Error correction, - detection and cyphers

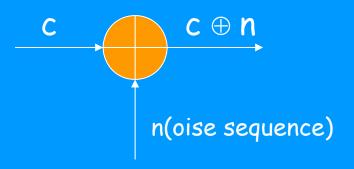
A.J. Han Vinck
University of Duisburg/Essen
June 29, 2013
Vinck@iem.uni-due.de

content

· Influence of transmission errors

A model for transmission errors

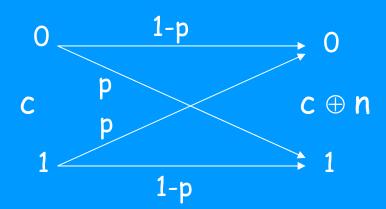
We assume binary transmission, errors occur as inversion of data at the receiver



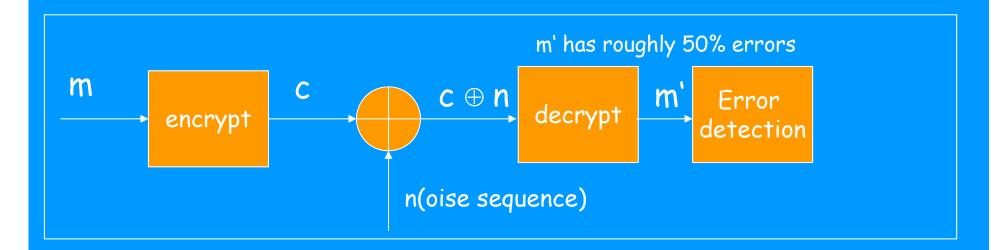
Example: c = 0.011; n = 0.010

then: $c \oplus n = 0001$

In a probabilistic desciption: Probability (n = 1) = 1 - Prob(n = 0) = pthe binary symmetric channel model (BSC)



transmission errors destroy the crypto-system



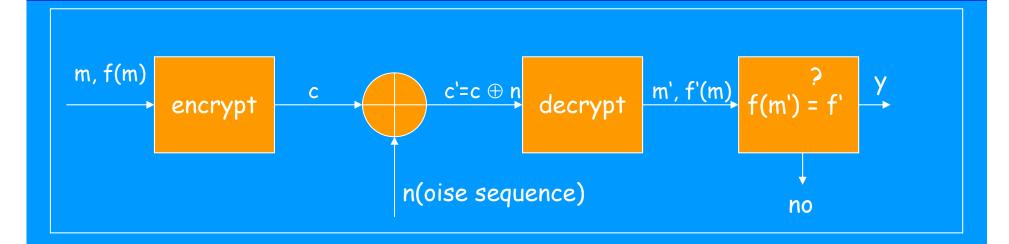
Note:

Error detection can be based on the property that m is a redundant input, like text.

However, this is not a good input to any crypto-system to obtain high security.

Q. What to do when m is a "random" type of input?

We use redundancy to detect errors



Note: f has to be specified, but assume it depends on all information digits in some way

Then:

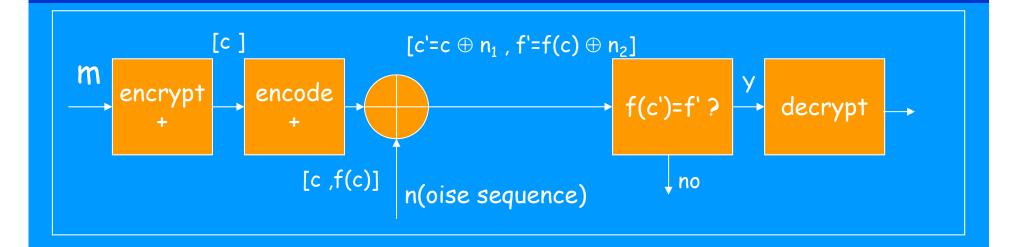
with high probability, errors will be detected since m' and f' each have about 50% errors.

However, f(m) introduces (additional) redundancy into the encryption input!

Remark: Change f(m) into an all zero string. Give your comment on the idea?

Han Vinck 2012

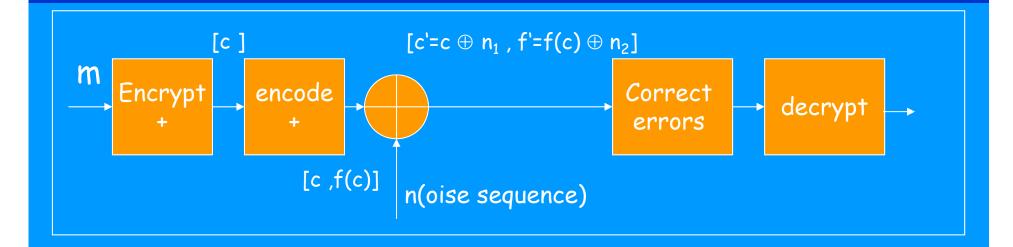
Make redundancy dependent on the ciphertext



Note: f' can be used to detect errors in c'.

Depending on the redundancy, this can be very efficient and with low undetected error probability

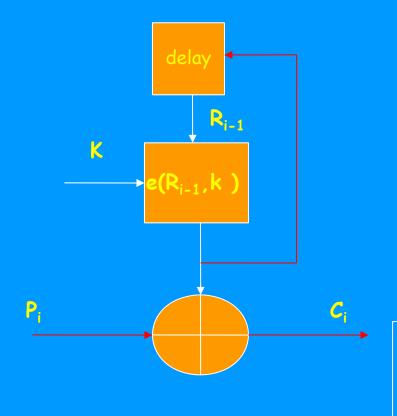
Errors can also be corrected



Note: f' can be used to correct errors in c'.

Depending on the redundancy, this can be very efficient and with low decoding error probability

No error propagation in Output Feedback Mode



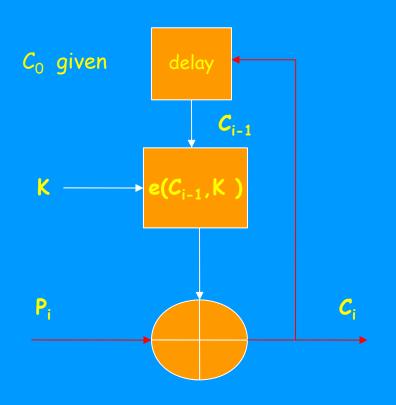
 $C_i = P_i \oplus e(R_{i-1}, k)$ $P_i = C_i \oplus e(R_{i-1}, k)$ R₀ given

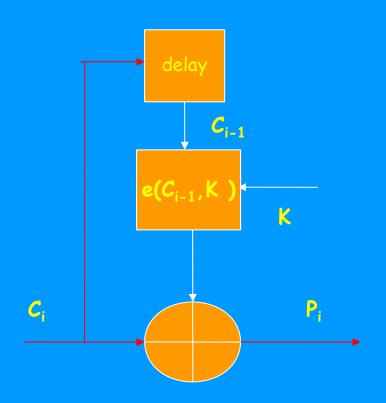
Advantage: no error propagation; easy to start decryption (using the encryption function) when time is known

<u>Disadvantage:</u> manipulation possible when parts of plaintext are known by using the XOR to replace P

Can you show this?

DES cipher feedback mode





$$C_{i} = P_{i} \oplus e(C_{i-1}, K)$$
Decypher mode
$$P_{i} = C_{i} \oplus e(C_{i-1}, K)$$

DES cipher feedback mode

$$C_i = P_i \oplus e(C_{i-1}, k)$$

Receive: $C_i^* = C_i \oplus N_i$

$$P_i^* = C_i^* \oplus e(C_{i-1}, k)$$

= $C_i \oplus N_i \oplus e(C_{i-1}, k)$
= $P_i \oplus N_i$

$$P_{i+1}^* = C_{i+1} \oplus e(C_i^*, k)$$

$$\neq P_{i+1}$$

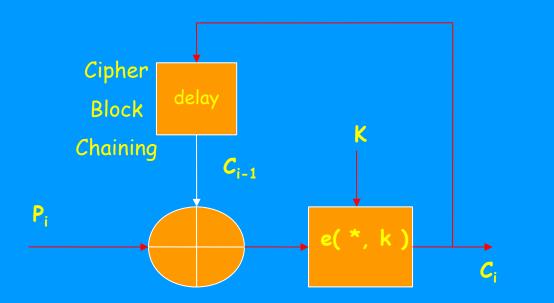
$$P_{i+2} = C_{i+2} \oplus e(C_{i+1}, k)$$
 OK

Advantage: Scalable feedback, easy to synchronize

disadvantage:

replacement of P_i gives unpredictable decryption of P_{i+1} error propagation over two blocks

Cipher block chaining



 C_0 given

$$C_{i} = e(P_{i} \oplus C_{i-1}, k)$$

$$P_{i} = C_{i-1} \oplus d(C_{i}, k)$$

Ciphertext depends on whole message

Advantage: identical blocks of plaintext will encrypt to different blocks of ciphertext.

The last cipher block can be used as a signature

<u>Disadvantage:</u> error propagation over two blocks

Cipher block chaining

$$C_i = e(P_i \oplus C_{i-1}, k)$$

$$P_i = C_{i-1} \oplus d(C_i, k)$$

Receive: $C_i^* = C_i \oplus N_i$

$$P_i = C_{i-1} \oplus d(C_i^*, k)$$

$$P_{i+1} = C_i^* \oplus d(C_{i+1}, k)$$

 $P_{i+2} = C_{i+1} \oplus d(C_{i+2}, k)$

<u>Advantage:</u> identical blocks of plaintext will encrypt to different blocks of ciphertext.

The last cipher block can be used as a signature

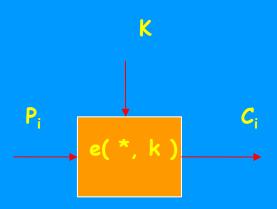
<u>Disadvantage:</u> error propagation over two blocks

Note: the errors in the second block are the same as the channel errors. The first block has about 50% errors., due to the decryption of an erroneous block

Cipher block chaining is much the most widely used mode.

- IPsec specifies it as the only permitted mode.
- PGP and TLS use it as well.

Electronic Codebook Mode



Advantage:

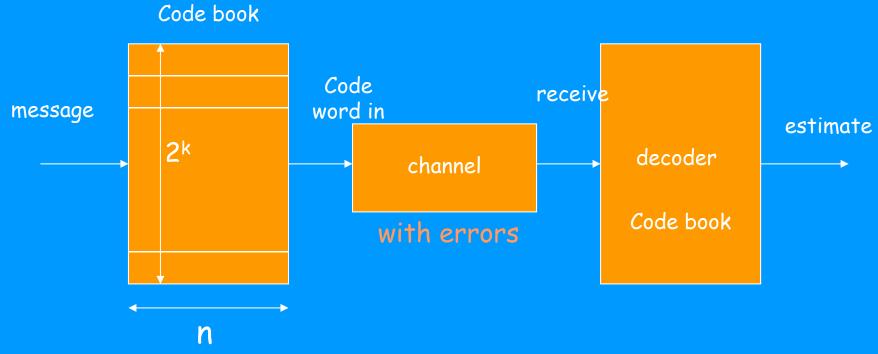
any block decrypted independently of the others. lost data blocks do not affect the decryption of other blocks.

Disadvantage:

easy for known-plaintext attacks.
same block of plaintext results in same blocks of ciphertext easy to substitute, rearange, delete or insert old blocks

Error correction

Practical communication system design



There are 2k code words of length n

k is the number of information bits transmitted in n channel uses

error protection

- Obtained by Error Control Codes (ECC)
 - Forward Error Correction (FEC)
 - Error Detection and feedback (ARQ)
- Performance depends on error statistics!
 - Error models are very important

example

code words: 00000 01011 10101 11110

received: 00011

difference: 00011 01000 10110 11101

best guess: 01011

only 1 difference

Definitions

- Hamming distance between \underline{x} and \underline{y} is $d_H := d(\underline{x}, \underline{y}) \text{ is the } \# \text{ of positions where } x_i \neq y_i$
- The minimum distance of a code C is
 - $d_{\min} = \min \{ d(\underline{x}, \underline{y}) | \underline{x} \in C, \underline{y} \in C, \underline{x}, \underline{y} \}$
- Hamming weight of a vector x is
 - $w(\underline{x}) := d(\underline{x}, \underline{0})$ is the # of positions where $x_i \neq 0$

Performance

A code with minimum distance d_{min} is capable of correcting t errors if

$$d_{\min} \geq 2t + 1$$
.

<u>Proof:</u> If \leq t errors occur, then since $d_{min} \geq 2t + 1$ an incorrect code word has at least t+1 differences with the received word.

LINEAR CODE GENERATOR

The code words are

- linear combinations of the rows of a binary generator matrix *G* with dimensions k, n
- G must have rank k!

Example: Consider
$$k = 3$$
, $n = \underline{6}$.

generator matrix G =

$$(1,0,1)G = (0,0,1,0,1,1)$$

Example (optimum)

Single Parity check code d_{min} = 2, k = n-1

$$G = \begin{bmatrix} I_{n-1} P \end{bmatrix} = \begin{bmatrix} 100 & \cdots & 0 & 1 \\ 0100 & \cdots & 0 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 000 & \cdots & 01 & 1 \end{bmatrix}$$

All codewords have even weight!

Example (optimum)

Repetition code: d_{min} = n, k = 1

Property

The set of distances

is the same as

from all code words to the all zero code word to any other code word.

Proof:

$$d(\underline{x}, \underline{y}) = d(\underline{x} \oplus \underline{x}, \underline{z} = \underline{y} \oplus \underline{x}) = d(0, \underline{z}),$$

by linearity z is also a code word.

Thus!

the **determination** of the minimum distance of a code is equivalent to

the determination of the minimum Hamming weight of the code words.

The complexity of this operation is proportional to # of code words

Some remarks

- · Generators for different k and n
 - are constructed using mathematics
 - listed in many text books

What remains is the decoding!

Example k = 4, n = 7, m = 3

$$G = \begin{bmatrix} 1000 & 110 \\ 0100 & 101 \\ 0010 & 011 \\ 0001 & 111 \end{bmatrix}$$

$$k=2^3-3-1=4$$

In Bluetooth we have a shortened (10,15) Hamming Code

Famous codes

• Famous codes are BCH code specified by the first row of the encoding matrix
All following rows are cyclic shifts of this

Normally, BCH codes are specified for lengths 2^m -1

Example: length 127, k = 120, $d_{min} = 3$ correcting 1 error

k = 113, $d_{min} = 5$ correcting 2 errors

We can shorten the code to k = 64 and n = 71, to correct 1 error in a DES word

How do we shorten? Can you give a list of length 63 codes?

Error detection with the function f

We do all operations modulo 2 (XOR).

A packet has the form C(X) = A(X) F(X)

where

$$F(X) = 1 + + X^{n-k}$$

$$A(X) = a_0 + a_1 X + ... + a_{k-1} X^{k-1}$$

$$C(X) = c_0 + c_1 X + ... + c_{n-1} X^{n-1}$$

check polynomial

information packet of length k.

code word

detection procedure

Assume that we receive the polynomial R(X) = C(X) + E(X)

where E(X) is a binary <u>error</u> polynomial i.e. an error vector $(0,0,0,1,0) \rightarrow C(X) = X^3$

the decoder calculates R(X) mod F(X)

- if the result = 0 no error detected
- if the result ≠ 0, then an error is detected.

The polynomial R(X) mod F(X) = 0 iff E(X) is a multiple of F(X).

performance

ASSUME: the polynomial F(X) has the form $F(X) = 1 + ... + X^{n-k}$

- degree n-k; - and a nonzero constant term,

<u>THEN:</u> any error burst of length \leq n-k has a polynomial representation that looks like $E(X) = X^i (1 + ... + X^{n-k-1})$ and can thus never be a multiple of F(X).

F(X) is capable of detecting any burst of length $\leq n-k$!

Some examples

• All coefficient operations are modulo-2

$$- (1+X+X^{3})(X+X^{2}) = X+X^{2}+X^{4}+X^{2}+X^{3}+X^{5}$$
$$= X+X^{3}+X^{4}+X^{5}$$

- errors change $0 \Rightarrow 1$ and $1 \Rightarrow 0$
- Ex: $(X + X^4 + X^5)$ modulo- $(1 + X^2) = 1$
 - Subtract as often as possible ($1 + X^2$), but keep calculating mod-2

CRC standard polynomials

- CRC-8: $x^8+x^2+x^1+1$
- CRC-10: $x^{10}+x^9+x^5+x^4+x^1+1$
- CRC-12: $x^{12}+x^{11}+x^3+x^2+1$
- CRC-16: $x^{16}+x^{15}+x^2+1$
- CRC-CCITT: $x^{16}+x^{12}+x^5+1$
- CRC-32: $x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^8$ $x^7+x^5+x^4+x^2+1$
- Ethernet uses CRC-32
- HDLC: CRC-CCITT
- ATM: CRC-8, CRC-10, and CRC-32

Why these polynomials (CRC-16 and CRC-CCITT)?

1st property: Multiples of these polynomials have even weight Hence: error vectors of odd weight cannot be a multiple!

2nd property: error vectors of the form E(X) = (1 + Xⁱ) are not divisible by F(X) for i < L,

L larger than word length

Try to check this property!</p>

• Conclusion: 1, 2 and 3 errors are detectable. CHECK!