts of varying generality [see,
e.g., Refs. [22,31] and discussion after Eq. (6)], a direct
derivation of multitime moments from the very general SME
had been found by three different groups independently only
in 2018 [25,32,33]. This paved the way for finding compact
expressions for second-, third-, and fourth-order cumulants as
well as their corresponding quantum polyspectra and develop-
ing recipes for an efficient numerical evaluation [25,26]. We
use the term “quantum polyspectra” as recently introduced
by Wang for polyspectra of the detector output of contin-
uous quantum measurements [34]. Roughly speaking, the
polyspectra of z(t ) can be interpreted as nth order correlators

FIG. 1. Tunnelung events of electrons between the semiconduc-
tor QD and the charge reservoir are monitored via the resonance
fluorescence of the exciton transition.

of its Fourier-coefficients aω (see Appendix B for a strict defi-
nition). The usual power spectrum S(2)(ω) is then given by the
expectation value 〈a∗

ωaω〉 and thus by the average intensity of
z(t ) at frequency ω. The third-order spectrum S(3)(ω1, ω2) (of-
ten called the bispectrum) is strongly related to 〈aω1 aω2 a∗

ω1+ω2
〉

and is sensitive to time-inversion (while S(2) is not) [35]. The
fourth-order spectrum (trispectrum) usually depends on three
frequencies. Below, we will only consider a two-dimensional
cut which is related to 〈a∗

ω1
aω1 a∗

ω2
aω2〉 − 〈a∗

ω1
aω1〉〈a∗

ω2
aω2〉.

The spectrum S(4)(ω1, ω2) may therefore be interpreted as
a frequency-dependent intensity-intensity correlation. Emary
et al. gave an early example of a bispectrum related to trans-
port theory of quantum dots [14]. Their bispectrum for the
current through a quantum dot follows from the n-resolved
master equation which requires the strong measurement limit.
Moreover, most experiments do not access the current from
the quantum dot but its occupation. A recent example of a
measured bispectrum of a current was therefore reconstructed
from an occupation measurement [3]. Here, we directly eval-
uate occupation measurements via their polyspectra.

II. TELEGRAPH SIGNAL FROM A SINGLE
QUANTUM DOT

The time traces we are going to model and evaluate were
recorded in an experiment by Kurzmann et al. [4]. A single
InAs quantum dot within an electrically biased quantum dot
layer in a GaAs-based p-i-n diode structure is optically read
out via resonance fluorescence (see Fig. 1). The fluorescence
time traces z(t ) exhibit telegraph noise due to the electron
occupation dynamics of the quantum dot. The inset of Fig. 2
shows traces for an external magnetic field of 10 T and differ-
ent gate voltages labeled with (a) 360, (b) 380, and (c) 382 mV.
The gate voltages shift the chemical potential of the electron
reservoirs with respect to the single-electron level resulting in
voltage-dependent tunnel rates. Corresponding power spectra
S(2)

z (ω) were calculated from time traces of 6 minutes duration
each (evaluation scheme see Appendix B). While the traces
clearly show quantitative differences in, e.g., typical up and
down times, the power spectra are all Lorentzian-shaped and
differ only weakly in widths and overall height (see Fig. 2).
This changes dramatically for the bispectrum S(3)(ω1, ω2)
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FIG. 2. Power spectra S(2)
z (ω) of experimental fluorescence time

traces z(t ) (inset) for a single quantum dot at 10 T and different gate
voltages. Different regimes for tunnel rates γin and γout are observed:
(a) γin � γout, (b) γin � γout, and (c) γin > γout.

and the fourth-order correlation spectrum S(4)(ω1, ω2) (def-
initions see App. B). Now, clear differences become visible
(see Fig. 3): the bispectrum S(3) is completely positive for
case a, while it is negative for cases b and c showing a similar
overall structure. Clear differences between cases b and c are,
however, found in the trispectrum which exhibits a negative
peak for case b) but an almost flat negative structure for
case c.

In the following, we formulate the SME for the single
dot experiment described by Kurzmann. The QD dynamics
is modeled by an electron tunneling rate γin onto the dot and a
rate γout from the dot. Spin-dependent effects can be neglected
at high magnetic fields (see below). The quantum states re-
lated to the occupied and empty dot follow from each other via
a fermionic creation operator a† and an annihilation operator
a, respectively. The number operator n = a†a assumes the
eigenvalues 1 and 0, respectively. The SME propagates the
density matrix ρ(t ) of the quantum dot while it is constantly

FIG. 3. (Top two rows) Experimental bispectra S(3)
z (ω1, ω2) at B = 10 T and model fits for the tunnel regimes (a) 360, (b) 380, and (c) 382

mV (compare Fig. 2). (Bottom two rows) Experimental trispectra S(4)
z (ω1, ω2) and model fits. The analytical expressions of the polyspectra

reveal that the bispectra are sensitive to the sign of γout − γin, whereas the trispectrum depends mostly on (γout − γin )2.
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monitored for its occupation by a continuous measurement
given by the operator A = n. This simple model will be ex-
tended to a spin-dependent version in Sec. III covering the
case of external fields below 10 T. The stochastic master
equation (Ito-calculus)

dρ = i

h̄
[ρ, H]dt + γin

2
D[a†](ρ)dt + γout

2
D[a](ρ)dt

+ β2D[A](ρ)dt + βS[A](ρ)dW (1)

= L[β](ρ)dt + βS[A](ρ)dW (2)

with damping terms

D[c](ρ) = cρc† − (c†cρ + ρc†c)/2, (3)

and backaction term

S[c](ρ) = cρ + ρc† − Tr[(c + c†)ρ]ρ (4)

describes the system dynamics ρ(t ) and the resulting detector
output

z(t ) = β2Tr[ρ(t )(A + A†)/2] + 1
2β�(t ) (5)

as it is monitored for the measurement operator A with mea-
surement strength β. We use the notation for the measurement
strength β from Ref. [25] and for damping D and backaction
S from Ref. [33]. The SME has been derived in various
forms and varying generality and was rediscovered several
times in literature [28–30,36–40]. An especially intuitive way
of deriving the SME was given by Gross et al. [41] and
similarly by Atal et al. [42,43]. They introduce a contin-
uous sequence of two-level quantum systems (qubits) that
each weakly interact for a short period with the system and
are subsequently readout by a projection measurement. The
projection measurements give some information on the sys-
tem and at the same time result in Gaussian background
noise as the measurement outcome is still highly stochas-
tic. The interaction with the stream of probe systems also
causes measurement-induced system damping. The first line
of Eq. (1) is identical to a von-Neumann master equation
in Lindblad form which correctly describes incoherent tun-
neling on and from the quantum dot [44]. The Hamiltonian
H is set to zero since the model here disregards spin dy-
namics or other coherent behavior. The second line contains
the differential of a stochastic Wiener process dW where
�(t ) = dW/dt with 〈�(t )�(t ′)〉 = δ(t − t ′) is delta-correlated
Gaussian noise. Constant monitoring of occupation n leads
to overall damping towards an eigenstate of n (first term of
the second line) and a stochastic measurement backaction on
the system which is correlated with the detector output z(t )
[Eq. (5)] via the common Wiener process. The SME can
in principle be solved numerically to simulate time traces
z(t ) (see Fig. 8) which can then be evaluated in terms of
polyspectra. Instead, we will use general analytical expres-
sions for the second- to fourth-order multitime cumulants of
z(t ) for general systems to obtain expressions for higher-order
spectra of the quantum dot dynamics [25,26]. The expressions
are given in terms of the system Liouvillian L[β](ρ) where
L[β](ρ) covers all RHS terms of Eq. (1) but the stochastic

backaction term which is nonlinear in ρ. We define a system
propagator G(τ ) = eLτ	(τ ) with the Heaviside-stepfunction
	(τ ), a steady state ρ0 = G(∞)ρ(t ), a measurement opera-
tor A, and its corresponding superoperator [45] Ax = (Ax +
xA†)/2. These definitions allow for a compact notation of
multitime moments [25,32,33]

〈z(tn) · · · z(t1)〉 = β2nTr[AG(tn − tn−1)A · · ·G(t2 − t1)Aρ0],
(6)

where time order tn > tn−1 > . . . > t1 is required and the sys-
tem is assumed to be in its steady state ρ0. Consequently, the
moments depend only on time differences but not on absolute
times. Quantum mechanical expressions for multitime mo-
ments in the form of Eq. (6) have been given in the literature
before for several special cases. Zoller and Gardiner discuss
moments of the photon counting statistics (see Ref. [31], Eq.
(98)). Similarly, already in 1981 Srinivas gives an early the-
ory for photon counting where expressions with very similar
structure compared to Eq. (6) appear [46]. Bednorz et al.
derive a moment generating functional within a path integral
theory assuming a weak measurement limit and evaluate the
functional to arrive at Eq. (6) (see Ref. [22], Eq. (17)). Wang
and Clerk find the same functional as Bednorz via a Keldysh
approach and use it to calculate “Keldysh-ordered” moments,
cumulants, and spectra of quantum noise up to third order
(Ref. [34], Eq. (3)). Nazarov’s full counting statistics is based
on the Keldysh approach and uses a coupled ancilla system
to derive a generating functional for moments that yields
Keldysh order operators in the Heisenberg picture. The depen-
dence of detector back-action on the measurement strength is
however not regarded in that approach [47,48].

Jordan and coworkers give a path integral framework for
treating continuous quantum measurements and apply it to
the simultaneous continuous measurement of two noncom-
muting observables of a single qubit [49,50]. They, however,
derive “self-correlators” only up to second order [51]. Jor-
dan and coworkers also give an early example of a violation
of a generalized Leggett-Garg inequality which is based on
second-order moments of weak measurements [52,53]. Below
we will see that a polyspectrum of at least third order is
required to extract tunneling rates from quantum dot mea-
surements. The great advantage of using the SME is that it
provides a solid foundation for deriving analytical expressions
for higher-order multitime moments without restrictions on
the measurement strength as well as a way to simulate exper-
imentlike time traces z(t ) (see Sec. IV).

Cumulants instead of moments are often used in statis-
tics since cumulants of the sum of independent stochastic
variables are simply the sum of the individual cumulants.
Additive noise in a measurement can therefore be subtracted
from cumulant-based quantities. Consequently, the cumulant-
based polyspectra are the desired quantities for evaluating
quantum noise time traces (Appendix B). A modified propaga-
tor G ′(τ ) = G(τ ) − G(∞)	(τ ) and a modified measurement
superoperator A′x = Ax − Tr(Aρ0)x allow for a compact no-
tation of multitime cumulants [25,26] despite their generally
intricate representation in terms of moments (Appendix A).
The expressions
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C2(z(t1), z(t2)) = β2

4
δ(t2 − t1) + β4

∑
prm. t j

Tr[A′G ′(t2 − t1)A′ρ0], (7)

C3(z(t1), z(t2), z(t3)) = β6
∑

prm. t j

Tr[A′G ′(t3 − t2)A′G ′(t2 − t1)A′ρ0], (8)

C4(z(t1), z(t2), z(t3), z(t4)) = β8
∑

prm. t j

Tr[A′G ′(t4 − t3)A′G ′(t3 − t2)A′G ′(t2 − t1)A′ρ0]

− β8
∑

prm. t j

Tr[A′G ′(t4 − t3)G ′(t3 − t2)A′ρ0]Tr[A′G ′(t3 − t2)G ′(t2 − t1)A′ρ0]

−β8
∑

prm. t j

Tr[A′G ′(t4 − t3)G ′(t3 − t2)G ′(t2 − t1)A′ρ0]Tr[A′G ′(t3 − t2)A′ρ0] (9)

are also valid for equal times and hold without any restrictions on the time order [25]. The term under the sum yields a
contribution if and only if the correct time order for t1 to t4 is fulfilled by one of the permutations. The delta-function in C2

appears due to the Gaussian noise contribution �(t ) to z(t ) which is delta-correlated [Eq. (5)]. Unlike moments, cumulants
beyond second order are not sensitive to Gaussian noise explaining the absence of delta-functions in C3 and C4. Compact
expressions for cumulants beyond the fourth order are still elusive.

Next, we calculate the multitime cumulants and quantum polyspectra for the quantum dot model, Eq. (1). The Liouvillian
L[β] of the quantum dot system can be represented as a 4 × 4 matrix with a relatively simple structure acting on the density
matrix which itself can be represented by a vector with four entries (compare Sec. XV of Ref. [25]). The quantities eLτ and ρ0

can be expressed analytically with the help of computer algebra. Assuming time order t4 > t3 > t2 > t1, we find the cumulants

C2(z(t1), z(t2)) = β4 γinγoute−(γin+γout )τ1

(γin + γout)2
+ β2

4
δ(t2 − t1), (10)

C3(z(t1), z(t2), z(t3)) = β6 γinγout(γin − γout)e−(γin+γout )(τ1+τ2 )

(γin + γout)3
, (11)

C4(z(t1), z(t2), z(t3), z(t4)) = β8 γinγout((γin − γout)2e(γin+γout )τ2 − 2γinγout)e−(γin+γout )((τ1+2τ2+τ3 ))

(γin + γout)4
, (12)

where we have introduced the positive time differences τi = ti+1 − ti. Apart from the β-prefactors and the delta-function
contribution to C2, the expressions C2 and C3 agree with those derived from a classical rate equation model [54]. The cumulants
C2 to C4 show no further dependence on β despite the fact that the Liouvillian L[β] contains a β-dependent damping term. A
dependence of cumulants on β can be found, e.g., in systems where a large measurement strength β leads to suppression of
coherent dynamics (Zeno effect) [29,55]. The absence of a β dependence in our system is explained by the absence of coherent
dynamics (H = 0).

The analytical expressions for the polyspectra follow after Fourier transformation of the cumulants with respect to t j

[Eq. (B4)]. In Sec. XIV of Ref. [25] it is shown how in general the time order can be dealt with when performing a
multi-dimensional Fourier transform. We obtain

S(2)
z (ω) = β4 2γinγout

(γin + γout)((γin + γout)2 + ω2)
+ β2

4
, (13)

S(3)
z (ω1, ω2) = β6 2γinγout(γout − γin)(3(γin + γout)2 + ω2

1 + ω2
2 + ω1ω2)

(γin + γout)((γin + γout)2 + ω2
1 )((γin + γout)2 + ω2

2 )((γin + γout)2 + (ω1 + ω2)2)
. (14)

A cut through the trispectrum S(4)
z (ω1, ω2) =

S(4)
z (ω1,−ω1, ω2) is given in the Appendix, Eq. (D1).

Alternatively, a direct evaluation of the quantum polyspectra
in the frequency domain yields the same results (Appendix C).
Similar to the cumulant expressions, the measurement
strength β leads for the present system only to a prefactor
in the polyspectra and a variation of the spectrally flat
background noise in S(2)

z . In contrast, we will treat in Sec. V
a double-dot system where an increasing measurement
strength β leads to a clear suppression of coherent quantum
oscillations and a corresponding overall change in the
polyspectra.

The experimental time traces of the quantum dot occupa-
tion dynamics are evaluated for γin and γout by simultaneously
fitting the analytical expression of the spectra S(2)

z (ω),
S(3)

z (ω1, ω2), and S(4)
z (ω1, ω2) to the spectra of the measured

time traces. A constant background contribution to the power
spectrum S(2)

z (ω) is also regarded separately. Time traces of
6 min durations with a temporal resolution of 100 μs were
taken for each gate voltage. The measured traces and z(t )
differ by a setup-dependent scaling factor that is regarded
in the fitting procedure. In our case, the scaling factor is
negative since the occupied quantum dot state results in absent
fluorescence.
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FIG. 4. Tunneling rates determined from experimental polyspec-
tra of the full time trace (blue and red dots) in comparison with
values obtained from the waiting-time distribution (open squares and
triangles) [4]. Both methods arrive at the same results. The vertical
lines mark the gate voltages belonging to the time traces shown in
Fig. 2.

The polyspectra for cases a–c obtained from fitting are
displayed for illustration along with the originally measured
spectra in Fig. 3. The three sample traces of Fig. 2 can
now be attributed to three regimes of the tunneling rates: (a)
γin � γout, (b) γin � γout, and (c) γin > γout. Figure 4 com-
pares as an important result the tunneling rates for different
gate voltages and a magnetic field of 10 T obtained from
polyspectra with those obtained from a previous analysis of
the waiting-time distribution (WTD), i.e., p(0, t ) of the full
counting statistics [4,56]. The excellent agreement demon-
strates that polyspectra are a powerful tool for evaluating
transport measurements. The general weak variation in the
power spectra is easily explained by Eq. (13) which does
depend only on the sum γin + γout of the tunnel rates. The
prefactor γinγout can not be exploited to separate γin and γout

since the measurement strength β acts as an overall scaling pa-
rameter. In contrast, the prefactor of the bispectrum, Eq. (14),
together with the prefactor of the power spectrum contain
information on γin − γout and are in principle sufficient to
extract both parameters. We found more reliable results by
simultaneously fitting also the fourth-order spectrum which
is sensitive to γin + γout and (γin − γout)2 [see Eq. (12)]. We
note that the second- and fourth-order spectrum do not change
under exchange of γin and γout making the evaluation of the
bispectrum mandatory.

III. SPIN-DEPENDENT QUANTUM DOT DYNAMICS

Next, we apply our method to a quantum dot in magnetic
fields below 10 T. Following Kurzmann et al. [4], the Zeeman
spin splitting 
 leads to spin-dependent tunneling rates

γ0↑ = d� f (ε + 
/2),

γ0↓ = d� f (ε − 
/2),

γ↑0 = �[1 − f (ε + 
/2)],

γ↓0 = �[1 − f (ε − 
/2)]. (15)

FIG. 5. Three-state model of the spin-depended quantum dot
dynamics.

The tunnel-coupling strength � characterizes the tunnel bar-
rier, f (x) is the Fermi distribution function of the electron
reservoir, the quantum dot level energy is given by ε, and the
temperature by T = 10 K. The prefactor d = 10/11 regards a
reduction of the tunneling due to the presence of the exciton
whose fluorescence is detected by the measurement setup [4].
After introduction of a spin relaxation rate γ↑↓ to the down
state, the system is fully described by an incoherent transition
dynamics depicted schematically in Fig. 5. Spin flips to the
up state are neglected as the spin down state is energetically
favorable in magnetic fields [4]. The model in Kurzmann et al.
can be formulated as a stochastic master equation

dρ = γ0↑
2

D[a†
↑a0](ρ)dt + γ0↓

2
D[a†

↓a0](ρ)dt

+ γ↑0

2
D[a†

0a↑](ρ)dt + γ↓0

2
D[a†

0a↓](ρ)dt

+ γ↑↓
2

D[a†
↓a↑](ρ)dt + β2

2
D[n↑ + n↓](ρ)dt

+ βS[n↑ + n↓](ρ)dW, (16)

with detector output

z(t ) = β2Tr[ρ(t )(n↑ + n↓)] + 1
2β�(t ). (17)

The measurement operator appears as a sum n↑ + n↓ since the
detection scheme does not distinguish between up and down
spins, but is only sensitive to the mere presence of an electron
in the quantum dot.

As an example, the power spectrum, bispectrum, and
trispectrum were calculated from Eqs. (C1) to (C3) for tun-
neling rates γ0↑ = γ↑0 = 0.5 kHz, γ0↓ = γ↓0 = 2.5 kHz, and
absent spin relaxation γ↑↓ = 0 (see Fig. 6). Their structure
is clearly different from the spectra of the simple quantum
dot model discussed above. The power spectrum appears to
be a superposition of two Lorentzian peaks. The bispectrum
reveals a small dip at zero frequencies and the trispectrum
displays positive maxima on the diagonals that were absent
for the simple quantum dot model. Spin relaxation rates γ↑↓
larger than the tunneling rate cause practically all electrons
to tunnel from the QD via the spin-down level at the rate
γ↓0 while electrons enter the empty dot at an effective rate
γ0↑ + γ0↓. The dot dynamics, therefore, follow the simple
quantum dot model and the spectra resume the appearance of
spectra shown in Fig. 3. The dependence of the spectra on
the spin relaxation rate suggests that the spin relaxation rate
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FIG. 6. Calculated power-, bi- and trispectrum of the spin-
dependent quantum dot dynamics for γ0↓ = γ↓0 = 2.5 kHz, γ0↑ =
γ↑0 = 0.5 kHz, and γ↑↓ = 0 (from top to bottom). The bispectrum
shows deviations from a simple Lorentzian shape and a dip at ω1 =
ω2 = 0. The trispectrum strongly deviates from those of the quantum
dot at 10 T (compare Fig. 2 and 3).

can be extracted from data measured at finite magnetic fields.
This dependence will get weaker for similar tunneling rates of
the two spin orientations, i.e., γ0↑ ≈ γ0↓ and γ↑0 ≈ γ↓0. For
exact agreement, the occupation dynamics will obviously not
depended on the spin orientation and is therefore not sensitive
to the spin relaxation rate.

In contrast to the simple model above, analytical expres-
sions for the spectra are not available. The fitting procedure,
therefore, relies on a numerical evaluation of the quantum
polyspectra via Eqs. (C1) to (C3). The parameter space for the
five relaxation rates is restricted by their dependence on � and
ε [compare Eqs. (15)]. Spin relaxation rates γ↑↓ were deter-
mined for a gate voltage of 371 mV at a field of 2 T and for 376
mV at 4 T. We obtain an almost perfect agreement between
data and model for both fits. Figure 7 shows for a quanti-
tative comparison cuts of all three spectra along the ω2 = 0
axes and cuts for the bi- and trispectra along their diagonal

FIG. 7. Comparison between the measured and fitted polyspectra
at B = 2 and 4 T. Cuts with ω2 = 0 (top) and cuts with ω1 = ω2

(bottom) are shown for the bi- and trispectrum. The maximum values
of all spectra have been normalized to 1. We can see excellent
agreement between the measurement and the three-state model. The
diagonals of the bi- and trispectrum coincidentally overlap for the
quantum dot system.

ω1 = ω2. The 2-T case yields γ 2T
↑↓ = 2.0 kHz and tunnel-

ing rates (γ0↑, γ0↓, γ↑0, γ↓0) = (1.18, 1.24, 0.29, 0.22) kHz.
For 4 T, we obtain γ 4T

↑↓ = 11 kHz and tunneling rates
(γ0↑, γ0↓, γ↑0, γ↓0) = (0.89, 0.97, 0.21, 0.13) kHz. The dis-
crepancy to the values given in Kurzmann et al. for 2 T
γ 2T

↑↓ ≈ 0.0 kHz and 4 T γ 4T
↑↓ = 3.0 kHz may be explained by a

weak dependence of the tunneling rates on the spin orientation
and a large spin relaxation (see previous paragraph). In both
cases, the spin-relaxation γ↑↓ rate has only little influence on
the tunneling dynamics giving rise to large errors in the model
fit.

IV. EVALUATING TRANSPORT IN THE WEAK
MEASUREMENT REGIME

The experimental time traces from above exhibit telegraph
noise and a small amount of additional noise. This allows in
principle for the evaluation of data in terms of waiting-time
distributions of the FCS. Continuous measurement theory,
however, states that telegraph noise does disappear for weaker
measurements. Such a disappearance was recently reported
for the case of gate-tunable quantum point contacts [57]. It
was shown that a cross-correlation spectrum of two adja-
cent QPCs showed similar signatures as the spectra from the
stronger measurement regime [23]. However, an analysis in
terms of the full counting statistics as, e.g., previously re-
quired for separating in- from out-tunneling rates is no longer
possible for vanishing telegraph behavior. Here we show that
an evaluation of general time traces in terms of quantum
polyspectra is possible even in the weak measurement regime
without any restrictions.
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FIG. 8. Simulated detector time trace z(t ) of a single quantum
dot from solving the stochastic master equation in the weak mea-
surement regime (light blue line). The electron occupation Tr(ρ(t )n)
(dark blue line) follows from the calculation but is not directly
accessible in an experiment. The detector output has been scaled by
β−2 for comparison.

We simulate a weak measurement (β2 = 1 kHz) on a quan-
tum dot, Eq. (1), with parameters γin = 1 kHz and γout =
0.5 kHz. The integration of the SME with the QuTiP software
package [58] yields the QD occupation Tr[nρ(t )] (see Fig. 8,
dark blue curve). It assumes values in the full regime between
0 and 1. Hence, the system is not being projected into one of
its eigenstates. The actual detector time trace exhibits large
background noise (see Fig. 8, light blue curve) that dramati-
cally exceeds the interval from 0 to 1, an effect put forward
by Aharonov et al. in their pioneering work on the notion
of weak measurements [59]. Quantum jumps can no longer
quantitatively be evaluated from the time trace and methods
related to the FCS cannot be applied. Figure 9 (left column)
shows polyspectra calculated from the simulated measure-
ment trace with a duration of 30 minutes. The polyspectra
follow from a scheme based on multivariate cumulant esti-
mators of Fourier coefficients of the time trace (Appendix B).
We see excellent agreement between numerical spectra and
the ones evaluated from the exact expressions for quantum
polyspectra, Eqs. (C1)–(C3). For comparison of spectra, no
addition normalization was needed as prefactors arising, e.g.,
from the spectral window were correctly accounted for by our
formulas. The simulated polyspectra exhibit increasing noise
for increasing order which is a known feature for estimates of
cumulant-based quantities [60]. The negative bispectrum im-
mediately reveals γin > γout. A simultaneous fit of all spectra
yields the predefined tunneling rate within an error of 10%.
Traces with even stronger background noise can be evalu-
ated if spectra are averaged for sufficiently long measurement
times.

Next, we shortly discuss the nature of the SME detector
model in comparison with another model that was recently
investigated by Li et al. in the context of a randomly flipping
spin [54]. The time trace in Fig. 8 corresponds to the noisy cur-
rent that traverses a quantum point contact and thereby probes
the quantum dot occupation. In the above case of weak cou-
pling, the probe current modulation due to the dot occupation
is much weaker than the omnipresent shot noise. Nevertheless,
cumulants and spectra for order three or higher exhibit only
signatures of the quantum system as they are not sensitive

FIG. 9. Comparison between the simulated (left) and analytical
(right) polyspectra of the quantum dot system in the weak measure-
ment regime. The spectra show good agreement and tunneling rates
could successfully be recovered from the numerical spectra by a
fitting procedure. The dashed lines in the power spectra indicate the
level of white Gaussian background noise.

to Gaussian shot-noise. Li et al. give a different example of
a continuous measurement on a two-level system [54]. Their
detector model yields a −1 or 1 for the two levels and 0 if no
information could be gathered. For a slow telegraph dynamics
of the system, the jump dynamics can be resolved in the
detector stream and spectra similar to ours [Eqs. (13), (14),
and (D1)] were recovered. For system dynamics faster than
the average appearance rate of 1 or −1 (a weak measurement
in the terminology of Li), the authors find by a numerical sim-
ulation of the detector output that their fourth-order cumulant
“quickly deteriorates” and no longer bears resemblance with
the desired spectra. A full theory of their detector model that
would be capable of predicting spectra in the spirit of our
C1 to C3 for different measurement strength is, however, still
elusive. A separation of detector-related and system-related
contributions to polyspectra remains therefore as a challenge
in the case of Li’s detector model.

V. ZENO TRANSITION IN A DOUBLE-DOT SYSTEM

The quantum system treated in the preceding section was
completely dominated by incoherent tunneling dynamics and
spin relaxation. Consequently, coherent quantum dynamics
was neither expected to leave a signature in the experiment nor
needed to be described by a Hamiltonian (i.e., so far H = 0).

The SME is, however, capable of describing coherent
quantum dynamics and the effect of a continuous measure-
ment on the dynamics. Here, we investigate the transition from
the weak to the strong measurement regime in a double-dot
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FIG. 10. Occupation dynamics and quantum polyspectra of a double-dot system: the occupation dynamics of the second dot and corre-
sponding polyspectra change for increasing measurement strengths β (β increases for lower rows). The coherent oscillations are suppressed
for stronger measurements (quantum Zeno effect). For β = 2

√
kHz, the dynamics has changed to telegraph-like switching. The peak due to

coherent oscillations at ω/2π = 0.5 kHz in the power spectrum S(2)
z broadens and shifts to zero frequency (lower row). The signatures in S(3)

z

and S(4)
z are also broadened and move towards the origin. The detector output z(t ) is dominated by strong white Gaussian noise and therefore

not displayed in the first column except for the largest measurement strength in the last row (light blue line). The units of S(3)
z and S(4)

z are
kHz−2 and kHz−3, respectively.

system where electrons can coherently oscillate between the
dots due to tunnel coupling. The dynamics follows from the
hopping term that quantifies the coupling of the dots

H = h̄g
(
a†

1a2 + a†
2a1

)
, (18)

where g is the coupling constant and a1 (a2) is the annihilation
operator acting on the first (second) QD. We neglect the spin
degree of the electrons. The stream of electrons between the
leads through the system is modeled via incoherent tunneling
as presented in Sec. II. The electrons can enter the system
only via the first dot and leave it only via the second dot. The
Hamiltonian allows for the simultaneous occupation of both
dots with one electron each. A continuous measurement of
the occupation of the second quantum dot is modeled by the
operator n2 = a†

2a2, which corresponds to a measurement via
a QPC in the vicinity of the second dot. The SME becomes

dρ = i

h̄
[ρ, H]dt + γin

2
D[a†

1](ρ)dt + γout

2
D[a2](ρ)dt

+ β2D[n2](ρ)dt + βS[n2](ρ)dW (19)

with the detector output

z(t ) = β2Tr[ρ(t )n2] + 1
2β�(t ). (20)

The parameters g = π/2 kHz, γin = 0.071 kHz and γout =
0.069 kHz are used for the calculation of system dynam-
ics and quantum polyspectra. Figure 10 shows the transition
of the system from the weak measurement regime to the
quantum Zeno regime. Each row depicts the occupation dy-
namics Tr[ρ(t )n2] and the quantum polyspectra S(2), S(3), and
S(4) for increasing measurement strengths β [calculated from
Eq. (C1), (C2), and (C3)]. The transients of the occupation
dynamics start at t = 0 with the first dot fully occupied. In
the weak measurement case, the system relaxes towards the
steady state where n1 ≈ n2 ≈ 0.5. The weak measurement is
however causing nonvanishing oscillations in Tr[ρ(t )n2] as
the system is forced to reveal partly whether the second dot is
empty or full. A subsequent oscillation dynamics towards or
from the dot, respectively, needs then to occur. The polyspec-
tra thus reveal a signature at frequency g/2π = 0.5 kHz. The
occupation number n2 oscillates around a value that itself
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exhibits slow fluctuations in time. The reason being that the
number of electrons in the system is not strictly conserved
due to random tunneling events from and into the leads. Con-
sequently, a clear peak at zero frequency appears in all spectra.

For low measurement strength (first and second row), we
find sharp spectral lines in S(2), S(3)

z , and S(4)
z . The lines

in S(4)
z exhibits the same characteristic butterfly signature as

display in Fig. 14 of Smirnov et al. [61]. For increasing
measurement strengths (third and fourth row) the oscillating
dynamics become more and more suppressed. Telegraph-like
switching is observed for the strongest measurement strength
where all coherent dynamics is suppressed (so-called quantum
Zeno regime). Consequently, all peaks in the spectra move
towards zero frequency. The incomplete switching events seen
in transient for the largest measurement strength are known as
spikes and have been investigated in detail by Tilloy [62]. The
white background noise in S(2)

z decreases as the expectation
value in Eq. (20) dominates over the Gaussian noise term for
large β. The signatures in S(3)

z and S(4)
z are equally broadened

as signals from a larger range of frequencies are getting corre-
lated. The quantum Zeno effect had been previously studied
theoretically by Korotkov in a double-dot system without
leads. He found a damping of oscillation dynamics and a
correspondingly broadened spectral line in his S(2)

z [29]. As
a consequence of leads, our S(2)

z exhibits an additional peak at
zero frequency (see above). Korotkov finds an unrelated peak
at zero frequency only after introducing an energy imbalance
ε of the two dots. Suppression of coherent dynamics was
recently observed in experiments on a superconducting qubit
in a GHz-cavity (circuit quantum electrodynamics) where
measurement strengths and observation operators were highly
controllable [63]. The dynamics of the system was obtained
from averaging many noisy time traces for an identically
prepared initial state, while here steady state fluctuations are
observed and analyzed without the need for state preparation.
While we are currently not fully able to interpret all fea-
tures in the higher order spectra, it is clear that they contain
more information than usual power spectra. Our analysis of
a real-world experiment in Secs. II and III demonstrates that
higher-order spectra can contribute substantially to the analy-
sis of quantum systems.

VI. CONCLUSION

We presented quantum polyspectra within a stochastic
master equation approach as a viable alternative to full count-
ing statistics approaches for evaluating time traces of transport
measurements. The framework is applicable to general sys-
tems where both coherent evolution and incoherent coupling
to the environment are important [27]. The stochastic mas-
ter equation has previously been shown to cover the whole
regime from weak to strong measurements and allows for
modeling of the weak measurement regime as well as inves-
tigating the transition to the Zeno regime [29]. In quantum
electronics, quantum polyspectra can in the future be used for
evaluating weak quantum point contact measurements where
background noise prevents a traditional analysis in terms of
the full counting statistics, i.e. when quantum jumps can
no longer be identified from time traces. Weakly coupled
QPCs and polyspectra may be the key for fully characterizing

coherent dynamics in transport measurements like, e.g., spin
precession or tunnel dynamics between adjacent quantum
dots [64]. We also expect applications of quantum polyspectra
in circuit quantum electrodynamics and quantum optics in
general [34,63,65,66].
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APPENDIX A: CUMULANTS

The cumulants can be represented in terms of products of
moments as [67,68]

C2(x, y) = 〈yx〉 − 〈y〉〈x〉, (A1)

C3(x, y, z) = 〈zyx〉 − 〈yx〉〈z〉
− 〈zx〉〈y〉 − 〈zy〉〈x〉 + 2〈z〉〈y〉〈x〉, (A2)

C4(x, y, z,w) = 〈wzyx〉 − 〈wzy〉〈x〉 − 〈wyx〉〈z〉
− 〈wzx〉〈y〉 − 〈zyx〉〈w〉 − 〈wz〉〈yx〉
− 〈wy〉〈zx〉 − 〈wx〉〈zy〉 + 2〈yx〉〈w〉〈z〉
+ 2〈zx〉〈w〉〈y〉 + 2〈wx〉〈y〉〈z〉
+ 2〈wy〉〈z〉〈x〉 + 2〈zy〉〈w〉〈x〉
+ 2〈wz〉〈y〉〈x〉 − 6〈x〉〈y〉〈z〉〈w〉. (A3)

APPENDIX B: POLYSPECTRA AND THEIR ESTIMATION
FROM TIME TRACES

Starting from the autocorrelation function of the detector
output z(t )

a(τ ) = C2(z(t ), z(t + τ ))

= 〈z(t )z(t + τ )〉t − 〈z(t )〉t 〈z(t + τ )〉t , (B1)

where 〈. . . 〉t relates to the ideal infinite time average with
respect to t , the power spectrum

S(2)
z (ω) =

∫ ∞

−∞
a(τ )eiωτ dτ (B2)

can be defined. Alternatively, the power spectrum can be
expressed via the Fourier transform of the detector output
z(ω) = ∫ ∞

−∞ z(t )eiωt dt as

2πδ(ω + ω′)S(2)
z (ω) = C2(z(ω), z(ω′)). (B3)

Brillinger generalized this expression to define polyspectra of
order n (Ref. [24])

2πδ(ω1 + · · · + ωn)S(n)
z (ω1, . . . , ωn−1)

= Cn(z(ω1), . . . , z(ωn)). (B4)

Above, the bispectrum

S(3)
z (ω1, ω2) (B5)
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FIG. 11. Parameter dependent approximate confined Gaussian
window function gj for parameter s = 0.14T [69].

and a cut through the trispectrum S(4)
z

S(4)
z (ω1, ω2) = S(4)

z (ω1,−ω1, ω2) (B6)

are used for characterizing experimental time traces and com-
parison with quantum polyspectra. Polyspectra are estimated
from experimental time traces in the following way. The de-
tector output z(t ) is discretized and divided into time frames
leading to arrays z(n) of length N with 0 � j < N

z(n)
j = z( jT/N + nT ), (B7)

where T is the temporal length of the time frames. The coef-
ficient a(n)

k of the discrete Fourier transformation (fast Fourier
transformation can be used for evaluation) are obtained after
applying a window function g j to z j

a(n)
k = T

N

N−1∑
j=0

g jz
(n)
j e2π i jk/N . (B8)

Window functions are routinely used in signal processing
for improving the spectral resolution [70]. Here we apply
the approximated confined Gaussian window with window
parameter s = 0.14T (Fig. 11) for its optimal RMS time-
bandwidth product [69].

The ideal polyspectra are then approximately (finite spec-
tral resolution) given by [71]

S(2)
z (ωk ) ≈ NC2(ak, a∗

k )

T
∑N−1

j=0 g2
j

, (B9)

S(3)
z (ωk, ωl ) ≈ NC3(ak, al , a∗

k+l )

T
∑N−1

j=0 g3
j

, (B10)

S(4)
z (ωk, ωl ) ≈ NC4(ak, a∗

k , al , a∗
l )

T
∑N−1

j=0 g4
j

, (B11)

where ωk = 2πk/T for k < N/2 and ωk = 2π (k − N )/T for
k � N/2. The cumulants C2, C3, and C4 (see Appendix A) are
estimated from so-called cumulant estimators [72]

c2(x, y) = m

m − 1
(xy − x y), (B12)

c3(x, y, z) = m2

(m − 1)(m − 2)
(xyz − xy z − xz y

−yz x + 2x y z), (B13)

c4(x, y, z,w) = m2

(m − 1)(m − 2)(m − 3)

×[(m + 1)xyzw − (m + 1)(xyz w + 3 o.p.)

−(m − 1)(xy zw + 2 o.p.) + 2m(xy z w

+5 o.p.) − 6mx y z w], (B14)

where o.p. means “other permutations.” The overline (. . . )
denotes an average of m samples. Their structure is similar
to that of the cumulants apart from m-dependent prefactors
[compare Eqs. (A1)–(A3)]. The estimators have the property
〈c j〉 = Cj for finite m (unbiased estimators) and c j → Cj for
m → ∞ (consistency). The estimators c2, c3, and c4 are multi-
variate versions of the well-known k statistics [60,73–75]. The
estimator c2(x, x) is identical with a frequently used estimator
for the variance of x. It exhibits the typical prefactor m/(m −
1) which is sometimes called the Bessel correction [76].

APPENDIX C: QUANTUM POLYSPECTRA

The polyspectra of detector output z(t ) of the continuously
monitored quantum system in the steady state follow from the
SME without any approximations as

S(2)
z (ω) = β4(Tr[A′G ′(ω)A′ρ0] + Tr[A′G ′(−ω)A′ρ0]) + β2/4, (C1)

S(3)
z (ω1, ω2, ω3 = −ω1 − ω2) = β6

∑
prm. ω1, ω2 , ω3

Tr[A′G ′(ω3)A′G ′(ω3 + ω2)A′ρ0], (C2)

S(4)
z (ω1, ω2, ω3, ω4 = −ω1 − ω2 − ω3) = β8

∑
prm. ω1 , ω2 , ω3 , ω4

[
Tr[A′G ′(ω4)A′G ′(ω3 + ω4)A′G ′(ω2 + ω3 + ω4)A′ρ0]

− 1

2π

∫
Tr[A′G ′(ω4)G ′(ω3 + ω4 − ω)A′ρ0]Tr[A′G ′(ω)G ′(ω2 + ω3 + ω4)A′ρ0]dω

− 1

2π

∫
Tr[A′G ′(ω4)G ′(ω2 + ω3+ω4)G ′(ω3 + ω4 − ω)A′ρ0]Tr[A′G ′(ω)A′ρ0]dω

]
.

(C3)
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Their derivation via multitime cumulants of z(t ) and an efficient method for their numerical evaluation are given in Refs. [25,26].
All spectra are free from delta-function contributions because the time-dependent G ′(τ ) decays exponentially to zero for
increasing τ as long as existence of a steady state ρ0 = G(τ )ρ for τ → ∞ can be assumed.

APPENDIX D: THE FOURTH-ORDER TRISPECTRUM OF THE SQD

Analytical expression for the trispectrum of the quantum dot system (neglecting spin-dependent dynamics):

S(4)
z (ω1, ω2) = 4γinγout

(
γ 2

in

(
(γin + γout)

2 + ω2
1

)(
(γin + γout)

2 + ω2
2

)(
3(γin + γout)

2
(
2(γin + γout)

2

+ ω2
1 + ω2

2

) + (
ω2

1 − ω2
2

)
2
) − 2γinγout

(
(γin + γout)

2 + ω2
1

)(
(γin + γout)

2 + ω2
2

)
×(

3(γin + γout)
2
(
2(γin + γout)

2 + ω2
1 + ω2

2

) + (
ω2

1 − ω2
2

)
2
) + 2γinγout

(
(γin + γout)

2 + (ω1 − ω2)2
)

×(
(γin + γout)

2 + (ω1 + ω2)2
)(

ω2
1ω

2
2 − (γin + γout)

2
(
3(γin + γout)

2 + ω2
1 + ω2

2

))
+γ 2

out

(
(γin + γout)

2 + ω2
1

)(
(γin + γout)

2 + ω2
2

)(
3(γin + γout)

2

× (
2(γin + γout)

2 + ω2
1 + ω2

2

) + (
ω2

1 − ω2
2

)
2
))

/(γin + γout)
3
(
(γin + γout)

2 + ω2
1

)
2
(
(γin + γout)

2 + (ω1 − ω2)2
)

/
(
(γin + γout)

2 + ω2
2

)
2
(
(γin + γout)

2 + (ω1 + ω2)2
)
. (D1)
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