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Herrn Giinter Pickert zum 60. Geburtstag gewidmet 

Ausgehend von den von Craig [ l l ]  bzw. Liineburg [12] untersuchten uniformen 
Hjelmslev-Ebenen wurden 1969/70 unabhangig voneinander von Artmann [I, 21 
und Drake [4] zwei Klassen rekursiv definierter projektiver Hjelmslev-Ebenen ( P H -  
Ebenen) bzw. affiner Hjelmslev-Ebenen (AH-Ebenen) eingefuhrt bzw. konstruiert: 
die Hjelmslev-Ebenen mit verfeinerten Nachbarschaften bzw. die n-uniformen 
Hjelmslev-Ebenen. 

Das vom Autor in [9] vorgeschlagene Konzept, Kongruenzrelationen und 
deren Parameter als Klassifizierungsschema zu benutzen, erlaubt es nun, die 
unterschiedlichen Begriffsbildungen von einem gemeinsamen Bezugspunkt aus zu 
untersuchen. Dadurch kann insbesondere die Notwendigkeit als auch die interne 
Abhangigkeit verschiedener Zusatzbedingungen in den bei Artmann und Drake 
behandelten Ebenen erortert werden, wobei sich ein Teil der zusatzlichen 
Forderungen in endlichen Ebenen als uberfliissig erweist. Im wesentlichen stellt 
sich heraus, da13 die von Artmann und Drake diskutierten Ebenen Hjelmslev- 
Ebenen (H-Ebenen) des Typs n sind, deren samtliche Stufenparameter (s. (2)) gleich 
der Ordnung r der zugeordneten affinen bzw. projektiven Ebene sind, kurz (rn-  I ,  r )  
H-Ebenen des Typs n sind. 

Im 1 .  Abschnitt geben wir eine geometrische Kennzeichnung des Falles, daI3 ein 
Stufenparameter einer ( t ,  r )  H-Ebene gleich r ist. 

"Property  A" [4] bzw. das Axiom reziproker Strecken sind aquivalente 
Bedingungen an eine H-Ebene des Typs n. Insbesondere werden PH-/AH-Ebenen 
der Hohe n schon durch die numerische Bedingung t = rn-  ' charakterisiert 
(Kap. 2). 

Mit den Ergebnissen des 2. Kapitels beweisen wir im 3. Abschnitt, daI3 die 
Definitionen einer H-Ebene der Hohe n, einer H-Ebene n-ter Stufe, einer H-Ebene 
des Typs n mit dem Axiom reziproker Strecken bzw. ,,PropertyA" gleichwertige 
Begriffe kennzeichnen. 

Der Autor dankt der Stiftung Volkswagenwerk fur die Unterstiitzung wahrend der Abfassung 
dieser Arbeit 
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0. Vorbemerkungen, grundlegende Definitionen und Satze 

Die in dieser Arbeit betrachteten Inzidenzstrukturen sind grundsatzlich endlich. 
Die Definitionen fur fastaffine, affine und projektioe Hjelmslet-Ebenen (kurz: 

FAH- bzw. AH- bzw. PH-Ebenen) findet der Leser in [6]. 
Wir sprechen von H-Ebenen, wenn die diesbezuglichen Aussagen in allen drei 

Klassen gelten. Wie ublich bezeichnet ( t , r )  das zu einer H-Ebene gehorige 
Parameterpaar; elementare Eigenschaften, die t bzw. r betreffen, entnehme man [6, 
Satz 51. 

Zentrale Bedeutung fiir diese Arbeit kommt dem Konzept der Kongruenzrela- 
tionen zu, was wir in [9] fur den projektiven Fall entwickelt und in [ l  O] auf affine 
H-Ebenen iibertragen haben. Die Definition fur Kongruenzrelationen in PH- 
Ebenen findet der Leser auch in [7]. Da einerseits die naheliegende Verallgemeine- 
rung dieses Begriffes fur FAH-Ebenen bisher noch nicht in der Literatur zu finden 
ist, andererseits wir uns, wie oben schon erwahnt, auf endliche Strukturen 
beschranken werden, scheint es angebracht, die Definitionen hier kurz aufzufuhren, 
wobei wir die in [lo] gegebene Definition leicht modifizieren, um lastige 
Zusatzbedingungen zu vermeiden. 

0.1. Definition. Es sei s eine ~quivalenzrelation in der Punktmenge 9 einer FAH- 
Ebene 2 = (9 ,Q,  E). Ferner setzen wir : 

heifit Kongruenzrelation (K-Rel.), falls gelten: 

(AK1) T G - .  

(AK2) u(P, g) = I(hl P E g, h, g t h)l ist unabhangig von der Wahl der Fahne (P, g). 
(AK3) F ~ ~ ~ ~ ~ ~ P , Q , R E ~ : P ~ Q , P * R = > P R ~ Q R .  

(AK 4) Fiir alle g, h, k E Q : 

gzh, Ignkl=l, (gnhl> 1 a g n k z h n k .  

(AK 5) Fur alle P E 9 ,  g, h E 3 :  

Peg ,  h, g-h, 7 (gzh)*3 Q E ~ :  7 (QTY) mit gzQth .  

Mit u(P, g) = u, bezeichnen wir die z zugeordnete Invariante der K-Rel. s. 

0.2. Definition. Es sei X = ( 9 , 9 ,  E, 11) eine AH-Ebene und z K-Rel. der FAH- 
Ebene 2 =(P,Q, E). t heifit Kongruenzrelation (K-Rel.) der AH-Ebene Z, falls 
(aul3er (AK 1)+Ak 5)) gelten : 

(AK7) Fur alle P , Q ~ 9 , g , , g ~ , h , , h , ~ Y :  
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0.3 Bemerkungen. 1 .  Aus den Eigenschaften einer K-Rel. t folgen: 

( a )  grh. I g n k l = l ,  I g n h l = O + g n k t h n k ,  

(b)  P,,  P , q ,  Q,, Q 2 ~ h ,  4 -4,  @ Q i = - g r h .  

2.Ist r K-Rel. einer (t ,  r) FAH-Ebene 2 (r =I= 2) bzw. einer (t ,  r) AH-Ebene, so ist 
(AK2) eine Folge der iibrigen Forderungen an eine K-Rel. 

Fiir die Invariante u, einer K-Rel. erhalt man ahnliche Eigenschaften wie fir 
den Parameter t einer H-Ebene. Der Beweis verlauft analog zu [6, Satz 51. 

0.1 Lemma. Es sei 2 eine H-Ebene und t eine K-Rel. mit der Invarianten u,=u. 
D a m  gelten fur beliebige Fahnen (P,  g) 

Die Bedeutung der K-Rel. liegt im wesentlichen in ihrer Verbindung zu 
Morphismen von H-Ebenen, wobei sich die K-Rel. als deren ,,Kernea herausstel- 
len. 

0.5 Definitionen. Seien X;, 22 H-Ebenen und cp eine inzidenzerhaltende, surjektive 
Abbildung der Punkt- bzw. Geradenmengen von XI bzw. X2. 

cp heiBt H-Epimorphismus, falls 

und im Falle, daD X;, S2 AH-Ebenen sind, 

gelten. 
Der einfache Beweis des folgenden Satzes (,,Isomorphiedtze fur H-Ebenen") 

bleibt dem Leser iiberlassen. 

0.6. Satz. Es seien 6, X2 H-Ebenen und cp:  XI +S2 ein H-Epimorphismus. Dann 
gelten: 

(a) Durch 

wird eine K-Rel. t ,  in XI definiert, die wir Kern von cp nennen. 
(b) Der Kern bestimmt das Bild (bis auf Isomorphic), d.h. Z2 ~ 2 ~ , , .  
(c) Es gibt eine isotone Bijektion der Menge der K-Rel. p mit t ,  ~p c - in die 

Menge der K-Rel. uon S2. 

Von fundamentaler Bedeutung ist nun das folgende Ergebnis: 

0.7. Hauptsatz. Die Menge der K-Rel. einer H-Ebene ist durch Inklusion linear 
geordnet. 



Den Beweis fur K-Rel. in PH-Ebenen findet man in [9], wahrend der Nachweis 
fiur AH-Ebenen in [lo] gefiuhrt wurde. Die Argumentation dort lafit sich auch auf 
FAH-Ebenen ubertragen. 

Somit bilden die K-Rel. einer H-Ebene 2 eine Kette. Wir numerieren diese wie 
folgt : 

Durch (1) sind in Verbindung mit 0.6 die epimorphen Bilder durch Projektion 
linear angeordnet. 

Besitzt eine H-Ebene 2 genau n K-Rel., so heiBt H-Ebene des Typs n. 
Da die K-Rel. (- i )  ~quivalenzrelationen sind, gilt stets: u i + ,  teilt ui, so daB wir 

durch 

eine Folge von Parametern qi+ ,, die wir Stufenparameter nennen werden, erhalten. 
Dabei ist ui die ( - i) zugeordnete Invariante. 1st Z eine (t, r) H-Ebene des Typs n, so 
ist 

Die Frage nach dem Zusammenhang eines Stufenparameters qi+,  mit den 
vorangehenden q,, . . . , qi erscheint daher als wesentliches Problem fur die Theorie 
der H-Ebenen. 

Bevor wir uns in den nachsten Kapiteln dem Fall, daD ein oder sogar alle 
Stufenparameter einer (t,r) H-Ebene gleich r sind, verweisen wir noch auf 
Eigenschaften von K-Rel., die wir oft unzitiert verwenden werden. 

Es sei 

P ( - i )QoP( - i )Q  und ?(P(-i+l)Q), 

g (= i )hog( - i )h  und l ( g ( - i + l ) h )  

und 

P ( e i ) g - s 3 Q ~ g :  P(-i)Q. 

Es gilt: P ( - i ) g o 3 h 3 P :  g(=i)h. 

0.8. Lemma. Es sei 2 H-Ebene und (-i), ( - j )  K-Rel. Dann gelten: 
(a) Sei h ~ k ,  R ~ h n k ,  Q ~ h \ k :  Q ( h i ) R o Q ( ~ i ) k  (s. auch [5, 1.121). 
(b) Seih*k,R~hnk,Q~h\k,Q(=i)R,P,Q~g,g-h.DanngiltP(-j)R furein 

j z i .  

In Verallgemeinerung der bei Kleinfeld [8] betrachteten Invarianten - der 
mittleren Schnittzahl bzw. mittleren Verbindungszahl benachbarter Geraden bzw. 
benachbarter Punkte - verweisen wir auf eine weitere wesentliche Invariante einer 
K-Rel. (- i): 
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0.9. Lemma. Es sei X ( t ,  r) H-Ebene des Typs n mit t =q, . . .  q,,. Dann gilt fiir die 
nritrlere Lerbindungszahl L, ( 2  i)-benachbarter Punkte: 

In PH-Ebenen gilt offensichtlich auch die duale Aussage von 0.9, d.h. (=  i)- 
benachbarte Geraden haben im Mittel ii Punkte gemeinsam. A~ ist eine Invariante 
der H-Ebene, also unabhangig von der Wahl des Punktes P und iibertragt sich auf 
epimorphe Bilder. 

1st A eine FAH-Ebene und 

so beweist man durch elementares Abzahlen fiir die mittlere Schnittzahl von g mit 
I 2 i)-benachbarten Geraden von g folgendes Lemma: 

0.10. Lemma. Es sei 2 (t. r) FAH-Ebene des Tjlps n mit t = q ,  . . . q,. Dann gilt fur die 
nrirrlere Schnittzahl ~ l , (g )  con g mit ( 2  i)-benachbarten Geraden aon g: 

1. Stufenparameter qi = r 

Im folgenden sei 2 =.%, eine ( t ,  r) H-Ebene des Typs n. u,- , die Invariante der K -  
Rel. ( - n - 1)  und q = qn ( =  u,_ 11-ter Stufenparameter. 

1 . 1 .  Lemma. Fur eine K-Rel. ( - n  - 1) sind die folgenden Aussagen uquicalent: 

(a) q,=r. 
(b) Die K-Rel. ( -  n - 1) geniigt der Bediizgung [I, Def. 43 

(M)a) Aus P, Q E ~ ,  P E ~ ,  P( -n-  l)Q, g-h folgt Qch. 

Beweis. (a) * (b). Wegen / [PI ,I = r2 =(r  + l ) ( r  - 1)  + 1 inzidieren benachbarte 
Geraden g, h 3 P  in [PI,,+, in r Punkten, d.h. (M)a) ist erfiillt. 

(b) = (a). Aus I [PI -.- , I = q,2 = ( r  + l)(q, - 1 )  + 1 folgt unmittelbar (a). 
Die Bedingung (M)a) ist Bestandteil der Definition einer minimalen hrachbar- 

schaft [ l ,  Def. 41. Somit induziert eine minimale Nachbarschaft als K-Rel. fiir jeden 
Punkt den kleinsten Nachbarschaftsbereich. Eine minimale Nachbarschaft ist 
daher die kleinste K-Rel. in einer H-Ebene, nicht jedoch umgekehrt. 

Zusatzlich zu der Bedingung (M)a) benutzte Artmann zur Definition der H- 
Ebenen der Hohe n [ l ,  Def. 53 die dazu duale Bedingung 

(M)b) Aus P,  Qeg, Peh,  P-Q, g(-n-  l ) h  folgt Q E ~ .  

Fiir PH-Ebenen erhalten wir aus Dualitatsgriinden sofort: 



1.2. Lemma. Es sei (- n - 1) K-Rel. einer ( t ,  r) PH-Ebene des Typs n. Dann sind die 
folgenden Bedingungen aquivalent : 

(a) 4*=r. 
(b) Die K-Rel. ( -n-  1) geniigt der Bedingung (M)a). 
(c) Die K-Rel. ( - n - 1) geniigt der Bedingung (M) b). 

Im fastaffinen Fall ist die Bedingung (M)b) allerdings von der Existenz 
geniigend vieler nicht schneidender Geraden abhangig. 

1.3. Lemma. Es sei 2 eine FAH-Ebene des Typs n, q,  =r. Dann sind die folgenden 
Aussagen aquivalent : 

(a) Fur alle Geraden g gibt es eine Gerade h ( - n - 1)  g mit / g n h I = 0. 

(b) Die K-Rel. (-  n - 1) geniigt der Bedingung (M) b). 
(c) Aus P(-. n -  l )g  folgt: 

Beweis. (a) => (b). Gegenteilige Annahme: Es gibt Geraden g, h mit g(- n - 1) h, 
Ignhl<t.SeiP~gnh,Q~g\h,Q-PundR~g,R-P,k3R,k-g.AufderGeraden 
h wahlen wir r - 1 paarweise nicht benachbarte Punkte von P und verbinden mit Q. 
Diese Geraden schneiden k in r - 1 zu R ( -  n - 1)-benachbarten Punkten. Die 
restlichen r - 2 Geraden durch P, die zu g ( - n - 1)-benachbart sind, konnen daher 
nicht mit Q inzidieren. Daher gibt es mindestens 

was im Widerspruch zu 1 [g] , I = r2 steht. 

(b) 3 (c). Sei P(-n - 1)g. Da P mit genau r Geraden, die zu g (-n - 1) 
benachbart sind, inzidiert, folgt unmittelbar (c). 

(c) * (a) offensichtlich 

1.4. Korollar. In einer AH-Ebene sind die Eigenschaften (M) a) und (M) b) aquivalen- 
te Bedingungen an eine K-Rel. 

Da die K-Rel. gerade die Kerne von H-Epimorphismen sind, ist die folgende 
geometrische Charakterisierung des Stufenparameters qi + , = r als Verallgemeine- 
rung von 1.1 sofort ersichtlich: 

1.5. Korollar. Fur eine K-Rel. ( -  i) einer (t, r) H-Ebene des Typs n sind die folgenden 
Aussagen aquivalent : 

(a) a+ ,  =I". 
(b) Aus P(-i)Q, P, Q E ~ ,  P E ~ ,  g-h folgt Q( - i+ l )h  
(c) Die K-Rel. ( -  i) in X;, i + ,  genugt der Bedingung (M)a). 

Die 1.5.(b) erwahnte Eigenschaft wurde zuerst von Drake [4] in n-uniformen H- 
Ebenen festgestellt, in unserem Zusammenhang bezeichnet allerdings ( -  i) (im 
Gegensatz zu den n-uniformen H-Ebenen) eine beliebige K-Rel. einer H-Ebene. 
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Ferner erhalt man unmittelbar fur FAH-Ebenen 

1.6. Korollar. Es sei 2 eine FAH-Ebene des Typs n, q, + , = r. Dann sind die 
folgenden Aussagen aquivalent : 

la) Durch jeden Punkt P(-i)g gibt es eine Gerade h(-i)g, so dab fur alle X E ~ :  
S (  z i)g. 

(b )  Die K-Rel. (-i)  in elmi+' geniigt der Bedingung (M)b). 

2. H-Ebenen der Hohe n, ,,Property A" 
uml das Axiom reziproker Strecken 

N'ahrend wir im 1. Abschnitt lediglich einige Eigenschaften einer H-Ebene 
aufgezeigt haben, die aus der Tatsache folgen, daB ein Stufenparameter gleich der 
Ordnung r der Faktorstruktur, d.h. der zugehorigen projektiven bzw. affinen 
Ebene. ist, beschaftigen wir uns nun mit H-Ebenen, deren samtliche Stufenparame- 
ter q, gleich r sind. 

In unserer Terminologie lautet die Definition einer H-Ebene der Hohe n, die 
man bei Artmann [I, Def. 51 fur den projektiven Fall, bei Drake [6, Def. 171 fur 
den fastaffinen bzw. affinen Fall findet, wie folgt : 

2.1. Definition. Eine H-Ebene 2 des Typs n heifit H-Ebene der Hohe n, falls die K- 
Rel. ( - i) in den epimorphen Bildern 3 - + den Bedingungen (M) a) und (M) b) 
geniigen. 

Als unmittelbare Folgerung aus 1.4 und 1.5 ergibt sich der folgende Satz: 

2.2. Satz. Fur eine (t, r) AH-/pH-Ebene 2 des Typs n sind die folgenden Bedingungen 
iquiralent : 

(a) 2 ist eine H-Ebene der Hohe n. 

(b) t=rn- ' .  

Wir erinnern ferner an eine Eigenschaft ,,Property A", die Drake [4] zur 
Definition von stark n-uniformen Ebenen benutzte. In unserer Terminologie lautet 
diese Bedingung fur beliebige K-Rel. einer H-Ebene des Typs, wobei man [5 ,  Prop. 
1.10.91 beachte: 

2.3. Definition. Eine H-Ebene 2 des Typs geniigt der Bedingung ,,Property A", 
falls fur alle K-Rel. (- i), ( - j ) ( i+j  < n) gilt: 

4 -0 t 

Fig. l 
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SchlieDlich erwahnen wir noch das von Artmann zur Definition H-Ebenen n-ter 
Stufe benutzte Axiom RS ,,reziproker Strecken." 

Die ursprungliche Definition 11, S. 1751 bzw. [6, Def. 181 fur H-Ebenen der 
Hohe n modifizieren wir fur H-Ebenen des Typs n: 

2.4. Definition. Eine H-Ebene H des Typs n genugt dem Axiom RS ,,reziproker 
Strecken", falls 2 folgende Eigenschaften besitzt : 

RS(a) Fur alle Geraden g, h von 2 mit 1 g n h 1 > 0 ist die Punktmenge g n h ein 
Segment (fur ein k rnit 0 2 i 5 n). 

RS(b) Falls Ign hl>0, so gilt g(- i )  h genau dann, wenn g und h ein (n - i)- 
Segment gemeinsam haben (0 5 i 2 n). 

Unter einem i-Segment verstehen wir (in naheliegender Weise) den nichtleeren 
Durchschnitt einer Geraden rnit einer Klasse (- i)-benachbarter Punkte. 

Wir formulieren RS wie folgt um: 

2.5. Lemma. Fur eine H-Ebene 3 des Typs n sind die folgenden Aussagen 
aquivalent : 

(a) H genugt dern Axiom RS. 

(b) Fiir Geraden g, h rnit g n  h + %, Peg n h gilt: 

Fig. 2 

Beweis. (a) (b). Mit g(-i)h ist g(-i)h, a l s o g n h z  {ReglP(-n-i)R), weswegen 
rnit RS(a) und RS(b) sofort die Gleichheit folgt. 1st umgekehrt g n  h = {Reg1 P(-n 
- i) R), so ist sicher g(- i) h. g( - i + 1) h hatte rnit RS (b) {R ~ g l P (  - n - i - 1) R} 
E gnh  zur Folge, was g( - i) h beweist. 

(b) * (a). Offensichtlich rnit RS(a) erfullt. Sei g(- i)h und g(-j)h mit j2 i, so 
folgt 

insbesondere also (Reg1 P(- n - j) R) ~g n h. Entsprechend zeigt man die Umkeh- 
rung. 

SchlieDlich konnen wir rnit Hilfe von 2.5 die duale Aussage von 2.5(b) als zu RS 
aquivalent nachweisen. 
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2.6. Lemma. Fur eine H-Ebene 2 des Typs n sind die folgenden Aussagen 
clqui~.alent : 

( a )  Fur Geraden g, h mit g n h + @ ,  P ~ g n h  uad alle K-Rel. ( m i )  gilt: 

( b )  Fur Punkte P, Q E ~  und alle K-Rel. ( -  i) g i r  

Der Beweis bleibe dem Leser iiberlassen. 
Nach diesen beweistechnischen Umformungen des Axioms RS konnen wir nun 

die Beziehung zu der von Drake benutzten Eigenschaft ,, Property A" herstellen : die 
unterschiedlichen Bedingungen charakterisieren ein und dieselbe Klasse von H- 
Ebenen des Typs n. 

Zunachst erhalten wir folgende numerische Bedingung aus dem Erfulltsein von 
.-lsiom RS. 

2.7. Lemma. Es sei 2 eine ( t ,  r )  H-Ebene vom Typ n und 2 geniige dem Axiom RS. 
D m r ~  gilt: t =rn-  '. 
Beweis. Wir fuhren den Beweis mittels vollstandiger Induktion, in dem wir zeigen: 
( ~ " - ~ = r = q ~ + , .  

Dabei nehmen wir stets Bezug auf die durchschnittlichen Verbindungszahlen 
( 1 ij-benachbarter Punkte aufgrund von 2.5 und 2.6(b). 

1, = 
( r + l ) q 2  =q,  =r, also 9, =r. 

1 + q ,  

Es sei bereits bewiesen: q ,  = ... = qi = r, q, = ... = q,- ,+, = r und i + 1 l n - i + 2 
angenommen. 

d.h. q n - i +  =r. 
Entsprechend erh'alt man: qi+ , = r, was 2.7 beweist. 
Mit Hilfe von 2.7 sind wir nun imstande, den Zusammenhang zwischen dem 

..i.uiom RS und der ,,Property A" aufzudecken. 
1st in 2.3 j = 0, so folgt unmittelbar fiir h n k =k /a und P e h  n k: 
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Somit genugt eine H-Ebene mit ,,Property A" auch dem Axiom RS; mehr noch, es 
gilt : 

2.8. Satz. Fur eine H-Ebene &? des Typs n sind die folgenden Aussagen aquivalent: 
(a) 2 geniigt dem Axiom RS, 
(b) 2 genugt ,,Property A". 

Beweis. Aufgrund der obigen Bemerkung konnen wir uns auf den Fall (a) - (b) 
beschranken. 

Wegen 2.7 ist 2 eine (rn- ', r) H-Ebene. 
Mittels vollstandiger Induktion uber j beweisen wir fur i s j  die Aussagen 

Dabei sei stets P, Q E ~ ,  P,  RE^, Q,  RE^, gwk-ch. 

Fig. 3 

Im Falle i = j folgt (4) und (5) unmittelbar aus RS, wahrend fur i = 0 die Aussagen 
(4) und (5) aufgrund von 1.5(b) erfiillt sind. Insbesondere ist daher (4) und (5) fur j = 1 
richtig. 

Wir nehmen nun an, (4) und (5) seien fur j' 5j - 1 bewiesen, ferner sei Q(-j) R. 
Wir setzen: j - i=v 

~ = { h e R I 3 X ~ d ' ~ ,  Xeh) 

und 

Wir behaupten: h ~ 4  - h(-. j - v) g. 
Sei v,  kleinstes Gegenbeispiel, also 

he&, und 7 (h(= j - v l )  g). (6) 

1st v < v , ,  h e 4 ,  also h(- j - v)g, d.h. Ig n hI = r J v  insbesondere nach Vorausset- 
zung gnh={YIY(-n-j+v)P). 

Auf der Geraden g gibt es rn- " - rn-"- Punkte (-  v) Q. Jede Gerade h 3 X ,  R 
iiberdeckt ein (n-j-v)-Segment, ferner gibt es aufgrund von 2.6 stets rv Verbin- 
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dungsgeraden. d.h. s,. = F j "  - rn- j + " -  ' , was schlieDlich 

beweist. 1st h eine Gerade gemaB (6), so gibt es y > v,, so daD h(= j - y) gilt. Also ist 
p n / ~ ~ = r ' - " n d  P(-Cj-y+v,)-Cj-y))Q. Wegen j - p < j + v ,  - y < j  folgt nach 

lnduktionsvoraussetzung uber (5) R (1: j - p  + v,)Q, im Widerspruch zur Voraus- 
setzung. 

Ferner gilt : 

L m  1 5 )  zu beweisen, gehen wir wie folgt vor. 
, , 

P inzidiert wegen (4) mit rJ-' Geraden he&, also h(-i)g, die durch R gehen. 
Entsprechendes gilt fiir samtliche rn-j-rn-J- ' Punkte R(-j)Q. 

.4ndererseits gibt es genau rn- ' - rn- '- Geraden h 3 P  mit g(- i) h, wodurch (5) 
betviesen ist. 

3. H-Ebenen n-ter Stufe 

Mit den im vorigen Kapitel erzielten Ergebnissen 1aDt sich nun auch der von 
Artmann gebrauchte Begriff einer H-Ebene n-ter Stufe als gleichwertig mit den 
anderen Begriffsbildungen nachweisen : 

3.1. Definition. Eine H-Ebene 2 heifit H-Ebene n-ter Stufe, falls 2 H-Ebene der 
Hohe n ist und samtliche epimorphen Bilder dem Axiom RS geniigen. 

Aufgrund von Satz 2.8 ist das folgende Lemma offensichtlich. 

3.1. Lemma. Gilt in einer H-Ebene 2 des Typs n das Axiom RS, so genugen auch 
~imtliche epimorphen Bilder uon 2 dem Axiom RS. 

Daher reduziert sich der Beweis des oben angekundigten Ergebnisses im 
wesentlichen auf folgendes Lemma : 

3.3. Lemma. In einer H-Ebene 2 der Hohe n gilt das Axiom RS. 

Zum Beweis von 3.3 benotigen wir folgenden Hilfssatz, den wir daher hier 
einschieben: 

3.4. Lemma. Es sei 2 eine FAH-Ebene der Hohe n und yi(g) wie in 0.10 definiert. 
Dann ist 

Beweis. Es sei P(1:i)g. Da  XI , ,+ ,  eine H-Ebene der Hohe i +  1 ist, gibt es eine 
Geradecp(h)s~cp(P)mit g n h = %  undg(-i)h.  Essei k - . g , P ~ k u n d P , = k n h . A u f h  
wahlenwireinenPunktQ-.P,. Dannist QP,=h(--i+ I )QP=h, ,a l soh ,  ( - i )gund 
aufgrund 1.6 h, n g = %. Samtliche rn- '- ' zu h ,  ( - i + 1)-benachbarten Geraden 
treffen gleichfalls g nicht und sind zu g (1: i)-benachbart. Dies gilt fur samtliche rn-' 
- ?pi- 1 Punkte P ( -  i)g auf k, was (7) beweist. 
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Beweis von 3.3. Wir fiihren den Beweis mittels vollstandiger Induktion uber die 
Aussagen 

Aufgrund von 1.2 und 1.3 ist (8) fur i = n - 1 erfullt. Da einerseits 2 ,  = r, andererseits 
aufgrund von (8) stets ;1,2 r gilt, ist jede Gerade mit (9) auch ( -  n- 1)-benachbart 
zu g und es folgt (10). 

Wir setzen (8), (9) und (10) als richtig fur i < j  5 n - 1 voraus. Sei P E ~  n h, g(5: i)h. 
Nach Induktionsvoraussetzung konnen sich die Geraden g und h nicht in zu P ( e n 
-j)-benachbarten Punkten j > i) treffen, also ist g n h G  RE^ 1 P(-  n - i)R}, d.h. 
I gnh lg r i .  

1st 2 eine PH-Ebene. so erhalt man aus 0.9. 

sofort I g n h I = ri, also (8). 
1st 2 eine FAH-Ebene, so folgt mit 0.10 und Lemma3.4 

also qi(g) = ri, was (8) beweist. 
Betrachten wir nun weiter ( -  n - i)-benachbarte Punkte P, R auf g. 
Da 2,- = rn-' ist, andererseits aber mindestens r n  Geraden durch P mit einem 

Punkt R(-  n - i) P E ~  inzidieren, ist (10) bewiesen. Aus Anzahlgrunden folgt die 
Gultigkeit von (9). 

Damit konnen wir abschliel3end das Hauptergebnis dieses Abschnittes wie folgt 
formulieren : 

3.5. Satz. Es sei 2 eine H-Ebene des Typs n. Dann sind die folgenden Aussagen 
aquiualent : 

(a) 2 ist eine H-Ebene der Hohe n, 
(b) 2 ist eine H-Ebene n-ter Stufe, 
(c) 2 geniigt dem Axiom RS, 
(d) 2 geniigt ,,Property A", 
(e) 2 ist stark n-unvorm. 

Beweis, (a) => (b). 3.2, 3.3; (b) - (c) trivial. 
(c) *(d). 2.8; 
(d)*(e). Wegen 2.8, 3.2 und 3.3 ist 2 eine H-Ebene n-ter Stufe, nach [6, 

Satz 281 ist daher X stark n-uniform. 



b f l  '. r )  H-Ebenen des Typs n 20 1 

(el =(a).  1st fl eine PH- bzw. AH-Ebene des Typs n, so ist wegen 2.2 H-Ebene 
der Hohe 11. 

1st .H eine FAH-Ebene des Typs n, so folgt aus der Eigenschaft (e) mit [5, 1.161, 
daB hinreichend viele Paare nicht schneidender Geraden existieren, und mit 1.5 
und 1.6 erhalt man die Behauptung (a). 

b ' i r  betonen, daR der einer stark n-uniformen AH-Ebene des Typs n zugrunde- 
I~egende Parallelismus gleichmaRig sein mu& LaBt man in 3.5 die Voraussetzung 
-H-Ebene des Typs n" weg, so ist (e) durch (e') ,,X ist stark n-uniform (mit 
gle~chmaBigem Parallelismus, falls .X AH-Ebene kt)" zu ersetzen. Beim Nachweis 
re ,=.(a) beachte man, da13 zunachst eine stark n-uniforme FAH-Ebene (rn-l,  r) 
F-AH-Ebene des Typs n ist. Wegen ,,Property S'" [5, 1.151 erfiillen samtliche K-Rel. 
emer stark n-uniformen AH-Ebene die Eigenschaft (AK 6) und, da der Parallelis- 
mus als gleichmaBig vorausgesetzt wird, auch (AK7). Somit ist X AH-Ebene des 
T!ps 11 und wegen 2.2 AH-Ebene der Hohe n.  (Einen anderen Beweis enthalt [6, 
Satz 343.) 
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