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RIGHT CHAIN RINGS AND THE GENERALIZED 
SEMIGROUP O F  DIVISIBILITY 

H. H. BRUNGS AND G.  TORNER 

Let R be a ri_ng with unit element and without zero- 
divisors and let H ( R )  = (110 # z € R) where 5 is the mapping 
from the set of all nonzero principal right ideals of R into 
itself defined by li.(aR) = mR. H(R) is a partially ordered 
semigroup that can be considered as a generalization of the 
group of divisibility of a commut_ative integral domain. 
We study those rings R for which H(R)  is totally ordered. 

1. Introduction. Associated with any commutative integral 
domain A is the partially ordered group G(A) of nonzero fractional 
principal ideals of A with aA d bA if and only if aA contains bA. 
It is well known (see [4], [ 5 ] ,  [8]) that G(A), the group of divisibility, 
reflects certain properties of A, like A being a unique factorization 
domain, the fact that any two elements in A have a greatest common 
divisor or A being a valuation ring. This concept of a group of 
divisibility cannot be extended directly to a not necessarily commuta- 
tive integral domain R. 

In this paper we associate with any ring R with unit element 
and without zerodivisors a partially ordered semigroup E?(R) which 
is isomorphic to the semigroup H(A) L G(A) of nonzero principal 
ideals aA in A if A is a commutative domain. 

After observing some basic facts about H(R) we characterize in 
$ 3  those rings R with I?(R) totally ordered as right chain rings R 
with Ja G aR for all a in R and J = J(R) the Jacobson radical of 
R. These rings are localizations of right invariant right chain rings. 
The main result of $ 4  is the theorem that a ring with I?(R) totally 
ordered and d.c.c. for prime ideals is right invariant. In a final § 5  
we show by examples that for every totally ordered group G there 
exists a ring R with H(R) totally ordered and G (not only the positive 
cone of G )  can be embedded into B(R). The value group G(A) is 
particularly useful in case A is a commutative valuation ring. The 
nonzero principal right ideals in a right chain ring R form a semi- 
group H(R) under ideal multiplication only if R is right invariant. 
In the general case i t  is the semigroup R(R) which takes the place 
of H(R). Mathiak in [6] studies right and left chain domains with 
the help of a group that  could be considered a generalization of G(A). 
We found that in the case of one-sided conditions a generalization 
of H(A), which will be a semigroup only, will be more natural. 

2. Definition and preliminary results. We consider only rings 
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with unit element and without zero-divisors. We call a ring R right 
invariant if Ra G aR (if and only if RaR = aR) holds for all ele- 
ments a in R and R is a right chain r ing  (sometimes called a right 
valuation ring) if for a ,  b in R either aR E bR or bR E aR holds. 
Here I c L always means that  the set I f L is contained in L; J = 

J(R) is the Jacobson radical and U = U(R) the group of units of R. 
Let W = {aR 10 f a in R) be the set of nonzero principal right 

ideals of R. Every element 0 # x in R induces a mapping x" on W 
with x"(aR) = xaR; and $ = Zy" follows. With 5 defined as 
xaR E yaR for all a in R we can consider H(R) = (210 # z in R) as 

/V 
a partially ordered semigroup. Further, z + y 2 inf (2, g) ;  i.e., Z? 5 53, 

rv 
x" 5 y" implies x" 5 x f y. The mapping '-- ' from RZ(= R\O) to B(R) 
is called the regular right valuation of R with the value-semigroup 
I?(R). This semigroup satisfies the following conditions: 

( 1 ) B(R) is a partially ordered semigroup with unit element i. 
( 2 )  x" 5 y" if and only if there exists a iY in &R) with ZT = 

and 1 5 T. 
( 3 )  Z@ = 25 implies y" = z for it, y", E in I?(R). 

This means that  the order in H is a right natural order and H is 
left cancellative. 

We draw a few immediate conclusions from these properties: 
( i ) P 5 r implies that  P is a unit in H, i.e., there exists y" 

?.. 

with Py" = y"Z = 1. 

( ii ) 5 x" implies 5% = Ex"' for some Z' in H. 
To prove (i) we have by (2) an element iY with Z T  = i. This implies 
Pij.53 = x" and FZ = using (3). For 7 5 x" and E in H we have ii 55% 
and Za" = EZ' for some P' using (2) again. Let 0 = U(R) be the 
subgroup of units of I?(R). The following condition is satisfied by 
B(R) : 

( 4 ) Let 0' be a subgroup of 0 with 0'2  g Zo for all Z in 

A(R). Then 0' = 0). In particular 0 = {TI for R commutative. 
The following is an easy example of a semigroup S satisfying con- 
ditions (1)-(3), but not (4). 

Let S = {(n, a); n, a s Z; n 2 0) considered as a subsemigroup of 
G = Z @  Z; Z the integers. We write (n, a)  > (m, b )  if either n > m 
or n = m and a > b. Conditions (I), (2), (3) hold for S, but U = 
((0, a); a e Z )  is a subgroup f {e)  of S, violating (4). 

Two obvious problems arise: What is the structure of semigroups 
with (I), (2), (3), (4)? Given a semigroup S satisfying (I), (2), (3), 
(4) is Sr H(R) for some R? We are not able to answer these questions 
in general. 

DEFINITION. Let R be a ring. Then 
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& = { ~ E R J ~ " ~ ~ ) U { O )  = { r s R J r a R G a R  for all a in R ) .  

It is obvious that R is a subring of R.  

LEMMA 1. ( 1 ) RU G U R  for all a in R ;  in particular R i s  a 
right invariant subring of R. 

( 2 )  The mapping U R  to li for a # 0 in R dejines a n  isomor- 
phism between the semigroup C(R) of R-modules U R  with a in R onto 
I?(R). I n  C(R) we have a ~ b &  = a b ~  as operation and a& f bf i  i f  
and only if U R  2 bfi. 

( 3 ) g(R) = R*IU(R) where U(R) i s  the group of units of R 
and r, = r, if and only i f  r, = r,u with u in U ( R )  defines a con- 
gruence relation on R*, the multiplicative semigroup of nonzero ele- 
ments in R. 

Proof. ( 1 ) ~a 2 a R  by definition. If r is in R then ra  = ar, 
and rub = abr, = _arJ for any a,  b in R with r,, r, in R. But r,b = 

br, implies r ,  in R and Ra  a 2  for a # 0 in R. 
( 2  ) Using (1) i t  follows that a f f b f i  = a b ~  for a,  b in R.  If 

G 2 6 then axR  G bzR for all x in R and a = bs and s in R, hence 
a& E bf i  follows. Reversing these arguments yields the converse 
and B(R) -- {af f lO # a in R )  as a partially ordered semigroup. 

( 3 )  is just a different version of (2). 0 

REMARK. If R is embeddable into some skew field then R = 

aRa-'. 

If R is a ring such that the product of any two nonzero 
principal right ideals is again a nonzero principal right ideal we 
write H(R)  for the semigroup of the nonzero principal right ideals 
of R; H(R)  is a partially ordered semigroup with a R  2 bR if and 
only if aR E bR. 

If H(R) exists and is isomorphic to H(R) under the mapping 
that assigns Z to XR then R is right invariant. On the other hand 
H(R)  does exist for some rings that are not right invariant; simple 
rings or not right invariant principal ideal domains are obvious 
examples. 

The following lemma shows that H(R)  exists for a local ring R 
if and only if R is right invariant. 

LEMMA 2. Assume H(R)  exists and let 0 # a be in R. Then 
RaR = bR for some b and i f  a = bc then c i s  not contained in J(R) .  

Proof. It only remains to show that c is not in J(R) .  We have 
b = C rsasi for some r i ,  s, in R; b = 6 ribcs, = C br:cs, = b C rics, where 



~ , b  = brl for some rl in R. But this is impossible for c in J ( R ) .  

COROLLARY. I f  R i s  local t h e n  H(R) exis ts  i f  a n d  o n l y  i f  R i s  
r i g h t  i n v a r i a n t .  

3. H(R) totally ordered. If A is a commutative integral 
domain its group of divisibility G(A) is totally ordered only if A is 
a valuation ring. We will discuss the corresponding question for 
H(R) and characterize the rings with H(R) totally ordered. If x 
and y are nonzero elements in R then 2 5 % or y" < 2 and xR 2 yR 
or yR 2 x R  follows. Therefore, R is a right chain ring if H(R) is 
totally ordered. Examples (see $5)  show that  for R a right chain 
ring H(R) is not necessarily totally ordered. 

THEOREM 1. For  a n  in tegra l  d o m a i n  R the  following condi t ions  
are  equivalent:  

( 1 ) H(R) i s  to tal ly  ordered. 
( 2 ) R i s  a r i g h t  c h a i n  r i n g  such tha t  r in R, not  in R i m p l i e s  

r-l in R. 
( 3 ) R = Rb, the  localization oj- a r i g h t  i n v a r i a n t  r i g h t  c h a i n  

~ i n g  R' a t  a p r i m e  ideal P of  R'. 
( 4  ) R i s  a r i g h t  c h a i n  r i n g  such tha t  J a  G aR for  al l  a in R. 
( 5 ) R i s  a r i g h t  c h a i n  r i n g  a n d  i f  R a  aR t h e n  J a  L a J  for  

a n y  a in R. 
( 6 ) T h e  submodules of  the  r i g h t  k - m o d u l e  R a r e  totallg o ~ d e r e d .  

Proof .  (1) - (2) We observed that R is a right chain ring if 
H(R) is totally ordered. For an element r ,  not in R, we have ? < r, 
hence r a R  a a R  for all a E R and r in C(Rj,  r-' in R follows. 
(2) - (3) I t  follows from (2) that  R is a right chain ring and from 
Lemma 1 that  R is right invariant. The set S = R n U ( R )  is multi- 
plicatively closed and P = R\S is a prime ideal in R. Finally, R = 

RP = RS-' is the localization of R a t  P. 
To prove that (3) implies (1) we need a few lemmas. 
Let R be a right invariant right chain ring. We write = 

{Z' e H(R) 1 t E T }  for a subset T  E R* and we say (# 0) is R-con- 
vex if for tR G s R  2 R, t in T ,  the element s" is contained in p. 
One can check the following two statements. 

LEMMA 3. There  i s  a one-to-one correspondence between the set 
of  R-convex subsets of  H(R) a n d  the  r i g h t  ideals  f R  given  by 
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where i s  R-convex and I is a right ideal zR. 

LEMMA 4. The R-convex subset S" i s  a subsemigroup of R(R) if 
and  only if 5' = P is  a completely prime ideal of R. 

We consider the situation as  described in the last lemma. Then 
S = {s E Rig  E 3) is a multiplicatively closed saturated (i.e., ab in S 
implies a, b in S )  right Ore system in R. The corresponding prime 
ideal is P = R\S and R, = RS-' is the corresponding localization. 
Set N = N ( S ) = { r e R l r a = a s , ,  s, in S for all a f O  in R). N is 
an R-convex subsemigroup of S maximal with the property that  
a-'Nu E N for all nonzero a in R. To see this, one observes that 
with n in N, nR  g mR G R, we have n = m r  for some r and n a  = 
as, = am'r' for m', r' in R with ma  = am', ra = ar'. Therefore 
m'r' = s, is in S and m' in S ,  and m in N. Further, n in N and 
na = as, implies s, in N. 

To N there corresponds a prime ideal Q = R\N with P S Q & J. 
We want to describe H(R,) and we will get the result by considering 
two special cases: 

( i ) N(S) = S, i.e., Q = P (Lemma 5) and 
t i i )  AYS, = C'(R), i.e., Q = J (Lemma 6). 

LEMMA 5. Let R be a right invariant right chain ring, P a 
prime ideal in  R, S = R\P. Assume N(S) = N = S. Then Rp i s  
aga i~l right invariant and B(R,) -- I?(R)/R = H. 

P~oof.  That R, is again right invariant follows from the fact 
that  every principal right ideal in Rp has the form aRp with a in 
R a n d  that  sa = as, for all a in R, s, in S if s is in S = N. Hence 
r%-:aR, = raR, = ar'Rp with r a  = ar', r ,  a in R. If one defines - 
i= - r,. I,, r I  nonzero elements in R, if and only if r, = r,n or 
r , ? ~  -- T: for some n in .V, then "-" is a congruence relation de- 
fined on H, and we write H = H(R)\R for the factor semigroup 
modulo this congruence. Further, F, > FZ in H if and only if r, > r, 
in B(R) and F, 3 i;,. I t  follows that H 2: H(R,) as totally ordered 
semigroups. 

LEMMA 6. Let R be a right invariant, right chain ring, P a 
prime ideal i n  R, S = R\P. Assume N(S) = U(R). Then Rp is not 
right invariant if P c J and B(R,) - E?(R)$-'. 

Proof. g(R) contains the subsemigroup 3. We will prove that 
under the above assumption R(R) can be embedded into the semi- 
group I?(R)~-' = {Fif-' / r E R*, s E S) of fractions for G(R). 



The semigroup H(R) is totally ordered and ap = a7 for a, p ,  r 
in H(R) implies p = Y. Since the other cancellation law does not 
hold in general, g(R) itself may not be embeddable into a group. 
But for every r" in H(R) and g in there exists an element ti in 
H(R) with 7ti = iT or r" = Zti and B(R)P  exists ([3], Prop. 5.1; page 
21) if we can show that F1g = r",:,s" implies F, = F! for F,, F2 in H(R), 
g in g. 

We can assume r1 = r,c for some c in R and we are done if we 
can show that  c is in N. But, 7,S = ?a implies r,cs = rge for some 
E in U(R). Therefore cs = s& and c is an element of S. Let a be 
in R. If a is in S then ca = act with c' in S.  If a is not in S then 
a = sa, for some a, in R and ca =mal =?&a, =sa,s' =act with st in U(R). 
Hence, c is in N = U(R)  and K = H(R)S-I = {Fg-' 1 r E R*, s E S )  exists. 

This semigroup is totally ordered if we define PIS;' 2 ?,SF,-' if and 
only if for all S, iT', with iflS = F,It we get  7,g 2 ?,St. 

This last condition is equivalent to r", 2 F 2 1  if s, = s,s and F,s" 2 r", 
if sls = s, where s is some element in S. For the necessary com- 
putations i t  is the easiest to write any finite number of elements 
in K in the form Fige1, i = 1, - ., n. 

I t  is a bit tedious to check that  K is a totally ordered semigroup 
with unit element such that  

( i ) a 2 ,8 in K implies that there exists r in K with a = pr 
( i i )  ra = rp implies a = p where a, B, 7 are in K. 

Further, i t  follows from these conditions that all elements r 2 7 in 
K have an inverse in K. 

It remains to show that  K 2: H(R,) as ordered semigroups where - 
the isomorphism is given by Pg-I -- rs-'. (Here F, if are elements 
in H(R), &-' is an element in R(R,).) We shall show here tha t  the 
given correspondence is one-to-one and omit the rest. 

N - 
Let rls-l = r,s-' i.e., r , ~ - ~ a R ,  = rg-laR, for all a in R,; in 

particular r,s-'sbRP = r,s-'sbR, for all b in R and r,bR, = r,bR,, 
rlb = r2bst or rlbst = r,b for some st in S follows. Comparing r,  and 
r, yields rl = r,c or r, = r,c for some c in N and F, = r", in H(R). 
If conversely r",g-' = T,g-' in K we ge t  Fl = F, in H(R) and therefore 
r,s-'aR, = r,s-'aRp for all a in R: If a is in S this is obvious, 
otherwise a = sb and r,bR = r,bR implies r,s-'aR, = r,s-'aR, in that 
case. Finally let s be in S\U(R). Then there exists a in R with 
sa = ag and g not in S since s is not in N. This shows that 
sx1aRP 2 aRp and Rp is not right invariant. 

If we combine Lemma 5 and Lemma 6 we get  the following 
result: 

THEOREM 2. Let R be a right invariant right chain ring, P a 
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prime ideal in R, S = R\P; N = { X E  Rlxa = as,, s, in S for all 
a E R) .  Then: 

( 1 ) H ( R , ~  HS-' i s  a totally ordered serniglaup with H = 
H(R,) -- H(R)IN and S r: Q = R\N is a prime ideal and R ,  i s  
right invariant. 

( 2 ) R ,  i s  right invariant i f  and only i f  N = S.  

With Theorem 2 the equivalence of (I), (2), (3) in Theorem 1 is 
proven. 

We prove the equivalence of (1) and (4). If I?(R) is totally 
ordered and j in J(R) ,  then 5 is impossible, since this implies 
jR = R ,  j a unit. Hence jaR 2 aR  for all a in R. Conversely if 
R is a right chain ring with Ja E a R  for all a in R we must show 
that  for any nonzero elements x, y in R either 2 5 i;; or @ 5 2. If 
we assume on the contrary that there exist a ,  b in R with xaR c 
yaR and ybR c x b R  we obtain xa = yav,, yb = xbv, and say a = bs 
for v,, v,, s in J (the case b = as is similar). Then ya = ybs = 

xbv,s = xbsvl, = xav: = yav,v: and ya = 0 where v,s = sv: for some vi 
in R, using (4). 

The implication (5) - (4) is obvious. To prove (4) - (5) assume 
there is an a in R with Ra $& a R  and Ja $Z aJ ,  but Ja G aR. Then 
tbere exist elements u in U(R), n in J with u a R ~ a R  and uan = a; 
and elements n' in J, u' in U(R) with n'a in aR, but not in aJ, hence 
71'au' = a. This leads to urc'au'n = a and with J a  E aR to  a = 0, 
a contradiction. The equivalence of (1) and (6) follows from Lemma 
l(2) and with this Theorem 1 is proved completely. 

-ON. A right chain ring R that satisfies the equivalent 
eoaditions of Theorem 1 is called semi-invariant. 

Since Z$ R, is not known even if R is right invariant unless R 
1s also right noetherian or satisfies some other extra condition (see 
[I]) x e  cannot describe the structure of I?(R) for a semi-invariant 
ring R.  I t  follows from Theorem 2 that this semigroup is a group 
of fractions of a semigroup H = H(R') where R' is a right invariant 
right chain ring with respect to a subsemigroup T of H which 
satisfies 

( 1 )  If t is in T ,  h in H and e the unit element in H with 
e 5 h 5 t ,  then h is in T.  

( 2 )  For every e # t in T there exist h and k in H with th  = hk 
and k not in T .  

( 3 )  h,t = h,t for t in T ,  h,, h, in H implies h, = h,. 
One sees tha t  H(R), R semi-invariant, not a division ring, is not 

a group, but we will show that  for every totally ordered group G 
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there exists a semi-invariant ring R such that G can be embedded 
into H(R). 

4. Semi-invariant right chain rings with ~ . c . c .  for prime 
ideals. Investigating the condition H(R) totally ordered, we were 
led to  semi-invariant right chain rings. The valuation semigroup 
can then be described using Theorem 2. In many cases we actually 
have H(R) r E?(R). The reason for this is the result we will prove 
in this section: Semi-invariant right chain rings with d.c.c. for 
prime ideals are right invariant. We recall that  an ideal P in R is 
called completely prime if ab in P implies a or b in P and P is 
called prime if aRb in P implies a or b in P where a, b are elements 
in R.  I t  follows from a result of Thierrin ([lo]) that  a prime ideal 
P is completely prime if a2 in P implies a in P. 

LEMMA 7. Every prime ideal P in the semi-invariant ring R 
is complete1 y p ~ i m e .  

Proof. Assume a2 in P and a not in P. Then there exists t ,  in 
R with atla not in P and t2 in R with at2(at,a) not in P. We can 
assume R # P and a in J .  Hence a(t,atl)a = a2r for some r in R 
using (4) of Theorem 1. This contradiction proves the lemma. 

The next result shows how to  produce certain prime ideals. 

LEMMA 8. Let z be an  element in R. cr senai-iqtvariant ~ i n g .  
Then D = T, zmR is a prime ideal. 

P~oof .  We can assume that z is in J. Then D is a right ideal 
and we will first show that a' in D implies a in D for a in R. 
Assume a is not in D, then a is in J and a j  = z" for some natural 
number n and j in J. But then aja  j = aLj' j  = z2" is not in D con- 
tradicting a2 in D. I t  remains to prove that D is a left ideal. Let 
x be in D and x = z"q,, q, in J follows. For r in R we get  rxrx = 
rxrx"q, = xnvq, for some v in R. This shows that  ( ~ x ) ~  is in D and 
hence rx in D. 0 

The next theorem will be proved in three steps, Lemmas 9-11. 

THEOREM 3. A semi-invariant right chain ring with d.c.c, for 
ideals is  right invariant. 

Let a be an element in the semi-invariant right chain ring R. 
By (5) Theorem 1 we have either Ra G aR or Ja 2 aJ. In the first 
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case we are done and in the second we define a mapping from the 
set of prime ideals P # R into itself by defining P' as the smallest 
prime ideal with Pa E UP+. We will show that  either J+ = J which 
implies Ra a R  or J + c  J and {J+*} is a strictly decreasing chain 
of prime ideals of R.  

LEMMA 9. Let J = J# and J = m R ,  then Ra L aR. 

Proof. We have ma = amkv for some unit v in R ,  some integer 
k ,  some generator m of J, since as a right ideal J' = J using 
Lemma 8. 

If Ra aR  there exists a unit u in R and an element q in J 
with ua = aq. Since q is in J and uk+'a = aqk+l we obtain qk+'RcmkR 
and we can assume q R c m k R  and q = mkvt with t in J. With 
US = m, ma = amkv, mat = amkvt = aq = ua we obtain sat = a,  s, t 
in J and a = 0 follows. 

LEMMA 10. Let R be semi-invariamt, J not Jinitely gene~ated 
as a right ideal and 0 # a an  element in R with Ja E aJ+, J" J .  
Then Ra S aR. 

Proof. Assume j 0 in J. We want to find r,  s in J with 
ra = as and sR 2 jR. Let P = n j"R. By Lemma 8, P is a prime 
ideal and P C  J. Since J* = J there exist elements r,, s, in J with 
a, not in P such that  r,a = a,. Either s,R 2 jR  and we are done 
or there exists an n with j R 3  - - I> j.- 'R7s1R 2 jmR. Hence s,q = j" 
for some q in R. We choose an element z in J with r ,  = z"v with 

in J and some m > n. This is possible, since J is not finitely 
generated: Let r :R r +R f R.  We obtain r, = xy for x, y in J. 
Cboose z. in J with i : R x  r R  and z l R 2 y R  and r, = z b ,  follows with 
u in J. Repeating this process yields an element z with r, = z"v, 
i ,  2' in J ,  m > n .  Consider za = ax', z, z' in J.  We claim z fR  2 jR. 
Otherwise jlc = z' for some w in J. But r,a = zmva = az'"vl = as, 
for some element v' in J with va = av'. 

Hence s, = zf"v' = (jw)"vf = j"bvf for some element b in R.  This 
implies j" = s,q = j"bvfq, a contradiction, since m > n. We conclude 
that  we have found an element r = z ,  s = z' with sR 2 jR and 
ra = as for the given element j in J. 

I f  Ra $& aR  there exist a unit u in R and an element t in J 
with ua = at. By the above argument we have s, r in J with 
ra = as and sR 3 tR.  Hence, sv = t for some v in J and rav = asv = 
at = ua. We obtain a = u-lrav = ak, k in J and a = 0, a contra- 
diction. 
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REMARK. Under the hypothesis of Lemma 10 we have proved 
that  J 4  = J is even the smallest two-sided ideal I satisfying J a  C a l .  

LEMMA 11. Let R be semi-invariant, a i n  R with J a  C a J #  a n d ,  
J+ c J. Then JP"" c J+ for all n. 

Proof. We will write J'"'  instead of J+". Then J'"+" E JL"j and 
we assume n minimal with J'") = J1"+". Let r be in JL"-')\J'"), 
r a  = as with s in J'"). Then there exists a q in J'"' with qa = aq' 
and q'R 3 skR for some k, since otherwise J'"+l' = J'"' S n siR c J'"'. 
After replacing r by rk if k > 1 we can assume that  there is an r 
in J I ~ - 1 1  \J'"' with r a  = as and an element q in J'"' with qa = aq' and 
q'R 3 sR. Hence q't = s for some t in J and rv = q for some v in 
J'"). This yields r a  = as = aq't = gat = rvat = rav't with v' in J 
and the contradiction r a  = 0 proves the lemma. 

5. Examples, problems and comments. We begin with an 
example of a semi-invariant right chain ring R such that H(R)  con- 
tains G where G is a given totally ordered group. 

EXAMPLE 1. For very totally ordered group G there exists a 
semi-invariant right chain ring R such that R(R) contains G. 

Let K = $,,, G, where G, - G for all i E 2. K is an ordered 
group with the lexicographic ordering. Next, let L = {tnkln E 2, k E K )  
with tnk,. tmk, = tn+"(k:"'k2) be the ordered group where k = (g,) and 
k(") = (g:) with g: = g,,,. Further t"k, > tmk2 if and only if n > m 
or n = m and k, > k, in K. 

Let H = {tuk E L tuk 2 e, k = (g,) with n 2 0 and g, = I,, for 
i > 0). Then H is a totally ordered semigroup with unit element 
and both cancellation laws. Further, H is naturally ordered in the 
sense that h, 2 h, for h, in H holds if and only if there exists an 
element h 2 e in H with h, = h&. Therefore i t  is possible to con- 
struct the generalized power series ring. 

R 1 = { a = C x , a , I h e H , a a , e R  and T ( a ) =  {hIa,#O) 
well ordered in H} . 

R' is a right invariant right chain ring with R(R') -- H ([7]). 
To the subsemigroup M = {to(gi) 1 g, = _1,, for i f 0) there cor- 

responds an R'-convex subsemigroup in H(Rt) and a prime ideal P 
in R'. We put R$ = R. Since for h in M we have ht = th' with 
h' not in M unless h = 1, we conclude that  R(R) r: HM-' = H U M-I. 
It follows tha t  G can be embedded into E?(R) where R is a semi- 
invariant right chain ring. We observe that  the right ideal x,R is 
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not a left ideal and Rx, is not a right ideal. On the other hand 
we know ([2]) that for every a in a semi-invariant right and left 
chain ring either aR or Ra is a two-sided ideal. 

EXAMPLE 2. In our next example we construct a right chain 
ring R such that  H(R) is not totally ordered, but that the subgroup 
O(R) = { G l u  in U(R)} of H(R) is totally ordered with respect to the 
order as defined in H(R). This condition 

(U)  O(R) is totally ordered 

is therefore weaker than the condition H(R) totally ordered and 
implies among other things that  for a right chain ring R with (U), 
a in R, there exists a unit E in U(R) with as  in R (see Lemma 12 
(ii) below). The basic idea of this construction has been used in 
[9], [2] and [6]: Let R, be a right and left chain ring, D = Q(R,) 
the division ring of quotients of R,, H a totally ordered semigroup 
with unit element that satisfies both cancellation laws. Further, 
let h, 2 h, hold for elements h,, h, in H if and only if h, = h,h for 
some h in H. Finally, let r be a mapping from H into the semigroup 
M(D) of monomorphism from D to D with z(h,h,) = z(h,)z(h,). One 
then can form the generalized power series ring D{{H}) = {C x,d, = a 1 h 
in H,  d, in D, T(a) = {h 1 d, # 0} well ordered in H} where multi- 
plication is defined by z,,z,, = x,,,, and dx, = xhdrCh'. The subring R 
of D{{H}} consisting of those elements a with d, in R, is a right 
chain ring where e is the unit element in H. I t  does not seem to 
be easy to determine H(R) in general. 

To consider a special case let F = Q(x, y), the field of rational 
functions in the two indeterminates x and y over the field Q of 
rational numbers. Then F contains R, = Q[x, y](.,, a chain ring one 
obtains by localizing the polynomial ring Q[x, y] a t  the prime ideal 
x ) .  We form the skew power series ring F[[t, r]], where z is the 
automorphism of F exchanging x and y. Finally, R consists of all 
those power series C tlfi(z, y) with f,(x, y) in R,. The principal 
right ideals of R are of the form t"xmR with n = 0, 1, 2, . . . and m 

w 
in 2, but m 2 0 if n = 0. The semigroup E?(R) = {t"xmy" n = 

w /V 
0, 1, 2, . - .; m, k in Z and m 2 0 if n = 0). I t  is tn1xmlgk1 > tn~xm~ykz 
if n, > n, or n, = qt, and m, > m, with k, 2 k, or n, = n,, and m, = m, 
and k, > k,. Finally, we have O(R) = {Gk, k E Z} r Z as ordered 
groups. Therefore, H(R) satisfies condition (U), but is not totally 
ordered: i?y"-' and for example cannot be compared. 

We conclude this paper with some observation for right chain 
rings that  satisfy condition (U). 

LEMMA 12. Let R be a r ing satisfying condition U. 
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( i ) Let a ,  b in R with a R  = bR. Then either a" $ 6 or 6" < a". 
( i i )  For any a in R, R local, exists x in fi with a R  = xR. 
(iii) Let R be a local ring and aR3bR .  Then there exists for 

every x with xR  = a R  a y in R with 2 < y" and y R  = bR. Similarly 
for every y in R with yR  = bR exists x with x R  = a R  a d  2 < g.  

Proof. (i) is obvious, using condition (U) .  Statement (ii) is 
correct if a is a unit. We can therefore assume a in J, a not in 
R. Hence 1 + a  is in U(R)\R and (1 + a) ( l  + x) = (1 + x)( l  + a)  = 1 
for some x in R. But 1 + x and x are in R and a( l  + x) = (1 + x)a = 

-x  is in 2. Since a R  = xR,  (ii) follows. 
To prove (iii) assume b = xp. Using (ii) there exists a unit u 

in R with p u  in R and bu = x p u  implies 2 < bG. If y = ap the second 
part  of (iii) is correct for p in R. Otherwise we obtain with (ii): 
(1 + p)-'p is in R, y = a(1 + p)(l  + p)-'p and r = a(1 +- p). 

PROBLEMS. 
( 1 )  Describe all rings R for which H(R) satisfies (U).  (This 

class of rings contains all right invariant, in particular all com- 
mutative rings.) 

( 2 )  Which conditions characterize the semigroups S with S z 
H(R) ,  R a ring or additionally: R a right chain ring. 

( 3 )  Find the class of rings R with I?I(R) lattice ordered. 

1. R. T. Botto-Mura, H. H. Brungs and J. L. Fisher, Chain rings and taha t ion  semi- 
groups, Comm. Alg., 5 (1977), 1529-1547. 
2. H. H. Brungs and G. Toerner, Chain rirrgs and ptim idsals. Arch. Math. (Bawl), 
27 (1976), 253-260. 
3. P. M. Cohn, Free Rings a d  Their Relatiow. Academic Prees, London, 1971. 
4. P. Jaffard, Contribution a l'dudc da pnnrpss ordonnea, J. Mathes. Pures Appl., 32 
(1953), 203-280. 
5. W. Krull, Allgemeine Bewertungsthewie, J. Reine Angew. Math., 167 (1932), 160-196. 
6. K. Mathiak, Bewertungen nieht konrmwbtiver Koerper, J .  Algebra, 48 (1977). 
217-235. 
7. B. H. Neumann, On ordered division rings, Trans. Amer. Math. Soc., 66 (1949). 
202-252. 
8. J. Ohm, &mi-valuations and groups of divisibility, Canad. J .  Math., 21 (1969). 
576-591. 
9. W. Stephenson, Modules whose lattice of submodules is distributive, Proc. London 
Math. Soc., 28 (1974), 291-310. 
10. G. Thierrin, Sur les ide'aux compUikments premiers d'un anneau queleonque, Acad. 
Roy. Belg. Bull. A. Sci., (5)43 (1957), 124-132. 

Received September 2, 1979. The first author thanks the Technische Hochschule in 
Darmstadt for its hospitality during the first half of 1978 and the NRC for partial 
support. 



RIGHT CHAIN RINGS 


