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Our investigation of prime ideals in right chain rings
has two different roots. During a classification of
Hjelmslev planes according to their ideal type [9] the
third author came across the following at that time
hypothetical case: a Hjelmslev ring with just two
proper ideals, namely the Jacobson radical J and (0), and
J2 = J in contrast to the case of the well known uni-
form planes. Also the question about the existence of

a special Hjelmslev ring with few two-sided ideals was

left open in a module classification by Osofsky [7].
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Essential in both situations was the question whether
in chain rings there exist prime ideals which are not
completely prime. For the internal understanding of
chain rings this question is crucial as the structure
of the lattice of prime ideals is closely related to

the invariance properties of the ring.

Recently Dubrovin constructed examples of the type
above in two papers [4,5] which became the starting

point for [1] and this article.

The first section contains some useful preliminary
results and demonstrates typical arguments for chain
rings. In the following section we obtain criteria to
decide whether certain ideals are completely prime.
Moreover, it is shown that in chain rings finitely
generated non-zero prime ideals are maximal, either as
completely prime ideals or as not completely prime prime
ideals. Section 3 is devoted to the analysis of the
segment between two prime ideals. It turns out that a
prime ideal which is not completely prime is always

closely connected to a completely prime ideal.

Also, the existence of a not completely prime prime
ideal implies special properties of the lattice of

right ideals above it. In section 4 we sketch the
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arithmetic of not completely prime prime ideals, and
in section 5 we describe the segment between a not
completely prime prime ideal and the next completely
prime ideal (or(0)) below it for chain rings. The
paper ends with a section in which we construct an
example of a not finitely generated not completely

prime prime ideal, using a result of Dubrovin {5].

1. Preliminaries

All rings R are not necessarily commutative and
have a unit 1 € R. We denote by J(R) = J the Jacobson

radical; U(R) = U stands for the group of units.

DEFINITION 1.1: A Local ning R is called nearly

Aimple 4§ I and (O) are the only twosided Lideals

04 R.

DEFINITION 1.2: A night chain ring R is a ning with

aR c bR on bR c aR for any fwo elfements a,b in R. 1§
also Ra c Rb on Rb c Ra holds gor atl a,b € R, R 44
called a chain ning. A night chain ning R is a rnight
HieLmslev ning (sometimes affine Hjelmslev ning) 4Lf
each element in J {8 a twosdided zero divison.
Anafogously, we speak of a Hiefmalev ring (someifimes

projective Hifelmslev ning).
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The following results will be used repeatedly

LEMMA 1.3: Let R be a night chain ning, a € R, r € J.
Then there exist elements r, €U, r, €J with

= = = 1 L]
r =r,r, r,r, and r,a ar, for some r,' € R.

PROOF: If ra = aré' we are done. Otherwise ras = a for
some s in J and ra(l1+s) = (1+r)a. But r,s in J implies
that (1+r)”" and (1+s)” ! exist and (1+r) 'ra = a(1+s) .

The lemma follows with r, = 1+4r, r, = (1+r)_1r.

COROLLARY 1.4: lLet R be a night chain ning. Fon x,y

with Ux  yR we have Rx < yR.

LEMMA 1.5: let I be a right ideal in a right chain ning R,
Then I, =vut 48 the minimal twosided Lideal containing
Iand I, =0 ul 4is the maximal twosided ideal contained
in I where u nuns through U.

PROOF: By Lemma 1.3 we have I1 = RI. This is clearly

the minimal twosided ideal over I. Any twosided ideal
contained in I is contained in ul for every u € U.

That I., is twosided follows from Lemma 1.3.

2
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2. Prime ideals in right chain rings

DEFINITION 2.1: Let R be a aing and P a ndight ideal.

(4} P i4 called completely prime (c.p. gfor shont) 4if
and only L§ xy € P i{mplies x € P on y € P.
({4} P 48 called prime L4 and only i§ xRy S P implies

X €P oLy € P,

In [8] it was proved that x> € P implies x € P
is necessary and sufficient for a prime ideal P to
be completely prime. For right chain rings we even

have the following:

LEMMA 2.2: Let R be a ndght chain ning and P a twosided
ideal. Then we have:
P is a completely prime ideal if and only if x° € P

implies x € P.

PROOF: If x,y are not in P and xy is in P we have either
X = ys or y = xs for some s in R. In the first case

x2 = xys is in P and hence x in P. In the second case

we have y2 = yxs in P if yx is also in P and y in P

follows. This last assummption is always satisfied

since (yx)2 is in P.

With the following result we have a method at hand

to get completely prime ideals in right chain rings.
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THEOREM 2.3: let R be a night chain ning.
(£) Nonzeno idempotent ideals are completely prime.
{i4) 1§ I 48 an ideal which is not nilpotent then
% ® i« completely prime ideal.
(444) 16 t € R 44 not nifpotent, then P = 0 t"R i4 a
prime night ideal. Moreover,if P is a two-sided

ideal, then P is completely prime.

12. Suppose a ¢ I but a e 1.

12 c al < a2R < I. Hence

PROOF: (i) Let (0) # I

Then I € aR and thus I
I = aZR. But nonzero idempotent ideals are never
finitely generated as right ideals. This contradiction
shows that I is c.p.

(ii) set P = n 1. 1f t ¢ P, then there exists n € W
with 1% < tR. Suppose t2 € P then we obtain

1 cer® ct®rRep c 1 c 1P, Hence p = 12 = 1P

is idempotent and thus by (i) c.p.as I is not nilpotent.
(iii) For the first assertion it suffices to show that
XRx € P implies x € P. Suppose not, then t"R < xR for
some n, hence £2PR < t"xR < xRxR < P. But g2n ¢ P as

t is not nilpotent, contradiction. Now assume that P

is atwosided ideal. Let x € R with x> € P. If x ¢ P

then t™ = xa for some n, where a ¢ xR because t" ¢ P.

ar for some r € J~\P. Now for some m we have

t™ = rs with s € R and thus tn+m = xars = x2s [

Hence x

contradiction.
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REMARK 2.4: It 44 easy to prove the following:
(L) 1§ I is an Lideal of R, then there is no prime
ideal P with n I ¢ P c I.
n 3 *

({4) 14 t € R then there s no completely prime Lideal

P with n t"R ¢ P < tR.
n + F

REMARK 2.5: The example in [4] (see afso section &)
shows that 0 t°R 4is in general not a c.p. right Ldeal
n

jon t € R not nilpotent.

3. The ideal lattice between two neighbour prime ideals

Let R be a right chain ring and P ® Q neighbour prime
ideals, that means there are no further prime ideals
different from P, Q and lying between P, Q. If there
exists a twosided ideal I with P o I o Q we get a
chain of twosided ideals

2 n

PoIoI" 2 ... oI o2 .,..210 °

= Q, hence Q is

completely prime!

Even more is true:
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PROPOSITION 3.1: let R be a night chain ring, P = p?

a completely prime ideal. Then

{{} For any 4Ldeal I g P which 45 not prime, P/I 4is not
simple.

(L) 1§ P/Q is noi simple, then we have: for any

X € PNQ Zhene exdists an ideal I with xR c I ¢ P.

PROOF: (i) Suppose I ¢ P is a twosided ideal with P/I
simple. Now let X, Y be ideals of R with XY < I. If

X i I and Y $ I, then we must have P € X and P c Y as
P/I is simple. Hence P = p? € XY ¢ I. Contradiction.
Thus X € I or Y € I. But this shows that I is a prime
ideal.

(ii) Suppose not, that is, for any ideal X with

Q g X ¢ P we have X $ XxR. Set I = U X < xR < P
X4R, XSxR

As R is a right chain ring, I is an ideal of R and
Q ¢ I as P/Q is not simple. Now by (i), P/I is not
simple, hence there exists an ideal I' with I = I’ < P.
Moreover, by our assumption I' < xR. But then, by
definition of I, I' € I. Contradiction. Thus there

must be an ideal I with xR c I ¢ P.

COROLLARY 3.2: Let Rbe a night chain ning, P, Q

neighboun paime ideals and P/Q not simple. Then foxr

any x € P~Q we have n x"R = Q.
n
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PROOF: If P # P2, then for any x € P~Q we have

n qu cnp? = Q where the last equation follows from
n - n

the fact that n P® is the minimal prime ideal below P.
n

Moreover, Q = g P" is a completely prime ideal by
Theorem 2.3. Therefore Q c 2 an, hence Q = Q an.
Thus we can now assume P = P2. Let x € P~Q. By
Proposition 3.1 there exists an ideal I with

XRc I cP. Hence N xR e n 1™ and n 1" = Q, as
* n ~n n

n In is the minimal prime ideal below I. Again, Q is
n
a completely prime ideal and thus we also have
Q < n x"R.
n

Now we turn our attention to the case where P/Q is
simple. Note that there are chain rings R constructed
by Mathiak [6] and Dubrovin [4] with P = J and Q = (0)

completely prime, hence nearly simple.

PROPOSITION 3.3: Let R be a ndight chain ning, A < B

{deals of R with B/A simple. Let x € BSA with x2 € A
and xR # B. Then thenre exists a unit u with

A ¢ xR e n (ux)nR,in parnticular also A g n (XU)nR.
—n n

PROOF: Let x € BNA, u € U. If ux € xR, then ux2 € xR.
If x = uxw for some w € R, we consider the following

two cases:
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H

(1) x = wq. Then ux2 = uxwq = xXq € xR.
(ii) w = xg. Then x = uxw = ux2q = ux(uxzq)q =
(ux)zqu = (ux)"xq" for all n € N. Thus

x € n (ux)"r.
n

Hence in this case A XR € N (ux)nR, and as A is a
-~ n

*
not occur we get ux2 € xR for any u € U and thus

[ =4
¥

twosided ideal also A ¢ N (xu)nR. But if this case does
n

Rx2R < xR. By assumption x? € A and xR # B, hence
A < RxZR < xR < B contradicting the fact that B/A is

simple.

COROLLARY 3.4: Llet R be a night chain ning, P,Q nedighbounr
prime {ideals with P/Q simple. Then for any x € P~NQ thexe
exist undits u,v € U with Q § XR © 2 (uxv)™R and

Qg R (xvu)"R. 14 Q 48 completely phime we can choose

v =1.

PROOF: First of all, note that P2 = P, since otherwise

P/Q is not simple. This implies that xR < P for any
x € P. If Q is c.p., then clearly x> ¢ Q for any
x € PNQ. If Q is prime but not c.p., then for any
X € P~Q there exists a unit v with (xv)? ¢ 0, since
otherwise XRx ¢ Q, contradicting the fact that Q is

prime. Now apply Proposition 3.3 to x or xv, respectively.

See Example 6.5 where this "effect" is "visualized".
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The case P/Q simple is the normal situation if Q is

prime, but not completely prime.

THEOREM 3.5: Let R be a ndght chain ring, Q a prime
ideal which 48 not completely prime and P the inten-
section of all completely prime ideals containing Q.
Then P = P® and there are no twosided ideals between
P and Q diffenent from those two ideals., Moreoven,
Q # (0) implies Q2 * O and Q i nilpotent on n Q" is

completely prime.

PROOF: Let I be a twosided ideal with Q g I cP. As
Q is prime, Q < 1 for all n, hence Q c 2 In. But

2 i” is a c.p. ideal by Theorem 2.3, hence
P=21“c125151’. This implies I = P and P = P2,

The last assertion follows from Theorem 2.3.

We notice that non-completely prime prime ideals are

always pairing with a completely prime ideal.

The first example of a not completely prime prime
ideal in a chain ring was given by Dubrovin [5] (see

section 6).

LEMMA 3.6: Let R be a right chain ning, P > Q nedighbour
prime ideals and Q noi completely prime. Furthen Let

X € PNQ be not Q-nilpotent. Then Q g 2 «"R.
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PROOF: As x is not Q-nilpotent, Q € n an. IfQ=n an,
— ~n n
then Theorem 2.3 (iii) would imply Q completely prime,

contradicting our assumption on Q.
It is natural to ask the following question:

PROBLEM: Let P/Q be simple and Q completely prime.
Does there always exist an element x € P~Q with

n x"rR = @2
n

By Corollary 3.4 elements which are not Q-nilpotent
are "everywhere" between P and Q; the same is true for

Q-nilpotent elements.

PROPOSITION 3.7: Let R be a night chain ning, P o Q

neighbour prime Lideals and Q not completely prime.

(4} For each x € P~Q exists at Least one unit v with
(xv)? € 0.

({{) Let x € P~Q be Q-nilpotent. 1§ Q L& nilpotent,
then 2 xPR = {0}. 1§ Q is not nilpotent, then

n x"R = n Q" {4 a completely prime ideal.
n n

PROOF: (i) Let x be in P~NQ and Q = 0 uxR, where u runs
through U, follows from Lemma 1.5. If xUx is contained
in PNQ we can conclude that Q is completely prime:

Let y be not in Q. Then there exists s € J, u € U with

¥S = ux.
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Let s, € U with §48Y = sy' (Lemma 1.3). Using Sy €U,

1
ux € P~Q and our assumption we have uxs, ux = yss,ys =
ys,sys = yzs's in P~Q and y2 is not in Q. Lemma 2.2
shows that Q is completely prime. The contradiction
shows that our assumption xUx in P~Q for x € P~\Q is
wrong and proves statement (i).

(11) If x is Q-nilpotent then 0 x"R 0 Q". For
nilpotent Q the assertion is clear. If Q is not
nilpotent then 2 Qn is a completely prime ideal. Now
2 x"R g 2 0" would imply xR c g Qn for some m, hence
- as 2 Qn is completely prime - x € 2 Qn c Q.

Contradiction. Thus n x"R = g Qn.
n

4. Arithmetic of not completely prime prime ideals

In the following, Q will always denote a prime ideal
which is not c.p., and P the minimal c.p. ideal

containing Q.

PROPOSITION 4.1: Let R be a night chain ning. Then we

have:
{£) Let s ¢ P.Then ts € Q implies t € Q.

(i4) PQ < QP.

PROOF: (i) As s € P, P c sR. Thus tP c tsR c Q.
Now Q is prime and P ¢ Q, hence t € Q.
(ii) set I = {x € P|xQ < QP}. As Q is a twosided ideal,

so is I.
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Obviously, Q € I < P. As P~Q is simple (by Theoxem 3.5)
we must have I = Q or I = P. Using Proposition 3.7 we

2

get x € P~NQ with x“ € Q. Now let z € Q. As R is a right

chain ring, z = xa for some a € R. By (i) a € P, hence
Xz = x2a € QP. Thus I = P.

COROLLARY 4.2: Let R be a chain ring. Then we have:
{{) Let s € P and st € Q, then t € Q.

(i4) PQ = QP.

PROBLEM: 1§ R 44 a chain ning, do we afways have

PQ + Q7

It seems that only under further conditions a
stronger result (see Proposition 4.5) can be obtained

for right chain rings.

First a general lemma:

LEMMA 4.3: let Q be a nonzero Ldeal of a Local ning R

with Q = aR = Rb. Then we also have Q = Ra = bR.

PROOF: There exist r,s € R with a = rb, b = as.

Hence a = ras = ar's for some r' € R, as ra € Q = aR.
If r's € J(R), then we must have a = 0, contradiction.
Hence r' s € U and so s € U. Similarly, r € U. So

aR = Rb = Rrb = Ra and bR = asR = aR = Rb.
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PROPOSITION 4.4: Let R be a night chain ning which is

a domain and Q finitely genernated as Left and rnight

ideal. Then st € Q, s € P implies t € Q.

PROOF: By Lemma 4.4 there exists g € R with Q = qR = Rq.
As P is completely prime, st € Q ¢ P implies t € P. By
3.7 we can assume that t2 € Q. There exists r € R such

that st = rq, because st € Q = Rq. Now suppose t ¢ Q.

Then g = ta for some a € P and gqa = bq for some b € R.

Now sq sta = rqa = rbg and as R is a domain this
implies s = rb, so b ¢ P. Hence, st = rbt = rq, so

q = bt. Thus q2 = btta = bcga for some ¢ € R, as t2 € Q,
and we get q2 = bcbg, hence g = bcb. Since b ¢ P, by

4.1 (i) we obtain bc € Q. So bc = qd for some d € R.
Therefore g = gqdb and thus 1 = db. But now t = dbt =

dg € Q. Contradiction.

In chain rings prime ideals are "seldom" finitely

generated:

THEOREM 4.5: Let R be a chain ning, P a prime ideal o4
R. 1§ P 448 finditely generated as night ideal, we have

one of the following sdituations:

{<) P (0)

{(i<) P

J and P = Ra = aR for some a € R
{iLL) P 4s the maximal prnime ideal below J, P is not

completely prime and P = Ra = aR fox some a € R.
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PROOF: Assume O #+ P # J and P = aR. Let x € J~P. Then
there exists r € J with a = rx. If P is c.p. then r = as
for some s, hence a = asx and sx € J implies a = O,
contradiction. Thus P is not completely prime. Now let

Q be the minimal prime ideal above P; this is c.p. by
Theorem 3.5. Suppose Q # J. Let x € J~Q. Then a = rx

for some r € R. By Proposition 4.1(i), r € P, say r = as.
But now a = asx and sx € J implies a = O - contradiction.
Thus Q@ = J. It remains to show P = Ra if P # 0. Clearly,

sar for

Ra € aR. If ar € Ra for some r € R, then a
some s € J. For P = J s = at for some t € R and hence
a = atar. As tar € J this implies a = 0. Contradiction.
If P ¢« J, the above and Proposition 4.1(ii) gives

sa € aJ, say sa = at with t € J. Now a = atr with tr € J

again implies a 0. Contradiction.

REMARKS 4.6: (a) This theorem is not thue for right
chain nings [1].

(b) In Section 6 we shall discuss an example for
situation {iiL) given by Dubrovin [51].

{¢c) The proof above shows: L{§ J = aR in a Ledt chain

ning, then afso J = Ra.
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5. Investigation of Q/n Qn
n

It is plausible that the fact that there are no
ideals between a not completely prime prime ideal Q
and the minimal completely prime ideal P containing
Q has consequences for other parts of the ideal lattice,
in particular for the following segment. As the
situation for chain rings is much clearer we restrict

ourselves to this class of rings. First an observation:

LEMMA 5.1: let R be a night chain ning, Q prime but not
completely prime, P the minimal completely prime Lideal
overn Q.
({) For any a € Q there are x,y € P~Q with

aR c xyR < Q.
(ii) 14 x, y ane in P~Q with xy € Q, then xy € Q~0% &

0% + (0).

PROOF: (i) By Proposition 3.7 there exists x € P~NQ

with x°

€ Q. Now if a € Q then a = xy for some y € P
by 4.1. If y ¢ Q we are done. So we can assume y € Q.
But then y = xs for some s € J and we obtain

aR = xyR = xzsR < x2R with x € P~Q.

(ii) Suppose xy = ab with a,b € Q. Then a = xr for
some r € R, and xy = xrb. Now y - rb § Q as y ¢ Q but

b € Q. Hence 02 c xQ € x(y-rb)Q = (0). Contradiction.
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LEMMA 5.2: let R be a night chain ning, I a non-zero
Ldeal. Then the following anre equivalent:
(L) I 4is not ginitely genenrated as night ideal.

({4} I = 1J

PROOF: If I is finitely generated as right ideal, say

I = gR, then obviously q ¢ qJ = IJ. So (ii) implies (i).If
I is not finitely generated as right ideal, take a € I.
Then there exists b € I with aR < bR, hence a = bs with

s € J. Thus a € 1J.

PROPOSITION 5.3: Let R be a chadin ning, Q a not

completely prime prnime ideal with J the minimaf

completely prime ideal containing Q . 14 I is a twosided

n-1 n-1

ideat with Q" ¢ I < @ on (0) €I = Q with maximat

n, then one of the folLowing holds:

<) 1=0""

n

{£4) 1 SR with Js € sJ = Q or Js = sJ = (0).

PROOF: We can assume that Q" = (0). Suppose I % o™ g,

Then there exists a € Q" 'J~I with aJ ® I, since if

aJ < I for all a € Qn_1J\I we would get I E(Qn-1J)J =

Qn_1J - contradiction. Now the right annihilator
I¥ of I is a twosided ideal with Qc ol c J. By

Theorem 3.5 we get Ir =Q or ¥ = 3J.
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CASE 1: I¥ = Q. Let b € Q® 1g~I. as I € Rb € Q""" we
have 0 ¢ (@ )¥ < (Rb)T < 1¥ = @, hence @ = (Rb)T = I¥.

Now let x € J~Q. By 3.7 there exists u € U with (xu)2 € Q.
If ax § I, then also axu € I and by the above

Q= (Raxu)r. Thus axuxu = O since (xu)2 € Q= (Ra)r,

but xu € Q. Contradiction. Hence ax € I for any x € J~Q
and so a¥ c I g aR which implies I = aJ, contradicting

the choice of a.

CASE 2: IF = J. Suppose I is not finitely generated as

right ideal. Let O # r € I, then there exists s € I with
rR 3 sR, hence r = st with t € J and thus r = O,
contradiction. Therefore I is finitely generated as
right ideal, say I = sR, and, of course, sJ = (0). In
particular, this implies that for u € U we have us = sv
with a unit v. Let x € J~Q. Then there exists a unit

w € U with (xw)2 € Q. If xs = sy with y € U, then

xwxws € sU, contradicting the fact that Qs = (0). Thus

Js < sJ.

REMARK: We have used the fact that R {4 a Left chain
ning only to get Ic Rac Q™. 1t is possible to
rewnite the proof s0 as to use this fact at anothen

point but we could not get ndid of this assumption.
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COROLLARY 5.4: 14 Q is {§initely generated as right
ideal, then any ideat n R ¢ I CSQ4is of the form

i

Q" on QiJ.

PROOF: If Q is finitely generated as right ideal, then
so is every Ql and hence Q' #+ 0'J. But by Proposition
5.3 the existence of an ideal which is not of the form

2

" or QnJ implies Qk =gJ = sJ = QkJ for some k,

Q

contradiction.

If we assume that Q is finitely generated as left ideal

we can get a more general result even for a right chain ring:

PROPOSITION 5.5: Let R be a ndight chain ring, Q a prime

ideal which is not completely prime and P the minimal
completely prime ideal containing Q. 1§ Q is finditely

generated as Left ideal then there is no twosdided Lideal

n-1

I with Q" ¢ 1 ¢ Q" 'P for any n € I .
§1%

PROOF: Suppose I is an ideal with Qn < I 3 Qn-1P. let

L n-1

{xeP|Q" 'x € 1}. Then L is an ideal of R and

Qc L cP. By Theorem 3.5 L =Qor L =P, As I < Qn_1P

we obtain L = Q. As Q is finitely generated as left

ideal, Q = Rq for some g € R. Now qn_1P 2 I since

otherwise Q" 'p = Rq""'P c I. Let z € I~Q". Then

z = " 'r with r € P~Q. Hence Q" = an—1r =Rz ¢ I,

and by definition of L, r € L. = Q. Contradiction.
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6. Examples

In {1] the concept of rings with weak decomposition
property was introduced which was in a modified form
already in [5]. Before we will sketch it for the special
case of chain rings we state some definitions. Let T be
a group. A multiplicative semigroup F+ is called a
generalized positive cone in T', if a € F\F+ implies

o Ve F+, and ¥ n (I‘+)"1 = {1}. Then a left order is

defined by setting o £, B (o S. B, respectively) if

L
“Tert, respectively). With this definition

r
o T8 et (ga
we get:

o Sz B implies yo Sl YyB for all y €T
o = B implies ay Sr By for all y € T'.

Then I' is also said to be a left - (respectively, right -)

ordered group (see Conrad [31]).
The following definitions are recalled from [5].

DEFINITION 6.1: Let T be a group with generalized positive

cone TT. A ning R 44 said to be associated with (r,r+), i4
thene is a monomonphism u of ¥ into the multiplicative
monoid of the ning R, such that for any r € R~{0} thenre
exdist agr @y ert with rR = u(a1)R and Rr = Ru(az) and

such that w(r*~{1)c J(R).
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This is Dubrovins's definition (note that in [5] the
last condition is inadvertently omitted) whereas the
weak decomposition property defined in [1] is more

general.

Before we shall describe the ideal structure of R

by means of semigroups we require some notations.

DEFINITION 6.2: Let T be a group with genernalized

positive cone rt. A subset @ [ rt is a night (twosided)
ideal 0f T if for all o € Q, B € I'": aB € 0 (aB,Ba € Q).
An ideal @ of Tt is catled prime if for any ideaks

o, ofTF, O v c 2 implies § € Rory < N.

An ideal Q of rt s completely prime (c.p.) 4§ for any
a,B ETT 0B € 0 implies o € Q on B € Q.

PROPOSITION 6.3: [5] Let I, T', R,.u be as in Definition

6.1, For any night Lideal Q in rt define

u(R) ={r € Rl[r=u(g)s for some g € 2, s € R} = u(N)R.
Then U 44 a bifection from the set of right ideals of

r¥t into the set 0§ non-zero night ideals of R, which
presenves inclusion., Moreover, 4§ u(Q) {4 an ideal of R,

’UmnTziAunidmw*oﬁrt.f - - - - - - - - _

PROPOSITION 6.4: Let the notation be as Ain Proposition

6.3.
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(4) 16 2 is a prime ideal of T, then f(R) is a
prime Ldeaf of R.

(ii) 14 9 is a c.p. ideal of T' and D(Q) is a two-
-sdided ideal of R, then U(Q) 44 a c.p. Lideal o4
R. Conveasely, Lif n(Q) is a c.p. ideal of R, then
Q48 a c.p. Lddeal of rt.

({ii) 0 45 a §initely genenated ideal of IV if and only

Ai§ u(R) 44 a finitely genenated ideal of R.
PROOF: Straightforward.

EXAMPLE 6.5: In [4] Dubrovin constructs a ring R
associated with a night-ordened group such that R 4is
nearly-simple with no zeno-divisons. Now we want £to
descrdibe the "hedighit" of the internsection rnight ideals

n xR, fon the sake of simplicity we nestrnict ournselves
to elements x = u(a). Howeven, o can be interpreted as

an afgine Linear function on ¢ with t - at + b

(see [11). To simplify our notation we identify x with a.
Then o € T if ale) 2 € for a chosen irnational numben €.
A shont computation shows

= (- at+ @T a2+ L+ Db

CASE 1: 0 < a < 1 and ae + b > e, Then 1im (t - at + b)®

N~ o

_ 1
= (t -’.l_—ab)
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Thus {forn eveny propern nright ideal yR we can §ind
suitable a,b such that yR = n x"R, where
n

X = u{(t » at + b).

CASE 2: 1 < a and a(e) = ae + b > €. Set 6§ = a(e) - €.

n-1 n-2
a

By induction, al(e) - e = (a + + ... + 1)§,

hence lim o (e) = w. This means that forn x = u(a)
n- o
we have n x"R = (0).
n

It is obvicus that elements of the above types are

on every "level" in the lattice of ideals.

In the following we will start from a construction
given by Dubrovin (5], and using this we will obtain a
chain ring which has a prime ideal which is not
completely prime and not finitely generated. Let
L = <yix;,i € Iﬂ]xiyzxi = y,xi+12yxi+1 = x; for all i € N>.
L is a right-ordered group with positive cone Q, which
is the monoid generated by y and all Xy i € N (see [5]).
Set G = LxZ. Then P = {(x,2z)|x €Qorx=1 and z € ]No}
is a positive cone for G, which induces the

lexicographical order on G. For an ideal S of Q, define

s'V = {(g,2) € Plg €S, z € 28}, this is an ideal of P.

LEMMA 6.6: Let S be an dideal of Q.

(£} 8 44 a prime ideal of Q 4§ and only L4 S(1) i8 a

padime ideal of P.
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(ii) S is a c.p. ideal of Q if and onky if s is a

c.p. ddeal of P.

PROOF: Straightforward

PROPOSITION 6.7: Let K be a §ield. Then KG 44 embeddable

into a division ning D, and thenre exists a chain ring R

in D which contains KP and 44 associated with G.

PROOF: KG is embeddable into a division ring, since KL is
embeddable into a division ring and G/L = 2. The second

assertion follows from {5, Theorem 1].

PROPOSITIOH 6.8: There exists a prime Ldeal 4in R which 4is

not c.p. and which 44 not g§initely genenated as night

ideal.

PROOF: Set S = y3Q. This is a prime ideal which is not

c.p. [5]. Hence sth

as y3 € z(L), (y3,0) € 2(G), hence (y2,0) € Z(R).

(1)) (1)

is a prime ideal which is not c.p..

Thus 1 (S = u(s JR is a prime ideal of R which is

not c.p., where p is the monomorphism of P into R

g

according to Proposition 6.7. Moreover, is not

finitely generated as right ideal. To see this, suppose

S(1) = (g,n)P for some (g,n) € P, g # 1. Now

(1)

(y3,n-1) € S . hence there exists (h,m) € P with

(y3,n-1) = {(gh, n+m).
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This implies m < O and y3 = gh with h + 1. Thus
g1 (1))

g€ Y3Q. so {(g,n) € (g,n)P ~ . Therefore, (S

ﬁs not finitely generated as right ideal by Proposition

6.4.

5(5(1)) i8 not J. To see this, note that we have an

inctusion stV g (,2)p g P~{1} o4 twosdided ideals of P‘

‘which induces an inclusion 5(8(1))$ ni(1,2)p) g

p(P~{1}) = J of twosdided ideals of R since (1,2) € Z(R)J

‘chcc by Theorem 3.5 I is not the minimal c.p. ideat
(1)).

‘oven u(s

\ Note, that this fact also implies that ﬁ(s(1)) L8 ‘

|not gdinitely generated as right ideal. N
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