Kompetenzbereich Fachwissen

Themenbereich: Säuren und Basen

Kompetenzen	Aufgaben
Die Schüler*innen stellen Protolysegleichungen auf.	SB1.01, SB1.02, SB1.11
Die Schüler*innen identifizierten konjugierte Säuren-Basen-Paare mithilfe des Säure-Base-Konzepts nach Brønsted.	SB1.04, SB1.07
Die Schüler*innen kennzeichnen verschiedene Verbindungen als Säure, Base und Ampholyt.	SB1.10, SB1.13
Die Schüler*innen berechnen pH-Werte von starken/schwachen Säuren und Basen im Zuge einer pH-metrischen Titration.	SB2.01
Die Schüler*innen definieren den pH-Wert und setzen diesen mit der Autoprotolyse in Beziehung.	SB2.07
Die Schüler*innen stellen Reaktionsgleichungen für die Reaktion von Metallen mit sauren Lösungen auf.	SB3.01
Die Schüler*innen ordnen verschiedene saure Lösungen nach Säurestärke.	SB4.01
Die Schüler*innen identifizieren und beschreiben charakteristische Punkte von Titrationskurven ausgewählter einprotoniger starker/schwacher Säuren und starker/schwacher Basen.	SB5.01, SB5.02

Themenbereich: Elektrochemie

Kompetenzen	Aufgaben
Die Schüler*innen erläutern den Vorgang des Verzinkens unter einer Opferanode.	EC1.02
Die Schüler*innen identifizieren Bedingungen, die den Korrosionsvorgang begünstigen.	EC1.03
Die Schüler*innen beschreiben den Aufbau ausgewählter elektrochemischer Spannungsquellen (galvanischen Elements, Akkumulator) unter Berücksichtigung der Teilreaktionen und möglicher Zellspannungen.	EC2.01, EC3.01
Die Schüler*innen stellen mit Hilfe von Oxidationszahlen die Teilgleichungen zu einer Redoxreaktion am Beispiel der Elektrolyse auf.	EC2.02
Die Schüler*innen stellen Reaktionsgleichungen für die Teilreaktionen und die Gesamtreaktion einer Redoxreaktion auf.	EC2.03, EC3.02; EC3.03
Die Schüler*innen beschreiben wie aus Kupfer Kupferchlorid gewonnen werden kann.	EC2.04
Die Schüler*innen beschreiben den Aufbau und die Funktionsweise eines Daniell-Elements hinsichtlich der chemischen Prozesse.	EC4.01
Die Schüler*innen stellen zu den ablaufenden Reaktionen im Daniell- Element die Teil- und Gesamtreaktionsgleichung auf.	EC4.02
Die Schüler*innen erläutern die elektrochemische Spannungsreihe.	EC5.02
Die Schüler*innen bestimmen Oxidationszahlen.	EC6.05

Themengebiet: Organische Chemie

Kompetenzen	Aufgaben
Die Schüler*innen benennen organische Stoffe nach IUPAC-Regeln.	OC1.04, OC1.05, OC1.06, OC1.07, OC1.08, OC1.09
Die Schüler*innen ordnen Stoffe anhand ihrer Strukturformel einer Stoffklasse zu.	OC1.10, OC3.01
Die Schüler*innen geben die IUPAC-Regeln zur Benennung einer organischen Verbindung an.	OC1.11
Die Schüler*innen geben die Löslichkeit von unterschiedlich (un)polaren Stoffen in Wasser und Hexan an.	OC2.03
Die Schüler*innen ordnen verschiedene Halogenalkane nach ihrer Siedetemperatur.	OC2.04
Die Schüler*innen erklären verschiedener Alkanole mit Hilfe der Molekülstruktur und unter Berücksichtigung von inter- und intramolekularen Wechselwirkungen.	OC2.05
Die Schüler*innen bestimmen die Oxidationszahlen von verschiedenen Verbindungen.	OC3.02
Die Schüler*innen bestimmen die Teilreaktionen von Oxidation und Reduktion mit Hilfe von Oxidationszahlen.	OC3.03
Die Schüler*innen erläutern den Reaktionsmechanismus der radikalischen Substitution.	OC5.02
Die Schüler*innen erläutern den Reaktionsmechanismus der elektrophilen Addition.	OC5.03
Die Schüler*innen klassifizieren verschiedene Reaktionen als Substitutionen, Additionen und Eliminierungen.	OC6.0, OC6.1

Themenbereich: Makromolekulare Chemie

Kompetenzen	Aufgaben
Die Schüler*innen identifizieren Kunststoffe anhand ihrer thermischen und mechanischen Eigenschaften als Thermoplaste, Duroplaste, Elastomere.	WN1.01, WN1.02, WN1.03, WN1.04, WN1.05, WN1.06, WN1.07, WN1.08

Kompetenzbereich Erkenntnisgewinnung

Themenbereich: Experiment

Kompetenzen	Aufgaben
Die Schüler*innen beschreiben das Prinzip der Gaschromatografie am Beispiel der Trennung von Aromastoffen in Wein.	Organische Chemie 1
Die Schüler*innen planen ein Experiment zur Unterscheidung von reduzierenden und nicht reduzierenden Zuckern mit Hilfe der Fehling-Probe.	Organische Chemie 2
Die Schüler*innen planen ein Experiment zur Wasserlöslichkeit von Aminosäuren unter Berücksichtigung einer unabhängigen, abhängigen und Störvariablen aus.	Organische Chemie 3
Die Schüler*innen identifizieren in einem Experiment zur Leitfähigkeit von Aminosäuren unabhängige, abhängige und Kontrollvariablen/Störvariable.	Organische Chemie 4
Die Schüler*innen planen ein Experiment zur Überprüfung des Einflusses von verschiedenen Faktoren auf die Reaktionsgeschwindigkeit.	Reaktionsgeschwindigkeit 1, 2, 3, 5
Die Schüler*innen deuten die Ergebnisse eines Experimentes zur Reaktionsgeschwindigkeit.	Reaktionsgeschwindigkeit 4
Die Schüler*innen stellen Hypothesen für ein Experiment zum Einfluss des Zerteilungsgrades auf die Reaktionsgeschwindigkeit auf.	Reaktionsgeschwindigkeit 6
Die Schüler*innen identifizieren in einem Experiment zum chemischen Gleichgewicht unabhängige, abhängige und Kontrollvariablen/Störvariable.	Chemisches Gleichgewicht 1, 2
Die Schüler*innen planen einen Experimentaufbau, um den Einfluss der Konzentration einer Elektrolytlösung auf das Standartpotential einer Halbzelle zu untersuchen.	Elektrochemie 1
Die Schüler*innen planen ein Experiment, mit dem sich die Löslichkeit von Alkanolen untersuchen lässt.	Löslichkeit Alkanole
Die Schüler*innen ordnen verschiedenen organischen Verbindungen auf der Grundlage von intermolekularen Wechselwirkungen Siedetemperaturen zu.	Kohlenstoffverbindungen
Die Schüler*innen ermitteln Trends in Datensätzen zur Siedetemperatur von verschiedenen Alkanolen.	Alkohole

Themenbereich: Frage

Kompetenzen	Aufgaben
Die Schüler*innen formulieren eine Fragestellung die mit einem vorgegebenen Experiment zum chemischen Gleichgewicht untersucht werden kann.	Chemisches Gleichgewicht 3, 4
Die Schüler*innen formulieren eine Fragestellung die mit einem vorgegebenen Experiment zu Ester untersucht werden kann.	Ester
Die Schüler*innen formulieren eine Fragestellung die mit einem vorgegebenen Experiment zu einer galvanischen Zelle untersucht werden kann.	Elektrochemie 2
Die Schüler*innen formulieren eine Fragestellung die mit einem vorgegebenen Experiment zur Kinetik untersucht werden kann.	Kinetik

Themenbereich Modell

Kompetenzen	Aufgaben
Die Schüler*innen werten das Absorptionsspektrum einer fotometrischen Messung aus und interpretieren dessen Ergebnisse.	Absorptionsspektrum
Die Schüler*innen geben an, welche Informationen aus der Lewis-Formel entnommen werden können.	Lewis-Formel
Die Schüler*innen geben an, welche Informationen die mesomeren Grenzstrukturformeln entnommen werden können.	Mesomerie
Die Schüler*innen stellen auf Grundlage des Prinzips der Gaschromatographie eine Hypothese zur Retentionszeit auf.	Organische Chemie 5