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Bewertungsringe* 

von Günter Törner 

Im folgenden wird der Versuch unternommen, überblicksartig über das Auf- 
treten von Bewertungsringen in verschiedenen Bereichen der Mathematik 
zu berichten. Es geht uns dabei weniger darum, über die letzten Forschungs- 
ergebnisse in dieser Hinsicht zu referieren, als vielmehr die zentrale Rolle 
einer sehr speziellen algebraischen Struktur in vielen Problemen herauszu- 
arbeiten. Notwendigerweise muß eine solche Darstellung unvollständig blei- 
ben; auch mögen die ausgewählten Anwendungsfelder dem einen und ande- 
ren Leser unter Umständen einseitig erscheinen; außerdem gehen wir nicht 
auf die mittlerweile zahlreichen und vielversprechenden Verallgemeinerun- 
gen von Bewertungen auf Ringe, Gruppen, Verbände usw. ein. Kurz: uns 
geht es um eine exemplarische Beschreibung des Auftretens von Bewertungs- 
ringen, wobei wir weitgehend auf Beweise verzichten werden. Der inter- 
essierte Leser möge sich in der entsprechenden Literatur informieren. 
Schließlich ist es unumgänglich, einige wenige Fakten aus der Bewertungs- 
theorie für den Leser bereitzustellen. 

0. Vorbemerlrungen und historische Wuneln 

Die Wurzeln der Bewertungstheorie liegen im wesentlichen im Zusammen- 
spiel der Zahlentheorie, der Funktionentheorie und der Algebra als der 
Theorie der algebraischen Zahlen. Wenngleich verschiedenen Arbeiten von 
Cantor, Steinitz, Hadamard und Weierstraß - im heutigen Sprachgebrauch - 
bewertungstheoretische Ideen und Methoden zugrunde liegen [19, S. 2211, 
so wird die stürmische Entwicklung dieser Theorie allerdings erst durch das 
Buch von Hensel: Theorie der algebraischen Zahlen (1 908) [ l  11 nachhaltig 
eingeleitet. Ausgangspunkt sind für Hensel die erstaunlichen Ergebnisse und 
eleganten Methoden der Funktionentheorie einerseits, die formale Ähnlich- 
keit verschiedener Begriffsbildungen mit denen in der Zahlentheorie und 
Algebra und schließlich andererseits die im Vergleich mit der Funktionen- 
theorie bescheidenen, mit großem Aufwand erreichten Fortschritte in der 
Zahlentheorie. Während in der Funktionentheorie die Frage, ob eine analy- 
tische Funktion algebraisch oder transzendent ist, anhand der singulären 
Stellen der Funktion und der Tatsache, ob sie eindeutig, mehrdeutig oder 
unendlich vieldeutig ist, (theoretisch) einfach zu unterscheiden ist, ist man 
in der Zahlentheorie noch nicht wesentlich über die entsprechenden Fragen 
bei e bzw. n hinausgekommen. Hensel hat dafür folgende Erklärung [ l  1,  S. 31: 

*Oberarbeitete Fassung des am 1 1. März 1977 vor dem FB Mathematik der Techni- 
schen Hochschule Darmstadt gehaltenen Habilitationsvortrages. 
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„Der Gmnd, warum die allgemeine Untersuchung der Zahlgrößen so außerordentlich 
viel schwieriger ist als die der Funktionen, scheint mir nun ausschließlich der zu sein, 
daß wir für die Zahlen im wesentlichen nur eine einzige Darstellung kennen, während 
wir für jede Funktion unendlich viele Funktionselemente finden können. Für die 
Zahlen haben wir nämlich allein die Darstellung ihrer Größe nach, 2.B. in Form eines 
Dezimalbmches mit reellen oder komplexen Koeffizienten. Für eine reelle positive 
oder negative Zahl besteht nämlich stets die eindeutig bestimmte Entwicklung: 

Wir haben also für die Zahlen nur die Entwicklung nach fallenden Potenzen von 10 
oder, was genau dasselbe ist, von irgendeiner anderen Gmndzahl; . . . der Form nach 
entspricht dies der Entwicklung einer analytischen Funktion f(z) nach fallenden Po- 
tenzen von z, d.h. in der Umgebung der unendlich fernen Stelle. Die Theorie der Funk- 
tionen würde genau dieselben Schwierigkeiten bieten wie die der Zahlen, wenn wir für 
sie etwa auch nur eine Entwicklung kennen würden." 

Dies führt Hensel zur Konstruktion einer neuen Klasse von Zahlen, den 
padischen Zahlen, die nach steigenden Potenzen einer Grundzahl zu ent- 
wickeln sind. (Eine ausführliche Darstellung der p-adischen Zahlen findet 
man z.B. in der Onginalarbeit [ l  11, aber auch etwa in [3]. Wir werden wei- 
ter unten eine, für das folgende ausreichende Charaktensierung angeben.) 
Die p-adischen Zahlen bilden, wie Hensel aufzeigt, einen Körper Qp,  der 
ähnlich wie die reellen Zahlen in gewissem Sinn (siehe Kapitel 2) vollständig 
ist. Da sowohl der Körper der reellen Zahlen als auch der p-adische Zahlkör- 
per Oberkörper der rationalen Zahlen ist, stellt sich für Kürschak (1 9 13) [ 191 
und insbesondere für Ostrowski ( 19 17) [26] die Aufgabe einer einheitlichen, 
beide Typen umfassenden Theorie der Konstruktionen. In der heutigen Be- 
zeichnungsweise könnte man die Idee von Ostrowski wie folgt wiedergeben: 
Bekanntlich bilden die Cauchy-konvergenten rationalen Zahlenfolgen einen 
Ring R ,  wobei die Nullfolgen ein maximales Ideal J darstellen. Mit Hilfe der 
Cauchy-Folgen sollen nun „neue" Zahlen eingeführt werden, wobei Cauchy- 
konvergente Folgen, die sich um eine Nullfolge unterscheiden, die gleiche 
Zahl beschreiben sollen; kurz: wir bilden den Restklassenring R / J ,  der ein 
Körper ist, da J maximales ideal ist und nennen ihn den Körper der reellen 
Zahlen. Bei diesem Zugang ist nun folgendes bemerkenswert: Cauchy-Kon- 
vergenz wird wie üblich mit Hilfe des Absolutbetrages formuliert, beim 
Konstruktionsverfahren wird aber nur von den funktionalen Eigenschaften 
des Absolutbetrages Gebrauch gemacht: 

Somit liegt es nahe, (1) - (3) als System von Funktionalgleichungen von 
Funktionen (p : Q+ IR zu untersuchen, nach dessen Lösungen zu fragen 
und die nach dem oben beschriebenen Verfahren entstehenden Körper zu 
beschreiben. 

Natürlich ist 
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stets eine Lösung von (1) - (3), aber auch 

. U  
(5) c p ( x ) = c i m i t O < c < l u n d x = p ' - m i t  

b 

(P, a) = (p, b )  = 1 für jede Primzahl p 

löst (1) - (3), wie bereits Hensel [ l  11 erkennt. Schließlich beweist Ostrowski 
[26] (siehe auch Artin [2]), daß mit (4) und (5)  schon alle Lösungen erfaDt 
sind. Spätestens hier erwies sich die von Kürschak eingeführte Begriffsbil- 
dung von Bewertungen als hilfreich und wird nun Anlaß zu einer eigenstän- 
digen Theorie: der Bewertungstheorie. Im nächsten Kapitel sollen die für un- 
sere Zwecke notwendigen Grundbegriffe zusammengestellt werden. 

1. Bewertungstheorie und Bewertungsringe 

Von Bedeutung für die Konstruktion der reellen Zahlen bzw. p-adischen 
Zahlen sind, wie in 0. ausgeführt, Funktionen der rationalen Zahlen in den 
reellen Zahlkörper mit (1) - (3). Das führt uns in naheliegender Weise zu der 
folgenden Definition: 

1 .1  Definition: Unter einer Bewertung tp eines (kommutativen) Körpers K 
verstehen wir eine Abbildung tp : K + P  in einen angeordneten Körper P 
mit folgenden Eigenschaften: 

(i) d a )  > 0 für alle a # 0, cp(0) = 0 

(ii) cp(ab) = ~ ( a )  . cp(b) 

(iii) d a  + b )  < d a )  + cp(b). 
Das klassische Ergebnis von Ostrowski besagt somit, da6 jede Bewertung 
des Körpers der rationalen Zahlen (K = Q, P = IR) von der Gestalt (4) 
oder (5) ist. 

Nun scheinen Bewertungen cpl(x) = I x 101, cp2(x) = I x IP2(p1 f p2)  nicht 
wesentlich verschieden voneinander zu sein. Damit kommen wir zwangs- 
Iaufig zu dem Begriff der Äquivalenz von Bewertungen. 

1.2 Definition: Bewertungen cpl , cp2 : K + P  heißen äquivalent, falls für je- 
de Folge (an) 

(6) cpl - lim an = 0 cp2 - lim an = 0. 
n+w n-+w 

Die wohlbekannte Grenzwertdefinition (mit dem Absolutbetrag als Bewer- 
tung von Q bzw. IR oder C )  übertrage man auf bqiiebige Bewertungen. In 
diesem Sinne sind die Bewertungen cpl ( X )  = I x P i , ,  cp2(x) = I x IPZ' äquiva- 
lent. Schließlich ist (P) eine Nul,lfolge bzgl. ,der p-adischen Bewertung, 
keine Nullfolge jedoch für eine p -adische (p # p)  oder die Absolutbetrags- 
bewertung. 
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I 
Halten wir dieses Ergebnis fest: 1 

1.3  Satz: Eine nichttriviale Bewertung cp des Körpers Q der rationalen Zah- 
len ist entweder zur gewöhnlichen A bsolutbetragsbewertung oder zur 

I 
padischen Bewertung d x )  = (siehe (5)) für eine Primzahl p äquivalent. 1 

I I 

Dabei verstehen wir unter der trivialen Bewertung die Abbildung 7 mit 
I 

O ~ O u n d  f ü r a l l e x f  0 : x  -1. 1 
I 

Die p-adischen Bewertungen unterscheiden sich von der Absolutbetragsbe- 
1 wertung darin, da6 sie einer stärkeren Dreiecksungleichung, nämlich 

I (7) cp(a + b) max ( d a ) ,  d b )  ) für alle a, b E K 
I 
I 

1 genügen. Wir sagen: cp erfüllt die ultrametrische Dreiecksungleichung. 
I 

I 
I 1.4 Definition: Genügt eine Bewertung cp der ultrametrischen Dreiecksun- 1 

I gleichung, so heißt <p nichtarchimedische Bewertung. Ansonsten sprechen 1 
1 wir von einer archimedischen Bewertung. I 

I Die Bezeichnung erscheint etwas unglücklich, weil damit nichts über die 1 
1 Archimedizität oder Nichtarchimedizität der Ordnungsrelation in P ausge- 

I sagt werden soll; sie hat sich aber in der Literatur eingebürgert. I 
1 Für archimedische Bewertungen gilt nun der von Ostrowski bewiesene Satz i 

I (siehe auch [31]). I 

I 1.5 Satz: Ein archimedisch bewerteter Körper (P = IR) ist zu einem mit  ge- 1 
1 wöhnlichen Absolutbeträgen bewerteten Unterkörper der komplexen Zah- 1 

I len isomorph. Der zugehörige Isomorphismus respektiert auch die Bewert~ng.~ 

1 Insofern können die archimedisch bewerteten Körper und ihre Eigenschaf- ; 
I ten (zumal es nur zwei vollständige Körper, nämlich IR und C gibt) als be- 

1 kannt angenommen werden. Unser Hauptaugenmerk wird daher auf die 
I nichtarchimedische Bewertungstheorie gerichtet sein, zumal erst hier das 1 

Konzept, Bewertungsringe anstelle der Körper zu untersuchen, fruchtbar 1 
I wird. 

I Im Falle, daß cp nichtarchimedische Bewertung ist, wird (siehe Def. 1.1) nur 
I von der Multiplikation in P Gebrauch gemacht, so da6 eine Abschwächung 

der in 1.1 geforderten Eigenschaften naheliegt~wendet man auf die-Wede I 
1 bei der p-adischen Bewertung noch die Abbildung - logp an, so hat somit 1 

a 
I das Element ( ( P ,  U )  = ( P ,  b )  = 1 )  den ,,Wert" i und die Bedingungen 

b 
1 (U) bzw. (7) schreiben sich als 1 

I (8) v(a . b )  = v(a) + v(b) 1 
1 (9) v(a + b) > min { v(a), v(b) 1, I 
1 wobei u = (- logp) 0 7. Es wird dabei ,,nach dem Exponenten bewertet". 1 

1 Hier setzt nun die von Krull [ 181 eingeführte „allgemeine6' Bewertungs- I 

1 theorie ein, indem er Bewertungen in größerem Rahmen sieht und anstelle 1 
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von - logp(P\{ 0 ) )  = v(K\{ 0 ) )  = IR von einer beliebigen linear geordne- 
ten Gmppe als Wertebereich der Bewertung ausgeht. 

1.6 Definition: Eine Abbildung V : K \ {  0 )  -t G eines (kommutativen) Kör- 
pers K in eine linear geordnete (kommutative) Gruppe G heißt Exponenten- 
oder Krullbewertung, falls sie den folgenden Bedingungen genügt: 

(i) v(a . b) = v(a) + v(b) 

(ii) v(a + b) > min { v(a) ,  v(b) ). 
Es hat sich eingebürgert, die Verknüpfung in G additiv zu schreiben. Außer- 
dem bezeichnet im folgenden V stets eine Exponentenbewertung, während 
cp für Bewertungen im Sinne von 1 .1  gebraucht werden wird. 

Schließlich erkennt man, daß nichtarchimedische Bewertungen im Sinne 
von 1.1 als Exponentenbewertungen interpretiert werden können. 

Unmittelbar mit 1.6 erhält man, daß  die Menge { X  E K I v(x) > 0 )  U { 0 )  
additiv als auch multiplikativ abgeschlossen ist. 

1.7 Definition: Es sei V Bewertung des Körpers K. Dann heißt 
B = { X  E K I ~ ( x )  > 0 )  U { 0 )  der Bewertungsring von V in K. 

1.8 Beispiele: 1 .  Es sei C ( 2 )  der Körper der rationalen Funktionen über C. 
Jede rationale Funktion h ist darstellbar als Quotient zweier Polynome 
f, g. Insbesondere existiert stets eine (nicht reduzierbare) Darstellung der 
Gestalt 

fi (z) 
h(z) = zi - mit Polynomen fl  , gl , 

gi (2) 
die der Bedingung f i (0)  # 0 #g1(0) genügt. Ist i > 0, so sagt man: h habe 
an der Stelle 0 €4: eine Nullstelle i-ter Ordnung, im Falle i < 0 einen Pol 
i-ter Ordnung, während für i = 0 h bei 0 nicht verschwindet und endlich ist. 
Wie man sich leicht überlegt, definiert die Zuordnung V : h + i eine Bewer- 
tung des Körpers der rationalen Funktionen mit der Wertegruppe G = Z 
(siehe z.B. [29], [7]). Der Bewertungsring besteht somit aus allen bei 0 ho- 
lomorphen rationalen Funktionen. 

2. Es sei K der Körper der meromorphen Funktionen über C, also Funk- 
tionen über C, die bis auf (im Endlichen sich nicht häufende) Pole holo- 
morph sind. Jede dieser Funktionen denke man sich am Nullpunkt in eine 

Laurent-Reihe airi  entwickelt. Einer solchen Reihe ordnen wir den 
[>-W 

z-Exponenten zu, dessen zugehöriger Koeffizient als erster nicht verschwin- 
det. Wiederum erhält man eine Bewertung mit der gleichen inhaltlichen In- 
terpretation wie oben. Hier besteht der Bewertungsring aus den meromor- 
phen Funktionen, die bei 0 keinen Pol besitzen. Analog kann man die 
Laurent-Entwicklung an anderen Stellen vornehmen, wobei man durchaus 
unterschiedliche Bewertungsringe erhält. 
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Wir bemerken noch, da5 man auch umgekehrt aus der Kenntnis des Bewer- 
tungsringes B den Körper K und im wesentlichen (d.h. bis auf Äquivalenz) 
die Bewertung v rekonstruieren kann, so daß der vorgelegte Bewertungsring 
mit dem aus der konstruierten Bewertung übereinstimmt (siehe z.B. [29]). 
Bewertungsringe sind somit in gewisser Weise die Invarianten der Klassen 
äquivalenter Bewertungen. Damit haben wir nichtarchimedische Bewertun- 
gen und Bewertungsringe als gleichwertiges Konzept erkannt. 

Zum Schluß wollen wir eine weitere Betrachtungsweise vorstellen: das 
Konzept der Stellen. Die in Beispiel 1.8 untersuchten Bewertungsringe 
hätten wir auch wie folgt kennzeichnen können: 
Jeder Funktion h E C(z)  ordnen wir ihren Funktionswert an einer (festen) 
Stelle zo zu: 

n(h) = h(zo). 

Ist h bei zo singulär, so setzen wir h(zo) = = n(h). Schließlich sei 
n(m) = m und wir haben damit eine Abbildung n von C(z)  U { m )  in 
C U { m )  erhalten, die den Bedingungen 

( 1  0) Sind X + y, n(x) + n(y) definiert, dann ist 
n(x + Y )  = n(x) + n(y) 

(1 1) Sind X . y ,  n(x) . n(y) definiert, dann ist 
n(x - y )  = n(x) . n(y) 

(12) E s g i b t x E C U { ~ )  m i t n ( x ) = l ,  

genügt. 

1.9 Definition: Unter einer Stelle n des Körpers K in den Körper L verste- 
hen wir eine Abbildung n : K U  { m } -+ L U { W  ), die (10) - (12) genügt. 
Dabei setzt man: 

x + m = ~ + x = m  fü ra l l exEK 
X - m = m  . x = m fi iral lexEK U {m}\{0)  

0-I = m, w-' = 0, - m = m (siehe z.B. [7, S. 531) 

(Man beachte: m + m, 0 . W, W - 0 sind nicht definiert.) 

Ohne Schwierigkeiten erkennt man, daß B = { X  E K I n(x) E L ) ein Be- 
wertungsring ist. 

2. Beweriungsringe als Ringe 

Bislang waren Bewertungsringe stets in enger Verbindung mit Bewertungen 
von Körpern aufgetreten. Wir suchen im folgenden eine (einfache) ring- 
theoretische Kennzeichnung. 

Zunächst sollten die zur Diskussion stehenden Ringe - Bewertungsringe 
sind Unterringe von Körpern - nullteilerfrei sein. Ist B Bewertungsring im 
Körper K und x E K\B, so ist sicher v(x) < 0, also, weil u(1) = U(])  + v(1) = 0 
ist, folgt v(x-I) > 0, d.h. X-' E B. Somit liegt stetsx oderx-I in einem Be- 
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wertungsring. Seien nun X ,  y E B ,  so erhält man mit obiger Überlegung 
x y P 1  E B oder yx-' E B ,  d.h. es existiert a E B mit X = ay oder es existiert 
ein b E B mit bx = y .  Im ersten Fall ist Bx C B y ,  im zweiten By C Bx.  Da- 
her sind je zwei Hauptideale des Ringes B (durch Inklusion) vergleichbar und 
somit je zwei Ideale. 

Im Einklang mit 1.7 definieren wir: 

2.1 Definition: Ein nullteilerfreier (kommutativer) Ring B ist ein Bewer- 
tungsring, falls für je zwei Elemente X ,  y E B stets gilt: es existiert a E B 
mit : X = a y  oder es existiert b E B mit y = bx .  

Wie man von einem Ring B mit obigen Eigenschaften zur Bewertung eines 
Körpers kommt, entnehme man z.B. [18]. 

Halten wir das folgende fest: ein wesentliches Charakteristikum eines Be- 
wertungsringes ist die lineare Ordnungsstru ktur des Idealverbandes. 

2.2 Beispiele: 1. Der zu einer p-adischen Bewertung vp der rationalen Zah- 
len gehörende Bewertungsnng B besteht aus rationalen Zahlen der Gestalt 
. a 

p1 - mit i E  INo und ( p ,  a )  = 1 = ( p ,  b ) .  Offensichtlich ist 
b 

B 3 pB 3 p 2 ~  3 .  . . 3 p"B 3 . . . 3 (0), d.h. der Hauptidealverband (alle 
Ideale sind Hauptideale) ist vom Ordnungstyp der natürlichen Zahlen. 

2. Entsprechendes wie in 1. gilt für die in  1.8 beschriebenen Bewertungs- 
nnge im Körper der rationalen Funktionen bzw. meromorphen Funktionen. 

3. Bildet man (formale) Laurent-Reihen, allerdings nun mit rationalen Ex- 
ponenten (anstelle der ganzen Zahlen), wobei die zugehörenden nichtver- 
schwindenden Koeffizienten in Bezug auf die Ordnung in iQ (wie vorher) 
vom Ordnungstyp der natürlichen Zahlen sind, so  erhält man bei einer Ex- 
ponentenbewertung (der Wert einer solchen Laurent-Reihe ist die kleinste 
rationale Zahl mit nichtverschwindendem Koeffizient) einen Bewertungs- 
ring, dessen Idealverband allerdings nicht mehr diskret ist [29]. 

Dem Beispiel 3 entsprechende Verfahren führen zu 

2.3 Satz (Krull) [18]: Zu jedem Positivbereich einer linear geordneten Grup- 
pe gibt es Bewertungsringe. deren Hauptidealverband ordnungsisomorph zum 
Positivbereich der vorgelegten linear geordneten Gruppe ist. 

Ordnungstheoretische Eigenschaften der linear geordneten Gruppe (z.B. 
konvexe Untergruppen) spiegeln sich dann in ringtheoretischen Eigenschaf- 
ten wider [29]. 

Ein weiteres Charakteristikum, was wir im folgenden noch mehrmals an- 
sprechen werden, sind Vollständigkeitseigenschaften gewisser Bewertungs- 
nnge und die sich daraus ergebenden Konsequenzen. 

Wie wir bereits dargelegt haben, besitzen Bewertungen gerade jene funk- 
tionalen Eigenschaften des Absolutbetrages, der wiederum zur Definition 
von Filtern bzw. der Konvergenz benutzt wird. Insofern ist die folgende 
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Definition unter Berücksichtigung des Ubergangs von cp zur Exponentenbe- 
wertung V natürlich. 

2.4 Definition: Eine Folge (an) aus Elementen eines Bewertungsringes B 
heißt Cauchy-konvergent, wenn für jedes Hauptideal Bx eine natürliche 
Zahl m existiert, so daß für alle k, f m stets ak - a, E Bx ist. 

Entsprechend heißt ein Bewertungsring B vollständig, falls jede Cauchy- 
konvergente Folge einen Grenzwert B besitzt. Man zeigt ferner, daß jeder 
Bewertungsring B eine Vervollständigung B besitzt, die ebenfalls ein Be- 
wertungsring ist. B läßt sich somit in einen Bewertungsring B einbetten, 
der überdies 

(1 3) die gleiche Idealstruktur wie B und 

( 14) gleichen Restklassenkörper (BIJ@) B/J($j)) 
besitzt. Erweiterungen mit (13) und (14) nennt man unmittelbar. 

Allgemein interessieren daher Oberringe von Bewertungsringen (die natür- 
lich auch Bewertungsringe sind), die den Bedingungen (1 3) und (14) genügen. 

Ein solcher Ringerweiterungsprozeß (mit ( 13) und ( 14) als Nebenbedingun- 
gen) bricht, wie man mit erheblichem Aufwand zeigen kann [29], schließ- 
lich ab, d.h. man erhält einen maximal vollständigen Bewertungsring, der 
keine unmittelbare (echte) Erweiterung zuläßt. 

Ist der Ordnungstyp des Hauptidealverbandes diskret, so fallen beide Be- 
griffe: vollständig und maximal vollständig zusammen. Ansonsten (siehe 
[29, S. 321) gibt es vollständige Bewertungsringe, die nicht maximal voll- 
ständig sind. Der p-adische Zahlkörper läßt sich als jener Quotientenkör- 
per kennzeichnen, der aus einer Vervollständigung des Bewertungsringes 
aus 2.2.1 hervorgegangen ist. 

Entsprechend ist der Bewertungsring in 1.8.2 („meromorphe Funktionen") 
maximal vollständig im Hinblick auf den in 1.8.1 diskutierten (,,rationale 
Funktionen"). 

3. Nichtarchimedische Analysis/Funktionalana1ysis 

Im Abschnitt 0 hatten wir aufgezeigt, daß die Entwicklung der Bewertungs- 
theorie als eigenständige Theorie in dem Moment begann, als man erkannte, 
daß viele Fakten ihre Ursache lediglich in den formalen Eigenschaften von 
Bewertungen haben. 

In gleicher Weise war auch die Beobachtung in der Analysis, da5 viele Be- 
weise nur von den formalen Eigenschaften des Absolutbetrages Gebrauch 
machen, Ausgangspunkt einer Reihe von Untersuchungen. Auf zwei For- 
schungsrichtungen möchten wir hinweisen. 
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3.1 Funktionentheorie 

Nach dem Ergebnis von Ostrowski [26] können alle archimedisch bewerte- 
ten Körper als Unterkörper des komplexen Zahlkörpers C angesehen wer- 
den. Da es sinnvoll erscheint, Analysis über vollständigen Körpern zu trei- 
ben, bleiben lediglich der Körper der reellen Zahlen und C selbst übrig, 
man befindet sich somit im Gebiet der klassischen Analysis. 

Insofern ist für unsere Zwecke eine Beschränkung auf nichtarchimedisch be- 
wertete Körper von Interesse, die aber - damit man sinnvoll Analysis trei- 
ben kann - als vollständig vorausgesetzt werden. (Der Leser möge dabei 
z.B. zunächst an den Körper der p-adischen Zahlen denken.) 

Nach den Feststellungen von Remmert [28] scheint die erste größere Arbeit 
über die Funktionentheorie mit nichtarchimedisch bewertetem Grundkör- 
per die Dissertation von Schöbe aus dem Jahre 1930 zu sein, deren Resulta- 
te lange unbekannt geblieben und später von anderen - zum Teil auf 
komplizierterem Wege - neu bewiesen wurden. 

„Weiterführende Ergebnisse verdankt man u.a. M. Krasner und M. Lazard. 
Eine einfache Herleitung der klassischen Resultate der Funktionentheorie 
einer Veränderlichen gab U. Güntzer [10]" (siehe [28]). 

Daß eine Funktionentheorie über einem nichtarchimedisch bewerteten Kör- 
per ,,eigenwilligeL' Züge trägt, macht das folgende Lemma deutlich: 

3.1.1 Lemma: Die unendliche Reihe ai konvergiert genau dann (in der 
durch die Bewertung induzierten Topologie), falls lim ai = 0. 

Daher ist für Potenzreihen die naheliegende Folgerung zu ziehen. 

3.1.2 Folgerung: Eine Potenzreihe 2 atzi konvergiert entweder für alle 
Punkte z einer Sphäre { z I q ( z )  = t ) oder für keinen Punkt der Sphäre. 

Dazu kommt, da5 nichtarchimedisch bewertete Körper total unzusammen- 
hängend sind. „Also ist die Klasse derjenigen Funktionen, die lokal eine 
Potenzreihenentwicklung gestatten, viel zu groß, um eine der klassischen 
Theorie ähnliche zu liefern, z.B. gilt für solche Funktionen kein Identitäts- 
Satz." [ 101 

Um etwa klassische Sätze übertragen zu können, muß der Grundkörper K 
starken Einschränkungen unterworfen werden. Insbesondere sollte K nicht 
lokal kompakt sein. Ein nichtarchimedisch bewerteter, vollständiger Kör- 
per ist genau dann lokal kompakt, wenn die Idealstruktur des zugehörenden 
Bewertungsrings diskret und der entsprechende Restklassenkörper (nach 
dem maximalen Ideal) endlich ist. (Somit ist der p-adische Zahlkörper Qp 
ein lokal kompakter Körper.) 

Ohne auf Einzelheiten einzugehen, erwähnen wir ein Ergebnis aus [ I  01, das 
die Bedeutung der Struktur des Idealverbandes hervorhebt. 

3.1.3 Lemma: Ist die Bewertung von K nicht diskret, so gilt in einer Funk- 
tionentheorie über K das Analogon zum Satz von Liouville, d.h. eine Po- 
tenzreihe, die für alle X E K konvergiert und beschränkt ist, ist eine Konstante. 

2 Überblicke Mathematik 78 WV 143 
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3.2 Funktionalanalysis 

Die übliche Definition eines normierten Raumes benutzt wesentlich Eigen- 
schaften des Absolutbetrages. Wie schon mehrfach betont ,  stellte sich auch 
hier die Frage nach einer möglichen Verallgemeinerung, wodurch das ,,Eigent- 
liche" verschiedener Begriffsbildung stärker herausgearbeitet werden konnte. 

Erste Untersuchungen über normierte Räume mit nichtarchimedisch bewer- 
tetem Körper gehen auf Monna ( 1943) [ 2 5 ]  zurück. 

3.2.1 Definition 1281: Unter einem nichtarchimedisch normierten Raum E 
über dem Körper K verstehen wir einen linearen Raum E über K ,  wobei 
U U : E -t IR eine Abbildung von E nach IR und 1 I : K + IR eine Bewer- 
tung von K ist, die den folgenden Bedingungen genügen: 

(iii) II X + y II max {U X 11, U y 11 ) für alle X ,  y E E .  

Da die Norm (siehe oben) als reellwertig vorausgesetzt wird, ist (ii) nur  dann 
sinnvoll, wenn 1 a I stets reell ist; gerade die nichtarchimedischen Bewertun- 
gen vom Range 1 erfüllen diese Nebenbedingung. Dabei sei die Bewertung 
gemäi3 Definition 1.1 geschrieben. 

Weil im allgemeinen 11 EU # I K I ist, lassen sich Elemente X E E nicht not- 
wendigerweise normieren. Schließlich sei weiter vorausgesetzt, da& K bzgl. 
1 I vollständig bewertet ist. 

Wie üblich erklärt man die Äquivalenz von Normen: Zwei Normen 11 111, 
11 112 heii3en äquivalent, falls es cu,P E IR gibt, so  daß  stets 

(Y IIxU, IIxU2 IIxU,. 
Ähnlich wie für normierte Räume über den reellen Zahlen, d.h. für archi- 
medisch bewertete Körper, erhält man das folgende Lemma. 

3.2.2 Lemma: In  einem endlich dimensionalen, nichtarchimedisch normier- 
ten Raum E sind je zwei Normen äquivalent. 

Aus dem für die Funktionalanalysis wesentlichen Satz von Hahn-Banach 

Jedes stetige Funktional auf eineni Unterraum eines reellen normierten 
Raumes läfit sich linear und mit der gleichen Norm auf den gesamten Raum 
fortsetzen, 

werden im Falle der nichtarchimedisch bewerteten Körper deren eigenwilli- 
gen Züge deutlich. 

Der Satz von Hahn-Banach ist Spezialfall einer allgemeineren Fortsetzungs- 
eigenschaft : 

(1 5) Sei E ein normierter Raum. Wir sagen: E hat die Fortsetzungseigen- 
schaft, falls für jeden Unterraum S eines Raumes X und für jede 
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lineare stetige Abbildung f : S + E  eine lineare, stetige Abbildung 
F : X + E  mit gleicher Norm existiert, die das Diagramm 

kommutativ macht, d.h. f = F o i .  

Nachbin [22] fand in der sogenannten „binären Durchschnittseigenschaft" 
der Einheitssphären eine notwendige und hinreichende Bedingung für das 
Erfülltsein von (1 5). Ein Mengensystem Q: hat die „binäre Durchschnitts- 
eigenschaft", wenn jedes Teilsystem, in dem je zwei Elemente sich schnei- 
den, nichtleeren Durchschnitt hat. 

Mit Hilfe der von Nachbin entwickelten Techniken konnten Cohen [5] und 
Ingleton [12] auch nichtarchimedische normierte Räume erschöpfend be- 
handeln. 

Die binäre Durchschnittseigenschaft läßt sich idealtheoretisch als Lösbar- 
keitsbedingung für unendliche, paarweise lösbare Kongruenzsysteme (siehe 
auch Kapitel 4) interpretieren, was den folgenden Satz plausibel macht. 

3.2.3 Satz: Ein nichtarchimedisch normierter Raum E über dem K besitzt 
die Hahn-Banach-Eigenschaft genau dann, wenn der zu K gehörende Be- 
wertungsring maximal vollständig ist. [ I  2, Th. 31, [23, S. 361. 

Während, wie schon in Kapitel 2 erwähnt, diskrete Bewertungen, die voll- 
ständig sind, auch maximal vollständige Bewertungsringe induzieren, muß 
i.a., um 3.2.3 zu gewährleisten, an den Körper jene stärkere Vollständig- 
keitsforderung gestellt werden. Beispiele, daß  jene beiden Vollständigkeits- 
begriffe nicht zusammenfallen, findet man sowohl bei Schilling als auch in 
der Arbeit von Cohen [SI. 

4. Bewertungsringe in der Algebra 

Bewertungsringe sind lokale Ringe, also Ringe, die genau ein maximales 
Ideal besitzen und insofern äußerst spezielle Objekte. Dennoch ist ihre Be- 
deutung nicht unerheblich und dies hat seine Ursache im Lokal-Global- 
Prinzip oder wie das technische Schlagwort heißt: Lokalisation. 

Diese weitreichende Methode der Algebra besteht nun darin, vorgegebene 
Ringe in hinreichend viele lokale Ringe einzubetten und aus den Eigenschaf- 
ten dieser lokalen Obemnge auf Charakteristika des ursprünglichen Rings 
zu schliefien. 

Grob vereinfacht läßt sich die Idee zur Konstruktion von lokalen Oberrin- 
gen wie folgt beschreiben: Ist M ein maximales Ideal des Ringes R ,  so wer- 
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den in dem (zu konstruierenden) Oberring RM alle Elemente X M zu Ein- 
heiten. (Man denke an Z = R ,  p Z = M für eine Primzahl p und 

a C a 
RM = { -  ( es gibt - = - mit p$d 1 . )  

b d b 

Auf hinreichende Bedingungen für die Existenz von Oberringen RM wollen 
wir an dieser Stelle nicht eingehen (siehe z.B. den Übersichtsartikel von 
P.M. Cohn [6]). Im allgemeinen ist der Oberring RM als lokaler Ring in sei- 
ner Struktur besser zugänglich. Besitzen nun sämtliche Quotientenringe 
RM (für jedes beliebige maximale Ideal) eine bestimmte Eigenschaft (tri- 
viales Beispiel: X E R  ist in sämtlichen Oberringen RM invertierbar) und 
überträgt sich diese auf die Oberringe, d.h. ist diese invariant unter Lokali- 
sation, so weist auch R diese Eigenschaft auf (hier: X E R  ist auch in R 
invertierbar). 

Im folgenden werden wir darlegen, da5 ,,interessante" Ringe oftmals, lokal 
gesehen, Bewertungsringe sind. 

4.1 Idealtheorie, Dedekind-Ringe, Prüfer-Ringe, arithmetische Ringe 

Der urspningliche Ausgangspunkt für das, was wir heute als Idealtheorie be- 
zeichnen, war die Zahlentheorie und hier insbesondere die Fermatsche Ver- 
mutung 

(F,): x n  + yn  = z n  

hat keine ganzzahligen Lösungen ( n  > 3). [3, S. 173ff.l. 

Kummer erkannte in der Mitte des vorigen Jahrhunderts, da5 diese Frage 
eng mit dem Problem der eindeutigen Primfaktorzerlegungen in algebraischen 
Erweiterungen Z [C] mit Einheitswurzeln E des Ringes der ganzen Zahlen 
verknüpft ist. Wohlbekannt ist die Tatsache, da5 in elementar zugänglichen 
Ringen, z.B. Z [m] nicht mehr der Satz von der eindeutigen Primfaktor- 
zerlegung gilt : So ist 

9 =  3 . 3 = ( 2 + i & ) ( 2  - i & ) .  

Die grundlegende Idee von Kummer bestand dann, geeignete Elemente des 
Ringes zu neuen Objekten, den ,,idealen Zahlen" zusammenzufassen, um 
zu erreichen, da5 in dieser Menge eine entsprechende Primfaktorzerlegung 
eindeutig wird. Für das oben erwähnte Beispiel bedeutet dies: Ersetzt man 
9 durch das von diesem Element erzeugte Ideal, so ilt 
(9) = P2Q2 mit P = (3, 2 + i &), Q = (3, 2 - i $1. Dabei sind P, Q Prim- 
ideale und die Zerlegung (9) = P2Q2 ist eindeutig. 

Diese Feststellung legt die folgende Definition nahe: 

4.1.1 Definition (siehe z.B. [21]): Ein nullteilerfreier (kommutativer) Ring 
hei5t Dedekind-Ring, falls jedes Ideal Produkt von Primidealen ist. 

Diese Produktzerlegung ist eindeutig [32]. Beispiele von Dedekind-Ringen 
findet der Leser etwa in [33] oder [21]. 
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Wesentlich für unsere Intentionen ist nun der folgende Kennzeichnungssatz. 

4.1.2 Satz [2 I]: Für einen nullteilerfreien, noetherschen (kommutativen) 
Ring R sind die folgenden Bedingungen äquivalent: 

(i) R ist ein Dedekind-R ing. 

(ii) Für jedes maximale Ideal M ist der Quotientenring RM ein diskreter 
Bewertungsring. 

Ohne die Definition einer weiteren zentralen Klasse von Ringen, nämlich 
der PrüferRinge [21] anzugeben (die „Definition" steht in Satz 4 .1 .9 ,  
zitieren wir noch den folgenden Satz. 

4.1.3 Satz [21, 6.71: Für einen nullteilerfreien (kommutativen) Ring R sind 
die folgenden Bedingungen äquivalent: 

(i) R ist ein PrüferRing. 
(ii) Für jedes maximale Ideal M ist der Quotientenring RM ein Bewertungs- 

ring. 

Prüfer-Ringe lassen sich auch idealverbandstheoretisch charakterisieren. 
Setzt man 

4.1.4 Definition [ 131: Ein (kommutativer) Ring R heißt arithmetisch, falls 
die Ideale von R einen distributiven Verband bilden, 
dann erhält man: 

4.1.5 Satz [ 131: Ein nullteilerfreier (kommutativer) Ring R ist genau dann 
arithmetisch, wenn R PrüferRing ist. 

Somit ist sowohl die Existenz von Primfaktorzerlegungen von Idealen als 
die verbandstheoretische Bedingung der Distributivität Ausfluß ein und 
derselben lokalen Eigenschaft: RM ist ein Bewertungsring. 

4.2 Elementarteiler-Ringe (ED-Ringe) 

Für Matrizen A über einem Körper K gibt es stets invertierbare Matrizen 
P, Q, so da13 PAQ eine Diagonalmatrix ist. Es ist schon lange bekannt, da5 
eine entsprechende Aussage auch für den Ring der ganzen Zahlen bzw. für 
Polynomringe in einer Unbestimmten über Körpern gilt. Schließlich dehn- 
ten Jacobson und Teichmüller dieses Ergebnis auch auf nullteilerfreie 
Hauptidealnnge aus. 

Kaplansky stellte sich 1949 die Aufgabe, die Klasse der Ringe mit der oben 
genannten Eigenschaft zu charakterisieren, setzte somit als Definition 

4.2.1 Definition [14]: Ein (kommutativer) Ring R heißt Elementarteiler- 
Ring (ED-Ring - elementary divisor ring), falls jede Matrix über R zu einer 
Diagonalmatrix äquivalent (im obengenannten Sinne) ist, 

und leitete damit das Studium der ED-Ringe ein. 

Mit vollständiger Induktion läßt sich zeigen, daß es ausreicht, die Eigenschaft 
aus 4.2.1 nur bei I X 2, 2 X 1, 2 X 2-Matrizen zu studieren. Ringe, bei de- 
nen die 2 X 1- bzw. 1 X 2-Matrizen sich diagonal reduzieren lassen, nennt 
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man Hermite-Ringe [20]. Somit sind ED-Ringe auch Hermite-Ringe. 
Kaplansky erkannte, daß ein 1okalerED-Ring, d.h. ein ED-Ring mit genau 
einem maximalen Ideal, ein Bewertungsring sein muß. Umgekehrt sind na- 
türlich Bewertungsringe ED-Ringe [ 141. 

Bis heute ist allerdings keine globale Charakterisierung der ED-Ringe be- 
kannt. Larsen/Lewis/Shores [20] bewiesen: 

4.2.2 Satz: Für einen (kommutativen) Ring R sind die folgenden Bedin- 
gungen äquivalent: 

(i) R ist ein ED-R ing. 

(ii) Jeder endlich präsentierbare R-Modul ist direkte Summe von zykli- 
schen Untermoduln 

(Ein R-Modul M heißt endlich präsentierbar, falls M = R(")/K für einen 
endlich erzeugten Untermodul K des freien Moduls R("))  

und konnten dadurch die ED-Ringe in der Klasse der semilokalen Ringe 
(endlich viele maximale Ideale) kennzeichnen. 

4.2.3 Satz: Für einen semilokalen (kommutativen) Ring sind die folgenden 
Bedingungen äquivalent: 

(i) R ist ein arithmetischer Ring. 

(ii) R ist ein ED-Ring. 

(iii) R ist ein Hermite-Ring. 

(iv) R ist ein Bezout-Ring (jedes endlich erzeugte Ideal ist ein Hauptideal). 

Somit sind wiederum Bewertungsnnge (siehe 4.2.3 (i)) als die lokalen Struk- 
turen von Bedeutung. 

Offen ist ferner das Problem, o b  wenigstens im nullteilerfreien Fall die Be- 
dingung (iv) kennzeichnend ist. 

In  4.2 begegneten wir einem wesentlichen Hilfsmittel der Ringtheorie, 
nämlich Ringe durch die Eigenschaften der zugehörigen Modul-Kategorie 
zu kennzeichnen. S o  entspricht der ringtheoretischen Charakterisierung 
der ED-Ringe eine spezifische Zerlegungseigenschaft gewisser Moduln über 
solchen Ringen. Moduln sind bekanntlich naheliegende Verallgemeinerun- 
gen von Vektorräumen. Daher haben auch klassische Resultate der linearen 
Algebra oftmals Pate gestanden für Fragestellungen der Modultheorie. 
Beispiel: Jeder endlich erzeugte Vektorraum ist direkte Summe von ein- 
dimensionalen (zyklischen) Unterräumen. 

Man setzte also: 

4.3.1 Definition: Ein (kommutativer) Ring R heißt FGC-Ring R wnitely 
generated-cyclic), falls jeder endlich erzeugte R-Modul direkte Summe von 
zyklischen Untermoduln ist. 
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In 4.2.2 tauchten Ringe mit einer ähnlichen Zerlegungseigenschaft wie in 
4.3.1 auf. Da jeder endlich präsentierbare R-Modul endlich erzeugt ist, 
nicht jedoch umgekehrt, ist die dortige Bedingung an die Modulkategorie 
einschränkender als die in 4.3.1, so da5 seinerseits die Klasse der FGC- 
Ringe ,,kleinerG' als die der ED-Ringe sein muß. 

Für die Klasse der lokalen, nullteilerfreien (kommutativen) Ringe charak- 
terisierte Kaplansky 1952 [15] einen FGC-Ring als einen fastmaximal voll- 
ständigen Bewertungsring. (Ein Bewertungsring heißt fastmaximal voll- 
ständig, wenn jedes echte epimorphe Bild maximal vollständig ist.) Gill [9] 
konnte schließlich auch ein analoges Ergebnis für den Fall, da5 R Nulltei- 
ler besitzt, herleiten. 

4.3.2 Satz: Für einen lokalen (kommutativen) Ring R sind die folgenden 
Bedingungen äquivalent: 

(i) R ist ein FGC-Ring. 

(ii) R ist ein fastmaximal vollständiger Bewertungsring. 

Eine globale Charakterisierung steht zur Zeit noch aus. Zwar weiß man, daß 
FGC-Ringe Bezout-R inge sein müssen [20] und außerdem bleibt die Eigen- 
schaft ,,FGCL' bei Lokalisationen erhalten, so daß mit 4.3.2 RM lokal ein 
fastmaximal vollständiger Bewertungsring sein muß; doch gibt es Beispiele 
[20], die zeigen, daß diese Eigenschaften nicht hinreichend und weitere 
Zusatzbedingungen nötig sind. 

5. Bewertungsringe in der Geometrie 

Bislang haben wir unsere Darlegungen auf den Fall beschränkt, daß Bewer- 
tungsringe kommutative Ringe sind. Das war insbesondere auch dadurch 
gerechtfertigt, daß die Bewertungstheorie Bestandteil der kommutativen 
Algebra ist, wesentliche Ergebnisse stark von der Kommutativität der 
Multiplikation in den betrachteten Körpern bzw. Ringen abhängen und 
darüber hinaus zur Zeit nur wenige Verallgemeinerungen auf den nicht- 
kommutativen Fall bekannt sind. 

Gerade in der Geometrie aber erweist sich die Beschränkung auf den kom- 
mutativen Fall als hinderlich und von hier kommen daher auch Anstöße, 
eine nichtkommutative Bewertungstheorie zu entwickeln. 

Bekanntlich lassen sich affine Ebenen, in denen der Schließungssatz von 
Desargues gilt, durch Körper koordinatisieren. Analog gestatten auch 
desarguessche projektive Ebenen eine Beschreibung durch ein (algebraisches) 
analytisches Modell. Dabei können wir Punkte als links-homogene, die Ge- 
raden als rechts-homogene Tripel (U,, az , a ~ )  (nicht alle ai = 0) auffassen, 
wobei die Elemente ai aus dem Koordinatenkörper ai sind. Die Inzidenz ist 
über das Verschwinden des jeweiligen Skalarprodukts definiert. Genau 
dann ist eine solche (desarguessche) Ebene eine Pappos-Ebene, wenn der 
Koordinatenkörper kommutativ ist. Erst durch die Kenntnis nichtkommu- 



24  G. Törner 

tativer Körper konnte Hilbert die Unabhängigkeit der Pappos-Konfiguration 
von der Desargues-Konfiguration belegen. 

Sei bis auf weiteres P = P (K) eine pappossche projektive Ebene, K also 
ein kommutativer Körper. Wie bei vielen mathematischen Objekten erhält 
man durch das Studium der Homomorphismen der vorgelegten Struktur we- 
sentliche Informationen über das betrachtete Objekt. Insofern ist es von 
In,teresse, eine vollständige Übersicht über alle diejenigen projektiven Ebenen 
P zu gewinnen, die epimorphe Bilder von P sind. Sofort stellt sich das 
Problem einer analytischen Beschreibung eines Homomorphismus 
9 : P (K) + P(L)  = P . Dabei verstehen wir unter einem Homomorphismus 
eine inzidenztreue Abbildung der Punkt- bzw. Geradenmengen auf die je- 
weiligen Mengen in der Bildebene, so da8 (um uninteressante Fälle auszu- 
schliei3en) das Bild wenigstens ein (nicht entartetes) Viereck enthält. 
Schließlich kann nur dann eine algebraische Beschreibung eines Homomor- 
phismus erwartet werden, wenn die Koordinatisierungen der Ebenen P, P' 
„zusammenpassen", d.h. die Bilder eines Basisvierecks in P, nämlich 
(1 ,  0 ,  0), (0, 1, O), (0, 0, I), ( 1 ,  1, I ) ,  (1  E K)  sollen wieder die entsprechen- 
den Punkte eines Basisvierecks in P (jetzt 1 E L!) sein. Damit können wir 
nun das wesentliche Ergebnis wie folgt formulieren: 

5.1 Satz: Es  seien P(K), P(L) projektive Pappos-Ebenen. 
Jeder Epimorphismus J/ : P(K) + P(L)  induziert eine Stelle n von K in L. 
I s t  n eine surjektive Stelle von K in L, B der  zugehörige Bewertungsring 
in K, so definiert cp(al, az ,  a3) = (n(al),  n(a2), n(aj) )  f l r  ai E B einen Epi- 
morphismus von P(K) nach P(L). 
(Näheres siehe [I],  [8] und [30]). 

Gilt ein entsprechendes Ergebnis auch für desarguessche Ebenen, d.h. fur 
nicht notwendig kommutative Körper? Was verstehen wir dann unter  einem 
nicht notwendig kommutativen Bewertungsring? 

Nennen wir einen nullteilerfreien Ring, dessen Links- und Rechtsideale 
durch Inklusion linear geordnet sind, Bewertungsring, so  kann man in 5.1 
,,Pappos-Ebene'' durch ,,desarguessche Ebene" ersetzen, sofern man in nahe- 
liegender Weise den Begriff der Stelle verallgemeinert. Dies wurde von 
Klingenberg [17] bewiesen und von Rad6, der  wohl Klingenbergs Arbeit 
nicht kannte, in [27] wiederentdeckt. 

Die oben nahegelegte Verallgemeinerung ist allerdings keineswegs zwingend. 
In dem Buch von Schilling [29] findet man eine andere Verallgemeinerung 
der Bewertungsringdefinition auf den nichtkommutativen Fall. Hier wird, 
im Gegensatz zur obigen Version, zusätzlich gefordert, daß sämtliche Ideale 
zweiseitig sind, d.h. R ein Duo-Ring. Dies scheint in vielen Fällen aus be- 
weistechnischen Gründen unumgänglich zu sein. Es war wohl Rad6 [27], 
der zuerst zeigte, daß eine solche Eigenschaft eine echte Zusatzbedingung 
ist oder kurz: daß es Bewertungsringe im Sinne von Klingenberg gibt, die 
nicht d u o  sind. Schließlich liefert das Studium von Geometrien über loka- 
len Ringen [ 161 auch Argumente, bei der Definition von Bewertungsringen 
auf die Nullteilerfreiheit zu verzichten, was zu der in [4] erörterten Klasse 
der Kettenringe (chain rings) fuhrt. 
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Entwickelte sich urspIünglich de r  Begriff des  kommutat iven Bewertungs- 
ringes aus  der  Bewertungstheorie, so steht man  momentan  vor  d e m  umge- 
kehrten Problem, ein geeignetes Konzept  einer n ichtkommutat iven Bewer- 
tungstheorie zu entwerfen, das  naheliegende Definitionen für (nichtkommu- 
tative) Bewertungsringe in eine geschlossene Theorie integriert. Als erste 
Beiträge sind hier die Arbeiten von  Rad6  [27] und Mathiak [24] anzusehen. 
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