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0 .  Introduction 

If R is a ring and is a group, then it is possible 

to define various ring-structures on the free left 

R-module with basis r using group homomorphisms 

o : r + Aut (R) by defining yr = ra(r) y for all y E r 

and r E R where Aut(R) denotes the automorphism qroup 

of R. 

A consideration of rings ~'[r] for Special rings R, e.q. 

R = Z/pZ, the field with p elements, can often be used to 

collect information about the group r .  However, there is 

another use of group rings. They provide a useful tool 

for the construction of examples in ring theory. 
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I n  t h i s  Paper,  t h e  l a t t e r  approach is  t aken .  I t  was i n i -  

t i a t e d  by t h e  c o n s t r u c t i o n  of near ly-s imple  cha in  r i n g s ,  

and i n  p a r t i c u l a r  by t h e  a n a l y s i s  of a n  example by 

Dubrovin [L] .  Here, a r i n g  R i s  c a l l e d  a c h a i n  r i n g  i f  

i t s  s e t  of r i g h t  and l e f t  i d e a l s  i s  l i n e a r l y  o rde red  un- 

d e r  i n c l u s i o n ,  and a l o c a l  r i n g  R i s  c a l l e d  n e a r l y -  

-simple i f  103, J ( R )  and R a r e  t h e  on ly  two-sided i d e a l s  

of R where J ( R )  deno tes  t h e  Jacobson r a d i c a l  of  R .  

While most c o n s t r u c t i o n s  of  cha in  r i n g s  a r e  based on an 

i d e a  by Neumann [SI on g e n e r a l i z e d  power s e r i e s ,  t h i s  pa- 

per  i s  concerned wi th  t h e  p o s s i b i l i t y  of us ing  group 

r i n g s  and semigroup r i n g s  over r i g h t  o rde red  groups ,  and 

t h e i r  g e n e r a l i z a t i o n s .  

I n  a f i r s t  s t e p  groups a r e  cons ide red  which a r e  t h e  

union of a smooth ascending subnormal s e r i e s  [ra}a,K 

such t h a t  T a + l  / r a  is  a t o r s i o n - f r e e  a b e l i a n  group.  I n  

Theorem 2 . 2 ,  i t  is  shown t h a t  t h e s e  groups a r e  e x a c t l y  

t h e  groups r t h a t  can be r i g h t  o rde red  i n  such a way by 

+ 
a p o s i t i v e  cone r such t h a t  t h e  s e t  of convex subgroups 

is  w e l l  ordered and f o r  a l l  a,B E r+  t h e r e  i s  0 9 n < o 

n -1 -1 + s u c h t h a t  ( a ß )  a ß E r .  

The c o n s t r u c t i o n  of c h a i n  r i n g s  v i a  group r i n g s  uses  l o -  

c a l i z a t i o n  t echn iques  t h a t  r e q u i r e  tkiat ~ ' [ r ]  i s  a r i g h t  

Ore r i n g  whenever R is .  
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I n  Section 3 ,  i t  w i l l  be shown t h a t  t h e  groups cons ide red  

i n  S e c t i o n  2 s a t i s f y  t h i s  requirement .  The c l a s s  of  t h e s e  

groups c o n t a i n s  t h e  c l a s s  of  l o c a l l y  n i l p o t e n t ,  t o r s i o n -  

- f r e e  groups.  By t h i s  method numerous c h a i n  r i n g s  can be  

cons t ruc ted  v i a  group r e s p .  semigroup r i n g s .  These r i n g s  

have a c r u c i a l  decomposit ion p roper ty  which g i v e s  r i s e  t o  

in t roduce  t h e  concept  of  g e n e r a l i z e d  v a l u a t i o n  f i r s t l y  

used by Rad6 [z], now l i g h t e n e d  from ano the r  p o i n t  of  

view. The disadvantage of ~ a d 6 ' s  nonsymmetric d e f i n i t i o n  

i s  overcome l n  t h i s  paper by t h e  c o n s i d e r a t i o n  of two 

conjugated v a l u a t i o n s  i n s t e a d  of one.  However, o u r  ex- 

amples which a r e  de r ived  from semigroup r i n g s  admit  valu-  

a t i o n s  whose va lue  s e t s  a r e  t h e  under ly ing  s e t s  of a r i g h t  

( l e f t )  ordered groups which cannot  be assurned i n  t h e  ge- 

n e r a l  c a s e .  Never the less ,  t h i s  desc r ibed  concept  of valu-  

a t i o n s  has  a much l a r g e r  f i e l d  of a p p l i c a t i o n s  a s  it was 

known till now. 

1. P r e l i m i n a r i e s  

The purpose of t h i s  s e c t i o n  is t o  sumrnarize t h e  n o t a t i o n s  

and b a s i c  r e s u l t s  t h a t  w i l l  be  used throughout  t h i s  pa- 

Per .  

A l i n e a r  o r d e r  I on a group i' i s  a high2 (Xe621 ohdch i f  

U I ß impl ies  ay 5 By (ya I yß)  f o r  a l l  u , ß , y  E i'. I f  5 

i s  a r i g h t  and l e f t  o r d e r ,  then  r i s  l i n e a r l y  o rde red .  

Associa ted  wi th  every  r i g h t  o r d e r  I on i' i s  a subsemi- 
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+ 
group r of  r de f ined  by T +  = Cy E r / y > e}  which i s  t h e  

genera l i zed  pobitive cone of r .  Here e deno tes  t h e  iden- 

+ 
t i t y  element of T .  r s a t i s f i e s  

i) i f  y E r \ r+ ,  then E r+ ,  
+ 

ii) r c o n t a i n s  t h e  i d e n t i t y  e of  r ,  and 

- 1 + 
iii) i f  y ,y  E r , then  y = e .  

Conversely,  every subsemigroup ii of  r s a t i s f y i n q  t h e s e  

t h r e e  c o n d i t i o n s  induces  a r i g h t  ( l e f t )  o r d e r  on r by de- 

f i n i n g  a Lrß ( a  6 ß )  i f  and on ly  i f  ßa-I E Ti  (a- 'ß E il) . P. 

However, IP. and I do n o t  a g r e e  i n  g e n e r a l .  I t  i s  easy t o  r 
+ 

show t h a t  t h i s  i s  t h e  c a s e  e x a c t l y  if y - l ~ + y  F f o r  a l l  

I n  t h e  remainder of  t h i s  paper  group r i n g s  over  r i g h t  

ordered groups and t h e i r  g e n e r a l i z a t i o n s  a r e  i n v e s t i g a -  

t e d .  Ringb R a r e  not necebbahily cammutative with  a u n i t  

1 E R ,  however we r e s t r i c t  o u r s e l v e s  t o  t h e  c a s e  t h a t  R 

i s  zeho-diviboh- 6hee. I n  p a r t i c u l a r ,  t h e  fo l lowing  i s  

of  i n t e r e s t .  L e t  R be any r i n g  and r a group. Suppose 

U : + Aut(R) i s  a group homomorphism where Aut(R) de- 

notes  t h e  automorphism group of R .  A r i n g  s t r u c t u r e  i s  

de f ined  on t h e  f r e e  l e f t  R-module wi th  b a s i s  r by 

a r  = r o ( a ) a .  

This r i n g  is  c a l l e d  a bkew ghoup hing and denoted by 

R'[F]. 
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Lemma 1.1: L e t  R be  a  r i n g  wi th  no z e r o - d i v i s o r s ,  

+ ( r ,  < ) a  r i g h t  o rde red  group wi th  p o s i t i v e  cone r r 

and U : r -* Aut(R) a  group monomorphism. For every  

0  + a  E R" [T ] i n  t h e  skew group r i n g  Ru [ r  ] t h e r e  a r e  

unique elements U ,  V w i t h  U ,  V E S 

- - {IyEr+  y r y l r e  + 0 with  e  t h e  i d e n t i t y  of T} 

and a ,  ß E T such t h a t  

a  = ua = ßv 

+ 
Moreover, a  E r i f  and on ly  i f  ß E T + .  

Proof: L e t  a  be  t h e  m a l l e s t  element r e s p .  Sr i n  t h e  

suppor t  of a .  By f a c t o r i n g  a  on t h e  r i g h t  s i d e  we ob- 

+ 
t a i n  u  E S. L e t  < be t h e  l e f t  o r d e r  on r induced by r . R 

Write a  = xn riyi  wich ri + 0 and yo S R . .  .<kyn.  Then 
i =O 

- 
and y  lYi E s i n c e  yo L Ryi. Choose ß = y and 

0 0 

n  
V = 21 i = O  r i u (yo- l )yo- ly i .  The r e s t  of  t h e  lemma i s  now 

obvious.  I n  t h e  c a s e  t h a t  I and L a g r e e ,  t h e n  a  = ß R r 

holds  i n  t h e  l a s t  lemma. This  i s  f o r  i n s t a n c e  t h e  c a s e  

i f  r i s  commutative. I n  t h e  fo l lowing ,  a  = ua (= ßv) i s  

c a l l e d  t h e  c a n o n i c a L  h i g h t  (Le&tl d e c o m p o n i t i o n  of a .  

Ac S i s  a  m u l t i p l i c a t i v e l y  c l o s e d  s u b s e t  we conclude.  

1.2 Coro l l a ry :  Skew group r i n g s  R'[T] wi th  R zero-divi -  

so r - f ree  and r r i g h t  o r d e r a b l e  have no ze ro -d iv i so r s .  
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One of  t h e  main concerns  of t h i s  paper i s  t o  i n v e s t i -  

g a t e  when t h e  s e t  S  i n  Lemma 1 .1  i s  a  r i g h t  Ore s e t  i n  

R'[ r ] .  Here, a  m u l t i p l i c a t i v e l y  c l o s e d  s u b s e t  T  not  

con ta in ing  0 of a  r i n g  R i s  a  hight Ohe net i f  f o r  a l l  

t E T  and 0 * r E R t h e  S e t  rT fl t R  i s  non-empty. R it- 

s e l f  i s  a  hight Ohe hing i f  R\{O) i s  a  r i g h t  Ore s e t .  

The l o c a l i z a t i o n  of  R a t  T is denoted by RT. 

A s  ment ionedin  t h e  i n t r o d u c t i o n  we a r e  i n t e r e s t e d  i n  

c o n s t r u c t i o n  ~nethods f o r  c h a i n  r i n g s .  Hence, i n  o r d e r  

t o  guarantee  l o c a l i z a t i o n  i n  t h e  skew group r i n g  R'[ I'] 

a s  w e l l  a s  r i g h t  o r d e r a b l i t y  f o r  r we w i l l  s tudy  t h e  

fo l lowing type of  groups:  

D e f i n i t i o n  1.3: L e t  r b e  a  group. r has  a subnormal 

s e r i e s  ( r a ) a < K  o f  l e n g t h  K where K i s  a n  o r d i n a l  number 

i f  

i) rO = { e ) ,  

ii) r i s  a  normal subgroup o f  r f o r  a l l  a  < K ,  
a  a+ I 

iii) r i f  a i s  a  l i m i t  o r d i n a l ,  a rd  
= ' B < K  B 

i v )  T = U  r 
CL<K a '  

The groups ra+l/Ta a r e  t h e  f a c t o r s  of  t h e  subnormal se -  

r i e s .  

2 .  A S p e c i a l  C lass  of  Right Ordered Groups 

One of t h e  important  r e s u l t s  on r i g h t  o rde red  groups i s  

t h a t  every  t o r s i o n - f r e e  a b e l i a n  group c a n  be r i g h t  o r -  
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dered i n  such a way t h a t  t h e  s e t  of i t s  convex subgroups 

s a t i s f i e s  t h e  minimum c o n d i t i o n  w i t h  r e s p e c t  t o  inc lu -  

s i o n .  Here, a subgroup B of  a r i g h t  o rde red  group r is  

convex i f  e Sr y I ß and ß E B i m p l i e s  y E B f o r  a l l  r 

Y E r. 

Lemma 2.1: L e t  r be a group w i t h  a subnormal s e r i e s  

{ralacK of l eng th  K whose f a c t o r s  a r e  t o r s i o n - f r e e  abe- 

l i a n .  Then, r can be r i g h t  o rde red  i n  such a way t h a t  

t h e  convex subgroups of r i n  t h i s  r i g h t  o r d e r  s a t i s f y  t h e  

minimum c o n d i t i o n  wi th  r e s p e c t  t o  i n c l u s i o n .  

Proof:  S ince  every  t o r s i o n - f r e e  a b e l i a n  group has  a sub- 

normal s e r i e s  whose f a c t o r s  a r e  subgroups of t h e  r a t i o -  

+ n a l  nurnbers Q , one can assume t h a t  Ta+l/ra i s  isomor- 

+ phic  t o  a subgroup o f  Q f o r  a l l  a < K. I f  t h i s  i s  n o t  

t h e  c a s e ,  then r e f i n e  t h e  o r i g i n a l  cha in .  

Suppose, one has  a l r e a d y  de f ined  p o s i t i v e  cones  ii of  
ß B 

such t h a t  il c il f o r  ß y < a. 
ß Y 

I f  a i s  a l i m i t  o r d i n a l ,  t h e n  l e t  iia = Uß<,ilß. On t h e  

o t h e r  hand, i f  a = ß + 1 ,  then  r 
ß + d r ß  i s  r i g h t  o rde red  

+ a s  a subgroup of Q . By [I, Theorem 3 . 7 1 ,  t h e r e  is  a 

r i g h t  o r d e r  on induced by t h e  one on 
~1 ß+l/rß whose 

p o s i t i v e  cone il c o n t a i n s  ii Moreover, r is  convex i n  
a ß ' B 

rß+l' n = U il is a g e n e r a l i z e d  p o s i t i v e  cone i n  T. 
a<K a 

The lemma is proved i f  it i s  shown t h a t  t h e  r ' s  and r 
a 
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are the only convex subgroups of F in the right order 

induced by i7. Suppose that T is not convex in T for a 

some a<K. Then, there is ß E ra and y E F such that 

e < < ß and y $ Ta. Choose a minimal with y E Ta. r Y -r 

Obviously, U > a and a -1 exists by condition iii) in 

the definition of a subnormal series. Since r is a 
0- I 

convex subgroup of r containing ß, y is in T too. 
U 0- I 

However, this contradicts the choice of a. Conversely, 

let A be a proper convex subgroup of F; then choose a 

to be minimal in { V  < K : ra n ( r \ A )  + @ I .  Because of 

iii) in Definition 1.1, o -1 exists. Moreover, 

Ta-l C A C Tu. Therefore, A/TO-l is a proper convex sub- 

group of To/To-l. Furthermore, rO/* is torsion-free 

since A is convex in T . Because To/Ta-l is isomorphic 
0 

+ 
to a subgroup of Q , this implies A = Ta-,. 

With this the foliowing characterization of the groups 

described in Lemma 2.1 can be given. 

Theorem 2 . 2 :  For a group T, the following are equivalent: 

a) T has a subnormal series with torsion-free abelian 

factors. 

b) There is a generalized positive cone ii on F inducing 

a right order 5 such that the convex subgroups with r 

respect to this order satisfy the minimum condition, 

and for a, ß E ii there is 0 + n < w such that 

Ba 5 (aßIn. r 



GROUP RINGS AND GENERALIZED VALUATIONS 2251 

Proof: a) * b): Let il be the positive cone constructed 

in Lemma 2.1 using the subnormal series {ra}a,K with 
+ 

factors isomorphic to a subgroup of Q . ~t is left to 
show only the last condition in b). But by Lemma 2.1, if 

A is normal in A2, and A2/A1 is isomorphic to a subgroup 1 

of I R .  By [ J ,  Theorem 4.11, the last condition of b) is 

satisf ied too . 
b) * a): The chain of convex subgroups of T is well- 

-0rdered. By [I, Theorem 4.11, C is normal in D if D is 

the successor of C in this order, an D/C is isomorphic 

to a subgroup of IR . This proves a) . 

It shall be remarked, that if one considers canonical 

right and left decompositions of elements of R'[T], 

then a is in a convex subgroup A of r if and only if ß 

is. 

3. Group Rings as Ore Rings 

In the last section, right ordered groups r  which have a 

subnormal series with torsion-free abelian factors have 

U been investigates. Now it will be shown that R [r] is a 

right Ore ring if R is one, and u:r -, Aut(R) is a group 

homomorphism. 

Lemma 3.1: Let R be a ring, be a group, and be a:r 
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Aut(~) a group homomorphism. If r is the semi-direct 

product of a normal subgroup N by a subgroup B, then a 

ring-structure is defined on the free left R [NI-module 

with basis B by ß (ry) = r ' (ßyß-I) ß .  The ring 

(R'[N] ) '[B] obtained this way is isomorphic to RU[r I. 

Proof: Consider the map W: (R'[N])'[B] + Ra[T] defined by 

semi-direct product of N and B, and (R'[N]) [B] is a 

free left R[N]-module, this is an isomorphism of abelian 

groups . 

Moreover, if 1 (1 r v ) a a n d b = X  (1 s p)ß 
aEB vEN V" BEB uEN 

are elernents of (R'[N])* [B] 

then 

a b = 1  I: t t 0 ("1 )u(v)v)ayB 
aEB BEB VEN UEN (rv'a(Syfß 

and 

On the other hand, 

Therefore, is an isomorphism of rings. 
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Lemma 3.2: L e t  R be a  r i g h t  O r e  domain, and r be  a  

t o r s i o n - f r e e  group t h a t  h a s  a  normal subgroup N such 

t h a t  T / N  i s  t o r s i o n - f r e e  a b e l i a n  and R"[N]  i s  a  r i g h t  

Ore r i n g  where o : r  + Aut(R1 i s  a  group homomorphism. 

Then, R'[ T] i s  a  r i g h t  Ore r i n g .  

Proof :  Le t  0  * a ,  b E R [ r ] ,  s a y  a  = t  r iy i ,  i = l  
n  

b  = Z s iyi .  Then, t h e r e  i s  a  subgroup U o f  r c o n t a i n i n g  
i = l  

N and t h e  s e t  Cyl, ..., yn} such t h a t  U / N  i s  f i n i t e l y  

m 
gene ra t ed .  Thus, t h e r e  i s  m < w such t h a t  U / N  @ 2 .  i = R  

Obviously,  it i s  enough t o  show t h a t  R'[u] i s  a  r i g h t  

Ore r i n g .  

I f  m = 1 ,  t h e n  t h e r e  is  a  subgroup B = <X> of  U such  t h a t  

U i s  t h e  s e m i - d i r e c t  p roduc t  o f  N by B .  By Lemma 3 .1 ,  it 

i c  enough t o  show t h a t  R"[N]'[B] is  a  r i g h t  Ore r i n g .  

L e t  0  + a ,  b E R'[N]"[B].  To show t h a t  ab  * 0 ,  w r i t e  

i a = Z  r . x  a n d b = t  s . x J w h e r e r  s E R " [ N ]  and 
1 j>k i' j  i t q  

r 0  + sk. Then, ab  = r s ' ( x q ) ~ q + k  + t e r m s  
9 g k 

exponent  i n  X .  But  r s ' ( x ~ )  * 0 i m p l i e s  ab  * 
q k 

w i t h  h i g h e r  

0. 

To show t h a t  t h e r e  a r e  C ,  d  E R'[N]'[B] w i t h  0  + a c  = bd,  
n  n  i w r i t e  a  = Z r : x  and b  = t s , x J .  I t  i s  enough t o  

f i n d  d-,, . . . , dn and c - ~ ,  . . . , C such  t h a t  n 
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n  n  i c = E  c . x  a n d d = X  
1 

s .xJ  s a t i s f y  a c  = bd and not  
i=-n j=-n 3 

a l l  t h e  c i  ' s  and d  ' s  a r e  equa l  t o  Zero. But t h e  
j  

cond i t ion  ac  = bd g i v e s  r i s e  t o  an  homogenous l i n e a r  

equa t ion  system f o r  t h e  C ' s  and d i l s  having 4n + 1 
i 

equa t ions  f o r  4n + 2 v a r i a b l e s .  S ince  R'[N] i s  a  r i g h t  

Ore domain, t h i s  system has  a  non-zero s o l u t i o n  over  

R'[N]. This proves t h e  e x i s t e n c e  of  C and d  wi th  

0  + ac  = bd. 

m I f  U / N  fBi,,Z, then t h e r e  i s  a  normal subgroup N I  of U 

such t h a t  U / N  E* Z and N I  / N  2' d l i i  Z .  By t h e  c a s e  m = 1 

and t h e  induc t ion  hypo thes i s ,  R'[u] i s  a  r i g h t  Ore r i n g .  

I n  o rde r  t o  prove main theorem of t h i s  s e c t i o n ,  one more 

lernma i s  needed. 

Lemma 3.3: L e t  r be a  group t h a t  i s  t h e  union of a n  

ascending cha in  {r i I iEI ,  and l e t  R be a  r i g h t  Ore r i n g .  

I f  U :  - Aut ( R )  i s  a  group homomorphism and R ' [ T ~ ]  i s  a  

r i g h t  Ore r i n g ,  then R0[T] i s  a  r i g h t  Ore r i n g .  

Proof:  Since  every  f i n i t e l y  genera ted  subgroup of  r i s  -- 
conta ined i n  r i  f o r  some i E I ,  every  two e lements  of 

R0[I'] a r e  conta ined , i n  ~ ' [ r ~ ]  f o r  some i E I .  

Theorem 3.4: Suppose t h a t  r i s  a  group w i t h  a  subnormal 

s e r i e s  wi th  t o r s i o n - f r e e ,  a b e l i a n  f a c t o r s .  I f  R i s  a  
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r i g h t  ( l e f t )  Ore r i n g  and U :  r -r Aut ( R )  i s  a group 

homomorphism, then RU[r ]  i s  a r i g h t  ( l e f t )  Ore r i n g .  

Proof:  Suppose, 
' r a 3 C X < K  

i s  t h e  subnormal s e r i e s  i n  

wi th  t o r s i o n - f r e e  a b e l i a n  f a c t o r s  . Assume t h a t  it has  

been shown t h a t  RU[r ] is  a r i g h t  Ore r i n g  f o r  ß < a .  
B 

I f  a i s  a l i m i t  o r d i n a l ,  then  apply Lemma 3.3 t o  show 

t h a t  RU[ra]  i s  r i g h t  Ore. On t h e  o t h e r  hand, i f  

a = ß + 1 ,  then apply  Lemma 3.2. Another a p p l i c a t i o n  of  

Lemma 3.3 proves t h a t  R U [ r ]  i s  a r i g h t  Ore r i n g .  The 

case  t h a t  R i s  a  l e f t  Ore r i n g  i s  t r e a t e d  s i m i l a r l y .  

Obviously, i f  R'[A] i s  a r i g h t  Ore r i n g  f o r  every  

f i n i t e l y  qenera ted  subgroup A of  r ,  t h e n  R U [ r ]  i s  a r i g h t  

Ore r i n g .  Since  t h e  f a c t o r s  of  t h e  ascending c e n t r a l  

s e r i e s  of a t o r s i o n - f r e e  n i l p o t e n t  group a r e  t o r s i o n - f r e e  

a b e l i a n ,  t h i s  l a s t  s t a t ement  and Theorem 3.4 s u f f i c e  t o  

prove . 

Coro l l a ry  3.5: L e t  i' be a l o c a l l y  n i l p o t e n t  group. I f  R 

i s  a r i g h t  ( l e f t )  Ore r i n g  and u : r  + Aut(R) is  a group 

homomorphism, then RU[T] i s  a r i g h t  ( l e f t )  Ore r i n g .  

I t  i s  well-known t h a t  t h e  c o n d i t i o n s  i n  Theorem 3.4 

cannot  be ommited i n  g e n e r a l ;  a s  Neumann [5, p.  213/214] 

pointed o u t  t h e r e  e x i s t  group r i n g s  over  a f i e l d  and 

l i n e a r l y  ordered group which a r e  n o t  O r e .  
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This  s e c t i o n  concludes wi th  an i l l u s t r a t i o n ,  how t h e  

r e s u l t s  of Theorem 3 . 4  can be a p p l i e d  t o  t h e  

c o n s t r u c t i o n  of cha in  r i n g s .  The r e a d e r  s h a l l  be reminded 

of a  n o t a t i o n  in t roduced i n  S e c t i o n  1 .  I f  T i s  a  r i g h t  

+ orderedgroup wi th  g e n e r a l i z e d  p o s i t i v e  cone T , R a  r i g h t  

Ore r i n g ,  and a : r  + Aut(R) a  homomorphism, then  denote  by 

S  t h e  s u b s e t  + ry Y he * 01 
Y E ~  

Theorem 3 . 6 :  Le t  T be a  group w i t h  genera l i zed  p o s i t i v e  

+ cone . I£ R i s  a  r i g h t  Ore r i n g  and u : T  + Aut(R) a  

group homomorphism such t h a t  RU[T] i s  a  r i g h t  Ore r i n g  

then S  is  a  r i g h t  Ore s e t  of both  R0[I'+] and RU[T] . 
+ 

Moreover, t h e  r i n g s  (RU[T 1 and (R0[T] i S  a r e  r i g h t  s 
cha in  r i n g s .  

Proof:  Let  0  * X E RU[T] and s E S .  S ince  R U [ r ]  i s  a  

r i g h t  Ore r i n g ,  t h e r e  a r e  u , v  E ~ ' [ r ]  wi th  0  + xu = SV. 

By Lemma 1  . I ,  one has  a E T and a  E S with  U = aa .  

Consequently, 0  * xa = s ( W - l )  which shows t h a t  S  is  an 

+ 
Ore S e t  i n  R' [ T 1. Moreover, i f  X E Ru [T 1 ,  t hen  choose 

b  E S and ß E T w i th  V = bß .  Consequently, 0  * xa = 

s b  (ßa - I  ) . A cornparison of coeff  i c i e n t s  shows t h a t  

- 1  + 
Ba E T . Therefore ,  S  is  an Ore s e t  i n  Ra [ T ]  . 
F i n a l l y ,  i f  0  * y l r  y2  E ( ~ ~ [ i ] ) ~ ,  then  use  Lemma 1.1 t o  

- 1 w r i t e  yi = s yici wi th  yi E r and s ,  c i  E S  f o r  i = 1 , 2 .  
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Since r+  induces a  l i n e a r  l e f t  o rder  on T ,  one has  e i t h e r  

- 1  + + y y2 E r o r  y1 E . Assume t h e  f i r s t  ho lds ,  say  

+ 
y2 = y l y  f o r  some y E r . 

- 1  
Then. Y ~ ( R ' [ ~ I ) ~  = s y2 c 2  ( R " [ ~ I ) ~  

- - 1  
s yi Y ( R ' I ~ I ) ~  

- 1 
s y1 ( ~ ' [ r l ) ~  - 

+ 
A s i m i l a r  argument i s  used t o  show t h a t  ( ~ ' [ r  i s  a  

r i g h t  Ore r i n g .  

C l e a r l y ,  t h e  arguments used i n  t h i s  s e c t i o n  a r e  r i g h t - l e f t  

syrnmetric. This  and a  s t andard  t e c h n i c a l  c a l c u l a t i o n  a r e  

enough t o  prove. 

Coro l la ry  3 . 7 :  Let  r be a  group wi th  a  subnormal s e r i e s  

whose f a c t o r s  a r e  t o r s i o n - f r e e  a b e l i a n .  I f  K i s  a  f i e l d  

and o:T + Aut (K) a  group-hommorphism, then both  r i n g s  

+ 
(K[r and ( K [ r ] ) S  a r e  l e f t  and r i g h t  cha in  r i n g s  f o r  

+ 
each genera l i zed  p o s i t i v e  cone i n  r .  Furthermore, 

+ (K[r is near ly  simple if and only  i f  f o r  a l l  

+ + + + 
X E T ' \ { e }  one has  r \{el  = r xr  . 

4 .  Generalized Valuat ions  

The skew-group and skew-semigroup r i n g s  cons t ruc ted  i n  

Sec t ion  3 w i l l  be considered from a  more g e n e r a l  p o i n t  
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of view which allows to give a larger class of examples 

for a concept of valuation which has been introduced by 

~ a d o  [ I ]  

The idea 

Lemma 1 .  

using generalized valuation originates from 

. The importance of this lemma is the existence 
of a decomposition property for a class of group rings 

resp. semigroup rings. This property by itself, not the 

fact that the rings are group rings, will be 

fundamental for the following. 

An analysis of Lemma 1.1 and the special situation where 

a ring R has the form R' [ r I shows 

(i 

(ii) 

(iii) 

R contains multiplicative semigroups 

S (namely the S as def ined in 1.1 ) and 

H  (namely T+) with 

s n H = C11 

I£ a, ß E H ,  then aß-' E ff or ßa-I E H  

There is a group i' with a generalized positive 

+ cone 

and a homomorphism I 1 : H + of semigroup such 

tha t 

+ 
(a) I H I  2 r 
(b) ja1 = e E r implies that a is a unit in V. 

(In Lemma 1 . I  we have to choose / / as the 

identity . ) 
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(iv) Every element 0 + r E R has a uniyue decomposition 

r = ua = ßq with U, V E S and a, ß E satisfying 

(a) lal E r+ exactly if 161 E r+, 

(b) laj = e if 1 ß 1  = e, and 

(C) if x1 = u1 a1 = B I  vl and x2 = U - 
2 "2 - 82 v2 

+ 
are elements of R with /al / , (a21 E r , 
then 0 * xl + x2 = ua = Bv implies 1 a 1 . 1 B / E T+. 

Definition 4.1: A ring R has the weak decompositionproperty 

(WDP) - if and only if conditions (i) through (iv) are 

satisfied. 

The group rings resp. semigroup rings constructed in 

Section 3 as well as the rings of generalized powerseries 

[ 6 ]  have this property. 

In the next step, rings with (WDP) are considered in view 

of the concept of valuations by ~ a d o  [ 7 ]  - mentioned above. 

Besides giving an easier way to understand the arithmetic 

of ideals of the ring, one obtains a class of examples 

for these valuations far away from the invariant case. 

Lemma 4.2:  Suppose R is a ring with (WDP) and i' the 

+ 
associated group with the generalized positive cone r . 
Then there is a pair ( / / E, 1 1 r) of maps 

I / E  : R (01 + (r, SR), respectively 

1 I r  : R iol + ( r ,  sr) 
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satisfying: 

Proof: Because of the decomposition property, 

X = ua = ßv for each X + 0 E R with ur V E S and ar ß i H .  

Define lxlr = lal resp. lxlR = / B I .  

4.1 (iv) implies (iii) and (iv) . To show (i) , let 
X = U a ,y = u2a2 and z = u3a3, i.e. 1 1  

1x1, = lall /Y/, = ja2/ and Izlr = la31; further suppose 

lall 2, b2I 

Because of conditions 4.1 (ii) and (iii) there is p E 

+ 
with a2 = pair I pI E r . Moreover, alu3 = V a) and 1 1  

a2u3 = V a' 
2 2' 

) 
Then xzI = lu V a a 1 = 1a;a3/ r 1 1  1 3 r  

) 1 
and IYzlr = lu V a a I = 1a2a3/. Furthermore, 2 2 2 3 r  

) ) ) )  
pvl = V!,P)~ implies a2u3 = pa1u3 = pv a = V p al. On the 1 1 

) 1 ) ) )  
other hand, a2u3 = v2a2. Consequently v2a2 = vlp a1 and 

) ) 1 + 
hence a2 = p al with I p' 1 E r . In this case, 

1 ) ) I P l la1a31 = I P  I l = I r  = laia3/ = lyzir implies 
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/ xz I r  5 1 yz 1 . That 1 I L s a t i s f i e s  (i) is  proved i n  t h e  r 

Same way. 

It i s  l e f t  t o  show (ii). By symmetry, it i s  enough t o  

cons ide r  / I r  on ly .  Wri te  again  X = U1al t  Y = u2a2.  

Without l o s s  of g e n e r a l i t y ,  pal = a 2  f o r  some p E H 

+ 
and I E r . Then, X = u l a l  and y = u2pa2. In  t h i s  c a s e ,  

+ 
X - Y =  ( u l  - u 2 p ) a l .  Write u l  - u2p = VIT wi th  In1 E r 

(4.1 ( i v )  C ) .  Therefore ,  X - y = vna, 

i . e .  

I x - Y I ,  = I ~ a , /  2r l a l l  = min ( I x l r ,  I y I r J .  

Theorem 4 .3 :  Suppose R i s  a r i g h t  and l e f t  Ore r i n g  wi th  

(WDP). Then, t h e  l o c a l i z a t i o n  RS e x i s t s .  R i s  a cha in  S 

r i n g  and t h e  maps I I r  r e s p .  I I given by Lemma 4.2 can 

be extended t o  RS such t h a t  (i) through ( i v )  a r e  s t i l l  

s a t i s f i e d .  

Proof: By d e f i n i t i o n ,  S i s  a semigroup. It is  l e f t  t o  

) 
show t h a t  f o r  a l l  0 * r E R ,  s E S, t h e r e  a r e  r E R ,  

1 ) ) 
s E S such t h a t  rs = Sr . Since R i s  a r i g h t  Ore r i n g ,  

) ) 1 
t h e r e  a r e  e lements  s , r  E R wi th  rs = sr' . Write 

' 1 s = ua, r = vß  wi th  u ,v  E S ,  a , ß  E H. Then, r u a  = s v ß ,  

and t h e  r e s u l t  fo l lows i f  ßa-I E H. Suppose ßa-I f$ H ,  

hence aß- '  E H.  L e t  be r = wy. Consequently,  

- 1 - 1 ) -1 
SV = ruaß  = wyuaß = wuy a ß  i m p l i e s  y)aßl = 1 E H 

- 1 which c o n t r a d i c t s  Ba 4 H .  The proof t h a t  S i s  l e f t  
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Ore is analogous, hence R = R. 
S S 
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Let be as-I, bs-T E R with a = au, b = ßv, a ß E H, 
S - 1 - 

u,v E S and aß E H. Then, as-I = su la-lßvs-l = bs-I 

which shows that Rs is a right chain ring. 

By similar arguments Rs is a left chain ring too. 

If as-I E Rs is given then define 1 as-I 1 E = 1 a 1 k. Since 
- 1 as = bt-I iff there are p,q E R with ap = bq, and 

sp = tq. Then 

plq E S, i.e. 

:PIE = iqlk = 

ialE = IblE because one can assume that 

i l I R  = e E r ,  without loss of generality. 

To prove condition 4.2(i), it suffices to prove: 

- 1 - 
a l E  rk Ibl, irnplies 1 s alE SE 1s IblE for arb E R 

and s E S. For a = au and b = ßv, one has lal IR 1 ß 1 .  
- 1 - 1 > ) - I  Hence ap = ß with p E H. s ß = s  a p  = a  s p = 

) > > > - I  ) + - 1 - 1 
~ P S  with Ip 1 E r  shows 1s alESk 1s blE. 

Similarly, the proofs of (ii) , (iii) and (iv) are 

straightforward applications of the Ore condition and 

the properties 4.2 (i) through (iv) of the ring R. By 

symmetry the Same holds for I 1 ,. 

Valuations with the functional properties 4.2(i) and (ii) 

have been considered for the first time by ~ a d 6  [ I ] .  

Here in, it was of essential importance that the 
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cond i t ion  lxyl = 1x1 [ y l  was rep laced  be ( i ) ,  because ,  

i n  g e n e r a l ,  t h e  value  S e t  has  no a l g e b r a i c  s t r u c t u r e  a t  

a l l .  Rad6 assumed only  t h a t  t h e  range IR\{O} / i s  a  

l i n e a r l y  ordered Se t .  This  l a c k  of s t r u c t u r e  in f luenceu  

e.g. Mathiak [L], t o  in t roduce  an e q u i v a l e n t  concept 

r e s t r i c t e d  on d i v i s i o n  r i n g s ,  and t o  i n v e s t i g a t e  it from 

a  d i f f e r e n t  p o i n t  view. 

However, i n  t h e  au thor  op in ion ,  Rad6's approach has  n o t  

been descussed s u f f i c i e n t l y  enough. F i r s t l y ,  ~ a d 6  does 

no t  d i s t i n g u i s h ,  a s  it is  shown here  between r i g h t  and 

l e f t  v a l u a t i o n s  s i n c e  he c o n s i d e r s  on ly  d i v i s i o n  r i n g s ,  

and i n  t h i s  c a s e ,  " l e f t  p r o p e r t i e s  of e lements  x , y "  

can be viewed a s  " r i g h t  p r o p e r t i e s  of t h e i r  i n v e r s e s  

- 1 x and vice-versa .  With r e s p e c t  t o  t h i s ,  t h e  

approach he re  is  a  more r i n g - t h e o r e t i c  concept and t h e  

a n a l y s i s  of  t h e  r e l a t i o n  between l e f t  and r i g h t  

v a l u a t i o n s  a l lows  t o  i n v e s t i g a t e  t h e  l e f t - r i g h t  

symmetry of  a  r i n g ,  an i d e a  which w i l l  n o t  be cons ide red  

t h i s  paper however . 

Secondly, t h e  examples i n  t h i s  paper g ive  a  l a r g e  c l a s s  

of r i n g s  i n  which it i s  n o t  al lowed t o  c a l c u l a t e  

m u l t i p l i c a t i v e l y  with t h e  v a l u a t i o n ,  bu t  where t h e  range 

s t i l l  has  a  s u f f i c i e n t  a l g e b r a i c  s t r u c t u r e ,  namely t h e  

va lue  s e t  i s  t h e  under ly ing s t r u c t u r e  of a  r i g h t  ( l e f t )  

ordered semigroup. Genera l i z ing  t h e  i d e a  of Lemma 4.2  

and having t h e  approach of Rad6 [ I ]  i n  mind, one d e f i n e s :  
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D e f i n i t i o n 4 . 4 :  I f  R i s  a  r i n g ,  and ( R t ,  I R ) ,  ( R r ,  Ir) 

a r e  l i n e a r l y  o r d e r e d  S e t s ,  t h e n  a  p a i r  ( 1  I r r  1 I R )  o f  

mappings / I r  : R \  {oI + R r  and I I R  : R \  103 + R t  

i s  a  paih  of  g e n e h a L i z e d ,  c a n j u g a t e d  vaLuat iand  ( S h o r t l y :  

a  g e n e r a l i z e d  v a l u a t i o n  o f  R )  i f  

( i) I x l t  It lyRl  i m p l i e s  l z x l Q  IR l z y l t 1  

r e s p e c t i v e l y  

(ii) min { l x I t ,  1 ~ 1 ~ 1  IR Ix-yIR and 

min I l x l r ,  l y l r l  Ir Ix-ylr  f o r  X + Y ,  

(iii) I R  \ (01 1 = R E  and / R L {O} 1 = R r ,  

( i v )  x I R  = l l l R  e x a c t l y  i f  1x1 r = 11/ , ,  and 

( V )  / x I R  111% i f f  1x1, ?r 111,. 

1 1 l e sP .  I Ir w i l l  o f t e n  be c a l l e d  l e f t  r e s p .  r i g h t  

v a l u a t i o n .  

Obviously 

R I I  = {XI l x i R  Z R  l l l R l  U i01 

i s  a  r i n g ,  t h e  vaLuaALan r i n g  o f  I 1 % .  By 4 . 4 ( v )  t h e  

d e f i n i t i o n  i s  symrnetr ical .  

D e f i n i t i o n  4.5: A v a l u a t i o n  ( / 1 , 1 I r )  o f  a  r i n g  R 

i s  r e g u l a r  i f  

l x l R  = l l l R  i m p l i e s  X i s  a  u n i t  o f  R. 

Remarks 4.6: 1. L e t  D be a d i v i s i o n  r i n g  w i t h  V a  
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va lua t ion  ( i n  t h e  sense  of  S c h i l l i n g )  and r i t s  va lue  

group. S e t  R R  = r = R and ( I R  = / I r  = V .  Then we r 

have a  genera l i zed  v a l u a t i o n .  The r e s t r i c t i o n  of V t o  

t h e  v a l u a t i o n  r i n g  ( i n  t h e  c l a s s i c a l  s e n s e )  induces  a  

r e g u l a r  v a l u a t i o n .  

2. Every chain  r i n g  R has  a t  l e a s t  one p a i r  of 

genera l i zed  v a l u a t i o n s .  Def i n e  flk = C X R  / 0  + X E R] , 
R r  = C R X ~ O  + X E ~ 3 ,  and jx lR = XR r e s p .  l x l r  = Rx. 

Then R i s  t h e  a s s o c i a t e d  ( r e g u l a r )  v a l u a t i o n  r i n g  of 

t h i s  c a n o n i c a l  v a l u a t i o n  on t h e  cha in  r i n g  R. 

3. Rings wi th  t h e  weak decomposition p roper ty  s a t i s f y  

4 . 4 ( i )  through 4 .4 (v )  because of Lemma 4.2. 

Furthermore, one has  t h e  fo l lowing.  

Theorem 4.7: (i) Let  R be a  r i n g  and ( 1  i r l l  I R )  a  

p a i r  of r e g u l a r  g e n e r a l i z e d  v a l u a t i o n s  on R. F u r t h e r ,  

l e t  R s a t i s f y  t h e  weak decomposit ion p roper ty  wi th  

juajr  = lal r e sp .  lßv lR  = / B I  
f o r  a l l  a , ß  E H ,  u ,v  E S. 

Then R is a  cha in  r i n g .  

Proof: Obviously luIr  = 1 I 1 ,  i m p l i e s  U an u n i t .  Because 

of aß- '  E H o r  ßa- '  E H t h e  r i g h t  ( l e f t )  i d e a l s  a r e  

l i n e a r l y  ordered by i n c l u s i o n .  
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For chain  r i n g s  a s  desc r ibed  i n  4 . 7  t h e r e  i s  a c o r r e s -  

pondence between t h e  upper segments and one-s ided( ! )  

i d e a l s .  Thereby, a s u b s e t  TI * $ of a l i n e a r l y  o rde red  

s e t  ( Q , S )  i s  c a l l e d  an uppeh begment i f  a E T ,  a I ß 

impl ies  ß E TI. 

Lemma 4 . 8 :  Let  R be a cha in  r i n g  and ( 1  I r r  1 I R )  i t s  

canon ica l  v a l u a t i o n  r i n g ,  I * $, I R and ~ I \ ( o ) / ~  = T.  

Then t h e  fo l lowing p r o p e r t i e s  a r e  e q u i v a l e n t :  

a )  I i s  a r i g h t  i d e a l  

b )  TI i s  an upper Segment wi th  r e s p e c t  t o  I !L' 

The proof i s  s t r a i g h t f o r w a r d  and t h e r e f o r e  omi t t ed .  

However, no t  much is  known about t h e  admissable  o r d e r  

s t r u c t u r e s  of R E  r e s p .  Qr f o r  cha in  r i n g s ,  because t h e r e  

a r e  no genera l  c o n s t r u c t i o n  methods. Since  t h e  examples 

i n  Sec t ion  5 a r e  r i n g s  wi th  t h e  weak decomposit ion 

p roper ty ,  i . e .  R R  r e sp .  R a r e  de r ived  from r i g h t  ( l e f t )  r 

ordered groups,  t h e  d i s c u s s i o n  i s  r e s t r i c t e d  t o  t h e  c a s e  

completely prime and "two-sided" f o r  t h i s  c l a s s  only .  

Lemma 4 . 9 :  I f  R i s  a cha in  r i n g  with (WDP) , $ * I R 

+ 
and / 1 \ { 0 ) I R  =  TI^, I1 \{031~ = TI where  TI^,  TI^ 5 , then r 

t h e  fo l lowing a r e  equ iva len t :  

a )  I is  a twosided i d e a l  

b )  (i) ' r rR  = n r 

(ii) r R  resp .  T, a r e  upper segments i n  r e s p e c t  t o  IR 
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Furthermore,  t h e  fo l lowing equ iva lence  ho lds :  

a )  I i s  a  completely prime i d e a l .  

b )  ( i) = I T ~  = T 

(ii) I T ~  r e s p .  IT a r e  upper Segments i n  r e s p e c t  t o  r 

IR resp .  < -r' 
+ 

(iii) IT i s  a subsemigroup. 

Proof:  S t ra igh t fo rward .  

Problem: An i d e a l  P i s  compLeteey phime i f  f o r  e lements  

x,y E R ,  xy E P impl ies  X E P o r  y  E P. An i d e a l  P i s  

c a i l e d  prime i f  f o r  l e f t  ( r i g h t )  i d e a l s  X and Y 

XY c P i m p l i e s  X c P o r  Y c P. 

I t  remains an Open q u e s t i o n  t o  c h a r a c t e r i z e  t h e  non- 

completely prime i d e a l s  of  a  r i n g  wi th  t h e  decomposit ion 

p roper ty  us ing  t h e  va lue  semigroup. Also,  it i s  l e f t  

unansweredif cha in  r i n g s  can be ob ta ined  with t h a t  type  

of prime i d e a l s  by t h e  c o n s t r u c t i o n  of  Sec t ion  3 .  

However, a  r e l a t e d  problem of Skornyakov 19, Page 1 4 2 1  

f o r  a  semigroup is  apparen t ly  s t i l l  unsolved.  

5. Examples 

Example 1 :  (This  has  a l r e a d y  been s e t t l e d  by t h e  

c o n s t r u c t i o n  of  Rohlf ing [E] i n  h i s  d i s s e r t a t i o n :  
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Let R be left Ore ring and R a linearly ordered 

commutative group (semigroup) of operators.Then the skew 

group (semigroup) ring R[R] is left Ore too). Let F be 

an archimedean right ordered group. Conrad [L] showed 
that r is order-isomorphic to a subgroup of the real 

numbers. In particular, r is commutative, and therefore, 

if one considers a decomposition as in Lemma 1.1, a = 8 .  

Consequently, if R is a right Ore ring then I j L  = 1 I r  
+ 

in R[r IS. Since every SE-upper segment is a I -upper r 
+ 

segment, R[r I S  is a two-sided valuation ring of rank 1 

in the sense of Schilling. 

Example 2: Ou Z X Z define an addition by 

b 
(alla21 + (bltb2) = (al+blIa2 (-1) l+b2). 

According to [ 1 , Example 1 ] an element (0,O) + (al , a2 ) 
is positive if a > 0 or al = 0 and a2 > 0. Then 1 

is a generalized 

illustrates the 

+ F an F. 

E Z X Z / (al ,a2) 2 (0,O)I 

positive cone. The following example 

eft resp. right order defined by 

R i g h t  ondeh: 

+ 
The chain ring R [ r  l S  is obtained by Theorem 3.4 
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+ 
and 3.6 be localizing the Ore ring R[r]. R[r I S  has 

the f ollowing prime ideals : 

J, E01 and 

+ 
P I  = Ir E R[T IS  I There is a E Z with lrlQ 2 (l,1)1 

U I01 

In the Same way, 

+ 
Pi = Ir E R[T IS l~here is a E Z with lrlR 2 (i,a)} U 103 

are twosided ideals exactly the sections [Pi,Pi+l] 

with i even (set Po = J) are twosided. Observe that 

is not possible to define a twosided order on T. 

Example 3: Suppose, (K,I) is an ordered field and 

r = { x + a x + b  I a, b E K ,  a > 0 3 ,  

the group of affine-linear functions. r is ordered by 

the usual lexicographic order. It is well-known that 

it is possible to obtain valuation rings of rank 2 by 

Neumann's construction of generalized power-series. 

Since r is the semi-direct product of (Kr+) with 

(K' L (01 , - ) ,  the construction of Section 3 also leads 

to semigroup rings of rank 2. 

Example 4: Dubrovin [2] has definedaqeneralizedpositive 

cone on this group in the case K = Q. For reasons of a 

better understanding, his definition is discussed 

geometrically here. 

1 1 r t = { f E r  I f ( E )  2 - 1  
E 



2270 ALBRECHT AND TORNER 

where E is  a  f i x e d ,  p o s i t i v e ,  i r r a t i o n a l  number. The 

graphes of t h e  e lements  i n  a r e  t h e  s t r a i g h t  l i n e s  

I which i n t e r s e c t  t h e  l i n e  X = - i n  e x a c t l y  one p o i n t .  
E 

I On t h e  o t h e r  hand, through every  p o i n t  o f  X = -, t h e r e  
E 

i s  a t  most one l i n e  i n  r .  

I f  f  0 f  i s  de f ined  by f l ( f 2 ) ,  then t h e  p o i n t s  o f  1 2  

i n t e r s e c t i o n  d e f i n e  t h e  r i g h t  o r d e r  on r by us ing  t h e  

1  n a t u r a l  o rde r  on t h e  l i n e  X = -. S i m i a r l y ,  t h e  l e f t  
E 

1  o r d e r  i s  found i n  t h e  same way on y  = -. With t h i s ,  i t  
E 

+ is  c l e a r  t h a t  R [ r  I S  i s  a  near ly-s imple  cha in  r i n g .  

Observe t h a t  example 3 (wi th  K = Q )  and example 4 

d e s c r i b e  subr ings  of t h e  same q u o t i e n t  r i n g .  Even more 

chain  r i n g s  can be found i n  t h e  Same d i v i s i o n  r i i ~ g :  

Zxainple 5: r a s  desc r ibed  i n  Example 3 can be cons ide red  

a s  t h e  group of o rde r -p rese rv ing  permutat ions  of  Q. 

There i s  a  Standard procedure t o  d e f i n e  r i g h t  r e s p .  

l e f t  o r d e r s  on r .  

F ix  a  we l lo rde r  

s l  .'l s2-l . ... . f o r  s l ,  s2 E Q 

of Q. I f  f E F ,  t hen  L  ( f )  deno tes  t h e  f i r s t  element i n  

t h i s  we l lo rde r  f o r  which f  ( L  ( f )  ) 9 L ( f )  . f  i s  p o s i t i v e ,  

i f  f ( L ( f ) )  > L ( £ ) .  In  our  c a s e ,  however, it s u f f i c e s  t o  

d i s t i n g u i s h  two p o i n t s  s , ,  s2 E Q. 
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+ 
Remark: The fact that R [ r  I S  is a chain ring if R is 

Ore does not depend on the chosen generalized positive 

+ 
cone F but is answered by the algebraic structure of T. 

However, the ideal structure of that chain ring, i.e. 

under which condition the ring is nearly simple heavily 

+ 
depends on r , for instance an illustration can be 

found in Corollary 3.7 of this Paper. 

References 

P. Conrad, Right-ordered groups, Michigan Math. 

J. 6 (1959), 267 - 275. - 

J. Dauns, Generalized skew polynomial rings, 

Trans Arner. Math. Soc. 271 (l982), 575 - 586. 

N. I. Dubrovin, Chain domains, Moscow Univ. Math. 

Bull. Ser. I. 35 (1980), 56 - 60. - 

L. Fuchs,Teilweise geordnete algebraische Struk- 

turen, Vanaenhoeck & Ruprecht, Göttingen 1965. 

K. Mathiak, Bewertungen nicht kommutativer Körper, 

J. Algebra 48 (1977) 217 - 235. 

B. H. Neumann, On ordered division rings, Trans. 

Arner. Math. Soc. 66 (19491, 202 - 252. 

F. Rad6, Non-injective collineations on some Sets 

in Desarguesian projective planes and extension of 



2272 ALBRECHT AND TOWER 

non-commutative valuations,Aequationes Math. 4 

8. U. Rohlfing, Wertegruppen nichtinvarianter Bewer- 

tungen, Braunschweig (Diss.), 1981. 

9. L. A. Skornyakov, Left valuation semigroups, 

Sibirian Math. J. - 1, (1970), 168 - 182. 

Received: June 1983 

Revised: February 1984 


