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0. Introduction

If R is a ring and T is a group, then it is possible
to define various ring-structures on the free left
R-module with basis T using group homomorphisms

g : I' » Aut(R) by defining yr = rc(r)y for all vy € T
and r € R where Aut(R) denotes the automorphism group

of R.

A consideration of rings RO[P] for special rings R, e.d.
R = 2/pZ, the field with p elements, can often be used to
collect information about the group I'. However, there is
another use of group rings. They provide a useful tool

for the construction of examples in ring theory.
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In this paper, the latter approach is taken. It was ini-
tiated by the construction of nearly-simple chain rings,
and in particular by the analysis of an example by
Dubrovin [3]. Here, a ring R is called a chain ring if
its set of right and left ideals is linearly ordered un-
der inclusion, and a local ring R is called nearly-
~simple if {0}, J(R) and R are the only two-sided ideals

of R where J(R) denotes the Jacobson radical of R.

While most constructions of chain rings are based on an
idea by Neumann [6] on generalized power series, this pa-
per is concerned with the possibility of using group
rings and semigroup rings over right ordered groups, and

their generalizations.

In a first step groups I are considered which are the

union of a smooth ascending subnormal series {Fa}a<K

such that Td+1/Pa is a torsion-free abelian group. In
Theorem 2.2, it is shown that these groups are exactly

the groups I' that can be right ordered in such a way by

a positive cone F+ such that the set of convex subgroups
is well ordered and for all a,B8 € F+ there is O *+ n < w
such that (a8)% '8! € r*.

The construction of chain rings via group rings uses lo-

calization techniques that require that ROIT] is a right

Ore ring whenever R is.
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In Section 3, it will be shown that the groups considered
in Section 2 satisfy this requirement. The class of these
groups contains the class of locally nilpotent, torsion-
-free groups. By this method numerous chain rings can be
constructed via dgroup resp. semigroup rings. These rings
have a crucial decomposition property which gives rise to
introduce the concept of generalized valuation firstly
used by Radd [7]1, now lightened from another point of
view. The disadvantage of Radd's nonsymmetric definition
is overcome in this paper by the consideration of two
conjugated valuations instead of one. However, our ex-
amples which are derived from semigroup rings admit valu-
ations whose value sets are the underlying sets of a right
(left) ordered groups which cannot be assumed in the ge-
neral case. Nevertheless, this described concept of valu-
ations has a much larger field of applications as it was

known till now.

1. Preliminaries

The purpose of this section is to summarize the notations
and basic results that will be used throughout this pa-
per.

A linear order < on a group I' is a 4d{ght (Left) onden if
¢ £ B implies oy < By (ya £ yB) for all o,B,y € T. If <
is a right and left order, then T is linearly ordered.

Associated with every right order < on T is a subsemi-
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group T1 of T defined by I'T = {y € I'|y > e} which is the
generalized posditive cone of I'. Here e denotes the iden-
tity element of T. F+ satisfies
i) if v € I\I'", then v ! € 1,

ii) F+ contains the identity e of ', and

iii) if v,y ' € T, then y = e.
Conversely, every subsemigroup N of I' satisfying these
three conditions induces a right (left) order on T by de-

1

fining o < 8 (a <,8) if and only if 8o~ ' € T g em.

r

However, SZ and Sr do not agree in general. It is easy to
- +

show that this is the case exactly if ¥y 1F+Y T for all

y € T.

In the remainder of this paper group rings over right
ordered groups and their generalizations are investiga-
ted. Rings R are noi necessarily commutative with a unit
1 € R, however we restrict ourselves to the case that R
is zeno-divisohr-free. In particular, the following is
of interest. Let R be any ring and T a group. Suppose
o : T - Aut(R) is a group homomorphism where Aut(R) de-
notes the automorphism group of R. A ring structure is
defined on the free left R-module with basis T by

or = rc(u)a.

This ring is called a skew group ring and denoted by

R[T].
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Lemma 1.1: Let R be a ring with no zero-divisors,

(T, sr) a right ordered group with positive cone F+
and o : [ » Aut(R) a group monomorphism. For every
0 # a € R(T] in the skew group ring RG[F] there are
unique elements u, v with u, v € 8

{Zy€F+ YrYIre ¢ O with e the identity of T}
and o, B € T such that
a = uon = Bv

+
Moreover, a € rt if and only if B € T .

Proof: Let o be the smallest element resp. sr in the
support of a. By factoring o on the right side we ob-
tain u € S. Let SQ be the left order on I induced by T+.
. n .
= < < .
Write a zi:oriYi with rs + O and Yo Sgc-eSpVy Then

a = % r 0(Y81) -1
= Yo *i=o0 i Yo Yi

and Yo—1Yi er’ since Yo < Vi Choose B = Yo and

_ D olyg )., -1 . .
v Zi=0 ry Yo Yi- The rest of the lemma is now

obvious. In the case that SR and Sr agree, then a = B
holds in the last lemma. This is for instance the case
if T is commutative. In the following, a = ua (= Bv) is
called the canonical right (Left) decomposiiion of a.

As S is a multiplicatively closed subset we conclude.

1.2 Corollary: Skew group rings RYIT] with R zero-divi-

sor-free and I' right orderable have no zero-divisors.
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One of the main concerns of this paper is to investi-
gate when the set S in Lemma 1.1 is a right Ore set in
RO[T]. Here, a multiplicatively closed subset T not
containing O of a ring R is a aight Onre set if for all
t € Tand O # r € R the set rT N tR is non-empty. R it-
self is a ndight Ore ning if R\{O} is a right Ore set.
The localization of R at T is denoted by RT.
As mentioned in the introduction we are interested in
construction methods for chain rings. Hence, in order
to guarantee localization in the skew group ring RU[F]

as well as right orderablity for T we will study the

following type of groups:

Definition 1.3: Let I be a group. I' has a subnormal

series {FG}Q<K of length k where k is an ordinal number

if
i) Iy = {e},

ii) Fu is a normal subgroup of I&+1for all o < k,

iii) r =10 I, if oo is a limit ordinal, ard
o B<k™ B
iv) r = Ua<KFu'

The groups ra+1/ra are the factors of the subnormal se-

ries.

2. A Special Class of Right Ordered Groups

One of the important results on right ordered groups is

that every torsion-free abelian group can be right or-
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dered in such a way that the set of its convex subgroups
satisfies the minimum condition with respect to inclu-
sion. Here, a subgroup B of a right ordered group T is
convex if e sr Y £ rB and B € B implies y € B for all

y € T.

Lemma 2.7: Let T be a group with a subnormal series

{Fa}u<K of length k whose factors are torsion-free abe-

lian. Then, T can be right ordered in such a way that
the convex subgroups of ' in this right order satisfy the

minimum condition with respect to inclusion.

Proof: Since every torsion-free abelian group has a sub-
normal series whose factors are subgroups of the ratio-

+ . .
nal numbers Q , one can assume that T /Fu is isomor-

o+1

phic to a subgroup of Q+ for all a < k. If this is not

the case, then refine the original chain.

Suppose, one has already defined positive cones HB of FB

such that HB < nY for B < vy < o,

If oo is a limit ordinal, then let ﬂu = . On the

Ys<ag
other hand, if o = B + 1, then I‘S_H/I‘B is right ordered

as a subgroup of Q+. By [1, Theorem 3.7], there is a

right order on Fa induced by the one on T /FB whose

B+1
. Moreover, I', is convex in

B B

FB+1' m= Ua<Kna is a generalized positive cone in T.

positive cone ﬂa contains TI

The lemma is proved if it is shown that the Fu's and T
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are the only convex subgroups of I in the right order
induced by T. Suppose that Fu is not convex in T for
some a<k. Then, there is B € Fa and y € ' such that

e Sr Y SrB and v € Fa' Choose ¢ minimal with y € Fg.
Obviously, ¢ > a and o -1 exists by condition iii) in
the definition of a subnormal series. Since et is a
convex subgroup of Fo containing B, y is in Fo_1 too.
However, this contradicts the choice of o. Conversely,

let A be a proper convex subgroup of I'; then choose ¢

to be minimal in {v < k : FO N (I'\A) # @}. Because of

iii) in Definition 1.1, o -1 exists. Moreover,

T c A C‘Fo‘ Therefore, A/T0_1 is a proper convex sub-

o=-1
group of FG/P0_1. Furthermore, 1“0/A is torsion-free
since A is convex in Tg. Because I‘C/FO_1 is isomorphic

to a subgroup of Q+, this implies A = P0—1

With this the following characterization of the groups

described in Lemma 2.1 can be given.

Theorem 2.2: For a group T, the following are equivalent:

a) I' has a subnormal series with torsion-free abelian
factors.

b) There is a generalized positive cone MM on I' inducing
a right order Sr such that the convex subgroups with
respect to this order satisfy the minimum condition,
and for a, B € T there is O # n < w such that

n
Ba <. (aB) .
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Proof: a) = b): Let N be the positive cone constructed
in Lemma 2.1 using the subnormal series {Fa}a<K with
factors isomorphic to a subgroup of Q+. It is left to
show only the last condition in b). But by Lemma 2.1, if

A, is normal in A2, and A2/A1 is isomorphic to a subgroup

1
of R. By [1, Theorem 4.1], the last condition of b) is
satisfied too.

b) = a): The chain of convex subgroups of T is well-
-ordered. By [1, Theorem 4.1], C is normal in D if D is

the successor of C in this order, an D/C is isomorphic

to a subgroup of R . This proves a).

It shall be remarked, that if one considers canonical
right and left decompositions of elements of RO[F],
then o is in a convex subgroup A of I' if and only if B

is.

3. Group Rings as Ore Rings

In the last section, right ordered groups I which have a
subnormal series with torsion-free abelian factors have
been investigates. Now it will be shown that R O[1"] is a
right Ore ring if R is one, and o:T - Aut(R) is a group

homomorphism.

Lemma 3.1: Let R be a ring, T be a group, and be ¢:T -
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Aut(R) a group homomorphism. If I' is the semi-direct
product of a normal subgroup N by a subgroup B, then a
ring-structure is defined on the free left R [N]-module
with basis B by 8(ry) = r°®) (gyg™")8. The ring

(R%IN1)°[B] obtained this way is isomorphic to RO[T1.

Proof: Consider the map w:(RO[N])O[B] - RG[F] defined by
oz (£ vV)B) = I r Bvs. Since TI' is the

BEB veN VP BEB veEB Y’
semi~direct product of N and B, and (RO[N])O [B] is a
free left R[N]-module, this is an isomorphism of abelian

groups.

Moreover, if I (= rv B\))oc and b = (X s Bu)B
a€EB  VEN V! BEB pEN M’

are elements of (RP[N1)° [B]

then

o(a),o(v)

ab = z b z (r (s

)
GEB BEB VEN ueN Ve WP

v)aup

and

@(ab) = X z T T r (s 'O(va)vaua—1(a8)

)
0€B BEB vEN pen V% HsB

On the other hand,

e(a)e(b) = (= T r, a““)(z = s, B“B)
a€B VEN " BEB UEN "’

=y ¥ ¥ ¥ r s olva)

vauB
@EB VEN BEB peN Vr% H/B

Therefore, ¢ is an isomorphism of rings.
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Lemma 3.2: Let R be a right Ore domain, and T be a
torsion-free group that has a normal subgroup N such
that T/N is torsion-free abelian and RG[N] is a right
Ore ring where o¢:T - Aut(R) is a group homomorphism.

Then, RU[F] is a right Ore ring.

Proof: Let O # a, b € R[I'], say a = r.y

i 14

i

H M3

=1

s.Y

i Then, there is a subgroup U of T containing

i*

o
]
P-M 3

=1

N and the set {Y1, ey Yn} such that U/N is finitely

m

®i=2

Z.

e

generated. Thus, there is m < @ such that U/N
Obviously, it is enough to show that R[U] is a right

Ore ring.

If m = 1, then there is a subgroup B = <x> of U such that
U is the semi-direct product of N by B. By Lemma 3.1, it

is enough to show that rROINI[B] is a right Ore ring.

Let 0 #+ a, b € RI[N]°[B]. To show that ab # O, write

a=x rixl and b = % s.x7 where rir s, € RG[N] and

izg izk J
o (x3)_ gtk . .
rq + O * sk. Then, ab = rqsk X + terms with higher
. o(xq) . .
exponent in x. But rqsk # O implies ab #* O.

To show that there are ¢, d € RO[N]G[B] with O # ac = bd,

n . n .

write a = X rixl and b = £ s.xJ. It is enough to

i=-n i=-n

find d , ..., d and ¢ _, ..., c_ such that
-n n - n

n
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n . .
c =X c.x* and 4 = s.xJ
1 J

i=-n

satisfy ac = bd and not
==7

M

all the <y 's and dj 's are equal to zero. But the
condition ac = bd gives rise to an homogenous linear
equation system for the ci's and di's having 4n + 1
equations for 4n + 2 variables. Since RU[N] is a right
Ore domain, this system has a non-zero solution over
R7IN]. This proves the existence of ¢ and d with

0O # ac = bd.

ne

61212, then there is a normal subgroup N1 of U

such that U/N ¥ 7z and N, /N e QT;JZ. By the case m = 1

If U/N

and the induction hypothesis, rR°[U] is a right Ore ring.

In order to prove main theorem of this section, one more

lemma is needed.

Lemma 3.3: Let T be a group that is the union of an

ascending chain {Fi} and let R be a right Ore ring.

i€1’
If o:T -» Aut(R) is a group homomorphism and RO[Ti] is a

right Ore ring, then RG[F] is a right Ore ring.

Proof: Since every finitely generated subgroup of T is
contained in Fi for some i € I, every two elements of

RO[P] are contained 'in RG[Fi] for some 1 € 1i.

Theorem 3.4: Suppose that T is a group with a subnormal

series with torsion-free, abelian factors. If R is a
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right (left) Ore ring and o¢:I' - Aut(R) is a group

homomorphism, then R[T] is a right (left) Ore ring.

Proof: Suppose, {Ta}a<K is the subnormal series in T
with torsion-free abelian factors. Assume that it has
been shown that RO[FB] is a right Ore ring for B < a.
If o is a limit ordinal, then apply Lemma 3.3 to show
that RO[FQ] is right Ore. On the other hand, if

o =8 + 1, then apply Lemma 3.2. Another application of

Lemma 3.3 proves that R[] is a right Ore ring. The

case that R is a left Ore ring is treated similarly.

Obviously, if R[A] is a right Ore ring for every
finitely generated subgroup A of T, then RO[r] is a right
Ore ring. Since the factors of the ascending central
series of a torsion-free nilpotent group are torsion-free
abelian, this last statement and Theorem 3.4 suffice to

prove.

Corollary 3.5: Let T be a locally nilpotent group. If R

is a right (left) Ore ring and o:T -» Aut(R) is a group

homomorphism, then RG[F] is a right (left) Ore ring.

It is well-known that the conditions in Theorem 3.4
cannot be ommited in general; as Neumann [6, p. 213/214]
pointed out there exist group rings over a field and

linearly ordered group which are not Ore.
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This section concludes with an illustration, how the
results of Theorem 3.4 can be applied to the

construction of chain rings. The reader shall be reminded
of a notation introduced in Section 1. If I' is a right
ordered group with generalized positive cone F+, R a right
Ore ring, and o:T - Aut(R) a homomorphism, then denote by

S the subset {z r_ yly. % o}
+
yer® Y €

of RI[T].

Theorem 3.6: Let T be a group with generalized positive
cone F+. If R is a right Ore ring and o:T = Aut(R) a
group homomorphism such that RO(r] is a right Ore ring
then 8 is a right Ore set of both RO[P+] and RO[T].
Moreover, the rings (RO[I‘+]s and (RO[I‘])S are right

chain rings.

proof: Let O # x € RO[T] and s € S. Since RY[T] is a
right Ore ring, there are u,v € RO[F] with O # xu = sv.
By Lemma 1.1, one has o« € I' and a € S with u = aa.
Consequently, O % xa = S(vd—1) which shows that S is an
Ore set in RO[P]. Moreover, if x € RO[F+], then choose
b € s and B € T with v = bR. Consequently, O % xa =
sb(Ba—1). A comparison of coefficients shows that

=1 +
[0

B8 € T . Therefore, S is an Ore set in RO[F].

Finally, if O # y,, ¥, € (RO[F])S, then use Lemma 1.1 to

write Y =8 vy with Yy € T and s, <y € s for i =1,2.
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Since Y+ induces a linear left order on I', one has either
y—11 Yo € F+ or Y;1 Y4 € T+. Assume the first holds, say
Yo = VY for some y € T+.

-1

Then, y,(RO[T 1) g s v, ¢, (R“[I‘])S

= g} Yo ¥ (RO[I‘])S

'y, @I

in

y, (R°ITDg
A similar argument is used to show that (RG[P+])S is a

right Ore ring.

Clearly, the arguments used in this section are right-left
symmetric. This and a standard technical calculation are

enough to prove.

Corollary 3.7: Let I' be a group with a subnormal series

whose factors are torsion-free abelian. If K is a field
and o:T - Aut(K) a group-hommorphism, then both rings
(K[F+])S and (K[T])S are left and right chain rings for
each generalized positive cone F+ in T. Furthermore,
(K[I‘+])s is nearly simple if and only if for all

x € T+\{e} one has F+\{e} = rxrt.

4. Generalized Valuations

The skew-group and skew-semigroup rings constructed in

Section 3 will be considered from a more general point
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of view which allows to give a larger class of examples
for a concept of valuation which has been introduced by

Radd [7].

The idea using generalized valuation originates from
Lemma 1.1. The importance of this lemma is the existence
of a decomposition property for a class of group rings
resp. semigroup rings. This property by itself, not the
fact that the rings are group rings, will be

fundamental for the following.

An analysis of Lemma 1.1 and the special situation where

a ring R has the form R[T'] shows

(i) R contains multiplicative semigroups
S (namely the S as defined in 1.1) and
H (namely F+) with
snH={1}

Ve Horga ! €H

(ii) If o, B € H, then B~
(iii) There is a group I with a generalized positive
cone F+

and a homomorphism |

: H > T of semigroup such

that

(a) |Hl 217"

(b) |a] = e € T implies that o is a unit in V.
(In Lemma 1.1 we have to choose | | as the

identity.)
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(iv)

Every element O # r € R has a unigue decomposition
r = uo = B with u, v € § and a, B € H satisfying
(a) |o| € r* exactly if [B]| € rt,

(b) la] = e if |B| = e, and

(c) 1if Xy = up oo, = 61 vy and Xy = Uy 0, = B, Vv

are elements of R with |a1l, [azl ert,

then O # x, + x, = ua = gv implies |a|, [8] € I*.

Definition 4.1: A ring R has the weak decomposition property

(WDP)

-if and only if conditions (i) through (iv) are

satisfied.

The group rings resp. semigroup rings constructed in

Section 3 as well as the rings of generalized powerseries

[6] have this property.

In the next step, rings with (WDP) are considered in view

of the concept of valuations by Radd [7] mentioned above.

Besides giving an easier way to understand the arithmetic

of ideals of the ring, one obtains a class of examples

for these valuations far away from the invariant case.

Lemma 4.2: Suppose R is a ring with (WDP) and I' the

associated group with the generalized positive cone F+.

Then there is a pair (|

1,

e

}Q, | lr) of maps

R~ {0} - (r, SR)’ respectively
R~ {0} » (T, <)
r
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satisfying:
(1) [XIR <0 [le implies lzx]l <y lzy[z,
respectively
%Iy =, |yl implies |xz| . <. |yzl,,

{ii) If x # y, then min {Ix[Q, \yiQ} <, |x - YIQ
and min {|x|r, |y|r} <, Ix - ylr,

, and

(1ii) x|y = [1), iff |x| = [1],

(iv) 1x11 > |112 iff |x|r 2. \11r.

Proof: Because of the decomposition property,

X = uo = Bv for each x # O € R with u, v € S and o, 8 € H.

Define |x|_ = |a| resp. |x|, = |8

4.1 (iv) implies (iii) and (iv). To show (i), let

X = u1u1,y = uzaz and z = u3u3, i.e.

ler = |a11, lyl, = ]azl and |z|,_ = |a;i: further suppose

lagl s, oyl
Because of conditions 4.1 (ii) and (iii) there is p € #

with o, = pa,, ol € rt. Moreover, a,u; = v,a; and

- )
A Uy = V,05.
) _ )
Then |xz|r— |u1v1a1a3|r = Ia1a3]
_ ) _ )
and }yz[r = |u2v2a20c3|r = |a2a3|. Furthermore,
= ) ) : — - Yooy )
pv1 V1p , implies u2u3 poc1u3 pv1a v1p o On the
= ) Y _ ) )
other hand, Qyly = Vy0,. Consequently Vyl, = Vip oy and

hence a; = p)a; with |p’| € I*. In this case,

) ) R .
10 1 edagl = |9 |Ixzi, = la)as] = |yz|_ implies
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}xz|r <. lyz|. That | |, satisfies (i) is proved in the

same way.

It is left to show (ii). By symmetry, it is enough to

consider | lr only. Write again x = u,0,, y = u,o,.

Without loss of generality, pay, = a, for some p € H
and |p| € T+. Then, x = u,0, and y = u,p0,. In this case,

x -y = (a, - u,pla,. Write u, - u,p = v7 with In| € rt

1
(4.1 (iv) c). Therefore, x - y = via,
i.e.

xoyly = Iyl 2 logi = min Oxly, Iyl

1l r

Theorem 4.3: Suppose R is a right and left Ore ring with

(WDP). Then, the localization RS exists. RS is a chain

ring and the maps | |, resp. [ ll given by Lemma 4.2 can
be extended to RS such that (i) through (iv) are still
satisfied.

Proof: By definition, S is a semigroup. It is left to
show that for all O #+ r € R, s € S, there are r)E R,
s)€ S such that rs’= sr). Since R is a right Ore ring,
there are elements s),r)e R with rs)= sr). Write

s)= uo, r)= vR with u,v € s, o,B € H. Then, ruc = svB,
and the result follows if Ba | € H. Suppose g~ ¢ H,
hence a8_1 € H. Let be r = wy. Consequently,

sv = ruotﬁ_1 = wyua8_1 = qu)uB-1 implies yhé_1= 1 €H

which contradicts Ba” | ¢ H. The proof that S is left
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Ore is analogous, hence Rs = sR.

1 1

Let be as ', bs ' € R, with a = au, b = Bv, a B € f,

-1 -1 -1 -1, -1 -1
u,v € S and aB € H. Then, as = su o Bvs = bs

which shows that Rs is a right chain ring.

By similar arguments RS is a left chain ring too.

1

If as € R, is given then define [as—1ll = ialZ.Since
as_1 = bt_1 iff there are p,g € R with ap = bg, and
sp = tgq. Then ialg = [b\R because one can assume that

p,g € S, i.e.

iply, = ial, = 1],

e € T, without loss of generality.

To prove condition 4.2(i), it suffices to prove:

ja[l <, |b|, implies | s_1a\2 <. |s_1b\Q for a,b € R

.

and s € S. For a = au and b = Bv, one has |a] = IB

Hence ap = B with p € H. s g = s-1up = a)s)_1p =

Y ) o)) =1
¢

o s with Ip)

+ -1 -1
| € T" shows |s a[K <, |s bi,.
Similarly, the proofs of (ii), (iii) and (iv) are
straightforward applications of the Ore condition and
the properties 4.2(i) through (iv) of the ring R. By

symmetry the same holds for | lr

Valuations with the functional properties 4.2(i) and (ii)
have been considered for the first time by Radd [7].

Here in, it was of essential importance that the
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condition |xy| = |x| |y| was replaced be (i), because,
in general, the value set has no algebraic structure at
all. Radd assumed only that the range |R\{0}| is a
linearly ordered set. This lack of structure influenced
e.g. Mathiak [5], to introduce an equivalent concept
restricted on division rings, and to investigate it from
a different point view.

However, in the author opinion, Radd's approach has not
been descussed sufficiently enough. Firstly, Radd does
not distinguish, as it is shown here between right and
left valuations since he considers only division rings,
and in this case, "left properties of elements x,y"

can be viewed as "right properties of their inverses
x_1,y_1" and vice-versa. With respect to this, the

approach here is a more ring-theoretic concept and the

analysis of the relation between left and right
valuations allows to investigate the left-right

symmetry of a ring, an idea which will not be considered

this paper however.

Secondly, the examples in this paper give a large class
of rings in which it is not allowed to calculate
multiplicatively with the valuation, but where the range
still has a sufficient algebraic structure, namely the
value set is the underlying structure of a right (left)
ordered semigroup. Generalizing the idea of Lemma 4.2

and having the approach of Raddé [7] in mind, one defines:
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Definition4.4: If R is a ring, and (QQ, < (Q_, =)

2)’ r r
| 1) of

are linearly ordered sets, then a pair (] ir’

mappings | l, = R~ {0} = 9, and | R~ {0} - @

L L
is a pair of generalized, confugated valuations (Shortly:
a generalized valuation of R) if

(1) lx|, <, ]yZ\ implies |zx|, =, izy\g,

respectively

x| < ly | implies |xz|_ <. |yzl.
(ii) min {lxil, lylg} < [x—y\z and

min {]xlr, Iyl b <, |x~y|, for x % vy,
(iii) |R ~ {o}|, = @, and IR ~ {o}|r =Q

7

L r
(iv) \x[z = IH2 exactly if Ix[r = \1|r, and
(v) lxlg 2, \1i2 iff [x[r 2 |11r.
resp. wi often be calle eft resp. right
3 r ill of b lled 1lef igh

valuation.

Obviously

R = {X\Ixig 2, } u {o}

is a ring, the valuation ring of | By 4.4(v) the

E

definition is symmetrical.

Definition 4.5: A valuation (| ¢) of a ring R

el |

is regular if

(x|, =

g l1[£ implies x is a unit of R.

Remarks 4.6: 1. Let D be a division ring with v a
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valuation (in the sense of Schilling) and T its value
group. Set @, =T = Q_ and | IQ = | |r = v. Then we

have a generalized valuation. The restriction of v to
the valuation ring (in the classical sense) induces a

regular valuation.

2. Every chain ring R has at least one pair of
generalized valuations. Define 2, = {xR[0 # x € R},

= XR resp. |x|_ = Rx.

2 = {Rx|0 # x € R}, and |x| r

r L
Then R is the associated (regular) valuation ring of

this canondicalf valuation on the chain ring R.

3. Rings with the weak decomposition property satisfy
4.4(i) through 4.4(v) because of Lemma 4.2.

Furthermore, one has the following.

Theorem 4.7: (i) Let R be a ring and (] lpr ] l,) a
pair of regular generalized valuations on R. Further,
let R satisfy the weak decomposition property with
lual_ = |o| resp. |gv|, = 8]

for all «,B € H, u,v € S.

Then R is a chain ring.

Proof: Obviously luIr = l1[r implies u an unit. Because

1 1

€ H or Ba

of aB” € H the right (left) ideals are

linearly ordered by inclusion.
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For chain rings as described in 4.7 there is a corres-

pondence between the upper segments and one-sided(!)

ideals. Thereby, a subset 7 # @ of a linearly ordered
set (Q,<) is called an upper segment if o € m, a < B

implies B € .

Lemma 4.8: Let R be a chain ring and (| |_, | ll) its =

r
canonical valuation ring, I # ¢, I ¢ R and [I\{O}il = 7.
Then the following properties are equivalent:

a) I is a right ideal

b) m is an upper segment with respect to 52'
The proof is straightforward and therefore omitted.
However, not much is known about the admissable order
structures of Qk resp. Qr for chain rings, because there
are no general construction methods. Since the examples
in Section 5 are rings with the weak decomposition
property, i.e. Q2 resp. Qr are derived from right (left)

ordered groups, the discussion is restricted to the case

completely prime and "two-sided" for this class only.

Lemma 4.9: If R is a chain ring with (WDP), @ # I ¢ R

+
ot ﬂr < T' , then

and 1I\{O]l2 =Ty, II\{O}lr = m_ where
the following are equivalent:

a) I is a twosided ideal

by@) rm, ==

(ii) T, resp. W _ are upper segments in respect to SQ

resp. Sr
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Furthermore, the following equivalence holds:

a) I is a completely prime ideal.
b) (1) Mg = Mp =1
(ii) T, resp. m_ are upper segments in respect to
52 resp. Sr.
+

(iii) T ~ 7 is a subsemigroup.
Proof: Straightforward.

Problem: An ideal P is completely prime if for elements
X,y € R, xy € P implies x € P or y € P, An ideal P is

cailed prime if for left (right) ideals X and Y

XY ¢« P implies X €« P or Y c P.

It remains an open question to characterize the non-
completely prime ideals of a ring with the decomposition
property using the value semigroup. Also, it is left
unanswered if chain rings can be obtained with that type
of prime ideals by the construction of Section 3.
However, a related problem of Skornyakov [9, page 142]

for a semigroup T+ is apparently still unsolved.

5. Examples

Example 1: (This has already been settled by the

construction of Rohlfing [8] in his dissertation:
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Let R be left Ore ring and © a linearly ordered
commutative group {(semigroup) of operators. Then the skew
group (semigroup) ring R[] is left Ore too). Let T be
an archimedean right ordered group. Conrad [1] showed
that T is order-isomorphic to a subgroup of the real
numbers. In particular, T is commutative, and therefore,
if one considers a decomposition as in Lemma 1.1, a = B.
Consequently, if R is a right Ore ring then | 1% = l lr
in R[F+]S. Since every < ,-upper segment is a < ,-upper
segment, R[F+]s is a two-sided valuation ring of rank 1

in the sense of Schilling.

Example 2: Ou Z x Z define an addition by
- -1)P1

(a1,a2) + (b1,b2) = (a1+b1,a2 (-1) +b2).

According to [1, Example 1] an element (0,0) #* (a1,a2)

is positive if a, > 0 or a; = O and a, > O. Then

+

I = {a1,a2) € Zx 2 | (a,,a,) 2 (0,0)}

is a generalized positive cone. The following example

illustrates the left resp. right order defined by

r* an 1.

Right ornden:
(0,0) ¢ (0,1) <...< (O,n) <,..< (1,10) < (1,0) < (1,-10)<...

< (2,-10) < (2,0) < (2,10) < ... < (3,10) < (3,0) < (3,-10)<...

The Le4t orden is just the usual lexicographic order.

R . + . .
The chain ring R [T ]s is obtained by Theorem 3.4
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and 3.6 be localizing the Ore ring R[T]. R[F+]s has
the following prime ideals:
J, {0} and

P. = {r € R[I‘+]S | There is a € % with 1r]Q > (1,11

1
U {o}

In the same way,
p, = {r € R[I"]g [There is a € Z with Irl, > (1,2} v {0}
are twosided ideals exactly the sections [Pi’Pi+1]

with i even (set PO = J) are twosided. Observe that

is not possible to define a twosided order on T.

Example 3: Suppose, (K,<) is an ordered field and
r=1{x->ax+b | a, b € K, a > 0},

the group of affine-linear functions. I' is ordered by

the usual lexicographic order. It is well-known that

it is possible to obtain valuation rings of rank 2 by

Neumann's construction of generalized power-series.

Since T is the semi-direct product of (K,+) with

(K+ ~ {0},-), the construction of Section 3 also leads

to semigroup rings of rank 2.

Example 4: Dubrovin [3] has defined ageneralized positive
cone on this group in the case K = Q. For reasons of a
better understanding, his definition is discussed
geometrically here.

+ _ 1 1
T —{fEF[f(E)ZE}
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where € is a fixed, positive, irrational number. The
graphes of the elements in I are the straight lines
which intersect the line x = % in exactly one point.
On the other hand, through every point of x = %, there
is at most one line in T.

If f1° f2 is defined by f1(f2), then the points of
intersection define the right order on T by using the
natural order on the line x = %. Simiarly, the left
order is found in the same way on y = %. With this, it

is clear that R[l"+]S is a nearly-simple chain ring.

Observe that example 3 (with K = Q) and example 4
describe subrings of the same quotient ring. Even more

chain rings can be found in the same division ring:

Example 5: T as described in Example 3 can be considered
as the group of order-preserving permutations of Q.
There is a standard procedure to define right resp.

left orders on T.

Fix a wellorder

s1-4 524 ceeen for Sy S, € Q
of Q. If £ € T, then L(f) denotes the first element in
this wellorder for which f(L(f)) # L(f). £ is positive,

if £(L(f)) > L(f). In our case, however, it suffices to

distinguish two points Sq1 S, € Q.
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Remark: The fact that R[F+]S is a chain ring if R is
Ore does not depend on the chosen generalized positive
cone F+ but is answered by the algebraic structure of T.
However, the ideal structure of that chain ring, i.e.
under which condition the ring is nearly simple heavily
depends on P+, for instance an illustration can be

found in Corollary 3.7 of this paper.

References

1. P. Conrad, Right-ordered groups, Michigan Math.

J. 6 (1959), 267 - 275.

2. J. Dauns, Generalized skew polynomial rings,

Trans Amer. Math. Soc. 271 (1982), 575 - 586.

3. N. I. Dubrovin, Chain domains, Moscow Univ. Math.

Bull. Ser. I. 35 (1980), 56 - 60.

4, L. Fuchs,Teilweise geordnete algebraische Struk-

turen, Vandenhoeck & Ruprecht, Gdttingen 1965.

5. K. Mathiak, Bewertungen nicht kommutativer Korper,

J. Algebra 48 (1977) 217 - 235.

6. B. H. Neumann, On ordered division rings, Trans.

Amer. Math. Soc. 66 (1949), 202 - 252.

7. F. Radd, Non-injective collineations on some sets

in Desarguesian projective planes and extension of




2272

ALBRECHT AND TORNER
non-commutative valuations,Aequationes Math. 4
(1970), 307 - 321.

U. Rohlfing, Wertegruppen nichtinvarianter Bewer-

tungen, Braunschweig (Diss.), 1981,
L. A. Skornyakov, Left valuation semigroups,

Sibirian Math. J. 1, (1970), 168 - 182.

Received: June 1983
Revised: February 1984




