

The Team

UNIVERSITÄT
DUISBURG
ESSEN

Open-Minded

University of Duisburg-
Essen

Prof. Dr. Friedrich-Karl Benra
Prof. Dr. Dieter Brillert
www.uni-due.de/tm/

University of Stuttgart

Prof. Dr. Jörg Starflinger
www.ike.uni-stuttgart.de/

Research Centre Řež

Ales Vojacek
Otakar Frybort
Petr Hájek jr.
www.cvrez.cz/en/

ÚJV Řež

Petr Hájek
www.ujv.cz/en/

Delft University of
Technology

Dr. Martin Rohde
www.rst.tudelft.nl

Gesellschaft für
Simulatorschulung mbH

Michael Seewald
www.simulatorzentrum.de/en/

Contact

Organizer

Research Centre Řež
250 65, Husinec-Řež

Ales Vojacek

Phone: +420 266 173 249

Email: ales.vojacek@cvrez.cz

Coordinator of the project

University of Duisburg-Essen

Chair of Turbomachinery

Prof. Dr. Dieter Brillert

Phone: +49 203 379 1722

Email: dieter.brillert@uni-due.de

Internet: <https://www.uni-due.de/tm/>

Dr. Maria Gies

Phone: +49 201 183 7036

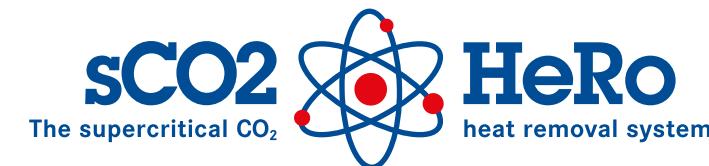
Email: maria.gies@uni-due.de

Internet: <https://www.uni-due.de/ssc>

EPORR
European Project Office
Rhein-Ruhr

SCIENCE SUPPORT CENTRE
FORSCHUNGSMANAGEMENT

www.sCO2-HeRo.eu



The sCO2-HeRo project is funded by the
Euratom research and training programme
2014-2018 under grant agreement No.
662116.

Workshop The supercritical CO₂ heat removal system

1 September, 2017

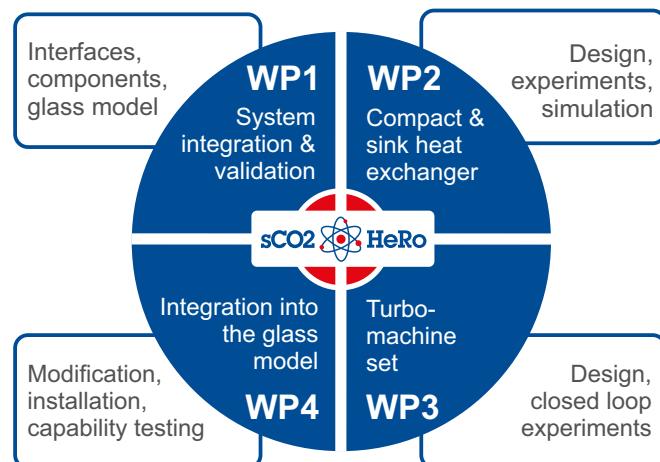
Research Centre Řež

Opening new avenues towards
nuclear reactor safety

Designing a self-propellant,
self-launching cooling cycle

Proofing the concept regarding
safety and reliability

Demonstrating the ongoing
research in nuclear safety to
early-stage researchers


Workshop

The workshop is aimed to give an overview of the supercritical CO₂ conversion cycle development and introduce its applications, particularly the sCO₂-HeRo project.

The first part will be devoted to the **theoretical** lectures in which the working packages (WP's) are described. WP1 is about the thermodynamics of the sCO₂-HeRo system and its integration into the European Light Water Reactor (LWR) fleet. WP2 and WP3 aim at designing, investigating and testing the compact heat exchanger, the sink heat exchanger and the turbo-machine set. In WP4, all single components will be installed and tested in the PWR glass model under different accident scenarios.

The second part will be **practical** including the operation of sCO₂ loop, a visit to the LR0 reactor and the newly built hot cells.

The project structure

Program

Registration		8:00 – 8:30
Opening of the workshop	D. Burkert (CVR)	8:30 – 9:00
Current status of sCO ₂ cycles	V. Dostál (CVR)	9:00 – 9:30
sCO ₂ - HeRo project	J. Starflinger (USTUTT) D. Brillert (UDE)	9:30 – 10:00
sCO ₂ loop and CVR R&D activities	A. Vojacek (CVR)	10:00 – 10:30
Coffee break		10:30 - 11:00
Numerical heat transfer in sCO ₂	M. Rohde A. Hennink (TUD)	11:00 – 11:30
Scarlet experimental facility/HX testing	J. Starflinger M. Strätz (USTUTT)	11:30 – 12:00
Glas model and HeRo cycle	M. Seewald T. Freutel (GfS)	12:00 – 12:30
Turbomachinery for HeRo cycle	D. Brillert A. Hacks (UDE)	12:30 – 13:00
Lunch		13:00 – 14:00
Technical tour - sCO ₂ loop, hot cells, LR0 reactor		14:00 – 17:00

sCO₂-HeRo has the potential to significantly increase the safety of nuclear power plants.

An innovative reactor safety concept

sCO₂-HeRo is a Horizon 2020/Euratom research and innovation project and its main purpose is the development of a cooling system that safely, reliably, and efficiently removes residual heat from nuclear fuel without the requirement of external power sources.

In the case of a nuclear station blackout, the sCO₂-HeRo transports the decay heat to an ultimate heat sink through a self-propellant, self-sustaining, and self-launching, highly compact cooling system using supercritical carbon dioxide (sCO₂).

The system will be ultimately demonstrated and experimentally proven by reactor simulation studies in a unique glass model of a pressurized water reactor (PWR).

Glass model of a pressurized water reactor (PWR)
©Gesellschaft für Simulatorschulung mbH

Please register here

<http://cvrez.cz/hero>

Find more information on

www.sCO2-HeRo.eu