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Herrn Giinter Pickert zum 60. Geburtstag gewidmet

Ausgehend von den von Craig [11] bzw. Liineburg [ 12] untersuchten uniformen
Hjelmslev-Ebenen wurden 1969/70 unabhingig voneinander von Artmann [1, 2]
und Drake [4] zwei Klassen rekursiv definierter projektiver Hjelmslev- Ebenen (PH-
Ebenen) bzw. affiner Hjelmslev-Ebenen (AH-Ebenen) eingefiihrt bzw. konstruiert:
die Hjelmslev-Ebenen mit verfeinerten Nachbarschaften bzw. die n-uniformen
Hjelmslev-Ebenen.

Das vom Autor in [9] vorgeschlagene Konzept, Kongruenzrelationen und
deren Parameter als Klassifizierungsschema zu benutzen, erlaubt es nun, die
unterschiedlichen Begriffsbildungen von einem gemeinsamen Bezugspunkt aus zu
untersuchen. Dadurch kann insbesondere die Notwendigkeit als auch die interne
Abhingigkeit verschiedener Zusatzbedingungen in den bei Artmann und Drake
behandelten Ebenen erortert werden, wobei sich ein Teil der zusidtzlichen
Forderungen in endlichen Ebenen als tiberfliissig erweist. Im wesentlichen stellt
sich heraus, dal die von Artmann und Drake diskutierten Ebenen Hjelmslev-
Ebenen (H-Ebenen) des Typs » sind, deren sémtliche Stufenparameter (s. (2)) gleich
der Ordnung r der zugeordneten affinen bzw. projektiven Ebene sind, kurz (#"~ 1, r)
H-Ebenen des Typs 7 sind.

Im 1. Abschnitt geben wir eine geometrische Kennzeichnung des Falles, dal3 ein
Stufenparameter einer (¢, ¥) H-Ebene gleich 7 ist.

“Property A” [4] bzw. das Axiom reziproker Strecken sind &dquivalente
Bedingungen an eine H-Ebene des Typs . Insbesondere werden PH-/AH-Ebenen
der Hohe n schon durch die numerische Bedingung t=r"""' charakterisiert
(Kap. 2).

Mit den Ergebnissen des 2. Kapitels beweisen wir im 3. Abschnitt, daB} die
Definitionen einer H-Ebene der Hohe n, einer H-Ebene n-ter Stufe, einer H-Ebene
des Typs n mit dem Axiom reziproker Strecken bzw. ,Property A“ gleichwertige
Begriffe kennzeichnen.

®  Der Autor dankt der Stiftung Volkswagenwerk fir die Unterstiitzung wéhrend der Abfassung
dieser Arbeit



190 G. Torner

0. Vorbemerkungen, grundlegende Definitionen und Sitze

Die in dieser Arbeit betrachteten Inzidenzstrukturen sind grundsitzlich endlich.

Die Definitionen fiir fastaffine, affine und projektive Hjelmsler-Ebenen (kurz:
FAH- bzw. AH- bzw. PH-Ebenen) findet der Leser in [6].

Wir sprechen von H-Ebenen, wenn die diesbeziiglichen Aussagen in allen drei
Klassen gelten. Wie iiblich bezeichnet (f,7) das zu einer H-Ebene gehorige
Parameterpaar; elementare Eigenschaften, die t bzw. r betreffen, entnehme man [6,
Satz 5].

Zentrale Bedeutung fiir diese Arbeit kommt dem Konzept der Kongruenzrela-
tionen zu, was wir in [9] fiir den projektiven Fall entwickelt und in [10] auf affine
H-Ebenen iibertragen haben. Die Definition fiir Kongruenzrelationen in PH-
Ebenen findet der Leser auch in [7]. Da einerseits die naheliegende Verallgemeine-
rung dieses Begriffes fiir FAH-Ebenen bisher noch nicht in der Literatur zu finden
ist, andererseits wir uns, wie oben schon erwidhnt, auf endliche Strukturen
beschranken werden, scheint es angebracht, die Definitionen hier kurz aufzufiihren,
wobei wir die in [10] gegebene Definition leicht modifizieren, um ldstige
Zusatzbedingungen zu vermeiden.

0.1. Definition. Es sei 7 eine Aquivalenzrelation in der Punktmenge 2 einer FAH-
Ebene # =(2, 9, €). Ferner setzen wir:

VPegiQeh
gTh@{VPeh EIQeg}PTQ

heiBBt Kongruenzrelation (K-Rel.), falls gelten:

(AK 1) TS ~.

(AK u(P, g)=|{h|Peg, h,gth}| ist unabhéngig von der Wahl der Fahne (P, g).
(AK3) Fiir alle P,Q,Re?: Pt1Q, P~R=PRtQR.

(AK4) Fir alle g, h,ke%:

gth, |gnkl=1, |gnh|>1=gnkthnk.
(AKS) Fiir alle Pe?, g, he%:
Peg h,g~h, T1(gthy=30€?: 1(Q1%) mit gtQth.
Mit u(P, g)=u, bezeichnen wir die t zugeordnete Invariante der K-Rel. 7.

0.2. Definition. Es sei # =(2,9,¢, ||) eine AH-Ebene und © K-Rel. der FAH-
Ebene # =(2, %, ¢€). © heillt Kongruenzrelation (K-Rel.) der AH-Ebene #, falls
(auBer (AK 1)HAk5)) gelten:

(AK6) Fir alle P,Qe?, g, he¥%:
PtQ, Peg, Qeh, gl|lh=gth.
(AK7) Firalle P,Qe?, g,,8,,h,,h,€%:

Peg,, g, Q€hy, hy, glh (i=1,2),g,18,=h,th,.
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0.3 Bemerkungen. 1. Aus den Eigenschaften einer K-Rel. 7 folgen:
(a) gth. |gnk|=1, |gnh|=0=gnkthnk,
(b) B, Peg, Qy, Q,€h, R~ Py, F1Q;=gth.

2. Ist t K-Rel. einer (t,r) FAH-Ebene # (r & 2) bzw. einer (t,7) AH-Ebene, so ist
(AK?2) eine Folge der iibrigen Forderungen an eine K-Rel.

Fiir die Invariante u, einer K-Rel. erhdlt man dhnliche Eigenschaften wie fiir
den Parameter t einer H-Ebene. Der Beweis verlduft analog zu [6, Satz 5].

0.4 Lemma. Es sei /# eine H-Ebene und t eine K-Rel. mit der Invarianten u =u.
Dann gelten fiir beliebige Fahnen (P, g)

(a) “=[{Q|PTQ’P’QEg}L
(b) u*=|{Q|P1Q}|,
(c) u*=|{h|gth}|.

Die Bedeutung der K-Rel. liegt im wesentlichen in ihrer Verbindung zu
Morphismen von H-Ebenen, wobei sich die K-Rel. als deren ,,Kerne* herausstel-
len.

0.5 Definitionen. Seien #;, #, H-Ebenen und ¢ eine inzidenzerhaltende, surjektive
Abbildung der Punkt- bzw. Geradenmengen von 3, bzw. J,.
@ heiBBt H-Epimorphismus, falls

P~Q<o¢(P)~¢(Q)
g~h<=o(g)~o(h
und im Falle, daB3 #], #, AH-Ebenen sind,

glh= (@)l ¢

gelten.
Der einfache Beweis des folgenden Satzes (,,Isomorphiesitze fiir H-Ebenen*)
bleibt dem Leser iiberlassen.

0.6. Satz. Es seien #,, #, H-Ebenen und ¢: #, > H#, ein H-Epimorphismus. Dann
gelten:

(a) Durch

P1,0<¢(P)=0(Q)
wird eine K-Rel. t, in #] definiert, die wir Kern von ¢ nennen.
(b) Der Kern bestimmt das Bild (bis auf Isomorphie), d.h. #,=H ..

(c) Es gibt eine isotone Bijektion der Menge der K-Rel. yu mit 1, us ~ in die
Menge der K-Rel. von #,.

Von fundamentaler Bedeutung ist nun das folgende Ergebnis:

0.7. Hauptsatz. Die Menge der K-Rel. einer H-Ebene ist durch Inklusion linear
geordnet.
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Den Beweis fiir K-Rel. in PH-Ebenen findet man in [9], wiahrend der Nachweis
fiir AH-Ebenen in [10] gefiihrt wurde. Die Argumentation dort 148t sich auch auf
FAH-Ebenen iibertragen.

Somit bilden die K-Rel. einer H-Ebene s# eine Kette. Wir numerieren diese wie
folgt:

id=(~nc(~n—1)c-c(~1)=~. (1)

Durch (1) sind in Verbindung mit 0.6 die epimorphen Bilder durch Projektion
linear angeordnet.

szlfj,=37j~n—*=7/7 _,..._>j[7~2—>9f/~1=1?. 2)

~n—1

Besitzt eine H-Ebene A genau n K-Rel, so heiit H-Ebene des Typs n.
Da die K-Rel. (~i) Aquivalenzrelationen sind, gilt stets: u; , , teilt u;, so dall wir
durch

Gis 1 =U/Uiyy (3)

eine Folge von Parametern ¢, |, die wir Stufenparameter nennen werden, erhalten.
Dabei ist u; die (~ i) zugeordnete Invariante. Ist 5# eine (t, ) H-Ebene des Typs n, so
ist

t=q,...q,.

Die Frage nach dem Zusammenhang eines Stufenparameters ¢;,,; mit den
vorangehenden ¢,, ..., q; erscheint daher als wesentliches Problem fiir die Theorie
der H-Ebenen.

Bevor wir uns in den ndchsten Kapiteln dem Fall, dal ein oder sogar alle
Stufenparameter einer (t,7) H-Ebene gleich r sind, verweisen wir noch auf
Eigenschaften von K-Rel., die wir oft unzitiert verwenden werden.

Es sei

P(~i)Q<P(~)Q und “I(P(~i+1)Q),
g(~iyh<g(~i)h und “i(g(~i+1)h)
und
P(~i)g<3Qeg: P(~i)Q.
Es gilt: P(~i)g<3haP:g(~i)h.

0.8. Lemma. Es sei # H-Ebene und (~i), (~j) K-Rel. Dann gelten:

(a) Sei h~k, Rehnk, Qeh~k: Q(~i)R < Q(~i)k (s. auch [5, 1.12]).

(b) Seih~k,Rehnk,Qeh~k,Q(~i)R,P,Qeg, g~h. Dann gilt P(~)R fiir ein
Jj<i.

In Verallgemeinerung der bei Kleinfeld [8] betrachteten Invarianten — der

mittleren Schnittzahl bzw. mittleren Verbindungszahl benachbarter Geraden bzw.

benachbarter Punkte — verweisen wir auf eine weitere wesentliche Invariante einer
K-Rel. (~i):
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0.9. Lemma. Es sei # (t,r) H-Ebene des Typs n mit t =q, ... q,. Dann gilt fiir die
mittlere Verbindungszahl A; (~i)-benachbarter Punkte:

/..=(’”+1)42-~~‘1i+1
l 144,44

In PH-Ebenen gilt offensichtlich auch die duale Aussage von 0.9, d.h. (~i)-
benachbarte Geraden haben im Mittel /4, Punkte gemeinsam. 4, ist eine Invariante
der H-Ebene, also unabhingig von der Wahl des Punktes P und iibertrégt sich auf
epimorphe Bilder.

Ist # eine FAH-Ebene und

ui(g)=I[{hlg(=hund gnh= g},

so beweist man durch elementares Abzihlen fiir die mittlere Schnittzahl von g mit
( ~i)-benachbarten Geraden von g folgendes Lemma:

0.10. Lemma. Es sei 5 (t,#) FAH-Ebene des Typsnmitt=q, ... q,. Dann gilt fiir die
mittlere Schnittzahl n,(g) von g mit (~i)-benachbarten Geraden von g:
Fet(Ug;—Uaisy)

'Ii(g)zuii—ui(g)—“iwl .

1. Stufenparameter ¢,=r

Im folgenden sei # = #, eine (t, r) H-Ebene des Typs #, u,_ | die Invariante der K-
Rel. (~n—1) und g=gq, (=u,_,) n-ter Stufenparameter.

1.1. Lemma. Fiir eine K-Rel. (~n—1) sind die folgenden Aussagen dquivalent

(a) g,=r.
(b) Die K-Rel. (~n—1) geniigt der Bedingung [1, Def. 4]

(M)a) Aus P, Qeg, Peh, P(~n—1)Q, g~h folgt Qeh.

Beweis. (a) = (b). Wegen [[P]., |=r*=(r+1)(r—1)+1 inzidieren benachbarte
Geraden g, hsP in [P]., , in r Punkten, d.h. (M)a) ist erfiillt.

(b)=>(a). Aus |[P].,_,|=q2=(r+1)(q,—1)+1 folgt unmittelbar (a).

Die Bedingung (M)a) ist Bestandteil der Definition einer minimalen Nachbar-
schaft [ 1, Def. 4]. Somit induziert eine minimale Nachbarschaft als K-Rel. fiir jeden
Punkt den kleinsten Nachbarschaftsbereich. Eine minimale Nachbarschaft ist
daher die kleinste K-Rel. in einer H-Ebene, nicht jedoch umgekehrt,

Zusitzlich zu der Bedingung (M)a) benutzte Artmann zur Definition der H-
Ebenen der Hohe n [1, Def. 5] die dazu duale Bedingung

{(M)b) Aus P, Qeg, Peh, P~Q, g(~n—1)h folgt Qeh.

Fiir PH-Ebenen erhalten wir aus Dualitatsgriinden sofort:



194 G. Toérner

1.2. Lemma. Es sei (~n—1) K-Rel. einer (t,r) PH-Ebene des Typs n. Dann sind die
folgenden Bedingungen dquivalent:

(a) g,=r.
(b) Die K-Rel. (~n—1) geniigt der Bedingung (M)a).
(¢) Die K-Rel. (~n—1) geniigt der Bedingung (M)b).

Im fastaffinen Fall ist die Bedingung (M)b) allerdings von der Existenz
geniigend vieler nicht schneidender Geraden abhéngig.

1.3. Lemma. Es sei ## eine FAH-Ebene des Typs n, g, =r. Dann sind die folgenden
Aussagen dquivalent

(a) Fiir alle Geraden g gibt es eine Gerade h {(~n—1)g mit {gnh|=0.

(b) Die K-Rel. (~n—1) geniigt der Bedingung (M)b).

(¢} Aus P(~n—1)g folgt:

|{hePllgnh|=0,g(~n—1)h}[=1.

Beweis. (a) = (b). Gegenteilige Annahme: Es gibt Geraden g, h mit g{(~n— L)h,
|gnh|<t.Sei Pegnh,Qeg~h,Q~Pund Reg, R~ P, k3R, k~g. Auf der Geraden
hwihlen wir r— | paarweise nicht benachbarte Punkte von P und verbinden mit Q.
Diese Geraden schneiden k in r—1 zu R (~n— 1)-benachbarten Punkten. Die
restlichen r — 2 Geraden durch P, die zu g (~n— 1)-benachbart sind, konnen daher
nicht mit Q inzidieren. Daher gibt es mindestens

F=l4r—1r—)(r—1)+2=r2+1,

was im Widerspruch zu |[g] ., ,|=r? steht.

(b)==(c). Sei P(~n—1)g. Da P mit genau r Geraden, die zu g (~n—1)
benachbart sind, inzidiert, folgt unmittelbar (c).

(c) => (a) offensichtlich

1.4. Korollar. In einer AH-Ebene sind die Eigenschaften (M)a) und (M)b) dquivalen-
te Bedingungen an eine K-Rel.

Da die K-Rel. gerade die Kerne von H-Epimorphismen sind, ist die folgende
geometrische Charakterisierung des Stufenparameters ¢, , =r als Verallgemeine-
rung von 1.1 sofort ersichtlich:

1.5. Korollar. Fiir eine K-Rel. (~i) einer (t,r) H-Ebene des Typs n sind die folgenden
Aussagen dquivalent :

(@) gy ="

(b) Aus P(~)Q, P, Qeg, Peh, g~h folgt Q(~i+1)h

(c) Die K-Rel. (~1) in 3, geniigt der Bedingung (M)a).

Die 1.5.(b) erwéhnte Eigenschaft wurde zuerst von Drake [4] in n-uniformen H-

Ebenen festgestellt, in unserem Zusammenhang bezeichnet allerdings {~ i) (im
Gegensatz zu den n-uniformen H-Ebenen) eine beliebige K-Rel. einer H-Ebene.
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Ferner erhdlt man unmittelbar fiir FAH-Ebenen:

1.6. Korollar. Es sei # eine FAH-Ebene des Typs n, q,,, =r. Dann sind die
folgenden Aussagen dquivalent :

{a) Durch jeden Punkt P(~i)g gibt es eine Gerade h(~1i)g, so daf fiir alle X eh:
X(=ig.

{b) Die K-Rel. (~i) in #,.,,, geniigt der Bedingung (M)b).

2. H-Ebenen der Hohe n, ,,Property A*
und das Axiom reziproker Strecken

Wihrend wir im 1. Abschnitt lediglich einige Eigenschaften einer H-Ebene
aufgezeigt haben, die aus der Tatsache folgen, daB3 ein Stufenparameter gleich der
Ordnung r der Faktorstruktur, d.h. der zugehorigen projektiven bzw. affinen
Ebene. ist, beschiftigen wir uns nun mit H-Ebenen, deren sémtliche Stufenparame-
ter g; gleich r sind.

In unserer Terminologie lautet die Definition einer H-Ebene der Hohe n, die
man bei Artmann [1, Def. 5] fiir den projektiven Fall, bei Drake [6, Def. 17] fiir
den fastaffinen bzw. affinen Fall findet, wie folgt:

2.1. Definition. Eine H-Ebene s des Typs n heilt H-Ebene der Hohe n, falls die K -
Rel. (~i) in den epimorphen Bildern #_,, , den Bedingungen (M)a) und (M)b)
geniigen.

Als unmittelbare Folgerung aus 1.4 und 1.5 ergibt sich der folgende Satz:

2.2.Satz. Fiir eine (t,r} AH-/PH-Ebene # des Typs n sind die folgenden Bedingungen
aquivalent:

(a) A ist eine H-Ebene der Hohe n.

(b) t=r"""1

Wir erinnern ferner an eine Eigenschaft ,,Property A“, die Drake [4] zur
Definition von stark n-uniformen Ebenen benutzte. In unserer Terminologie lautet

diese Bedingung fiir beliebige K-Rel. einer H-Ebene des Typs, wobei man [ 5, Prop.
1.10.9] beachte:

2.3. Definition. Eine H-Ebene 5# des Typs geniigt der Bedingung ,, Property A*
falls fir alle K-Rel. (~i), (~j)(i+j<n) gilt:

Pehnk, hnk={Reh|R(~n—i)P}, Qeh~k, P(~j)Q = Q(~i+j)k

Fig. 1
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SchlieBlich erwdhnen wir noch das von Artmann zur Definition H-Ebenen n-ter
Stufe benutzte Axiom RS , reziproker Strecken.*

Die urspriingliche Definition [1, S.175] bzw. [6, Def. 18] fiir H-Ebenen der
Hohe n modifizieren wir fiir H-Ebenen des Typs n:

2.4. Definition. Eine H-Ebene # des Typs n geniigt dem Axiom RS , reziproker
Strecken®, falls # folgende Eigenschaften besitzt:

RS(a) Fiir alle Geraden g, h von # mit |gnh|>0 ist die Punktmenge g h ein
Segment (fiir ein k mit 0<i<n).

RS(b) Falls |gnh|>0, so gilt g(~i)h genau dann, wenn g und h ein (n—i)-
Segment gemeinsam haben (0<i<n).

Unter einem i-Segment verstehen wir (in naheliegender Weise) den nichtleeren
Durchschnitt einer Geraden mit einer Klasse (~ i)-benachbarter Punkte.
Wir formulieren RS wie folgt um:

2.5. Lemma. Fiir eine H-Ebene # des Typs n sind die folgenden Aussagen
dquivalent :

(a) A geniigt dem Axiom RS.
(b) Fiir Geraden g, h mit gnh=+ g, Pegnh gilt:

g(~i)h<gnh={Reg|P(~n—i)R}.

(=1)g (

n

2)g (=3)g

Fig.2

Beweis. (a) = (b). Mit g(~i)hist g(~i)h, also gnh=2{Reg|P(~n—i)R}, weswegen
mit RS(a) und RS(b) sofort die Gleichheit folgt. Ist umgekehrt gnh={Reg|P(~n
—i) R}, so ist sicher g(~i)h. g(~i+1)h hitte mit RS(b) {Reg|P(~n—i—1) R}
cgnh zur Folge, was g(~i) h beweist.

(b) = (a). Offensichtlich mit RS(a) erfiillt. Sei g(~i)h und g(~j)h mit j=1i, so
folgt

gnh={Reg|P(~n—j)R},

insbesondere also {Reg|P(~n—j)R} =g h. Entsprechend zeigt man die Umkeh-
rung.

SchlieBlich kénnen wir mit Hilfe von 2.5 die duale Aussage von 2.5(b) als zu RS
dquivalent nachweisen.
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2.6. Lemma. Fiir eine H-Ebene # des Typs n sind die folgenden Aussagen
aquiralent:

(a) Fiir Geraden g, h mit gnh=+ &, Pegnh und alle K-Rel. (~i) gilt:
gl=iyh<=gnh={Reg|P(~n—i)R}.

(b) Fiir Punkte P, Qeg und alle K-Rel. (~i) gilf:

Pi~i)Q < (P,0>={h3P|h(~n—i)g}.

Der Beweis bleibe dem Leser iiberlassen.

Nach diesen beweistechnischen Umformungen des Axioms RS konnen wir nun
die Beziehung zu der von Drake benutzten Eigenschaft ,, Property A* herstellen: die
unterschiedlichen Bedingungen charakterisieren ein und dieselbe Klasse von H-
Ebenen des Typs n.

Zunichst erhalten wir folgende numerische Bedingung aus dem Erfiilltsein von
Axiom RS.

2.7. Lemma. Es sei o eine (t,r) H-Ebene vom Typ n und # geniige dem Axiom RS.
Dann gilt: t=r""1.

Beweis. Wir fiihren den Beweis mittels vollstandiger Induktion, in dem wir zeigen:
9o i=T=(q;i+2-

Dabei nehmen wir stets Bezug auf die durchschnittlichen Verbindungszahlen
{ ~ i)}-benachbarter Punkte aufgrund von 2.5 und 2.6(b).

) (r+1)g,...q
i=0. /  =—""—""=¢q,...q, also =7,
n—1 1+qn q, qn qn
r+1)q,

_-—— =7, also =7,

1 1+4, 4,=r 4, =r
Es sei bereits bewiesen: q,=-=¢,=r, q,==¢,_;,,=r und i+1<n—i+2
angenommen.

=(V+1)CI2 v Gy_jy1
1+Qn—i+l

=qiv1-- 4y

n—i

=("+1)’”i_lqi+1 sy
I

_ io1
=qiv1 - Gui+1 ¥

dh.g,_; ,=r

Entsprechend erhélt man: g;, , =v, was 2.7 beweist.

Mit Hilfe von 2.7 sind wir nun imstande, den Zusammenhang zwischen dem
Axiom RS und der ,, Property A“ aufzudecken.

Ist in 2.3 j=0, so folgt unmittelbar fiir hnk=+ @ und Pehnk:

h(~i)k<hnk={Reh|R(~n—i)P},
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Somit geniigt eine H-Ebene mit ,, Property A auch dem Axiom RS; mehr noch, es
gilt:
2.8. Satz. Fiir eine H-Ebene A des Typs n sind die folgenden Aussagen dquivalent :
(a) A geniigt dem Axiom RS,
(b) # geniigt ,,Property A~
Beweis. Aufgrund der obigen Bemerkung konnen wir uns auf den Fall (a)=(b)

beschrinken.
Wegen 2.7 ist # eine (+"~ !,r) H-Ebene.
Mittels vollstdndiger Induktion iiber j beweisen wir fiir i<j die Aussagen

Q(~))R, P(~j—i)Q =[gnh|=r (4)
lgnh|=r, P(~j—i)Q = Q(~j)R. (%)
Dabei sei stets P, Qeg, P, Reh, Q, Rek, g~k~h.

P g \a
Fig.3

Im Falle i =j folgt (4) und (5) unmittelbar aus RS, wihrend fiir i =0 die Aussagen
(4) und (5) aufgrund von 1.5(b) erfiillt sind. Insbesondere ist daher (4) und (5) fiir j=1
richtig.

Wir nehmen nun an, (4) und (5) seien fiir j <j— 1 bewiesen, ferner sei ¢(~)R.
Wir setzen: j—i=v

M,={Xeg|X (=)0},
No={heR|IXe M, Xeh}
und
s,=|Ml.

Wir behaupten: he A, = h(~j—v)g.
Sei v, kleinstes Gegenbeispiel, also

he A, und T(h(~j—v)e). (6)

Ist v<v,, he#, also h(~j—v)g, d.h. |gnh|=r/"" insbesondere nach Vorausset-
zung gnh={Y|Y(~n—j+v)P}.

Auf der Geraden g gibt es 7~ —#"~*~! Punkte (~v)Q. Jede Gerade ha X, R
iiberdeckt ein (n —j— v)-Segment, ferner gibt es aufgrund von 2.6 stets r* Verbin-
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n—j+v—1

dungsgeraden. d.h. s, =r"" /" —r , was schlieBlich

hi=j—v)ig=he.t, fiir v<y,

beweist. Ist h eine Gerade gemi (6), so gibt es u>v,, so daB h(~j— p) gilt. Also ist
g~h=r"*und P(~(j—p+v,)-(—u)Q. Wegen j—u<j+v,—u</ folgt nach
Induktionsvoraussetzung iiber (5) R(~j—u+v,)Q, im Widerspruch zur Voraus-
setzung.

Ferner gilt:

he Ve h(~j—v)g<« h(x~i)g.

Um (3) zu beweisen, gehen wir wie folgt vor.

P inzidiert wegen (4) mit r/~! Geraden he.#;, also h(=~i)g, die durch R gehen.
Entsprechendes gilt fiir simtliche »"~/—7"~/~! Punkte R(~})Q.

Andererseits gibt es genau "~ — 7"~ '~ ! Geraden h3 P mit g(~i)h, wodurch (5)
bewiesen ist.

3. H-Ebenen n-ter Stufe

Mit den im vorigen Kapitel erzielten Ergebnissen 1aBt sich nun auch der von
Artmann gebrauchte Begriff einer H-Ebene n-ter Stufe als gleichwertig mit den
anderen Begriffsbildungen nachweisen:

3.1. Definition. Eine H-Ebene # heilt H-Ebene n-ter Stufe, falls # H-Ebene der
Hohe n ist und sdmtliche epimorphen Bilder dem Axiom RS geniigen.

Aufgrund von Satz 2.8 ist das folgende Lemma offensichtlich.

3.2. Lemma. Gilt in einer H-Ebene # des Typs n das Axiom RS, so gentigen auch
samtliche epimorphen Bilder von # dem Axiom RS,

Daher reduziert sich der Beweis des oben angekiindigten Ergebnisses im
wesentlichen auf folgendes Lemma:

3.3, Lemma. In einer H-Ebene 3# der Hohe n gilt das Axiom RS.

Zum Beweis von 3.3 bendtigen wir folgenden Hilfssatz, den wir daher hier
einschieben:

34. Lemma. Es sei # eine FAH-Ebene der Hohe n und p;(g) wie in 0.10 definiert.
Dann ist

ui(g)gru—zp L_p2n-2i-2 ()
Beweis. Es sei P(~i)g. Da # _,,, eine H-Ebene der Hohe i+1 ist, gibt es eine
Gerade ¢(h)2¢(P)mitgnh=g und g(~i)h. Esseik~g, Peckund P,=knh. Auf h
wihlen wir einen Punkt Q ~ P. Dannist QP, =h(~i+ 1)QP =h,also h, (~i)gund
aufgrund 1.6 h, ~ng=g. Sdmtliche r"~'~! zu h, (~i+ l)-benachbarten Geraden
treffen gleichfalls g nicht und sind zu g (~i)-benachbart. Dies gilt fiir simtliche "~ *

—r"~~1 Punkte P (~i)g auf k, was (7) beweist.
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Beweis von 3.3. Wir fiihren den Beweis mittels vollstindiger Induktion {iber die
Aussagen

g(~i)h, Pegnh=gnh={Reg|P(~n—1i)R}, (8)
gnh={Reg|P(~n—i)R} = g(~i)h, 9)
P(=n—1)Q,P,Qeg= (P, Q)={h|P,Qeh}={h{g(~i)h>P}. (10)

Aufgrund von 1.2 und 1.3 ist (8) fiir i =n— 1 erfiillt. Da einerseits 1, =r, andererseits
aufgrund von (8) stets 1, = r gilt, ist jede Gerade mit (9) auch (~n— 1}-benachbart
zu g und es folgt (10).

Wir setzen (8), (9) und (10) als richtig fiir i < j <n— 1 voraus. Sei Pegnh, g(~i)h.
Nach Induktionsvoraussetzung konnen sich die Geraden g und h nichtin zu P (~n
—j)-benachbarten Punkten j>1i) treffen, also ist gnh< {Reg|P(~n—1i)R}, d.h.
lgnh|=T.

Ist o# eine PH-Ebene, so erhilt man aus 0.9.

i

rlzlli:(rﬁ—l)r _
1+r

sofort |gnh| =7 also (8).
Ist # eine FAH-Ebene, so folgt mit 0.10 und Lemma 3.4

) rn(rn—i_rn—i—l)

rlgni(g):rzn_Zi _lui(g)__an—Zi- 2
- rn(rnAi_rnfi—l) ;
=2 2i_(r2n— 2i-1 _ 2n—2i- 2)_r2n—— Zica =T

also n,(g)=r", was (8) beweist.

Betrachten wir nun weiter (~n —i)-benachbarte Punkte P, R auf g.

Dal, ;=r""!ist, andererseits aber mindestens 7"~ Geraden durch P mit einem
Punkt R(~n—i) Peg inzidieren, ist (10) bewiesen. Aus Anzahlgriinden folgt die
Giiltigkeit von (9).

Damit konnen wir abschlieBend das Hauptergebnis dieses Abschnittes wie folgt
formulieren:

3.5. Satz. Es sei # eine H-Ebene des Typs n. Dann sind die folgenden Aussagen
dquivalent

(a) S ist eine H-Ebene der Hohe n,

(b) # ist eine H-Ebene n-ter Stufe,

(c) A geniigt dem Axiom RS,

(d) # geniigt ,,Property A",

(e) A ist stark n-uniform.

Beweis, (a)=(b). 3.2, 3.3; (b)=(c) trivial.

(c)=(d). 2.8;

(d)=(e). Wegen 2.8, 3.2 und 3.3 ist # eine H-Ebene n-ter Stufe, nach [6,
Satz 28] ist daher # stark n-uniform.
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{e)==(a). Ist s eine PH- bzw. AH-Ebene des Typs n, so ist wegen 2.2 H-Ebene
der Hohe n.

Ist # eine FAH-Ebene des Typs n, so folgt aus der Eigenschaft (¢) mit [5, 1.16],
daB hinreichend viele Paare nicht schneidender Geraden existieren, und mit 1.5
und 1.6 erhidlt man die Behauptung (a).

Wir betonen, da3 der einer stark n-uniformen AH-Ebene des Typs n zugrunde-
liegende Parallelismus gleichmifig sein muf}. LaBt man in 3.5 die Voraussetzung
-H-Ebene des Typs n* weg, so ist (¢) durch (¢') ,,5# ist stark n-uniform (mit
gleichmiBigem Parallelismus, falls # AH-Ebene ist)* zu ersetzen. Beim Nachweis
te 1={a) beachte man, daB zunichst eine stark n-uniforme FAH-Ebene ("1, )
FAH-Ebenedes Typs nist. Wegen ,,Property §'* [5, 1.15] erfiillen simtliche K-Rel.
emer stark n-uniformen AH-Ebene die Eigenschaft (AK 6) und, da der Parallelis-
mus als gleichmiBig vorausgesetzt wird, auch (AK 7). Somit ist # AH-Ebene des
Tyvps n und wegen 2.2 AH-Ebene der Hohe n. (Einen anderen Beweis enthilt [6,
Satz 34].)
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