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{/'BER HOMOMORPHISMEN PROJEKTIVER HJELMSLEV~EBENEN

GUnter To6rner

The main result of this paper is a representation theo-
rem for incidence morphisms of desarguesian Hjelmslev
planes which preserve basis quadrangles., We prove that
each geometric morphism between desarguesian Hjelmslev
planes # (R), ¥ (S) induces a total order of the coordi-
nate ring R and a partial homomorphism from R to S. Con-
versely we have for each partial homomorphism and every
partial order a uniquely determined geometric morphism.

By a total order A of a ring R we mean a subring of R such
that the elements of R\ A are units in R, with inverses
lying in A. If we have such a total order A¢ R, a partial
homomorphism from R to another ring S is essentially a
homomorphism from A to S.

Homomorphismen projektiver desarguesscher Ebenen lassen
sich analytisch durch Stellen der zugehdrigen Koordinaten-
kdrper beschreiben (siehe André [2], Radd [11]). In einer
Arbeit von Garner [4) wird dieser Zusammenhang als Bquiva-
lenz der Kategorie der Korper mit Stellen als Morphismen
und der Kategorie der projektiven Pappus-Ebenen und geeig-
neten Homomorphismen interpretiert.

Das Ziel dieser Note ist die Ausdehnung obiger Resulta-
te und ihre Verallgemeinerung auf projektive desarguessche
Hjelmslev-Ebenen. Projektive Hjelmslev-Ebenen (H-Ebenen)
sind im wesentlichen projektive Inzidenzstrukturen, in de-
nen die Eindeutigkeit von Verbindungsgeraden zweier Punkte
bzw. des Schnittpunktes zweier Geraden nicht verlangt wird.
Dabel beschridnken wir uns auf desarguessche Ebenen, das
sind solche, die ein analytisches Modell {iber einem Hjelm-
slev-Ring besitzen.

In § 1 modifizieren wir Begriffe von Radd [17] und be-
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weisen einige Hilfssdtze. Eine wesentliche Rolle spielt der
Begriff einer totalen Ordnung A eines Ringes R. Es handelt
sich dabei um einen Unterring A, wobel die Elemente aus R\ A
Einheiten in R sind und ihre Inversen in A liegen. Ist A¢ R
eine totale Ordnung, so ist ein partieller Homomorphismus im
wesentlichen ein Ringhomomorphismus von A in einen anderen
Ring S.

Hauptergebnis dieser Arbeit ist folgender Darstellungs-
satz fir inzidenzerhaltende Punktabbildungen von H-Ebenen,
die Basisvierecke respektieren: Es wird bewiesen, daB jeder
solche geometrische Morphismus zwischen desarguesschen
H-Ebenen  (R), # (S) eine totale Ordnung in R und einen
partiellen Homomorphismus von R in S induziert. Umgekehrt
gehdrt zu Jjedem partiellen Homomorphismus und jeder totalen
Ordnung ein geometrischer Morphismus (§ 2). Ohne stark ein-
schrédnkende Zusatzvoraussetzungen an die geometrischen Mor-
phismen - z. B. Nachbarschaftsbereiche der Basispunkte sol-
len respektiert werden - ist es unmdglich, den Darstel-
lungssatz als Bquivalenz geeigneter Kategorien zu inter-
pretieren (§3).

§o.

0.1 DEFINITION. Eine Inzidenzstruktur ¥ = (R, g'I) heiBt
eine projektive Hjelmslev-Ebene, kurz H-Ebene, wenn}f fol-
gende drei Axiome erfillt [7, Def.0]:

(1) VP,QeRI ge §: P,Qlg

(2) \{g,hc%ﬂ Pe R: PIg,h

Zzwei Punkte P, Q heifBlen benachbart, in Zeichen Peo Q, wenn
es zwel verschiedene Geraden g, h mit P,QIg,h gibt. Dual

dazu ist go h definiert. .

(3) Es gibt eine gewdhnliche projektive Ebene P und einen
Epimorphismus o: ¥ —> P mit

0P = aQ <= PoQ, Ag = &h < go h.

Im folgenden werden wir nur desarguessche H-Ebenen be-
trachten. Das sind solche, die ein analytisches Modell liber
einem Hjelmslev-Ring besitzen.
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0.2 DEFINITION. Ein (nicht notwendig kommutativer) Ring R
mit Einselement 1, O # 1, heiBt Hjelmslev-Ring, kurz H-Ring,
falls R folgenden Bedingungen genlgt [7, S.107]:

(1) Jeder Nullteiler aus R ist zweiseitiger Nullteiler,und
die Menge N der Nullteiler ist ein zweiseitiges Ideal.

(2) Alle Elemente von R~ N sind Einheiten.

(3) Aus a,be N folgt (aeRb oder be Ra) und (ae bR oder

b e aR).

Punkte (Geraden) entsprechen den links(rechts-)homogenen
Tripeln, deren Elemente nicht alle Nullteiler sind. Ist P
ein Punkt mit einer Darstellung (p1,p2,p3) und g eine Gera-
de mit einer Darstellung (g1,g2,g3), so wird die Inzidenz
" 1" - s

PIg" durch p1g1+p2g2+p3g3 = 0 definiert.

Wir weisen noch auf folgende Vereinbarungen hin: die be-
trachteten Ringe sind nicht notwendig kommutativ, besitzen
aber ein Einselement 1 # 0, Lokale Ringe sind Ringe, in de-
nen die Nichteinheiten ein Ideal bilden (Lambek [8,5.75]).
Mit J(R) bezeichnen wir die Menge aller Nichteinheiten eines
Ringes R, mit U(R) die Einheitengruppe und mit N(R) die
Menge aller zwelseitigen Nullteiler.

§1.

1.1 DEFINITION. Ein Unterring A eines Ringes R heifit totale
Ordnung von A in R, wenn VYxeR\A JyeA: xy = yx = 1.

BEMERKUNGEN. (1) 1€ A
(2) 3R J(a) Twd

Damit wird der Begriff des totalen Unterrings fir K&rper
(Radd [11, S.309]) in naheliegender Weise verallgemeinert.
Korollar 1.4 zeigt, daB filr eine spezielle Klasse von Rin-
gen totale Ordnungen Ordnungen im Sinne der Definition bei
Behrens [3, S.260] sind.

 fegesed . xeJRoxeh

1.2 DEFINITION. Ein Ring R heiBt Links-(Rechts-)Kettenring,
wenn die Links-(Rechts-)Ideale durch Inklusion linear ge-
ordnet sind.
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{teR|3 s £ 0: ts
{te R|3 s + 0: st

0}
0}

1]
i

Ferner setzen wir: Nl(R)
N_(R)

i
]

1.2 LEMMA. Sei A totale Ordnung in R, dann gelten:
(1) A ist lokal <> R ist lokal

(2) Ny(R) = N (A) und N_(R) = N_(A)

(3) A ist Links-Kettenring <> R 1ist Links-Kettenring
() A ist Rechts-Kettenring<s™R ist Rechts-Kettenring

Die Aussagen (2) - (4) verdanke ich V. Poneleit [10].
Beweis. (1) = . Sei A lokal und x€R. Ist x¢ A, so ist x
oder 1-x Einheit. Ist dagegen x&é R\ A, so ist x Einheit.
Mit [8, 8.75] ist R ein lokaler Ring. < . Sei R 1lokal.
Wir werden zeigen, daB J(A) ein Ideal von A ist. Zuerst sei
%X,y€ U(A). Dann ist sicherlich xy€U(A). Sei nun x €J(A),
vyeU(A). Wdre xy€ U(A), dann wire wegen ye U(A) auch xe U(A),
Widerspruch! Falls x,y € J(A) sind, k&nnen wir o.B.d.A.
x,y € U(R) betrachten, da sonst mit J(R)& J(A) und R lokal
trivialerweise xy€ J(A) ist. Wire xy€U(A), so hidtten wir
x-y(xy)'1 = 1 und wegen x € U(R) x~1 - y-(xy)-1e A, also
x€U(A). Widerspruch zu x€J(A). Entsprechend zeigt man:
x€A, yEJ(A) =3> xy€J(A). Wir weisen nun nach:

x,y €eJ(A) =3 x+y€J(A).

a) x,y€J(R)Nn J(A). Wegen R lokal und J(R)a J(A) ist x+y
Element von J(A).

b) x€J(R)NJ(A), ye U(R)NJ(A). Wire x+y €eU(A), so gibt es
ve U(A) mit (x+y)v = 1, also yv = t1-xv. Mit x€ J(R) und R
lokal folgt 1-xveU(R). Sei also (1-s)(1-xv) = (1-xv)(1-s)
= 1, so folgt -xv-s+xvs = O€A. Da xeJ(R)nJ(A) und R
lokal ist, haben wir -se€ A, also 1-xv = yve U(A) und damit
y = (yv)v'1e U(A), im Widerspruch zu ye€J(A).

e) Ist x,yeU(R)nJ(A), so gilt, da A totale Ordnung ist,
qu €A oder y-1xeA. Sei etwa x-1y €A.

x+y = x(1+x"'y) €J(A)- (1+A) € J(A). Damit ist A als lokaler
Unterring nachgewiesen.

(2) Da A Unterring von R ist, ist sicherlich Nl(A)g Nl(R),
Nr(A)gNr(R)’ Andererseits sind alle xeR\ A Einheiten in R,
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also Nl(R)gNl(A), Nr(R)GNr(A). Damit gilt (2).
(3) Ist R ein Links-Kettenring, dann ist A als totale Ord-
nung offensichtlich ein Links-Kettenring. Ist umgekehrt A
ein Links-Kettenring, so gilt fiir reR, s€ RN A r = (rs'1)s.
Damit ist R ein Links-Kettenring.
Entsprechend verlduft der Nachweis von (4).

Wir stellen der Vollstdndigkelt halber die Beziehung zur
Definition von Behrens her.
1.4 KOROLLAR. Sel R ein Ring, dessen Nichtnullteiler Ein-
heiten sind. Ist A totale Ordnung in R, dann ist A Ordnung
[3, S.260] in R.
Beweis. Es muB gezelgt werden: &) Jeder Nichtnullteiler von
A ist Einheit in R. Das 1st klar, da mit Lemma 1.3 aus
a¢N1(A)U Nr(A) folgt: aé Nl(R)uNr(R), also a €U(R).
b) Jedes Element von R hat die Form a1-1b1 bzw. b2a2'1,
wobel a8, Nichtnullteiler in A sind. Ist x€ R\ A, so ist
x~V Nichtnullteiler in A, also x = (x'1)-1.

In Verallgemeinerung des Konzepts von Rado [11, 8.310]

definieren wir:

1.5 DEFINITION. Sei A totale Ordnung in R und S ein Ring.
¥ heit partieller Homomorphismus von R nach S bzgl. A,
wenn (1) ¢: A—>3 1ist ein Ringmorphismus,

(2) Yx€U(R): x"'é A =2 xeJ(S) und

(3) (p ist nicht der Nullmorphismus.

Sind R, S K&rper und ist A ein totaler Unterring im Sin-
ne von Radd [11), so sind die partiellen Homomorphismen ge-
rade die Stellen von R [14, S.3].

1.6 IEMMA. Sei A totale Ordnung eines Ringes und XqsooesXy
Elemente aus R, dle nicht alle in J(R) liegen. Dann gibt es
ré€R, so daB rx,,...,rx € A, wobel nicht alle Elemente
rxy,...rx, in J(A) sind.

Bewels. Sind Elemente x; ,...,x; 1in J(R), so liegt auch
1 k
jedes Produkt rx, in J(R) und wegen J(R)c J(A) auch in J(A).

Daher betrachten wir nur solche Elemente, die nicht in J(R)
liegen und fihren den Beweis mit vollstédndiger Induktion
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iiber deren Anzahl. n = 1: x1¢J(R), dann ist x1'1x1 = 1 und

1€ ANJ(A), setze also r = x1— . Gibt es nun r mit rx,,...

rx, € A und ein j, so daB rxJe ANJ(A), so betrachten wir

k

TXp4te k+1
folgt rx, € U(R) aus Xy 1 ¢ A,1also (rx

-1 =
Elemf?t von A. Nun ist Xt r orx; = Xprt i
Xpeq Xpgq = 1€ AN J(A). Daher setzen wir r = Xyi1

Die Auswahl von r ist im allgemeinen nicht eindeutig.

Ist rx, , ,€A, so sind wir fertig. Im anderen Fall

-1 -1_-1
k+l) - xk+1 r
X, € A, ferner

Erfiillen Ty, Tp die Bedingungen von Lemma 1.6 in bezug

auf A, so ist r1r2'1€ U(A), denn sei r,x;e AN J(A), also

; 3 -1 -1
r X, € U(A), dann ist r,X; = 1,1, r X, €A, was r,r," €A
zur Folge hat. Umgekehrt gilt:

-1 € U(A) =>(r1x1,...,r1xn€A und Ji: r1xieU(A)

<> T X5...,TX €A und 33 rexjéU(A)).

T

§ 2.

Wir wenden uns nun der geometrischen Interpretation
der in § 1 eingefiihrten Begriffe zu.
2.1 DEFINITION. Unter einer Hjelmslev-Ebene (¥ ,B) mit
Basisviereck verstehen wir eine projektive H-Ebene mit ei-
nem Quadrupel von PunktenB= (P1,P2,P3,E) mit der Eigen-
schaft: P E ist ein nicht ausgeartetes Viereck [6, A.3].

1P2P3

2.2 DEFINITION. Unter einem basiserhaltenden H-Morphismus

zweier H-Ebenen (¥ ,B), (¥',B') verstehen wir eine Punkt-

abbildung f mit folgenden Eigenschaften:

(1) £: 8 —>&' 1ist inzidenzerhaltend.

(2) S8ind (P1,P2,P3,E) bzw. (P',P’,Pé,E’) die Basisvierecke

von ¥ bzw.¥®' , so gilt: fP, = P{ (1 = 1,2,3) und fE = E’

und schreiben unter diesen Bedingungen f: (¥ ,8) ~>(3£’,B’).
Fir projektive Ebenen bilden nun die Objekte (2.1) zu-

sammen mit den Morphismen (2.2) eine Kategorie. Garner [4]

wies filr projektive Pappus-Ebenen die Kquivalenz mit einer
speziellen Kategorie von Ringen nach. In unserem Fall wirft
allerdings eine ringtheoretische Beschreibung der basiser-
haltenden H-Morphismen erhebliche Schwierigkeiten auf. Das
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148t sich geometrisch dadurch verstehen, weil zunidchst

noch nicht ausgeschlossen 1st, daB8 zu einem Viereckspunkt
benachbarte Punkte unter einem basiserhaltenden H-Morphis-
mus in den Nachbarschaftsbereich eines anderen Basispunktes
abgebildet werden konnen. Um dies zu verhindern, setzen wir:

2.5 DEFINITION. Ein basiserhaltender H-Morphismus f heift
regulidrer H-Morphismus, wenn gilt:
Pi’PJ E{P1,P2,P3} und Xo P, und f‘xofPJ = 1 =].

i
Wie schon oben erwdhnt betrachten wir im folgenden nur
desarguessche H-Ebenen. Nehmen wir als Bezugssystem fiir
die Koordinatisierung das Basisviereck (P1,P2,P3,E), 80
haben die Punkte die Darstellungen (1,0,0), (0,1,0),
(0,0,1), (1,1,1) und es gibt bis auf Isomorphie genau ei-
nen H-Ring R, so daB¥ =% (R) ist. ¥ (R) ist das oben er-
wihnte analytische Modell (vgl.[7]). Da desarguessche H-Ebe-
nen viereckstransitiv sind , ktSnnen wir uns im folgenden auf
H-Ebenen ¥ (R) mit der natUrlichen Basts (1,0,0), (0,1,0),
(0,0,1), (1,1,1) beschrénken.

Sei A totale Ordnung in R. Wir sagen: (x1,x2,x3) ist
eine A-Darstellung des Punktes X (der Geraden x), wenn
x1,x2,x36 A gilt., Mit Lemma 1.6 hat Jeder Punkt vondl (R)
eine A-Darstellung. Das ermbglicht uns, den folgenden Satz
zu beweisen:
2.4 SATZ. Seien R, S H-Ringe, A totale Ordnung von R und ¢
ein partieller Homomorphismus von R nach S. Dann wird
durch £ (¢ )X = ('-f’x1,? Xps ‘ij)’ wobel (x1,x2,x3) A-Dar-
stellung von X ist, ein regulidrer H-Morphismus
£(9): (H(R),B) — (H(s),B') definiert.
Beweis. Seien (x1,x2,x3), (x;,xé,xé ) A-Darstellungen von X,
so gibt es reU(A) mit x; = rxi . Da ¢ Ringmorphismus ist,
ist ¢r Einhei}: in 8, also sind (¥ Xqs P X, ij) bzw.
((px%,tfxé,lij ) Darstellungen desselben Punktes.
Seien XJ (j = 1,2,3) kollineare Punkte, wobei (X1J:X23:X33)
A-Darstellungen von X, seien, so gibt es eine Gerade g mit
einer A-Darstellung (51’82’83) und X1jg1+x2332+x3333 = 0.
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Nun gilt: L(xU tyg1+ xfxejq)g2+ (ijg ‘?g} = 0, also gibt es
in ¥ (8) eine Gerade, die mit £( ¢ Xy (3 = 1,2,3) inzidiert.
Ferner 1ist offensichtlich f£(¢)(1,0,0) = (1,0,0),
£(¢)(0,1,0) = (0,1,0), £(¢ )(0,0,1) = (0,0,1) und
£y)(1,1,1) (1,1,1). Ist etwa (x1,x2,x3) o(1,0,0), so
ist x,€ U(A), x2,x35 J(R). Ndheres siehe Klingenberg

{7, 8.107/108]. Daher ist (px1eU(S), also (q’x1, (fxe,(pxj)
zu (0,1,0) bzw. (0,0,1) nicht benachbart. Damit ist f({ )
als reguldrer H-Morphismus nachgewlesen.

1]

2.5 sATzZ. Ist f: (H@R),H) — (X (s),R) ein reguldrer
H-Morphismus, dann gibt es genau eine totale Ordnung A in R
und einen partiellen Homomorphismus {.: A —>S, so da8
£(¢,) = f ist.
Beweis. Wegen f(B) = B' ist fur 1,3,k € (0,1} sicher
£f(i,j,k) = (i,J,k). Wir betrachten

A = {(a€eRrR|f(1,2,0)8(0,1,0)].
Da f reguldrer(!) H-Morphismus ist, haben wir J(R)C A, denn
aeJ(R)=> (1,a,0) o(1,0,0), d.h. £(1,a,0)e(0,1,0), also
a€A. Wir zeigen nun: A ist totale Ordnung.
a) a€EA=> -aeA

(0,04)

Pig. 1

(4-a,0) (400) (1,a,0) (0,4,0)
a€A: £(1,a,0)a (0,1,0), also f(1,a,1)® (0,1,0), daher auch
£(0,a,1)#& (0,1,0). Deshalb ist £(0,a,1)f(1,0,1) zu
£(0,1,0)r{(0,0,1) nicht benachbart, also f(1,-a,0)® (0,1,0).
Ahnlich zeigt man nun: b) a,beA=>a+beA (Fig.2) und
¢) a,be A=pabel (Fig.3).
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(00 (0.0) (150) (dasbo)  (610) (4,00) (40l (4h0)(habe) (4,6,0) (04,0)
Fig. 2 Fig. 3
d) Wegen f£(1,1,0) = (1,1,0)@& (0,1,0) ist 1eA.
Aus a)~d) folgt: A ist Unterring von R.
e) ¥ a€U(R): adA = a” g A
Ist a¢ A, so gilt
©,0) £(1,8,0) 0 (0,1,0), also
£(0,1-a,1)0 (0,1,0).
£(0,1-a,1)f(1,1,0) ist
benachbart zu
£(0,1,0)£(1,1,0). Somit
ist f(a,1,1)0f(1,0,0)
und daher, weil a e U(R),
f(a,1,0) = £(1,a"',0)
benachbart zu £(1,0,0),
(to0) (40.0) (44,0) (%49) (@40) also insbesondere
Fig.l £(1,27',0)% £(0,1,0).
Damit ist A als totale Ordnung in R nachgewiesen. Nach Kon-
struktion wird durch f(1,8,0) = (1,a’,0) mit arp a'ein
Ringmorphismus Qf: A —» S definiert. Aus e) erkennen wir,
daB ac¢U(R) und ad A =3 a_]eJ(S). Ahnlich wie in e) weist
man nach, daB f((ff) = f 1ist.
Seien A, A' totale Ordnungen in R und ?f, ¢'fpartielle
Homomorphismen mit f(tpf) = f(&flf) = f. Ist xeA, x¢A',
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so ist x_'€ A . Sei (1,x,0) A-Darstellung eines Punktes X,
£(1,%,0) = (I, §.x,0)%(0,1,0). Ist (x~',1,0) A' -Darstel-

lung des gleichen Punktes X, so ist wegen ?f e J(8)
1

f(x ',1,0) = Wf ,1 0)o (0,1,0). Widerspruch! Daher

gilt ACA'und aus Symmetriegriinden A = A, Demzufolge ist
1

P = fr-

Fassen wir Satz 2.4 und 2.5 zusammen, so erhalten wir
einen Darstellungssatz fir reguldre H-Morphismen von
desarguesschen H-Ebenen.

2.6 DARSTELLUNGSSATZ. Sei f: (¥ (R),B ) —> (¥ (5),B) ein
reguldrer- H-Morphismus von desarguesschen H-Ebenen. Dann

gibt es genau eine totale Ordnung in R und genau einen

partiellen Homomorphismus, der f induziert. Umgekehrt de-

finlert jede totale Ordnung in R und jeder partielle Homo-

morphismus von R nach S einen regulidren H-Morphismus.

§3.

In diesem Abschnitt werden wir noch kurz auf die oben er-
wdhnten Schwierigkeiten eingehen, den Darstellungssatz als
Kquivalenz geeigneter geometrischer bzw. algebralscher Ka-
tegorien zu formulieren. Die Schwierigkeit liegt darin be-
grindet, daB die Verkettung von regulidren H-Morphismen nicht
unbedingt eine Abbildung gleicher Art ist, d.h. nicht re-
gulidr ist. Das werden wir dadurch belegen, daB wir partiel-
le Homomorphismen von H-Ringen betrachten, deren Verkettung
kein partieller Homomorphismus ist.

Sei K ein kommutativer K8rper; mit einer linear geordne-
ten Halbgruppe ™ konstruieren wir nach der Methode von
B.H. Neumann [9] den verallgemeinerten Halbgruppenring K([™)
(vgl. [11, S.315/316]. Wir wdhlen " wie folgt
M= ((*,P)] ke {0,1), wobei ot = 0= BN, und o= 1Hpe-N_)
" ist bzgl. der lexikographischen Ordnung linear geordnet
und mit (¥, B,)+(dsB,) = (%,+9,, B +B,) ralls

(d +d2,ﬂ1+ﬂ2)s (1,-1)

{1,0) sonst

10
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ist I linear geordnete Halbgruppe. Dann ist der verallge-
meinerte Halbgruppenring K{[') die Menge aller Abbildungen
r: " >K, wobei der Triger {« | r(o ) # 0} wohlgeordnet in
" ist. Es stellt sich heraus, daB8 K([') ein kommutativer
H-Ring mit zwel Primidealen N, P, PN ist. Dabei ist

N = (r| min(a| () 2 0} 2(0,1)},

P = (r| min{ | r(ol) # 0} » (0,k) fir alle ke N}. Nun de-
finiert die Projektion q : K(M) — K(I[M)/P einen partiel-
len Homomorphismus der totalen Ordnung K(f7) in K(I7).
\(I")/P ist ein Bewertungsring vom Range 1. Unter lf1 wer-
ien alle Nullteiler, die nicht in P liegen, zu Nichtnull-
seilern in K([')/P = S,, d.h. zu Einheiten des Quotienten-
kdrpers Q(S1). Die Menge aller Bewertungen eines Kdrpers L

1l

fl

ist eine geordnete Menge, sofern man #dquivalente Bewertun-
gen identifiziert und filr Bewertungen Vis Vo setzt:
[12, 8.54ff] VISV, &> A ] A, . Dabel sind A bzw. A/

=9

1 2 1 2
die :u den Bewertungen Vi Yy gehdrigen Bewertungsringen.
Ander :rseits gilt, wenn J1 bzw. J2 das maximale Ideal von
AV1 bzw. Av2 ist: (Gilmer (5, 8.182] v, ¢ v, &> J,g,-
Wir wdhlen nun K so, daB der Quotientenkdrper Q(S1) nicht

dquivalente Bewertungen vom Range 1 besitzt, die notwendi-
gerweise unabhingig sind [12, S.59]. Dann existiert auBer
S, ein Bewertungsring S, von Q(S1), so daB weder S,< S,
noch 825_81 richtig ist. Daher gibt es ein Element r aus
NEK()) mit ({)1reJ(S ) und nicht g,re8,. Als Bewertungs-
ring ist S,totale Ordnung in Q(S ), also ( ?1r)

Sei I das Von ?1r) -1 erzeugte Ideal in S s SO definiert
die Projektion ?2 - S /I einen partlellen Homomorphis-
mus, wobei das epimorphe Bild 82/1 H-Ring ist [13]. Ferner
gilt ?E(J(S2)) = N(SE/I). Wenden wir dieses Ergebnis auf
die geometrische Situation an, so erkennen wir folgendes:
Es gibt einen Punkt, n#mlich (1,r,0)o (1,0,0), der unter
£( ?1) nach (1,(f1r,0) abgebildet wird.

(1,0,0)0 (1,r,0) (1,7,0) 37 (1, ¢47,0)

(4,

11
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((g,r)71,1,0) ist eine S,-Darstellung des Punktes
(1, Y]r,o). Das Bild unter f(lpe) ist (0,1,0).

-1
(C,r)”,1,0) gij;j'(0,1,0)

Damit wurde gezeigt, daB die Verkettung von regulidren

H-Morphismen im allgemeinen keinen reguldren H-Morphismus

erbringt.
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