Innovation in Electric Vehicle Technology and Application for Public Transport

Toshio Hirota, Ph.D.
Guest Professor
Environmental Research Institute
Waseda University
hirotat@aoni.waseda.jp
Innovation in Electric Vehicle Technology and Application for Public Transport

1. Innovation in EV technology
 • Acceleration performance
 • Easy to drive
 • Quiet and comfortable drive

2. Development of Electric bus for public transport
 • Specifications
 • Low CO2 emission of Electric bus
 • People prefer Electric bus with comfortable ride

3. E-mobility for public transport
 • “Future City Initiative” in Japan
 • Electric bus
 • One-way ultra-compact EV
1. Innovation in EV technology

Mass-production EV, LEAF introduced to the market in 2010
80kW Motor, 30kWh Li-ion battery (2015 model)
280km driving range (JC08 driving mode)
Bestselling EV model: over 230,000 units (Sep. 2016)

• Excellent acceleration performance
• Easy to drive
• Quiet and comfortable drive
Acceleration performance

- Acceleration performance of an EV is much better than a gasoline vehicle.
- Response time of an EV is less than 0.1 sec. compared to 0.5 sec. of a base gasoline vehicle under various acceleration conditions.
- Reasons for the excellent acceleration are small inertia of motor rotor, large torque at low speed condition, no transmission, and advanced control strategy.

Toshio Hirota, Environmental Research Institute, Waseda University, Japan
Easy to drive: Handling performance

- Traction torque control with steering angle
- To increase the traction torque at the initial of the corner and to decrease the torque at the end of the steering
- It can be operated in line with the driver’s intention.

Source: Yuuki Shiozawa, “Drive torque control system to improve the handling performance,” JSAE Symposium, May 2011
Toshio Hirota, Environmental Research Institute, Waseda University, Japan
Quiet and comfortable driving

- Low noise and low vibration under the start up to high speed driving

[Driving condition]
Start up at the parking lot through acceleration at the residence area

- Ultimate quiet with motor drive
- Low noise and low vibration under the start up to high speed driving
- Quiet and comfortable driving

Electric vehicle

Gasoline vehicle 2.5L

Toshio Hirota, Environmental Research Institute, Waseda University, Japan
Advanced EVs will be introduced soon

- Technologies of Lithium-ion battery and electric power-train are improving very rapidly.
- Advanced EVs with longer driving range will be introduced to the market in the near future.

BMW i3, 300km, Oct. 2016

GM BOLT, 383km, End 2016

Tesla Model-3, 344km, 2017

Nissan LEAF Next generation?
2. Development of Electric buses

- E-bus development at Waseda University since 2002
- Concept: Short driving range and frequent charging
- Demonstration field tests with local government since 2005
- Nagano city field test with 2 E-buses (2011 - 2013)

- Capacity 25 persons, Vehicle weight 6,430 kg
- Motor PMSM 145 kW/400Nm, Battery Mn Li-ion 44kWh
CO2 emission of E-bus compared to Diesel bus

- CO2 emission (WTW*) of an E-bus is 40% lower than that of a diesel bus.

*CO2 emission coefficient - WTW (Well to Wheel)
Diesel fuel: 2.83 kg-CO2/L, Electricity: 0.473 kg-CO2/kWh (2010)
Customer Survey: Attractiveness

Good points of E-bus vis-à-vis diesel bus?

*727 persons answered
3 points for 1st, 2 points for 2nd, 1 point for 3rd ranking

1. Smooth driving & no shaking
2. Quietness
3. No exhaust gases
4. Low noise and vibration
5. No smell of fuel and others
6. Nothing special
7. Others

Merit of E-bus:
1. Safety with smooth and no shaking
2. Calm life on board with quietness
3. No smell of exhaust gases and diesel fuel
Customer Survey: Shift to E-bus from private cars

If the bus is changed to E-bus, will you try to use the E-bus instead of your private car?
*701 persons answered

- No use: 11%
- Not much use: 12%
- Use E-bus a lot: 23%
- Use as much as possible: 54%

[Do not want to use E-bus]
1. Inconvenience compared to private car
2. Less frequent rides
3. High fare
4. Not arrive on time
5. Diesel bus enough

[Want to use E-bus]
1. Low CO2 emission
2. No exhaust gases
3. Low noise
4. Quiet, no shaking and comfortable ride

- 77% of people want to use an E-bus.
- A lot of people would like to stop use a private car, and use an E-bus.

Toshio Hirota, Environmental Research Institute, Waseda University, Japan
Customer Survey: Introduction of E-bus

Do you think E-bus should be introduced for public transport?

- 87% of people want E-bus to be introduced for public transport.
- Regarding costs of E-bus purchases and charging equipment,
 1. Government or municipality supports some of the cost.
 2. Bus fares will be raised.
 3. Commercial facilities support some or all of the cost.

*712 persons answered
3. E-mobility for public transport

“Future City Initiative”

2 issues that Japan will be the first to face,
- Declining and aging population
- Environmental and energy constraints

The 21st Century is the age of the city
By 2050, 70% of people will live in cities

Creating sustainable cities is an issue that all of mankind faces together

Issues that Japan will be the first to face
- **Declining and aging population**
 Declining population: 130 million people (2004) → 95 million people (2050)
 Percentage of elderly: 23% (2009) → 40% (2050)
- **Environmental and energy constraints**
 Severe energy supply constraints due to nuclear power plant accident
 Global warming measures

- Creation of new social and economic systems focused on cities
- Addressing challenges shared by the entire mankind before the rest of the world

Source: Japan government: Future City Initiative
Toshio Hirota, Environmental Research Institute, Waseda University, Japan
“Future City Initiative”

- Through the creation of environmental value, social value, and economic value, create universally appealing communities and universally vibrant communities
- Restore a sense of social connectedness and improve the quality of people’s lives
- Action on environment and super-aging is essential. Add other themes as appropriate given individual city’s and region’s circumstances
- Build a model for sustainable value creation that can be deployed autonomously

Source: Japan government: Future City Initiative
Toshio Hirota, Environmental Research Institute, Waseda University, Japan
“Future City Initiative”

Source: Japan government: Future City Initiative
Toshio Hirota, Environmental Research Institute, Waseda University, Japan
Shift from Private car to Public transport

Wide Variety of Mobility for City in the Future

- New Mobility
 - Community Bus
 - Car Sharing
 - Ultra-small Car Sharing
 - Ride Sharing

- Public Transport
 - City Bus
 - Car Rental
 - taxi
CO2 reduction by shift to public transport

- **CO2 emission (Japan, 2005)**
 - Private car: 173 g-CO2/person·km, City bus: 51 g-CO2/person·km
- **CO2 emission of Bus: 70% lower than private car**
- **Share of transport:**
 - Passenger car 60%, Bus 6.2%, Rail 28%, Air 5.9%
- **Share of public transport esp. local area has reduced: below 20%**

Source: MLIT Ministry of Land, Infrastructure, Transport and Tourism
Toshio Hirota, Environmental Research Institute, Waseda University, Japan
Nagano city started E-bus operation in 2014

- Start of E-bus operation at the central area in Nagano city
- Round trip from the station through Zenkoji, 7.5km 45 min.
- Since Oct. 2014 through Oct. 2016, 42,000 km, 3.8k round trips, and 67k passengers estimated
- Including demonstration service since 2011, WEB-4, Waseda Electric Bus-4: Over 81,000 km, 120k passengers
- E-Bus has been evaluated as a clean and comfortable transport.

<table>
<thead>
<tr>
<th>Nagano E-bus “Gururin-go”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
</tr>
<tr>
<td>Route</td>
</tr>
<tr>
<td>Trips</td>
</tr>
<tr>
<td>Fare</td>
</tr>
<tr>
<td>Mileage</td>
</tr>
<tr>
<td>Trips</td>
</tr>
<tr>
<td>Passengers</td>
</tr>
<tr>
<td>E-consump.</td>
</tr>
</tbody>
</table>
Advantages of E-bus compared to Diesel bus

<table>
<thead>
<tr>
<th></th>
<th>Diesel bus</th>
<th>E-bus</th>
</tr>
</thead>
</table>
| **Safety** | • Fear of falling accident
• Vehicle shaking at start and stop conditions
• Especially for elderly persons | • Feel safe even when standing
• Smooth acceleration and no shock of gear change |
| **Comfort** | • Noise and vibration
• Hard to communicate
• Smell of exhaust gas and fuel
• Car sickness | • Quiet and easy to talk
• Easy to hear announcements
• No smell of exhaust gas and fuel
• No car sickness |
| **Convenience** | • Does not arrive on time
• No information where bus is
• Insufficient service number
• No service in the early morning and late-night | • Introducing information and on-demand bus system with ICT
• Good compatibility with E-bus and ICT technology |
MLIT caution: Safety when riding on the bus
*MLIT: Ministry of Land, Infrastructure, Transport and Tourism

- Remain seated until bus stopped.
- When standing or walking toward exit for getting off the bus, grasp a handrail firmly.

- There are many falling accidents in the bus in Japan
- Elderly may break the bones and become bedridden.

E-bus: Passengers feel safe even if they are standing with smooth acceleration and no shock of gear change.
Passenger’s comments: Comfort

Mrs. K
When I ride a diesel bus, I sometimes get motion sickness.
I prefer to ride an electric bus because of no smell of exhaust gas and diesel fuel.

Mr. T
I am a fan of the electric bus. It is very comfortable with quietness and low vibration. When I came to Nagano, I usually decline to ride on the diesel bus and wait for the electric bus and ride it.
Movie: Diesel bus vs. E-bus in Nagano

- Noise and vibration
- Hard to communicate
- Smell of exhaust gas and fuel

- Quiet and less vibration
- Easy to hear announcements
- No smell of exhaust gas and fuel

https://www.youtube.com/watch?v=V53TqcDlPfM
Toshio Hirota, Environmental Research Institute, Waseda University, Japan
One-Way EV Car Sharing “Choi-Mobi Yokohama”

Demonstration field test of ultra-compact mobility vehicles, which are much smaller than regular vehicles and contribute to energy conservation and carbon emission reductions, to popularize them as a new mode of local transport

- 2 passenger ultra-compact lithium-ion battery EV
- Trial period: Oct 2013 – Sept 2015 (2 years)
- 70 vehicles, 110 parking spaces
- Operators: Nissan Motors, City of Yokohama

Toshio Hirota, Environmental Research Institute, Waseda University, Japan
Spread of Car Sharing in Japan

- Number of members is increasing in Japan.
- 800,000 members in 2016 (0.6% of the population)
- 20,000 vehicles (40 members per vehicle)

Source: Foundation for Promoting Personal Mobility and Ecological Transportation

Toshio Hirota, Environmental Research Institute, Waseda University, Japan
Autonomous Car

- Autonomous drive technology and information communication technology are key technologies for E-mobility.
- These technologies make E-mobility more convenient.
- Part of the technologies were already introduced to the market.

- Adaptive Cruise Control
- Lane Keep Assist
- Pre-Collision Braking
- Pre-Collision Throttle Management

Nissan “ProPILOT” 2016

Subaru “EyeSight ver.3” 2014
DoCoMo, DeNA developing Ultrahigh-speed 5G Communication Tech for self-driving car

- Japanese mobile phone service provider NTT DoCoMo and internet service company DeNA are developing high-speed communication system for autonomous car.

- In self-driving, even a small data transmission lag could lead to an accident. So the ultrahigh-speed 5G communication technology -- which is said to be 100 times faster than existing LTE technology -- is seen as essential.

http://techon.nikkeibp.co.jp/atcl/news/16/111004970/?rt=nocnt

Toshio Hirota, Environmental Research Institute, Waseda University, Japan
Summary

Create Sustainable Mobility

- E-mobility technology will be getting ready.
- How the tech. will be applied for community?
- Key: Communication with different fields

Nature Science
- Science
- Technology
 - Vehicle
 - Energy
 - Electronics

Social Science
- Academia
- Government
- Real World
 - Citizen
 - Community
 - Municipality

Different Languages

Communicate to create sustainable mobility

Toshio Hirota, Environmental Research Institute, Waseda University, Japan
Thank you for your attention