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UBER HOMOMORPHISMEN PROJEKTIVER HJELMSLEV-EBENEN 

The main result of this paper is a representation theo- 
rem for incidence morphisms of desarguesian Hjelmslev 
planes which preserve basis quadrangles. We prove that 
each geometric morphism between desarguesian Hjelmslev 
planes 8 (R), X (S) induces a total order of the coordi- 
nate ring R and a partial homomorphism from R to S. Con- 
versely we have for each partial homomorphism and every 
partial order a uniquely determined geometric morphism. 
By a total order A of a ring R we mean a subring of R such 
that the elements of R\ A are units in R, with inverses 
lying in A. If we have such a total order As R, a partial 
homomorphism from R to another ring S is essentially a 
homomorphism from A to S. 

Homomorphismen projektiver desarguesscher Ebenen lassen 

sich analytisch durch Stellen der zugeh6rigen Koordinaten- 

k8rper beschreiben (siehe ~ndr6 [ 2 ] ,    add [ I l l ) .  In einer 
Arbeit von Garner [ 4 ]  wird dieser Zusammenhang als Xquiva- 

lenz der Kategorie der Korper mit Stellen als Morphismen 

und der Kategorie der projektiven Pappus-Ebenen und geeig- 

neten Homomorphismen interpretiert. 

Das Ziel dieser Note ist die Ausdehnung obiger Resulta- 

te und ihre Verallgemeinerung auf projektive desarguessche 

Hjelmslev-Ebenen. Projektive Hjelmslev-Ebenen (H-Ebenen) 
sind im wesentlichen projektive Inzidenzstrukturen, in de- 

nen die Eindeutigkeit von Verbindungsgeraden zweier Punkte 

bzw. des Schnittpunktes zweier Geraden nicht verlangt wird. 

Dabei beschriinken wir uns auf desarguessche Ebenen, d/as 

sind solche, die ein analytisches Model1 Gber einem Hjelm- 

slev-Ring besi t zen. 

In 8 1 modif izieren wir Begriffe von  add [ 1 i ] und be- 
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weisen einige Hilfsskitze. Eine wesentliche Rolle spielt der 

Begriff einer totalen Ordnung A eines Ringes R. Es handelt 
sich dabei um einen Unterrix A, wobei die Elemente aus R\A 

Einheiten in R sind und ihre Inversen in A liegen. 1st AS R 
eine totale Ordnung, so ist ein partieller Homomorphismus im 

wesentlichen ein Ringhomomorphismus von A in einen anderen 
Ring S. 

Hauptergebnis dieser Arbeit ist folgender Darstellungs- 

satz fiir inzidenzerhaltende Punktabbildungen von H-Ebenen, 

die Basisvierecke respektieren: Es wird bewiesen, daB jeder 

solche geometrische Morphismus zwischen desarguesschen 

H-Ebenen a (R), (S) eine totale Ordnung in R und einen 

partiellen Homomorphismus von R in S induziert. Umgekehrt 

gehort zu jedem partiellen Homomorphismus und jeder totalen 
Ordnung ein geometrischer Morphismus ( 5  2). Ohne stark ein- 
schrankende Zusatzvoraussetzungen an die geometrischen Mor- 

phismen - z. B. Nachbarschaftsbereiche der Basispunkte sol- 
len respektiert werden - ist es unm8glich, den Darstel- 
lungssatz als Xquivalenz geeigneter Kategorien zu inter- 

pretieren ( 4 3 ) .  

§ 0 .  
0.1 DEFINITION. Eine Inzidenzstruktur = (p,  4 1) heiBt - 
eine projektive Hjelmslev-Ebene, kurz H-Ebene, - wennx - fol- 

gende drei Axiome erfiillt [7, Def.01: -- 
( 1 )  bl p,&€T3 gc g : P,QIg 
(2) yg,hcg 3 P C  F: P1g.h 
Zwei Punkte P, Q heiBen benachbart, in Zeichen P o Q ,  

es zwei verschiedene Geraden g, h mit P,QIg,h gibt. Dual -- - - -  -- 
dam ist g o h  definiert. -- 
(3) Es gibt eine gewahnliche projektive Ebene 9 und einen --- -- 
Epimorphismus d: 8 +J 9 mit 
U P  = a &  e P O & ,  d g  = Cih ~4 goh. 

Im folgenden werden wir nur desarguessche H-Ebenen be- 

trachten. Das sind solche, die ein analytisches Model1 iiber 

einem H jelmslev-Ring besi tzen . 
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0.2 DEFINITION. Ein (nicht notwendig kommutativer) Ring R - 
rnit Einselement 1, 0 + I, heiBt Hjelmslev-Ring, kurz H-Ring, - 
falls R folgenden Bedingungen genilgt 17, S.1071: 
(1) Jeder Nullteiler aus R ist zweiseitiger Nullteiler,e 
die Menge N der Nullteiler ist ein zweiseitiges Ideal. - - 
(2) Alle Elemente ~OJI R \  N sind Einheiten. 

(3) Aus a,br N folgt (aeRb oder b€Ra) und (a€ bR oder 
be aR). 

Punkte (Geraden) entsprechen den links(rechts-)homogenen 

Tripeln, deren Elemente nicht alle Nullteiler sind. 1st P 

ein Punkt rnit einer Darstellung (p1,p2,p3) und g eine Gera- 
de rnit einer Darstellung (gl ,g2,g3). so wird die Inzidenz 

"PIgt' durch plgl+p2g2+pJg3 = 0 deflniert. 

Wir weisen noch auf folgende Vereinbarungen hin: die be- 

trachteten Ringe sind nicht notwendig kommutativ, besitzen 

aber ein Einselement 1 ) 0. Lokale Ringe sind Ringe, in de- 
nen die Nichteinheiten ein Ideal bilden (Lambek [8,S.75]). 

Mit J(R) bezeichnen wir die Menge aller Nichteinheiten eines 

Ringes R, rnit U(R) die Einheitengruppe und rnit N(R) die 

Menge aller zweiseitigen Nullteiler. 

§ I *  
1.1 DEFINITION. Ein Unterrinq A eines Ringes R heiI3t totale - 
Ordnunp; von A R, wenn v x c ~ \ A  3 Y E A :  xy = yx = 1. 

Damit wird der Begriff des totalen Unterrings far K6rper 

 ado/ [ 1 1, S .3O9] ) in nahe liegender Weise verallgemeinert . 
Korollar 1.4 zeigt, daB far eine spezielle Klasse von Rin- 
gen totale Ordnungen Ordnungen im Sinne der Definition bei 

Behrens [3, S.2601 sind. 

1.2 DEFINITION. Ein Ring R heiBt Links-(Rechts-)Kettenring, - 
wenn die Links-(Rechts-)Ideale durch Inklusion linear E- 
ordnet sind. 



Ferner setzen wir: N1(R) = (te R I  3 s + 0 :  ts = 0) 

N~(R) = (ts R I  3 s * O: st = 0) 

1.3 LEMMA. Sei A totale Ordnung in R, dann gelten: -- - 
(1) A ist lokal R ist lokal -- 
(2) N1(R) = N1(A) und Nr(R) = Nr(A) 

(3) A Links-Kettenring *R ist Links-Kettenring 
(4) A ist Rechts-Kettenring-R - ist Rechts-Kettenring 

Die Aussagen (2) - (4) verdanke ich V. Poneleit [lo]. 
Beweis.(l) 3 .  Sei A lokal und xER. 1st xgA, so ist x 
oder 1-x Einheit. 1st dagegen xeR\A, so ist x Einheit. 

Mit [8, S.751 ist R ein lokaler Ring. C: . Sei R lokal. 
Wir werden' zeigen, daB J(A) ein Ideal von A ist. Zuerst sei 

x,y 6 U(A) . Dann ist sicherlich xy €U(A). Sei nun x e J(A), 
y6U(A). WXre xy€U(A), dann ware wegen ycU(A) auch x€U(A), 

Widerspruch! Falls x,y €J(A) sind, kijnnen wir 0.B.d.A. 

x,y€ U(R) betrachten, da sonst mit J(R)G J(A) und R lokal 
trivialerweise xy€J(A) ist. W5re xy€U(A), so hatten wir 

~.~(xy)-' = 1 und wegen xeU(R) x-I = y.(xy)-l~ A, also 

xsU(A). Widerspruch zu x€J(A). Entsprechend zeigt man: 

xCA, yEJ(A) +== xy€J(A). Wir weisen nun nach: 

X,YEJ(A) X+YEJ(A). 

a) x,y E J(R)n J(A). Wegen R lokal und J(R)s J(A) ist x+y 

Element von J(A). 

b) x€J(R)n J(A), ycU(R)fl J(A). WXre x+y€U(A), so gibt es 

v c  u(A) mit (x+y)v = 1, also yv = 1-xv. Mit xeJ(R) und R 

lokal folgt 1-xveU(R). Sei also (I-s)(l-xv) = (1-xv)(l-s) 

= 1, so folgt -xv-s+xvs = OEA. Da xcJ(R)nJ(A) und R 

lokal ist, haben wir -s E A, also I-xv = yvr U(A) und darnit 

y = (yv)v" e U(A), irn Widerspruch zu y E J (A). 
c) 1st x,yeU(R)nJ(A), so gilt, da A totale Ordnung ist, 
x-'y EA oder g-'xc A. Sei etwa x'ly EA. 

- 1 x+y = x(l+x ~)€J(A).(~+A)sJ(A). Damit ist A als lokaler 
Unterring nachgewiesen. 

(2) Da A Unterring von R ist, ist sicherlich N1(A)c N1(R), 
Nr(A)ZNr(R). Andererseits sind alle xrR\A Einheiten in 



also N1(R)GN1(A), Nr(R)GNr(A). Damit gilt (2). 
(3) 1st R ein  inks-~ettenrln~, dann ist A als totale Ord- 
nung offensichtlich ein Links-Kettenring, 1st umgekehrt A 
ein Links-Kettenring, so gilt ftir r IZ R, sa R\ A r = (rsml )s. 
Damit ist R ein Links-Kettenring. 

Entsprechend verlguf t der Nachweis von (4). 
Wir stellen der Vollstgndigkeit halber die Beziehung zur 

Definition von Behrens her. 

1.4 KOROLLAR. Sei R ein Ring, dessen Nichtnullteiler E- - 
heiten sind. 1st A totale Ordnung - in R, dann 1st A Ordnung -- 
[3, 5.2601 in R. 
Beweis. Es mu0 gezeigt werden: a) Jeder Nichtnullteiler von 
A ist Einheit in R. Das ist klar, da mit Lemma 1.3 aus 
~ ~ N ~ ( A ) u  Nr(A) folgt: a& N1(R) u Nr(R), also a€U(R). - 1 - 1 b) Jedes Element von R hat die Form al bl bzw. b2ag , 
wobei al,a2 Nichtnullteiler in A sind. 1st x€ R \  A, so ist 
x-I Nichtnullteiler in A, also x = (x-I )-I . 

In Verallgemeinerung des Konzepts von   add [ I I, S ,3101 
definieren wir: 
1.5 DEFINITION. Sei A totale Ordnung &I R und S ein Ring;. - 

heiBt partieller Homomorphismus van R nach S bzgl. A, CP- 
wenn (1 ) rQ : A S is t ein Ringmorphismus, - 
(2) VXEU(R): x-'+ A 9 X E  J(S) 

st nicht der Nullmorphismus. (3) y i p -  
Sind R, S Karper und ist A ein totaler Unterring im Sin- 

ne von ~ a d 6  [Ill, so sind die partiellen Homomorphismen ge- 

rade die Stellen von R [14, S.31. 
1.6 U M M A .  A totale Ordnung eines Ringes und xl, ..., xn -- 
Elemente aus R, die nicht alle in J(R) liegen. D a m  gibt es 
r€R, so da13 rxl, ..., rx e A, wobei nicht alle Elemente n 
rxl, ... rxn &I J(A) a. 
Beweis. Sind Elemente xi ,..., x in J(R), so liegt auch 

1 ik 
jedes Produkt rxi in J(R) und wegen J (R)G J (A) auch in J (A). 

1 

J 
Daher betrachten wir nur solche Elemente, die nicht in J(R) 

liegen und fUhren den Beweis mit vollsthindiger Induktion 



6 Torner 

fiber deren Anzahl. n = 1: - 1 J(R), dann ist xl xl = 1 und f1 
~(A\J(A), setze alsor = xl . Gibt es nunr rnit rxl, ... 
rxkE A und ein j, so dal3 rx € A\ J (A), so betrachten wir J 
rxk+l. 1st rxk+lfA, so sind-wir fertig. Im anderen Fall 

-1 -1 folgt rxk+,EU(R) aus ~ X ~ + ~ ( A ,  also (rx )-I = xk+l r 
Element von A. Nun ist x ~ + ~  -1,-1 rxi = k+ll 

Xk+ 1 xi& A, ferner - 1 - 1 
x ~ + ~  x ~ + ~  = 1 G A\ J(A) . Daher setzen wir r = x ~ + ~  . 

Die Auswahl von r ist im allgemeinen nicht eindeutig. 
ErfUllen rl, r2 die Bedingungen von Lemma 1.6 in bezug - 
auf A, so ist rlr2 U(A), denn sei r2xie A\ J(A), also 
??,pic u(A), dann ist rlxi = r 1 2  r -'r2xi"A, was rlr2-le A 
zur Folge hat. Umgekehrt gilt: 

- 1 
rlr2 €U(A) 9(rlxl,. . .,rlxnEA und 3 1: r1xieU(A) 

-r2xl,...,r2xnPA und 3 j: r x eU(A)) 
2 j 

9 2 .  
Wir wenden uns nun der geometrischen Interpretation 

der in 9 1 eingefUhrten Begriffe zu. 
2.1 DEFINITION. Unter e iner H j e lms lev-Ebene (8  ,a ) !r& - 
Basisviereck verstehen wir eine projektive H-Ebene rnit ei- 

nem Quadrupel Punkten$= (P1,P2,P3,E) rnit der Eigen- - 
schaft: P P P E ist ein nicht ausgeartetes Viereck [6, A.31. 1 2 3  --- 
2.2 DEFINITION. Unter einem basiserhaltenden H-Morphismus - 
zweier H-Ebenen ( a  ,a ), ( % I ,  %) verstehen wir eine Punkt- 
abbildung f mit folgenden Eigenschaften: 
( 1 ) f : ' - ist inzidenzerhaltend. 

(2) Sind (P ,P ,P ,E) %. (P',P',P',E' ) die Basisvierecke 1 2 3  1 2 3  
von a @.XI , so gilt: fP = P; (i = 1,2,3) und fE = E / - i 
und schreiben unter diesen Bedingungen f : (x ,8 ) +- (t1,8'). - 

W r  projektive Ebenen bilden nun die Objekte (2.1) zu- 
sammen mit den Morphismen (2.2) eine Kategorie. Garner [4]  
wies ffir projektive Pappus-Ebenen die #quivalenz rnit einer 
speziellen Kategorie von Ringen nach. In unserem Fall wirft 
allerdings eine ringtheoretische Beschreibung der basiser- 
haltenden H-Morphismen erhebliche Schwierigkeiten auf. Das 



1XBt sich geometrisch dadurch verstehen, weil zuntichst 

noch nicht ausgeschlossen ist, daB zu einem Viereckspunkt 
benachbarte Punkte unter einem basiserhaltenden H-Morphis- 

mus in den Nachbarschaftsbereich eines anderen Basispunktes 

abgebildet werden k6nnen. Um dies zu verhindern, setzen wir: 

2.3 DEFINITION. Ein basiserhaltender H-Morphismus f heiBt 
regulxrer H-Morphismus, wenn gilt: 

P ,P E(P ,P ,P 1 undXoPiundfXofP => i = j. i j  1 2 3 -  J 
Wie schon oben erwxhnt betrachten wir im folgenden nur 

desarguessche H-Ebenen. Nehmen wir als Bezugssystem fur 

die Koordinatisierung das Basisviereck (P ,P ,P ,E), so 
1 2 3  

haben die Punkte die Darstellungen (I,O,O), (0,1,0), 

(0,0,1), (1,1,1) und es gibt bis auf Isomorphie genau ei- 

nen H-Ring Rj so da13 8 = 3 (R) is t . 8 (R) is t das oben er- 
wxhnte analytische Model1 (vg1.[7]). Da desarguessche H-Ebe- 

nen viereckstransitiv sind , khnen wir uns hn folgenden auf 

H-Ebenen a (R) mit der naturlichen Basls (l,O,O), (0,1,0), 
(0,0,1), (1,1,1) beschrmen. 

Sei A totale Ordnung in R. Wir sagen: (x1,x2,x3) ist 
eine A-Darstellung des Punktes X (der Geraden x), wenn 
,x ,X E A gilt. Mit Lemma 1.6 hat jeder Punkt vondt (R) X1 2 3 

eine A-Darstellung. Das ermaglicht uns, den folgenden Satz 

zu beweisen: 

2.4 SATZ. Seien R, S H-Ringe, A totale Ordnung von R und q -- - 
ein partieller Homomorphismus van R nach S. Dann wird - 
durch f ( lp )X = ( xi, lp x2. x3). wobei (xl ,x2,xg) A-Dar- 

stellung von X ist, ein regularer H-Morphismus 
f(9): (~(R),B ) - (g(s),al) definiert. 
Beweis. Seien (xl ,x2,x3), (XI ,XI ,XI ) A-Darstellungen von X, 

1 ,2 3 
so gibt es ~ E U ( A )  mit xi = rxi . Da rp Ringmorphismus ist, 
ist p r Einheit in 9. also sind (Ip xl, Vx2, P x3) bzw. 
( Ip x!, , p x;, y xi ) Darstellungen desselben Punktes. 
Seien X (j = 1,2,3) kollineare Punkte, wobei (x 

j 1 j ~ ~ 2 j ~ ~ 3 j )  
A-Darstellungen von X, seien, so gibt es eine Gerade g mit 

J 
einer A-Darstellung (gl.gg,g3) und x g +x .g +x .g = 0. 

lj 1 25 2 35 3 



Nun gilt: yxlj ygl+ yx2j$)g2+ (Px3 yg3 = 0, also gibt es 
in (S) eine Gerade, die mit f ( jXj (j = I 2 , )  inzidiert. 
Ferner ist offensichtlich f( @)(I,O,O) = (1,0,0), 

f(q )(0,1,0) = (0,1,0), f(q )(0,0,1) = (0,0,1) und 
f 1 , I l )  = (l,l,l). 1st etwa (xl,x2,x3) o(l,O,O), so 

ist XI E U (A), x ,x € J (R) . Ndheres siehe Klingenberg 
2 3 

[ 7 ,  S. 107/1081. Daher ist yxl E u(S), also ( Ipxl, Yx2, ( ~ 5 )  
zu (0,1,0) bzw. (0,0,1) nicht benachbart. Damit ist f(Q ) 
als regulttrer H-Morphismus nachgewiesen. 

2.5 SATZ. 1st f: (R(R),B ) -+ (8  (s),%') - ein reaularer 
H-Morphismuq, dann gibt es genau eine totale Ordnung A R 

und einen partiellen Homomorphismus (Pf: A 3 S ,  so da13 -- 
f( IQf) = f *. 
Beweis. Wegen f ( 3 )  = 3' ist filr i,j,kE [O,1) sicher 
f (i, j, k) = (i, j, k) . Wir betrachten 
Da f regultirer(!) H-Morphismus ist, haben wir J ( R ) G  A, denn 
a€J(R) * (l,a,O) 0(1,0,0), d.h. f (l,a,O)# (0,1,0), also 
aEA. Wir zeigen nun: A ist totale Ordnung. 

a €  A: f (l,a,O)@ (0,1,0), also f (l,a,l) 0 (0,1,0), daher auch 

f(0,a,1)@ (0,1,0). Deshalb ist f(O,a,l)f(l,O,l) zu 
f(O,l,~)f(~,O,l) nicht benachbart, also f(1,-a,0)0(0,1,0). 

Xhnlich zeigt man nun: b) a,beA+a+baA (Fig.2) und 

c) a,bs A s a b o A  (Fig.3). 



Fig. 2 Fig. 3 

d) Wegen f(1,1,0) = (1,1,O)# (0,1,0) ist IbA. 

Aus a)-d) folgt: A ist Unterring von R. 

e) \f aaU(R): a e ~  3 a-'6 A 

1st ac) A, so gilt 
f (l,a,O) o (0,1,O), also 

f (0,l-a,1)0 (0,1,0). 
0 4 - a  f (0,l -a, 1 )f (1,1,0) ist 

benachbart zu 

'OJ'') f(0,1,O)f(1,1,0). Somit 

ist f (a,l,l)o f(l,0,0) 
und daher, weil aeU(R), 

f(a,l,O) = f(~,a-',~) 
benachbart zu f(1,0,0), 

(0''40' also insbesondere 

Damit ist A als totale Ordnung in R nachgewiesen. Nach Kon- 
struktion wird durch f(l,a,O) = (l,aJ,O) mit acga'ein 

Ringmorphismus IQf: A +S definiert. Aus e) erkennen wir, 

daB a c U(R) und a 4  A =+ a-& J(s). Xhnlich wie in e) weist 
man nach, daR f(Yf) = f ist. 

Seien A, A' totale Ordnungen in R und pf, yifpartielle 
Homomorphismen mit f ( Y f  = f(lplf) = f. 1st x g  A, x(A', 



so ist x-I E A . Sei ( I ,X90) A-Darstellung eines Punktes X, 

f (l,x,0) = (I, f~.O) 8 (0~1.0). 1st (x", 1.0) A' -Darstel- 
lung des gleichen Punktes X, so ist wegen ipbx-l E J (S) 
f(x1,lY0) = (lp~~~',1,0)~(0,1,0). Widerspruch! Daher 

gilt A GA' und aus Symmetriegrkden A = A '  . Demzufolge ist 
Yf = 8; 

Fassen wir Satz 2.4 und 2.5 zusamrnen, so erhalten wir 
einen Darstellungssatz fur reguliire H-Morphismen von 

desarguesschen H-Ebenen. 

2.6 DARSTELLUNGSSATZ. Sei f : ( 8 ( R )  , % ) - i  ( 8  (s) ,B') ein - 
regularer. H-Morphismus van desarguesschen H-Ebenen. Dann 
gibt es genau eine totale Ordnung 2 R und genau einen 
partiellen Homomorphismus, der f induziert. Umgekehrt &- 
finiert jede totale Ordnung & R !@ Jeder partielle Homo- 
morphism~~ = R - S einen regulgren H-Morphismus. 
In diesem Abschnitt werden wir noch kurz auf die oben er- 

wahnten Schwierigkeiten eingehen, den Darstellungssatz als 

Xquivalenz geeigneter geometrischer bzw. algebraischer Ka- 

tegorien zu formulieren. Die Schwierigkeit liegt darin be- 

grgndet, daD die Verkettung von regulxren H-Morphismen nicht 

unbedingt eine Abbildung gleicher Art ist, d.h. nicht re- 

gular ist. Das werden wir dadurch belegen, dal3 wir partiel- 
le Homomorphismen von H-Ringen betrachten, deren Verkettung 

keln partieller Homomorphismus ist. 

Sei K ein kommutativer Kgrper; mit einer linear geordne- 

ten Halbgruppe r konstruieren wir nach der Methode von 
B.H. Neumann [ g ]  den verallgemeinerten Halbgruppenring ~ ( r )  
(vgl. [ 11, s ,315/316] . Wir wahlen r wie f olgt 
r = ( ( d , p ) I o c E  (0,1), wobei ci = 0 3 P€No und d =  1.7p€-INo] 
r is t bzgl . der lexikographischen Ordnung linear geordne t 



ist r linear geordnete Halbgruppe. Dann ist der verallge- 
meinerte Halbgruppenring K(r) die Menge aller Abbildungen 

r: r + K, wobei der TrXger ( lx 1 r (d ) + 0) wohlgeordnet in 
r ist. Es stellt sich heraus, daB K( r )  ein kommutativer 
H-Ring mit zwei Primidealen N, P, P S N  ist. Dabei ist 

N = [r( min(PI1 r(d ) 4 0) 3(0,1)), 
P = (rl min(d I r(d) + O)>(O,k) fiir alle kc W). Nun de- 
finiert die Projektion 14 w K(P ) 3 K( r)/~ einen partiel- 1 ' 
len Homomorphismus der totalen Ordnung K ( r ) in K ( r ) . 
,( r)/p ist ein Bewertungsring vom Range 1. Unter tf wer- 

hen alle Nullteiler, die nicht in P liegen, zu Nichtnull- 
;eilern in K( P ) / P  = S1, d.h. zu Einheiten des Quotienten- 

korpers &(S1). Die Menge aller Bewertungen eines KBrpers L 
ist eine geordnete Menge, sofern man gquivalente Bewertun- 

gen identifiziert und fiir Bewertungen vl, v2 setzt: 

[12, ~.54ff] vlgv2 - A 2 A . Dabei sind Av bzw. Av 
v1 v2 1 2 

die :u den Bewertungen vl, v gehorigen Bewertungsringen. 2 
Anderzrseits gilt, wenn J1 bzw. J das maximale Ideal von 2 
A bzw. Av ist: (Gilmer [5, S. 1821 v, < v2 J~ c J ~ .  

1 2 

ring ist S2totale 

Sei I das von ( q  
die Projektion (Q2 

mus, wobei das ep 

gilt q2(J(S2)) = 

Wir wxhlen nun K so, daB der Quotientenkorper Q(S,) nicht 

aquivalente Bewertungen vom Range 1 besitzt, die notwendi- 

gerweise unabhxngig sind [12, S.591. Dann existiert auBer 
S1 ein Bewertungsring S2 von Q(S,), SO daB weder SIC_ S2 

noch S2C,S1 richtig ist. Daher gibt es ein Element r aus 

N(K( r ) )  mit ylr € J (S1 ) und nicht ylr 8 S2. Als Bewertungs- 

Ordnung in Q(S~ ), also ( lr)-'~ S2, 
erzeugte Ideal in S so definiert 2 ' 

: S2-7 s2/1 einen partiellen Homomorphis- 

imorphe Bild s2/1 H-Ring ist [13]. Ferner 

N(s~/I). Wenden wir dieses Ergebnis auf 
wir folgendes: 

,0), der unter 

die geometrische Situation an, so erkennen 

Es gibt einen Punkt, ngmlich (l,r,O)o(l,O 

f ( '4 ) nach (1, (f lr,O) abgebildet wird. 
(1,090) 0 (1,r,o) 



( (  y ,r)-I, I ,o) 1st eine S2-Darstellung des Punktes 
(1,  rQ,r,O). Das Bild unter f(lQ2) ist (0,1,0). 

( (  y,r)-lyl ,o) 

Damit wurde gezeigt, daI3 die ~erkettung von regulzren 

H-Morphismen im allgemeinen keinen regulzren H-Morphismus 
erbringt. 
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