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ABSTRACT

The electron tunneling rates between a two-dimensional electron gas (2DEG) and self-assembled InAs quantum dots are studied by
applying a magnetic field perpendicular to the tunneling direction. For both the ground and the first excited states, the tunneling rate can
be modified by a magnetic field. The field dependence of both the s and p state tunneling rates can be explained with a model, based on
momentum matching between the Fermi surface of the 2DEG and the wave function of the quantum dots in momentum space. The results,
together with the comparison between charging and discharging rates, provide insight into the filling sequence of the p-state electrons.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0098561

I. INTRODUCTION

Self-assembled quantum dots (QDs) have continuously attracted
scientific attention during the past decades, due to their possible
application for non-volatile memory1–6 and quantum technology
devices.7,8 While modern devices are scaled down to nanometers,
quantum effects emerge naturally. Consequently, the fundamental
physical mechanisms of quantum dot devices are necessarily studied.
For memory devices, the coupling between the dot and a two-
dimensional electron gas (2DEG) in field-effect transistor structures is
of particular interest.

Previously, using capacitance–voltage (C � V) spectroscopy and
far-infrared spectroscopy, the many-particle ground states of the dots
have been investigated in detail.9–11 An equivalent capacitance–resis-
tance circuit can be derived from the frequency-dependent measure-
ments.12 Furthermore, with an external magnetic field Bz being
applied in the tunneling direction, not only the magnitude of the
wave function but also the sign of the phase factor can be gauged.
This results from the fact that a magnetic field in the growth direction
Bz imposes an angular momentum direction on the emitter states

and thus influences the tunneling into QD states if their angular
momentum has the same or opposite sign as the emitter states.13

Furthermore, the injection of single electrons from the 2DEG into the
quantum dots can be demonstrated either for the equilibrium or non-
equilibrium tunneling dynamics (i.e., tunneling into ground or excit-
ing states, respectively).14,15 In the experiment, a 2DEG is not only
used as a charge reservoir but also as a detector to monitor the charg-
ing and discharging processes of the quantum dots.16,17 By applying a
voltage pulse to the gate of the field-effect transistor, the QDs can be
charged (discharged), so that the channel conductance decreases
(increases) exponentially, accompanying the transfer of charge from
the 2DEG to the quantum dots (or vice versa). By evaluating the time
dependence of the conductance, one can obtain the electron tunnel-
ing rate, which reflects the wave-function overlap between the dots
and the free electrons in the 2DEG.

II. EXPERIMENT

The investigated samples are GaAs=Al0:34Ga0:66As heterostruc-
ture transistors, grown by molecular beam epitaxy, with embedded
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InAs quantum dots. On a semi-insulating GaAs(001) substrate, a
200 nm thick GaAs buffer is grown, followed by a 40-period super-
lattice, consisting of an alternating sequence of 2 nm thick AlAs
and 2 nm thick GaAs. On top of this structure, an inverted
high-electron-mobility transistor was deposited consisting of
300 nm Al0:34Ga0:66As, a Si delta doping layer, followed by a 16 nm
Al0:34Ga0:66As spacer layer and a 15 nm GaAs quantum well.
Subsequently, 10 nm Al0:34Ga0:66As and 5 nm GaAs were grown as
a tunneling barrier. For the QDs, 1.9 ML of InAs was deposited at
525 �C and covered with 30 nm GaAs. Finally, a 116 nm
AlAs/GaAs superlattice blocking layer and a 5 nm GaAs cap layer
complete the heterostructure. The chips in the work were from the
same wafer as the experiment in Ref. 15. The quantum dots had a
typical height of a few nanometers and diameter of a few tens of
nanometers, with an area density of 8:3� 109 cm�2, which was
determined by atomic force microscopic studies of similarly
grown dots on the sample surface.15,18 The wafer was cleaved into
4� 4mm2 pieces, and by optical lithography, lift-off and wet
chemical etching, field-effect transistors were patterned. A layer of
Ni/AuGe/Au was evaporated and annealed at 430 �C for Ohmic
source and drain contacts. Afterwards, the gate electrode was
fabricated, using Ti and Au evaporation. The device structure and
schematic cross section of the layer sequence are shown in
Figs. 1(a) and 1(b). All measurements were performed at 4:2K in a
liquid-He cryostat equipped with a superconducting solenoid.
Magnetic fields up to 12 T could be applied.

A. Many-particle energy spectrum

In the following, we present the measurement and data evalu-
ation procedures for the characterization of the 2DEG-QD system
and the investigation of its time response. Further details on the
techniques can be found in Refs. 16 and 17.

We monitor the 2D channel conductance between the source and
drain contacts, GSD, using an 8mV bias. The time-resolved response
of the sample is recorded by applying rectangular pulses of

ΔVG ¼ 20mV to the gate (Fig. 2, top). In addition, a constant charging
bias VG is applied to the gate that shifts the potential energy of the dots
with respect to the back contact from which the electrons are tunneling.
Thus, with increasing voltage, more and more electrons can be trans-
ferred from the back contact into the dots by tunneling through the
barrier separating back contact and dots. As indicated in the insets to
Fig. 2, bottom, when the Fermi energy of the 2DEG, EF, is in resonance
with an n-particle state En, single electrons can transfer into the dots
during the “high” state of the pulse and out of the dots during the
“low” state. The response time of the 2DEG is on the order of
t2D � 1 μs, significantly faster than typical tunneling times
tQD � 1 ! 3ms. Hence it is found that, when the probe voltage is
applied, the conductance increases abruptly as the electron density in
the 2DEG is increased by the field-effect. Then, on a slower time scale,
electrons are tunneling into the dots, which lowers the electron density
again and the conductance in the channel decreases exponentially until
a steady value is reached (see Fig. 2, bottom). When the initial voltage
is applied again, En is lifted above the Fermi level. The n-th electron is
removed from the dot, the channel conductance increases accordingly.
When the Fermi level EF lies in the gap between two QD energy states,
electron tunneling does not take place. In that case, the conductance
exhibits an almost rectangular response, without the exponential tran-
sients from the tunneling dynamics. When increasing the charging bias
from �0:9 to þ0:4V, up to six electrons can be loaded into each dot.
The amplitude of the exponential decay during the high state,
ΔG ¼ G(t ¼ 0)� G(t ! 0:06 s) is evaluated and recorded as a func-
tion of the charging bias, as shown in Fig. 3.

From Fig. 3, we find that two lower energy peaks located at
�0:67 and �0:53V, and four peaks between �0:15 and 0:15V.

FIG. 1. (a) Fabricated transistor structure with source, drain, and gate electrode.
A square pulse is applied on the gate to modify the quantum dot energy. The
2DEG conductance is recorded to monitor the charging of the quantum dots.
(b) Schematic cross section of the layer sequence grown by molecular beam
epitaxy.

FIG. 2. Time-resolved conductance measurement. (top) A voltage pulse is
applied to the gate. (bottom) The channel conductance is recorded every 8 μs.
At the probe pulse, the carrier density in the back contact increases abruptly.
The quantum dot state aligns with the Fermi level in the back contacts. When
the n-th electron is transferred into the quantum dots, the source-drain conduc-
tance decreases exponentially. At the initial pulse, the conductance drops
rapidly, which is followed by the increasing conductance as the n-th electron
tunnels back from the QD into the 2DEG.
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Each peak corresponds to the charging of an additional electron
into the QDs. The first two electrons form the so-called s-shell
with two states, s1 and s2. The higher four peaks p1 to p4 constitute
the p-shell.9,19–21 We can convert the gate voltage into the energy
by assuming that the energetic position of the dots changes linearly
with respect to the Fermi energy pinned by the high charge density
in the back contact. In other words, a change in gate voltage ΔVG

implies a change in energy as ΔE ¼ eΔVG=λ, where λ, the lever
arm is 7 for the present devices. This way, we can obtain the
energy gap between s1 and s2 of 20 and 11meV between the suc-
cessive p-states. The gaps between the n-electron states within each
shell are caused by Coulomb interaction while the larger gap
between the shells also includes the quantization energy.22

B. The tunneling rate of s-like states

It is found that the change in conductivity ΔG(t) ¼ G(t ¼ 0)
�G(t) can be well described by an exponential decay:
ΔG(t) ¼ G0e�t=τ .23 We will now evaluate the time constant τ, from
which we can obtain the tunneling rate (1=τ) between the quantum
dot and the 2DEG. In order to study the tunneling rate of individ-
ual states in detail, we can apply a magnetic field in plane of the
quantum dot layer.

For the s1 state, we use a probe pulse voltage of �0:67V.
The magnetic field is applied in the main crystal orientations
B k (110) or B k (110). The data points in Fig. 4 summarize the
obtained tunneling rates 1=τ as a function of B, applied along the
two orthogonal directions [Figs. 4(a) and 4(b), where x and y cor-
respond to the (110) and (110) crystal axes, respectively]. In agree-
ment with previous studies,23,24 we observe that the rate of
tunneling into the lowest dot state increases with magnetic fields
up to B � 4:5 T. With higher magnetic fields, the tunneling rate
decreases monotonously. For the s2 state, a similar result is
obtained [as shown in Figs. 4(c) and 4(d)].

Similar studies on the subject of momentum match were per-
formed by researchers from the University of Nottingham. For
example, utilizing the double barrier resonant tunneling diode struc-
ture, they studied the momentum coupling principles extensively:
between 2D quantum wells (2D ! 2D),25,26 between quantum wires
(1D ! 1D),27 or between 3D emitters and quantum dots
(3D ! 0D),28–32 respectively. Furthermore, they recognized the eige-
nenergies and wavefunctions of the quantum confined states. It is
worth noting that, regarding the s state in the 3D ! 0D system, the
tunneling current maximum occurs in the absence of the magnetic
field and degrades monotonously with a higher magnetic field,
which are essentially different from our results. In samples with a 3D
emitter, the tunneling current is mainly contributed from electrons
with maximum kz momentum (z is the tunneling direction), in
other words, for B ¼ 0, the tunneling electrons from the back
contact have zero in-plane momentum (kx ¼ ky ¼ 0).13,28,29,33–35

However, in the case of a 2D emitter, the electrons at the Fermi
energy in the back contacts have an in-plane momentum

kk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
¼ kF ¼

ffiffiffiffiffiffiffiffiffi
2πns

p
, where the Fermi momentum kF is

given by the carrier density ns in the 2D back contact. The s state
wave function in the quantum dots has a Gaussian shape in momen-
tum space, with maximum at kk ¼ 0.22,36 In a magnetic field, when
an electron tunnels from the emitter into the dot, it acquires an addi-
tional in-plane momentum given by Δk ¼ eBkΔz=�h, where Δz is the
effective distance tunneling along z and �h is the reduced Planck
constant.28,37 The momentum is acquired by the tunneling electron
as a result of the Lorentz force. In terms of mapping out the shape
of an electronic state, we can envisage the effect of the shift in k
space as analogous to that of the displacement in real space of the
atomic tip in an STM imaging measurement.38,39

FIG. 3. Data points measured conductance change due to charge transfer into
the QDs. Shaded areas are Gaussian fits on each state, and solid blue line is
the summation of all fits.

FIG. 4. Data points of measured tunneling rate as a function of magnetic field
for two orthogonal field directions along (110) and (110) (left and right column,
respectively). Lines are the calculated probabilities for dot dimensions
(s1: lx ¼ 6:8 nm, ly ¼ 8 nm, kF ¼ 1:9� 108 m�1; s2: lx ¼ 6:7 nm, ly ¼ 7:5 nm,
kF ¼ 2:0� 108 m�1). Insets indicate how the Fermi circle lines up with the dot
wave function. Optimum momentum matching is achieved when the momentum
shift approximately equals kF.
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The tunneling rate is proportional to the overlap of the wave
functions in the QD and the 2DEG at the Fermi surface. To discuss
the measurement data in depth, we follow the approach in Refs. 23
and 24 to calculate the overlap integral of the wave functions in the
2DEG and the quantum dot as ψ2DEGjψQD

� ��� ��2. First, we consider
the free electrons in the back contact. When B is parallel to the
x axis, B ¼ (B, 0, 0), using Landau gauge, the magnetic vector
potential can be written as A ¼ (0, �Bz, 0). Solving the Schrödinger
equation, the electron eigenenergies are

E ¼ E*
z þ

�h2

2m
k2x þ k2y

E2
z

E*2
z

� �
, (1)

where ωc is the cyclotron frequency. E*
z ¼ �h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
z þ ω2

c=4
p

is the dia-
magnetic shift, and Ez ¼ �hωz is the bare confinement energy of the
2D quantum well, where we have assumed a parabolic confinement
for simplicity. In our present case, the confinement energy is much
stronger than the cyclotron energy, hence Ez � E*

z . Equation (1) can
be reduced to the usual dispersion of a 2D free electron gas. Similar
to the quantum well, the wave functions of the quantum dots do not
change noticeably in the magnetic field. We therefore only need to
consider the Lorentz effect during the tunneling process.

The confinement potential of the dots can be described using
a 2D simple harmonic oscillator, which has been proved to be an
accurate model.15,22 The s state wave function is

ψ s ¼
ffiffiffiffiffiffiffiffiffi
1

lxlyπ

s
� e�

x2

2l2x
� y2

2l2y , (2)

where lx and ly are the characteristic lengths of the confinement
potential along the (110) and (110) directions. Following the dis-
cussion above, the emitter wave functions are taken to be plane

waves with momentum kF ,

ψ2D ¼ eikx,Fxþiky,Fy , (3)

where kx,F and ky,F are the x and y momentum components of the
initial state at the emitter Fermi surface, k2F ¼ k2x,F þ k2y,F. The overlap
integral is calculated numerically and summed up over the shifted
Fermi circle introduced by the in-plane magnetic field.

The lines in Fig. 4 show the calculated results for the tunnel-
ing rates. In the evaluation, the quantum dot has been assumed to
be elliptical. The confinement energy in the x direction is higher
than that in the y direction, lx , ly . It can be seen, that all the
experimental data points are reproduced well (with Δz ¼ 24 nm;
for s1: lx ¼ 6:8 nm, ly ¼ 8 nm and kF ¼ 1:9� 108 m�1; for
s2: lx ¼ 6:7 nm, ly ¼ 7:5 nm and kF ¼ 2:0� 108 m�1). In the upper
part of Fig. 4, the magnetic field is applied in the x direction. At
zero magnetic fields, the Fermi circle aligns with the QD wave
function. Because the radius of the Fermi circle is larger than the
characteristic length of the dot wave function in momentum space
(see the inset in Fig. 4), the tunneling rate is low. When increasing
the magnetic field, the Fermi circle shifts along the y direction so
that some part of the Fermi circle start to overlap with the
maximum of the dot wave function. Therefore, the overall integral
increases. At around B ¼ 5:2T, Δk ¼ kF, the Fermi circle moves
across the maximum of the QD wave function, the overlap value
decreases again with increasing magnetic field.

C. The p state tunneling rate

While the s state wave functions in these quantum dots are of
a simple, almost circular Gaussian shape, the p states are richer in
features and reveal more specifics of the confining potential.21

Figure 5(a) shows the tunneling rate of the p1 state when the

FIG. 5. Data points of measured tunneling rate as a function of magnetic field for two orthogonal field directions along (110) and (110). Lines are the calculated probabili-
ties for the fixed tunneling distance Δz ¼ 24 nm and the fitting parameters are: p1: lx ¼ 9:5 nm, ly ¼ 9:9 nm, kF ¼ 2:05� 108 m�1; p2: lx ¼ 9:5 nm, ly ¼ 9:9 nm,
kF ¼ 2:06� 108 m�1; p3: lx ¼ 9:9 nm, ly ¼ 9:9 nm, kF ¼ 1:85� 108 m�1; p4: lx ¼ 9:9 nm, ly ¼ 9:9 nm, kF ¼ 2:0� 108 m�1.
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magnetic field is along the x direction. As the magnetic field
increases from 0 to 12 T, there is a minimum at around 4T. The
tunneling maximum occurs at 8 T. Figure 5(b) is the result when
the magnetic field is along the y direction. Here, the magnetic
field dependence is very similar to that of the s-states. Together,
Figs. 5(a) and 5(b) show that the circular symmetry of the poten-
tial is sufficiently broken, so that the lowest p-state has a node in
the y-direction, while the wave function looks similar to the
ground state (�Gaussian) along the x axis [see also the insets in
Figs. 5(a) and 5(b)].

There are now two possibilities for the charging of the next
electron: Either, the p2 electron will go into the same orbital state as
the p1 electron, but with opposite spin, or Hund’s rules will apply so
that the spins align and the p2 electron will occupy the orthogonal
orbital state, with a node in the x-direction. Figures 5(c) and 5(d)
clearly show that the node of the p2 state is along the same axis as
that of the p1 state. Therefore, we find that Hund’s rules do not
apply for the present, slightly asymmetric quantum dots, in agree-
ment with previous results.21

Extending the discussion of the p1 and p2 electrons, we expect
the next two electrons (p3, p4) to also occupy the same orbital state,
which is, however, orthogonal to the orbital of the lower p-electrons
[see insets in Figs. 5(e) and 5(f)]. Indeed, the experimental results
in Figs. 5(e)–5(h) support this prediction: The magnetic-field
dependence of the tunneling rate into p3 and p4 resembles that for
p1 and p2, but with interchanged x and y axes.

Next, we will explain the curve shape in the magnetic fields.
As before, we use the harmonic oscillator as an approximation for
the confining potential. Then, the p state wave functions can be
approximated as

ψ p� ¼
ffiffiffiffiffiffiffiffiffi
2

lxlyπ

s
� y
ly
� e�

x2

2l2x
� y2

2l2y , (4a)

ψ pþ ¼
ffiffiffiffiffiffiffiffiffi
2

lxlyπ

s
� x
lx
� e�

x2

2l2x
� y2

2l2y : (4b)

Here, p� is the orbital wave function with a lower energy, with a
node in the y-direction (p1 and p2 electron). The pþ orbital
accounts for the two higher energy electrons, p3 and p4.

The calculation results are presented as solid lines in Fig. 5.
The agreement between the calculation and measured data is not as
good as for the s state, but the model reproduces the varying trends
well. This can be attributed to two reasons regarding the real
system: (1) the wave functions that are occupied by electrons in the
measurement are selected via the gate voltage pulse. This has a
pulse height of ΔVG ¼ 20mV. With the already mentioned lever
arm of 7, this results in an energy change of about 3meV. All wave
functions that lie within this energy range contribute to the
detected tunneling processes. (2) The quantum dots in the ensem-
ble have a typical non-uniformity. This leads to an inhomogeneous
broadening of the states in the charging spectrum. In Fig. 3, it can
be seen that for the p states, the width roughly corresponds to the
splitting of the states themselves (voltage difference ΔVG � 100mV
corresponds to ΔE � 15meV). This overlap of the states leads to

the fact that in the measurements also the wave function with the
opposite orientation is sampled. This can be seen, for example, for
the tunneling rates at about 4 T in Figs. 5(a), 5(c), 5(e), and 5(g).
For states p1 and p2, a minimum is present, but it is weaker than
that would be expected for the p� wave function. At the same time,
the states p3 and p4 show a small local minimum in this direction,
although a clear global maximum is to be expected there for the pþ
wave function.

D. Comparison of the charging and emission rates

In the former sections, we have discussed the tunneling rate
based on the charging process, corresponding to the exponential
decrease between t ¼ 0 and t ¼ 0:06 s in Fig. 2. In the following, we
will compare these data with the emission rates, evaluated from the
data, when the dots are discharged again (0:06 s , t , 0:12 s). The
charging and emission rates at zero magnetic field under different
gate voltages are presented in Fig. 6. From the figure, we can distin-
guish the s and p shells clearly. The tunneling times between the
2DEG and the dots are in the order τs ¼ 3ms and τp ¼ 0:8ms for
the s and p states, respectively. Comparing the tunneling rate for dis-
crete states, we can find that, the charging rate of s1 is higher than
the emission rate. However, for the s2 state, the charging rate is
slower than the emission rate. Furthermore, it is found that the
charging rates of p1 and p3 are higher than the emission rates, and
that the charging rates of p2 and p4 are lower than emission rates.
In other words, when the electron number n in the quantum dot is
odd, the charging rate is faster, otherwise, the emission rate is faster.
This even–odd sequence strongly suggests that the behavior can be
attributed to spin effects. Because we have x–y symmetry and
Hund’s rules do not apply, the six electrons are distributed onto
three orbital states, s, p�, and pþ, which each can be occupied with

FIG. 6. Tunneling rates vs gate bias without magnetic field. The rate for the p
states is about three times faster than for the s-state. The charging rate is faster
than the emission rate when the electron number n in the dot is even, but the
charging rate is lower than the emission rate when n is odd.
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one or two electrons. When the first electron is charging an orbital
state (odd n), it has two possible spin states to tunnel into.
Discharging, on the other hand, can only take place out of the
singly occupied state. For even n, the situation is reversed: Only one
state is available for tunneling into the dot, while discharging can
take place out of two states. So, we can find that the emission rate of
the second electron in each group is faster than the charging rate.21

Finally, in Fig. 7, we present the s1 and s2 tunneling rates in
the magnetic fields. From the results, we see that the above discus-
sion about the different rates also holds for tunneling in parallel
magnetic fields. Under all magnetic fields, the s1 charging rate is
faster than the emission rate [see Fig. 7(a)], and the case is inverted
for s2 charging rate [see Fig. 7(b)]. In addition, for either of the two
states, the difference between charging and emission rates is promi-
nent under the low magnetic fields, but it becomes weaker when
B . 8 T. The schematic tunneling processes for the charging and
emission are given in the insets. For the first electron, the QD is
initially empty, so there are two possible states to tunnel into the
QD, but only one way to remove an electron once one electron has
tunneled into the QD. For the second electron, the shell is already
occupied with one electron, so there is only one way to tunnel into
the dot, but either electron may be removed.

III. CONCLUSION

In summary, we have studied the tunneling rate between
quantum dots and a 2DEG. The tunneling rate strongly depends
on the momentum matching of the two systems. For either the s or
the p state, the application of a magnetic field perpendicular to the
tunnel path can be used to offset the momentum mismatch and
increase the tunneling rate. In higher magnetic fields, the tunneling
rate can be strongly suppressed due to the mismatch. An asymmet-
ric confinement of quantum dots is found in the wave function of
the s state from the shift of the Fermi circle in the magnetic field.
The result agrees well with the node distribution of p state wave
functions. Furthermore, it is also observed that the spin degeneracy
leads to an odd–even oscillation in the ratio of the charging and
emission rates.
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