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Bewertungsringe*

von Giinter Térner

Im folgenden wird der Versuch unternommen, iiberblicksartig iiber das Auf-
treten von Bewertungsringen in verschiedenen Bereichen der Mathematik

zu berichten. Es geht uns dabei weniger darum, iiber die letzten Forschungs-
ergebnisse in dieser Hinsicht zu referieren, als vielmehr die zentrale Rolle
einer sehr speziellen algebraischen Struktur in vielen Problemen herauszu-
arbeiten. Notwendigerweise muf eine solche Darstellung unvollstindig blei-
ben; auch mogen die ausgewihlten Anwendungsfelder dem einen und ande-
ren Leser unter Umstinden einseitig erscheinen; auerdem gehen wir nicht
auf die mittlerweile zahlreichen und vielversprechenden Verallgemeinerun-
gen von Bewertungen auf Ringe, Gruppen, Verbinde usw. ein. Kurz: uns
geht es um eine exemplarische Beschreibung des Auftretens von Bewertungs-
ringen, wobei wir weitgehend auf Beweise verzichten werden. Der inter-
essierte Leser moge sich in der entsprechenden Literatur informieren.
Schlieflich ist es unumginglich, einige wenige Fakten aus der Bewertungs-
theorie fiir den Leser bereitzustellen.

0. Vorbemerkungen und historische Wurzeln

Die Wurzeln der Bewertungstheorie liegen im wesentlichen im Zusammen-
spiel der Zahlentheorie, der Funktionentheorie und der Algebra als der
Theorie der algebraischen Zahlen. Wenngleich verschiedenen Arbeiten von
Cantor, Steinitz, Hadamard und Weierstra® — im heutigen Sprachgebrauch —
bewertungstheoretische Ideen und Methoden zugrunde liegen [19, S. 221],
so wird die stiirmische Entwicklung dieser Theorie allerdings erst durch das
Buch von Hensel: Theorie der algebraischen Zahlen (1908) [11] nachhaltig
eingeleitet. Ausgangspunkt sind fiir Hensel die erstaunlichen Ergebnisse und
eleganten Methoden der Funktionentheorie einerseits, die formale Ahnlich-
keit verschiedener Begriffsbildungen mit denen in der Zahlentheorie und
Algebra und schliefflich andererseits die im Vergleich mit der Funktionen-
theorie bescheidenen, mit groBem Aufwand erreichten Fortschritte in der
Zahlentheorie. Wahrend in der Funktionentheorie die Frage, ob eine analy-
tische Funktion algebraisch oder transzendent ist, anhand der singuldren
Stellen der Funktion und der Tatsache, ob sie eindeutig, mehrdeutig oder
unendlich vieldeutig ist, (theoretisch) einfach zu unterscheiden ist, ist man
in der Zahlentheorie noch nicht wesentlich iiber die entsprechenden Fragen
bei e bzw. 7 hinausgekommen. Hensel hat dafiir folgende Erklirung [11, S. 3]:

*Uberarbeitete Fassung des am 11. Mirz 1977 vor dem FB Mathematik der Techni-
schen Hochschule Darmstadt gehaltenen Habilitationsvortrages.
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,,Der Grund, warum die allgemeine Untersuchung der Zahlgréfen so auBerordentlich
viel schwieriger ist als die der Funktionen, scheint mir nun ausschlieflich der zu sein,
daf wir fir die Zahlen im wesentlichen nur eine einzige Darstellung kennen, wihrend
wir fiir jede Funktion unendlich viele Funktionselemente finden kénnen. Fiir die
Zahlen haben wir ndmlich allein die Darstellung ihrer Grofie nach, z.B. in Form eines
Dezimalbruches mit reellen oder komplexen Koeffizienten. Fiir eine reelle positive
oder negative Zahl besteht nimlich stets die eindeutig bestimmte Entwicklung:

=Sl ).

v 10
Wir haben also fiir die Zahlen nur die Entwicklung nach fallenden Potenzen von 10
oder, was genau dasselbe ist, von irgendeiner anderen Grundzahi;. .. der Form nach

entspricht dies der Entwicklung einer analytischen Funktion f(z) nach fallenden Po-
tenzen von z, d.h. in der Umgebung der unendlich fernen Stelle. Die Theorie der Funk-
tionen wiirde genau dieselben Schwierigkeiten bieten wie die der Zahlen, wenn wir fir
sie etwa auch nur eine Entwicklung kennen wiirden.‘

Dies fiihrt Hensel zur Konstruktion einer neuen Klasse von Zahlen, den
p-adischen Zahlen, die nach steigenden Potenzen einer Grundzahl zu ent-
wickeln sind. (Eine ausfiihrliche Darstellung der p-adischen Zahlen findet
man z.B. in der Originalarbeit {11], aber auch etwa in [3]. Wir werden wei-
ter unten eine, fiir das folgende ausreichende Charakterisierung angeben.)
Die p-adischen Zahlen bilden, wie Hensel aufzeigt, einen Kdrper Qp, der
dhnlich wie die reellen Zahlen in gewissem Sinn (siehe Kapitel 2) vollstindig
ist. Da sowohl der K&rper der reellen Zahlen als auch der p-adische Zahlkér-
per Oberkdrper der rationalen Zahlen ist, stellt sich fiir Kiirschak (1913) [19]
und insbesondere fiir Ostrowski (1917) [26] die Aufgabe einer einheitlichen,
beide Typen umfassenden Theorie der Konstruktionen. In der heutigen Be-
zeichnungsweise kénnte man die Idee von Ostrowski wie folgt wiedergeben:
Bekanntlich bilden die Cauchy-konvergenten rationalen Zahlenfolgen einen
Ring R, wobei die Nullfolgen ein maximales Ideal J darstellen. Mit Hilfe der
Cauchy-Folgen sollen nun ,,neue** Zahlen eingefithrt werden, wobei Cauchy-
konvergente Folgen, die sich um eine Nullfolge unterscheiden, die gleiche
Zahl beschreiben sollen; kurz: wir bilden den Restklassenring R/J, der ein
K&rper ist, da J maximales Ideal ist und nennen ihn den Koérper der reellen
Zahlen. Bei diesem Zugang ist nun folgendes bemerkenswert: Cauchy-Kon-
vergenz wird wie iiblich mit Hilfe des Absolutbetrages formuliert, beim
Konstruktionsverfahren wird aber nur von den funktionalen Eigenschaften
des Absolutbetrages Gebrauch gemacht:

(1) |al>0fira#0,/0]=0

(2) la-bl=lal-1b]

B) la+b|<|al+]|bl.

Somit liegt es nahe, (1) - (3) als System von Funktionalgleichungen von
Funktionen ¢ : @ > IR zu untersuchen, nach dessen Lsungen zu fragen

und die nach dem oben beschriebenen Vertahren entstehenden Kérper zu
beschreiben.

Natiirlich ist
4 ox)=I|x|?P fuir0<p<1



Bewertungsringe 11
stets eine Losung von (1) - (3), aber auch
.a
5) ex)=cmit0<c<1undx =p! b—mlt

(p,a)=(p, b)=1 fir jede Primzahl p

18st (1) - (3), wie bereits Hensel [ 11] erkennt. SchlieBlich beweist Ostrowski
[26] (siehe auch Artin [2]), daR® mit (4) und (5) schon alle Lésungen erfafdt
sind, Spétestens hier erwies sich die von Kiirschak eingefiihrte Begriffsbil-
dung von Bewertungen als hilfreich und wird nun Anla zu einer eigenstin-
digen Theorie: der Bewertungstheorie. Im ndchsten Kapitel sollen die fiir un-
sere Zwecke notwendigen Grundbegriffe zusammengestellt werden.

1. Bewertungstheorie und Bewertungsringe

Von Bedeutung fiir die Konstruktion der reellen Zahlen bzw. p-adischen
Zahlen sind, wie in 0. ausgefiihrt, Funktionen der rationalen Zahlen in den
reellen ZahlkSrper mit (1) - (3). Das fiihrt uns in naheliegender Weise zu der
folgenden Definition:

1.1 Definition: Unter einer Bewertung ¢ eines (kommutativen) Kdrpers K
verstehen wir eine Abbildung ¢ : K = P in einen angeordneten Koérper P
mit folgenden Eigenschaften:

(i) wa)>0firallea¥#0, 0=

(i)  (ab) = p(a) - Y(b)

(iii) (@ +b) < p(a) + p(b).

Das klassische Ergebnis von Ostrowski besagt somit, dafl jede Bewertung

des Kdrpers der rationalen Zahlen (K = @, P = IR) von der Gestalt (4)
oder (5) ist.

Nun scheinen Bewertungen ¢; (x) = | x |P1, pa(x) = | x [P2(p; # p3) nicht
wesentlich verschieden voneinander zu sein. Damit kommen wir zwangs-
laufig zu dem Begriff der Aquivalenz von Bewertungen.

1.2 Definition: Bewertungen ¢;, v, : K = P heiflen dquivalent, falls fiir je-
de Folge (a,)
(6) ¢ — lim q, =0 ¢2 — lim a, = 0.

n—co n—>o
Die wohlbekannte Grenzwertdefinition (mit dem Absolutbetrag als Bewer-
tung von @ bzw. IR oder ) iibertrage man auf beliebige Bewertungen In
diesem Sinne sind die Bewertungen ¢ (x) = | x [P1, p,(x) = | x |2 diquiva-
lent. SchlieBlich ist (p*) eine Nullfolge bzgl. der p-adischen Bewertung,
keine Nullfolge jedoch fir eine p'-adische (p’ # p) oder die Absolutbetrags-
bewertung.
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\
‘Halten wir dieses Ergebnis fest:

|1.3 Satz: Eine nichttriviale Bewertung ¢ des Korpers Q der rationalen Zah-
‘Ien ist entweder zur gewohnlichen Absolutbetragsbewertung oder zur

1\
\p-adischen Bewertung p(x) = (—) (siehe (5)} fiir eine Primzahl p dquivalent.
\ p
IDabei verstehen wir unter der trivialen Bewertung die Abbildung ¢ mit
|0—0und firallex #0 :x —1.
|Die p-adischen Bewertungen unterscheiden sich von der Absolutbetragsbe-
|wertung darin, daf sie einer stirkeren Dreiecksungleichung, nimlich

(7Y @@+ b)<max {¢(a),v(b)} firallea, bEK
| geniigen. Wir sagen: ¢ erfillt die ultrametrische Dreiecksungleichung.

\ . .
| 1.4 Definition: Geniigt eine Bewertung ¢ der ultrametrischen Dreiecksun-
gleichung, so heiBt ¢ nichtarchimedische Bewertung. Ansonsten sprechen

| wir von einer archimedischen Bewertung.

| Die Bezeichnung erscheint etwas ungliicklich, weil damit nichts iiber die

| Archimedizitit oder Nichtarchimedizitit der Ordnungsrelation in P ausge-
| sagt werden soll; sie hat sich aber in der Literatur eingebiirgert.

| Fiir archimedische Bewertungen gilt nun der von Ostrowski bewiesene Satz
| (siehe auch [31]).

| 1.5 Satz: Ein archimedisch bewerteter Korper (P = IR) ist zu einem mit ge-
| wohnlichen A bsolutbetrigen bewerteten Unterkérper der komplexen Zah-
| len isomorph. Der zugehorige Isomorphismus respektiert auch die Bewertung.

| Insofern kénnen die archimedisch bewerteten Kérper und ihre Eigenschai-

| ten (zumal es nur zwei vollstindige K&rper, nimlich IR und € gibt) als be-
kannt angenommen werden. Unser Hauptaugenmerk wird daher auf die
nichtarchimedische Bewertungstheorie gerichtet sein, zumal erst hier das
Konzept, Bewertungsringe anstelle der Kdrper zu untersuchen, fruchtbar
wird.
Im Falle, daB ¢ nichtarchimedische Bewertung ist, wird (siche Def. 1.1) nur

' von der Multiplikation in P Gebrauch gemacht, so da eine Abschwichung

| derin 1.1 geforderten Eigenschaften natreliegt- Wendet man auf die Werte- |

| bei der p-adischen Bewertung noch die Abbildung — logp an, so hat somit

a
| das Element p! ; ((p,a) =(p, b) = 1) den ,,Wert** i und die Bedingungen |

(ii) bzw. (7) schreiben sich als
(8) wv(a- b) =v(a) + v(b)
9) v(@+ b)=min {v(@), v(d)},

f wobei v = (— logp) © ¢. Es wird dabei ,,nach dem Exponenten bewertet. “

Hier setzt nun die von Krull [ 18] eingefiihrte ,,allgemeine‘ Bewertungs-
theorie ein, indem er Bewertungen in gréferem Rahmen sieht und anstelle ‘

|
|
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von — logy(PA{ O} = v(K\{ 0}) = IR von einer beliebigen linear geordne-
ten Gruppe als Wertebereich der Bewertung ausgeht,

1.6 Definition: Eine Abbildung v : K\{ 0} - G eines (kommutativen) K&r-
pers K in eine linear geordnete (kommutative) Gruppe G heidt Exponenten-
oder Krullbewertung, falls sie den folgenden Bedingungen geniigt:

(1) ula - b)=v(a) +uv(b)
(i) (g + b) = min {v(a), v(d)}.
Es hat sich eingebiirgert, die Verkniipfung in G additiv zu schreiben. Aufier-

dem bezeichnet im folgenden v stets eine Exponentenbewertung, wihrend
¢ fiir Bewertungen im Sinne von 1.1 gebraucht werden wird.

Schlieflich erkennt man, daB nichtarchimedische Bewertungen im Sinne
von 1.1 als Exponentenbewertungen interpretiert werden kdnnen.

Unmittelbar mit 1.6 erhilt man, da die Menge {x €K |v(x)=0}U {0}
additiv als auch multiplikativ abgeschlossen ist.

1.7 Definition: Es sei v Bewertung des Kdrpers K. Dann heifst
B={x€K|v(x)=0}VU {0} der Bewertungsring von v in K.

1.8 Beispiele: 1. Es sei € (z) der K&érper der rationalen Funktionen {iber €.
Jede rationale Funktion A ist darstellbar als Quotient zweier Polynome

1, g. Insbesondere existiert stets eine (nicht reduzierbare) Darstellung der
Gestalt

z
he) =2 fi(2)
&(2)
die der Bedingung f1(0) # 0 # g (0) geniigt. Ist i > 0, so sagt man: h habe
an der Stelle 0 € € eine Nullstelle i-ter Ordnung, im Falle i < 0 einen Pol
i-ter Ordnung, wihrend fiir i = O h bei 0 nicht verschwindet und endlich ist.
Wie man sich leicht iiberlegt, definiert die Zuordnung v : h = i eine Bewer-
tung des K&rpers der rationalen Funktionen mit der Wertegruppe G = Z
(siehe z.B. [29], [7]). Der Bewertungsring besteht somit aus allen bei 0 ho-
lomorphen rationalen Funktionen.

2. Es sei K der Korper der meromorphen Funktionen iiber €, also Funk-

tionen iiber €, die bis auf (im Endlichen sich nicht hdufende) Pole holo-

morph sind. Jede dieser Funktionen denke man sich am Nullpunkt in eine
<o

Laurent-Reihe Z ;2 entwickelt. Einer solchen Reihe ordnen wir den
i>—o0
z-Exponenten zu, dessen zugehdriger Koeffizient als erster nicht verschwin-
det, Wiederum erhélt man eine Bewertung mit der gleichen inhaltlichen In-
terpretation wie oben. Hier besteht der Bewertungsring aus den meromor-
phen Funktionen, die bei O keinen Pol besitzen. Analog kann man die
Laurent-Entwicklung an anderen Stellen vornehmen, wobei man durchaus
unterschiedliche Bewertungsringe erhilt,

mit Polynomen f}, g1,
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Wir bemerken noch, daf man auch umgekehrt aus der Kenntnis des Bewer-
tungsringes B den Kdrper K und im wesentlichen (d.h. bis auf Aquivalenz)
die Bewertung v rekonstruieren kann, so da der vorgelegte Bewertungsring
mit dem aus der konstruierten Bewertung iibereinstimmt (siehe z.B. [29]).
Bewertungsringe sind somit in gewisser Weise die Invarianten der Klassen
dquivalenter Bewertungen. Damit haben wir nichtarchimedische Bewertun-
gen und Bewertungsringe als gleichwertiges Konzept erkannt.

Zum Schluft wollen wir eine weitere Betrachtungsweise vorstellen: das
Konzept der Stellen. Die in Beispiel 1.8 untersuchten Bewertungsringe
hidtten wir auch wie folgt kennzeichnen kénnen:

Jeder Funktion & € € (z) ordnen wir ihren Funktionswert an einer (festen)
Stelle zg zu:

w(h) = h(zg).
Ist h bei zg singulir, so setzen wir A(2g) = o = w(h). SchlieBlich sei
() = oo ynd wir haben damit eine Abbildung 7 von C(z) U { =} in
€ U { o} erhalten, die den Bedingungen
(10) Sind x + y, m(x) + 7(y) definiert, dann ist

n(x + y) =a(x) + n(y)
(11) Sind x - y, w(x) - m(y) definiert, dann ist

wx- y)=m(x)  7(y)
(12) Esgibtx€CU {= } mit 7(x) =1,
genugt.
1.9 Definition: Unter einer Stelle m des Kérpers K in den Kérper L verste-
hen wir eine Abbildung 7w : KU {0 } > LU { }, die (10) - (12) geniigt.
Dabei setzt man:

x+to=w+x =0 firallex €K

x-oo=o0o.x=oo firallex EKU {}\{0}

0! =0 00l =0, —cw=w (sichezB.[7,8S.53])

(Man beachte: o + o, 0 - o, . 0 sind nicht definiert.)
Ohne Schwierigkeiten erkennt man, daB B = {x € K | n(x) € L } ein Be-
wertungsring ist.

2. Bewertungsringe als Ringe

Bislang waren Bewertungsringe stets in enger Verbindung mit Bewertungen
von K8rpern aufgetreten. Wir suchen im folgenden eine (einfache) ring-
theoretische Kennzeichnung.

Zunichst sollten die zur Diskussion stehenden Ringe — Bewertungsringe

sind Unterringe von K&rpem — nullteilerfrei sein. Ist B Bewertungsring im
Korper K und x € K\B, so ist sicher v(x) < 0, also, weil v(1) =v(1) + v(1) =0
ist, folgt v(x— 1) >0, d.h. x~! € B. Somit liegt stets x oder x—! in einem Be-
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wertungsring. Seien nun x, y € B, so erhilt man mit obiger Uberlegung

xy~— 1 € B oder yx~! € B, d.h. es existiert ¢ € B mit x = ay oder es existiert
ein b € B mit bx = y. Im ersten Fall ist Bx C By, im zweiten By C Bx. Da-
her sind je zwei Hauptideale des Ringes B (durch Inklusion) vergleichbar und
somit je zwei Ideale.

Im Einklang mit 1.7 definieren wir:

2.1 Definition: Ein nullteilerfreier (kommutativer) Ring B ist ein Bewer-
tungsring, falls fiir je zwei Elemente x, y © B stets gilt: es existierta € B
mit : x = ay oder es existiert b € B mit y = bx.

Wie man von einem Ring B mit obigen Eigenschaften zur Bewertung eines
Korpers kommt, entnehme man z.B. [18].

Halten wir das folgende fest: ein wesentliches Charakteristikum eines Be-
wertungsringes ist die lineare Ordnungsstruktur des Idealverbandes.

2.2 Beispiele: 1. Der zu einer p-adischen Bewertung v, der rationalen Zah-
len gehdrende Bewertungsring B besteht aus rationalen Zahlen der Gestalt

.a
jod b— mit i € INg und (p, a) = 1 = (p, b). Offensichtlich ist

BOpBDp?BD...Dp"BD...D(0),d.h. der Hauptidealverband (alle
Ideale sind Hauptideale) ist vom Ordnungstyp der natiirlichen Zahlen.

2. Entsprechendes wie in 1. gilt fiir die in 1.8 beschriebenen Bewertungs-
ringe im Ko6rper der rationalen Funktionen bzw. meromorphen Funktionen.

3. Bildet man (formale) Laurent-Reihen, allerdings nun mit rationalen Ex-
ponenten (anstelle der ganzen Zahlen), wobei die zugehdrenden nichtver-
schwindenden Koeffizienten in Bezug auf die Ordnung in @ (wie vorher)
vom Ordnungstyp der natiirlichen Zahlen sind, so erhélt man bei einer Ex-
ponentenbewertung (der Wert einer solchen Laurent-Reihe ist die kleinste
rationale Zahl mit nichtverschwindendem Koeffizient) einen Bewertungs-
ring, dessen Idealverband allerdings nicht mehr diskret ist {29].

Dem Beispiel 3 entsprechende Verfahren fiithren zu

2.3 Satz (Krull) [18]: Zu jedem Positivbereich einer linear geordneten Grup-
pe gibt es Bewertungsringe, deren Hauptidealverband ordnungsisomorph zum
Positivbereich der vorgelegten linear geordneten Gruppe ist.

Ordnungstheoretische Eigenschaften der linear geordneten Gruppe (z.B.
konvexe Untergruppen) spiegeln sich dann in ringtheoretischen Eigenschaf-
ten wider {29].

Ein weiteres Charakteristikum, was wir im folgenden noch mehrmals an-
sprechen werden, sind Vollstindigkeitseigenschaften gewisser Bewertungs-
ringe und die sich daraus ergebenden Konsequenzen.

Wie wir bereits dargelegt haben, besitzen Bewertungen gerade jene funk-
tionalen Eigenschaften des Absolutbetrages, der wiederum zur Definition
von Filtern bzw. der Konvergenz benutzt wird. Insofern ist die folgende
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Definition unter Beriicksichtigung des Ubergangs von ¢ zur Exponentenbe-
wertung v natiirlich.

2.4 Definition: Eine Folge (g,) aus Elementen eines Bewertungsringes B
heifdt Cauchy-konvergent, wenn fiir jedes Hauptideal Bx eine natiirliche
Zahl m existiert, so daf fiir alle k, | 2 m stets g — ¢; € Bx ist.

Entsprechend heif’t ein Bewertungsring B volistindig, falls jede Cauchy-
konvergente Folge einen Grenzwert B besitzt. Man zeigt ferner, daf jeder
Bewertungsring B eine Vervollstindigung B besitzt, die ebenfalls ein Be-
wertungsring ist. B 1a8t sich somit in einen Bewertungsring B einbetten,
der iiberdies

(13) die gleiche 1dealstruktur wie B und
(14) gleichen Restklassenkorper (B/ @) = B/ y(B))
besitzt. Erweiterungen mit (13) und (14) nennt man unmittelbar.

Allgemein interessieren daher Oberringe von Bewertungsringen (die natiir-
lich auch Bewertungsringe sind), die den Bedingungen (13) und (14) geniigen.

Ein solcher RingerweiterungsprozeB (mit (13) und (14) als Nebenbedingun-
gen) bricht, wie man mit erheblichem Aufwand zeigen kann [29], schlief’-
lich ab, d.h. man erhilt einen maximal vollstindigen Bewertungsring, der
keine unmittelbare (echte) Erweiterung zulifdt,

Ist der Ordnungstyp des Hauptidealverbandes diskret, so fallen beide Be-
griffe: volistindig und maximal volistindig zusammen. Ansonsten (siche
[29, S. 32]) gibt es vollstindige Bewertungsringe, die nicht maximal voll-
stindig sind. Der p-adische Zahlkdrper 1Bt sich als jener Quotientenkds-
per kennzeichnen, der aus einer Vervollstindigung des Bewertungsringes
aus 2.2.1 hervorgegangen ist.

Entsprechend ist der Bewertungsring in 1.8.2 (,,meromorphe Funktionen*)
maximal vollstindig im Hinblick auf den in 1.8.1 diskutierten (,,rationale
Funktionen*®).

3. Nichtarchimedische Analysis/Funktionalanalysis

Im Abschnitt 0 hatten wir aufgezeigt, daB die Entwicklung der Bewertungs-
theorie als eigenstindige Theorie in dem Moment begann, als man erkannte,
daf} viele Fakten ihre Ursache lediglich in den formalen Eigenschaften von
Bewertungen haben.

In gleicher Weise war auch die Beobachtung in der Analysis, daf viele Be-
weise nur von den formalen Eigenschaften des Absolutbetrages Gebrauch
machen, Ausgangspunkt einer Reihe von Untersuchungen. Auf zwei For-
schungsrichtungen méchten wir hinweisen.
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3.1 Funktionentheorie

Nach dem Ergebnis von Ostrowski [26] kénnen alle archimedisch bewerte-
ten Korper als Unterkdrper des komplexen Zahlkrpers € angesehen wer-
den. Da es sinnvoll erscheint, Analysis iiber vollstindigen Korpern zu trei-
ben, bleiben lediglich der Kérper der reellen Zahlen und € selbst {ibrig,
man befindet sich somit im Gebiet der klassischen Analysis.

Insofern ist fiir unsere Zwecke eine Beschrinkung auf nichtarchimedisch be-
wertete Korper von Interesse, die aber — damit man sinnvoll Analysis trei-
ben kann — als vollstindig vorausgesetzt werden. (Der Leser moge dabei
z.B. zunichst an den Korper der p-adischen Zahlen denken.)

Nach den Feststellungen von Remmert [28] scheint die erste grofiere Arbeit
iiber die Funktionentheorie mit nichtarchimedisch bewertetem Grundkor-
per die Dissertation von Schébe aus dem Jahre 1930 zu sein, deren Resulta-
te lange unbekannt geblieben und spater von anderen — zum Teil auf
komplizierterem Wege — neu bewiesen wurden.

,,Weiterfuhrende Ergebnisse verdankt man u.a. M. Krasner und M. Lazard.
Eine einfache Herleitung der klassischen Resultate der Funktionentheorie
einer Verinderlichen gab U. Giintzer [ 10]* (siche [28]).

DaB eine Funktionentheorie iiber einem nichtarchimedisch bewerteten Kor-
per ,eigenwillige* Ziige trdgt, macht das folgende Lemma deutlich:

3.1.1 Lemma: Die unendliche Reihe Z g; konvergiert genau dann (in der
durch die Bewertung induzierten Topologie), falls lim a; = 0.

Daher ist fiir Potenzreihen die naheliegende Folgerung zu ziehen.

3.1.2 Folgerung: Eine Potenzreihe £ #;z' konvergiert entweder fir alle
Punkte z einer Sphiire { z | w(z) = ¢} oder fiir keinen Punkt der Sphire.

Dazu kommt, dafl nichtarchimedisch bewertete Korper total unzusammen-
hidngend sind. ,,Also ist die Klasse derjenigen Funktionen, die lokal eine
Potenzreihenentwicklung gestatten, viel zu groB, um eine der klassischen
Theorie dhnliche zu liefern, z.B. gilt fiir solche Funktionen kein Identitits-
satz.“[10]

Um etwa klassische Sitze iibertragen zu kénnen, mufl der Grundk&rper K
starken Einschrinkungen unterworfen werden. Insbesondere solite K nicht
lokal kompakt sein. Ein nichtarchimedisch bewerteter, volistindiger K61-
per ist genau dann lokal kompakt, wenn die Idealstruktur des zugehdrenden
Bewertungsrings diskret und der entsprechende Restklassenkorper (nach
dem maximalen Ideal) endlich ist. (Somit ist der p-adische Zahlkorper Qp
ein lokal kompakter Korper.)

Ohne auf Einzelheiten einzugehen, erwdhnen wir ein Ergebnis aus [10], das
die Bedeutung der Struktur des Idealverbandes hervorhebt.

3.1.3 Lemma: Ist die Bewertung von K nicht diskret, so gilt in einer Funk-
tionentheorie iiber K das Analogon zum Satz von Liouville, d.h. eine Po-
tenzreihe, die fiir alle x € K konvergiert und beschrinkt ist, ist eine Konstante.

2 Uberblicke Mathematik 78 WV 143
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3.2 Funktionalanalysis

Die iibliche Definition eines normierten Raumes benutzt wesentlich Eigen-
schaften des Absolutbetrages. Wie schon mehrfach betont, stelite sich auch
hier die Frage nach einer méglichen Verallgemeinerung, wodurch das ,,Eigent-
liche* verschiedener Begriffsbildung stirker herausgearbeitet werden konnte.
Erste Untersuchungen iiber normierte Rdume mit nichtarchimedisch bewer-
tetem Korper gehen auf Monna (1943) [25] zuriick.

3.2.1 Definition [ 28]: Unter einem nichtarchimedisch normierten Raum E
iiber dem Korper K verstehen wir einen linearen Raum E iiber K, wobei

{l : E~ IR eine Abbildung von E nachIRund | | : K = IR eine Bewer-
tung von K ist, die den folgenden Bedingungen geniigen:

(i) lIxI>0firallex+#0,xEE
(i) laxl=]al-lIxl fire€EK,xEE
(iii) Ix +yl<max {lxl, I yll} firallex,y €E.

Da die Norm (siehe oben) als reellwertig vorausgesetzt wird, ist (ii) nur dann
sinnvoll, wenn | a | stets reell ist; gerade die nichtarchimedischen Bewertun-
gen vom Range | erfiillen diese Nebenbedingung. Dabei sei die Bewertung
gemaf Definition 1.1 geschrieben.

Weil im allgemeinen | Ell # | K | ist, lassen sich Elemente x € E nicht not-
wendigerweise normieren. Schlieflich sei weiter vorausgesetzt, dafd X bzgl.
| | vollstindig bewertet ist.

Wie iiblich erklirt man die Aquivalenz von Normen: Zwei Normen | 1,
I ll, heiBen dquivalent, falls es o, § € R gibt, so dafd stets

44 "x"l < "X"2 <B lell.

Ahnlich wie fiir normierte Ridume iiber den reellen Zahlen, d.h. fiir archi-
medisch bewertete Korper, erhidlt man das folgende Lemma.

3.2.2 Lemma: In einem endlich dimensionalen, nichtarchimedisch normier-
ten Raum E sind je zwei Normen 4quivalent.

Aus dem fiir die Funktionalanalysis wesentlichen Satz von Hahn-Banach

Jedes stetige Funktional auf einem Unterraum eines reellen normierten
Raumes ldft sich linear und mit der gleichen Norm auf den gesamten Raum
fortsetzen,

werden im Falle der nichtarchimedisch bewerteten Kérper deren eigenwilli-
gen Zuge deutlich.

Der Satz von Hahn-Banach ist Spezialfall einer allgemeineren Fortsetzungs-
eigenschaft:

(15) Sei £ ein normierter Raum. Wir sagen: £ hat die Fortsetzungseigen-
schaft, falls fiir jeden Unterraum S eines Raumes X und fiir jede
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lineare stetige Abbildung f: S = E eine lineare, stetige Abbildung
F : X > E mit gleicher Norm existiert, die das Diagramm
s—L x
[}

F

|
’
d E

kommutativ macht, d.h. f=F o i.

Nachbin [22] fand in der sogenannten ,,bindren Durchschnittseigenschaft
der Einheitssphéaren eine notwendige und hinreichende Bedingung fiir das
Erfiilltsein von (15). Ein Mengensystem € hat die ,,bindre Durchschnitts-
eigenschaft‘, wenn jedes Teilsystem, in dem je zwei Elemente sich schnei-
den, nichtleeren Durchschnitt hat.

Mit Hilfe der von Nachbin entwickelten Techniken konnten Cohen [5] und
Ingleton [12] auch nichtarchimedische normierte Riume erschépfend be-
handeln.

Die binidre Durchschnittseigenschaft 1df3t sich idealtheoretisch als Losbar-
keitsbedingung fiir unendliche, paarweise 16sbare Kongruenzsysteme (siehe
auch Kapitel 4) interpretieren, was den folgenden Satz plausibel macht.

3.2.3 Satz: Ein nichtarchimedisch normierter Raum E iiber dem K besitzt
die Hahn-Banach-Eigenschaft genau dann, wenn der zu K gehdrende Be-
wertungsring maximal volistindig ist. [12, Th. 3], [23, S. 36].

Wihrend, wie schon in Kapitel 2 erwdhnt, diskrete Bewertungen, die voll-
stindig sind, auch maximal vollstindige Bewertungsringe induzieren, muf
i.a., um 3.2.3 zu gewihrleisten, an den Koérper jene stirkere Vollstindig-
keitsforderung gestellt werden. Beispiele, dafl jene beiden Vollstindigkeits-
begriffe nicht zusammenfallen, findet man sowohl bei Schilling als auch in
der Arbeit von Cohen [5].

4. Bewertungsringe in der Algebra

Bewertungsringe sind lokale Ringe, also Ringe, die genau ein maximales
Ideal besitzen und insofern dulerst spezielle Objekte. Dennoch ist ihre Be-
deutung nicht unerheblich und dies hat seine Ursache im Lokal-Global-
Prinzip oder wie das technische Schlagwort heif$t: Lokalisation.

Diese weitreichende Methode der Algebra besteht nun darin, vorgegebene
Ringe in hinreichend viele lokale Ringe einzubetten und aus den Eigenschaf-
ten dieser lokalen Oberringe auf Charakteristika des urspriinglichen Rings

zu schliefen.

Grob vereinfacht 14t sich die Idee zur Konstruktion von lokalen Oberrin-
gen wie folgt beschreiben: Ist M ein maximales Ideal des Ringes R, so wer-
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den in dem (zu konstruierenden) Oberring Rys alle Elemente x € M zu Ein-
heiten. (Man denke an Z = R, p Z= M fiir eine Primzahl p und

Ry = { = [ es gibt — = — mit ptd }.
= {— |esgibt — =— mit p .
M ER T

Auf hinreichende Bedingungen fiir die Existenz von Oberringen Ry wollen
wir an dieser Stelle nicht eingehen (siche z.B. den Ubersichtsartikel von
P.M. Cohn [6]). Im allgemeinen ist der Oberring Rys als lokaler Ring in sei-
ner Struktur besser zuginglich. Besitzen nun simtliche Quotientenringe
Ry (fiir jedes beliebige maximale Ideal) eine bestimmte Eigenschaft (tri-
viales Beispiel: x € R ist in simtlichen Oberringen Ry invertierbar) und
iibertragt sich diese auf die Oberringe, d.h. ist diese invariant unter Lokali-
sation, so weist auch R diese Eigenschaft auf (hier: x €R ist auch in R
invertierbar).

Im folgenden werden wir darlegen, daB ,.interessante‘ Ringe oftmals, lokal
gesehen, Bewertungsringe sind.

4.1 Idealtheorie, Dedekind-Ringe, Priifer-Ringe, arithmetische Ringe

Der urspriingliche Ausgangspunkt fiir das, was wir heute als Idealtheorie be-
zeichnen, war die Zahlentheorie und hier insbesondere die Fermatsche Ver-
mutung

(Fp): x + it =zn
hat keine ganzzahligen Ldsungen (n 2 3). [3,S. 173ff.].

Kummer erkannte in der Mitte des vorigen Jahrhunderts, daf} diese Frage

eng mit dem Problem der eindeutigen Primfaktorzerlegungen in algebraischen
Erweiterungen Z [€] mit Einheitswurzeln € des Ringes der ganzen Zahlen
verkniipft ist. Wohlbekannt ist die Tatsache, daf} in elementar zugidnglichen
Ringen, z.B. Z [v/—5 ] nicht mehr der Satz von der eindeutigen Primfaktor-
zerlegung gilt: So ist

9=3.3=2+i\/5)(2 —iV5).

Die grundlegende Idee von Kummer bestand darin, geeignete Elemente des
Ringes zu neuen Objekten, den ,,idealen Zahlen* zusammenzufassen, um

zu erreichen, daf in dieser Menge eine entsprechende Primfaktorzerlegung
eindeutig wird. Fiir das oben erwidhnte Beispiel bedeutet dies: Ersetzt man
9 durch das von diesem Element erzeugte Ideal, so gilt

(9)=P2Q2 mit P=(3,2+i+/5), 0 = (3,2 —i+/5). Dabei sind P, Q Prim-
ideale und die Zerlegung (9) = P2Q? ist eindeutig.

Diese Feststellung legt die folgende Definition nahe:

4.1.1 Definition (siehe z.B. [21]): Ein nullteilerfreier (kommutativer) Ring
heidt Dedekind-Ring, falls jedes Ideal Produkt von Primidealen ist.

Diese Produktzerlegung ist eindeutig [32]. Beispiele von Dedekind-Ringen
findet der Leser etwa in [33] oder [21].
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Wesentlich fiir unsere Intentionen ist nun der folgende Kennzeichnungssatz.

4.1.2 Satz [21]: Fiir einen nullteilerfreien, noetherschen (kommutativen)
Ring R sind die folgenden Bedingungen dquivalent:

(i) R ist ein Dedekind-Ring.

(i)  Fiir jedes maximale Ideal M ist der Quotientenring Ryy ein diskreter
Bewertungsring.

Ohne die Definition einer weiteren zentralen Klasse von Ringen, ndmlich
der Priifer-Ringe [21] anzugeben (die ,,Definition* steht in Satz 4.1.5),
zitieren wir noch den folgenden Satz.

4.1.3 Satz [21, 6.7): Fiir einen nullteilerfreien (kommutativen) Ring R sind

die folgenden Bedingungen dquivalent:

(i) R ist ein Priifer-Ring.

(i)  Fiir jedes maximale Ideal M ist der Quotientenring Ryy ein Bewertungs-
ring.

Priifer-Ringe lassen sich auch idealverbandstheoretisch charakterisieren.

Setzt man

4.1.4 Definition [ 13]: Ein (kommutativer) Ring R heiBt arithmetisch, falls
die Ideale von R einen distributiven Verband bilden,

dann erhidlt man:

4.1.5 Satz [13]: Ein nullteilerfreier (kommutativer) Ring R ist genau dann
arithmetisch, wenn R Priifer-Ring ist.

Somit ist sowohl! die Existenz von Primfaktorzerlegungen von Idealen als
die verbandstheoretische Bedingung der Distributivitit Ausfluf’ ein und
derselben lokalen Eigenschaft: Ryy ist ein Bewertungsring.

4.2 Elementarteiler-Ringe (ED-Ringe)

Fiir Matrizen 4 iiber einem K6rper K gibt es stets invertierbare Matrizen
P, Q, so dafl PAQ eine Diagonalmatrix ist. Es ist schon lange bekannt, daf}
eine entsprechende Aussage auch fiir den Ring der ganzen Zahlen bzw. fiir
Polynomringe in einer Unbestimmten iiber Kérpern gilt. SchlieBlich dehn-
ten Jacobson und Teichmiiller dieses Ergebnis auch auf nullteilerfreie
Hauptidealringe aus.

Kaplansky stellte sich 1949 die Aufgabe, die Klasse der Ringe mit der oben
genannten Eigenschaft zu charakterisieren, setzte somit als Definition

4.2.1 Definition {14]: Ein (kommutativer) Ring R heif’t Elementarteiler-
Ring (ED-Ring — elementary divisor ring), falls jede Matrix iiber R zu einer
Diagonalmatrix dquivalent (im obengenannten Sinne) ist,

und leitete damit das Studium der ED-Ringe ein.

Mit vollstindiger Induktion 14t sich zeigen, da es ausreicht, die Eigenschaft
aus4.2.l nurbeil x 2,2 X 1, 2 X 2-Matrizen zu studieren. Ringe, bei de-
nen die 2 X 1- bzw. 1 X 2-Matrizen sich diagonal reduzieren lassen, nennt
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man Hermite-Ringe [20]. Somit sind ED-Ringe auch Hermite-Ringe.
Kaplansky erkannte, da} ein lokaler ED-Ring, d.h. ein ED-Ring mit genau
einem maximalen Ideal, ein Bewertungsring sein mufl. Umgekehrt sind na-
tirlich Bewertungsringe £D-Ringe [14].

Bis heute ist allerdings keine globale Charakterisierung der ED-Ringe be-
kannt, Larsen/Lewis/Shores [20] bewiesen:

4.2.2 Satz: Fiir einen (kommutativen) Ring R sind die folgenden Bedin-

gungen dquivalent:

(i) R ist ein ED-Ring

(ii) Jeder endlich prisentierbare R-Modul ist direkte Summe von zykli-
schen Untermoduln.

(Ein R-Modul M heiBt endlich prisentierbar, falls M = R(®W/K fiir einen

endlich erzeugten Untermodul K des freien Moduls R(™)

und konnten dadurch die ED-Ringe in der Klasse der semilokalen Ringe

(endlich viele maximale Ideale) kennzeichnen.

4.2.3 Satz: Fiir einen semilokalen (kommutativen) Ring sind die folgenden
Bedingungen dquivalent:

(i) R ist ein arithmetischer Ring.

(ii) R ist ein ED-Ring.

(iii) R ist ein Hermite-Ring.

(iv) R ist ein Bezout-Ring (jedes endlich erzeugte Ideal ist ein Hauptideal).

Somit sind wiederum Bewertungsringe (siehe 4.2.3 (i)) als die lokalen Struk-
turen von Bedeutung.

Offen ist ferner das Problem, ob wenigstens im nullteilerfreien Fall die Be-
dingung (iv) kennzeichnend ist.

4.3 FGC-Ringe

In 4.2 begegneten wir einem wesentlichen Hilfsmittel der Ringtheorie,
nimlich Ringe durch die Eigenschaften der zugehorigen Modul-Kategorie
zu kennzeichnen. So entspricht der ringtheoretischen Charakterisierung
der ED-Ringe eine spezifische Zerlegungseigenschaft gewisser Moduln iiber
solchen Ringen. Moduln sind bekanntlich naheliegende Verallgemeinerun-
gen von Vektorriumen. Daher haben auch klassische Resultate der linearen
Algebra oftmals Pate gestanden fiir Fragestellungen der Modultheorie.
Beispiel: Jeder endlich erzeugte Vektorraum ist direkte Summe von ein-
dimensionalen (zyklischen) Unterrdumen.

Man setzte also:

4.3.1 Definition: Ein (kommutativer) Ring R heifft FGC-Ring R (finitely
generated-cyclic), falls jeder endlich erzeugte R-Modul direkte Summe von
zyklischen Untermoduln ist.
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In 4.2.2 tauchten Ringe mit einer dhnlichen Zerlegungseigenschaft wie in
4.3.1 auf. Da jeder endlich prisentierbare R-Modul endlich erzeugt ist,
nicht jedoch umgekehrt, ist die dortige Bedingung an die Modulkategorie
einschrinkender als die in 4.3.1, so daf seinerseits die Klasse der FGC-
Ringe ,,kleiner*‘ als die der ED-Ringe sein muf’.

Fiir die Klasse der lokalen, nullteilerfreien (kommutativen) Ringe charak-
terisierte Kaplansky 1952 [15] einen FGC-Ring als einen fastmaximal voll-
stindigen Bewertungsring. (Ein Bewertungsring heifdt fastmaximal voli-
stindig, wenn jedes echte epimorphe Bild maximal vollstindig ist.) Gill [9]
konnte schlielich auch ein analoges Ergebnis fiir den Fall, dafl R Nulltei-
ler besitzt, herleiten.

4.3.2 Satz: Fiir einen lokalen (kommutativen) Ring R sind die folgenden
Bedingungen dquivalent:

(i) R istein FGC-Ring.
(ii) R ist ein fastmaximal vollstindiger Bewertungsring.

Eine globale Charakterisierung steht zur Zeit noch aus. Zwar weifs man, daf
FGC-Ringe Bezout-Ringe sein miissen [20] und auBerdem bieibt die Eigen-
schaft ,,FGC* bei Lokalisationen erhalten, so daB mit 4.3.2 Ry lokal ein
fastmaximal vollstindiger Bewertungsring sein muf}; doch gibt es Beispiele
[20], die zeigen, daf diese Eigenschaften nicht hinreichend und weitere
Zusatzbedingungen ndtig sind.

5. Bewertungsringe in der Geometrie

Bislang haben wir unsere Darlegungen auf den Fall beschrinkt, dafl Bewer-
tungsringe kommutative Ringe sind. Das war insbesondere auch dadurch
gerechtfertigt, daBl die Bewertungstheorie Bestandteil der kommutativen
Algebra ist, wesentliche Ergebnisse stark von der Kommutativitit der
Multiplikation in den betrachteten Korpern bzw. Ringen abhingen und
dariiber hinaus zur Zeit nur wenige Verallgemeinerungen auf den nicht-
kommutativen Fall bekannt sind.

Gerade in der Geometrie aber erweist sich die Beschrinkung auf den kom-
mutativen Fall als hinderlich und von hier kommen daher auch Anstofle,
eine nichtkommutative Bewertungstheorie zu entwickeln.

Bekanntlich lassen sich affine Ebenen, in denen der SchlieBungssatz von
Desargues gilt, durch Kdrper koordinatisieren. Analog gestatten auch
desarguessche projektive Ebenen eine Beschreibung durch ein (algebraisches)
analytisches Modell. Dabei kdnnen wir Punkte als links-homogene, die Ge-
raden als rechts-homogene Tripel (a1, @3, a3) (nicht alle 4; = Q) auffassen,
wobei die Elemente a; aus dem Koordinatenkérper g; sind. Die Inzidenz ist
iiber das Verschwinden des jeweiligen Skalarprodukts definiert. Genau

dann ist eine solche (desarguessche) Ebene eine Pappos-Ebene, wenn der
Koordinatenkérper kommutativ ist. Erst durch die Kenntnis nichtkommu-
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tativer Korper konnte Hilbert die Unabhiéngigkeit der Pappos-K onfiguration
von der Desargues-K onfiguration belegen.

Sei bis auf weiteres P = P (K) eine pappossche projektive Ebene, K also

ein kommutativer K&rper. Wie bei vielen mathematischen Objekten erhilt
man durch das Studium der Homomorphismen der vorgelegten Struktur we-
sentliche Informationen iiber das betrachtete Objekt. Insofern ist es von
Interesse eine vollstindige Ubersicht iiber alle diejenigen projektiven Ebenen
P’ zu gewinnen, die epimorphe Bilder von P sind. Sofort stellt sich das
Problem einer analytlschen Beschreibung eines Homomorphismus

¢ : P(K)=> P(L) = P'. Dabei verstehen wir unter einem Homomorphismus
eine inzidenztreue Abbildung der Punkt- bzw. Geradenmengen auf die je-
weiligen Mengen in der Bildebene, so daB (um uninteressante Fille auszu-
schlieBen) das Bild wenigstens ein (nicht entartetes) Viereck enthilit.
Schliefflich kann nur dann eine algebraische Beschreibung eines Homomor-
phismus erwartet werden, wenn die Koordinatisierungen der Ebenen P, P’
»,Zusammenpassen‘‘, d.h. die Bilder eines Basisvierecks in P, ndmlich
(1,0,0),(0,1,0),(0,0, 1), (1, 1, 1), (1 € K) sollen wieder die entsprechen-
den Punkte eines Basisvierecks in P (jetzt 1 € L!) sein. Damit kdnnen wir
nun das wesentliche Ergebnis wie folgt formulieren:

5.1 Satz: Es seien P(K), P(L) projektive Pappos-Ebenen.

Jeder Epimorphismus y : P(K) > P(L) induziert eine Stelle mvon K in L.
Ist 7 eine surjektive Stelle von K in L, B der zugehdbrige Bewertungsring

in K, so definiert 9(ay, as, a3) = (m(ay), n(ay), m(a3)) fiir a; € B einen Epi-
morphismus von P(K) nach P(L).

(Niheres siehe 1], [8] und [30]).

Gilt ein entsprechendes Ergebnis auch fiir desarguessche Ebenen, d.h. fiir
nicht notwendig kommutative Kérper? Was verstehen wir dann unter einem
nicht notwendig kommutativen Bewertungsring?

Nennen wir einen nullteilerfreien Ring, dessen Links- und Rechtsideale
durch Inklusion linear geordnet sind, Bewertungsring, so kann man in 5.1
,,Pappos-Ebene** durch ,,desarguessche Ebene‘‘ ersetzen, sofern man in nahe-
liegender Weise den Begriff der Stelle veraligemeinert. Dies wurde von
Klingenberg [17] bewiesen und von Rado, der wohl Klingenbergs Arbeit
nicht kannte, in [27] wiederentdeckt.

Die oben nahegelegte Verallgemeinerung ist allerdings keineswegs zwingend.
In dem Buch von Schilling [29] findet man eine andere Verallgemeinerung
der Bewertungsringdefinition auf den nichtkommutativen Fall. Hier wird,
im Gegensatz zur obigen Version, zusitzlich gefordert, da simtliche Ideale
zweiseitig sind, d.h. R ein Duo-Ring. Dies scheint in vielen Féllen aus be-
weistechnischen Griinden unumginglich zu sein. Es war wohl Rado [27],
der zuerst zeigte, daB eine solche Eigenschaft eine echte Zusatzbedingung
ist oder kurz: daf® es Bewertungsringe im Sinne von Klingenberg gibt, die
nicht duo sind. Schlieflich liefert das Studium von Geometrien iiber loka-
len Ringen [ 16] auch Argumente, bei der Definition von Bewertungsringen
auf die Nuliteilerfreiheit zu verzichten, was zu der in [4] erérterten Klasse
der Kettenringe (chain rings) fiihrt.
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Entwickelte sich urspriinglich der Begriff des kommutativen Bewertungs-
ringes aus der Bewertungstheorie, so steht man momentan vor dem umge-
kehrten Problem, ein geeignetes Konzept einer nichtkommutativen Bewer-
tungstheorie zu entwerfen, das naheliegende Definitionen fiir (nichtkommu-
tative) Bewertungsringe in eine geschlossene Theorie integriert. Als erste
Beitrige sind hier die Arbeiten von Rad6 [27] und Mathiak [ 24} anzusehen.
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