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0. INTRODUCTION

In 1933 Ore [4] defined a noncommutative multiplication for polynomials
in an indeterminate z over a skew field F. Since this multiplication was
supposed to respect the degree function, it was determined by the rule az =
za® + a® for elements a in F with ¢ a monomorphism and J a o-derivation
for F.

If one attempts to define an order-preserving noncommutative
multiplication for power series rings in one indeterminate z over F one
obtains

az =za® + z%a® + 2%a® 4 ... + 2" a0 4 - (M)
and conditions (i) and (ii,) hold:

(i) The d,s are additive mappings from F to F and a# 0 implies
a®#0.

(ii,) (ab)’ =31 ,a%b% for n=0, 1, 2,... Here, 47 is the coefficient
of "' in (3L t*+15,)'t", where Y & t**16, = f(t) is a generating function
for the d,’s with commuting indeterminate .
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Condition (i) follows easily from the fact that (a + b)z = az 4 bz and that
for a#0 the order of az equals 1. Condition (ii,) follows from the
associative law (ab)z = a(bz), see also |2, 5]. This means, in particular, that
d, is a monomorphism and that 8,d, ' is a d,-derivation of F.

We will say that a sequence (8, 9, 5..., O,,...) Of mappings J, from F to F is
admissible if (i) and (ii,) hold for all n. Such a sequence could be finite.

We want to investigate the set of all admissible sequences for a given field
F and we assume from now on that F is commutative. One known
admissible sequence is (id, d, 62, &°,..., 6",...) for an ordinary derivation &
of F. It will be proved that (id, 0, 0,...,0, 6 = d,, 0,0,.., 0, ((k + 1)/2) 6’ =
Oaxs 0500, 0, 0,..., 0, ((2k + 1)(k + 1)/(2 X 3)) 6° = J;,,...) is admissible for a
derivation & of F. This sequence is just a special case of a general type of
sequence discussed in this paper in which the 8; = g,(8) for a derivation & of
F and where the g,(x) are certain polynomials in one variable x with coef-
ficients in K= {a € F;a®=0}. Even though it seems likely that these
sequences are admisssible we were not able to prove this in general. Further,
it is shown that finite admissible sequences do exist which cannot form the
beginning segment of a longer admissible sequence.

Another obvious problem, not dealt with here, is the investigation of
equivalence classes of admissible sequences under the equivalence relation
given by the isomorphism of the corresponding rings F{[z, 8y, 0} sers Opeer]]
with multiplication defined by (M).

1. STRUCTURE OF COMPLETE RIGHT CHAIN RINGS

Let R be a ring with unit element in which aR = bR or bR 2 aR holds for
every pair of elements a, b in R. Such a ring is called a right-chain ring. If
we assume further that R is right noetherian then R is a principal right-ideal
ring and every right ideal is two sided. Let J(R) =zR be the maximal right
ideal of such a ring. We assume that (" (zR)" = (¢ z"R = (0) and that R
is complete with respect to the topology defined by using the z"R as
neighborhoods of 0.

One can ask whether the structure theorems of Cohen |[2] for noetherian
commutative complete local rings can be extended in some way to the above
situation. The first question then would be: when does there exist a skew
field D of representatives of R/zR inR? This is trivially the case if
R/zR = Q or Q¢), the function field in one variable over Q, the field of
rational numbers. If char(R) = char(R/zR) = p a prime, then again a field of
representatives exists if R/zR = GF(p) or GF(p)(t).

Vidal in [7] showed that there exists a right-chain ring R with maximal
right ideal zR and z> =0, R/zR = GF(p)(t,,t,) =K, char(R)= p, and R
does not contain a field of representatives of K. Whereas not much seems to
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be known in this general case, very detailed information is available in the
finite case, where either R is a finite ring or R is a finite dimensional algebra
over a field.

Let us now assume that R contains a field F (a skew field) of represen-
tatives of R/zR. In this case (M) defines the multiplication of R and the
corresponding sequence (dy, 9,,...) is a (possibly finite) admissible sequence
of F. We have in this case R = F[[z, d,, J,,...]] the type of ring described in
the Introduction). It is possible that z"*'=0 and (J,,d,,..., J,) is a finite
sequence.

2. ADMISSIBLE SEQUENCES

We will assume that F is a commutative field and that (g, J,,..., 0,,...) is
an admissible sequence. Before we obtain some results we want to describe
the a7 that appear in the definition of an admissible sequence. It follows that

Z 5; .., With the sum taken over all ordered (i + 1)-tuples
j,, o Jiad of positive integers j, with j, +/j,+---+j,,,=n+1 and
+1=0, for all s. We compute 43 as an example and obtain

i=2, n=4; 4+ 1=5 must be partitioned into 2+ 1=3
summands, taking the order into consideration.

Hence, 5=14+14+3=14+3+4+1=34+14+1=14+24+2=24+14+2=2+
2 + 1. This translates into

A4= 020, + 8,0,0, + 0,02+ 6,02 +8,0,0, + 628,

LemMma 1. Let A =(dy,9,,..,0,), n > 1 be an admissible sequence, and
let B = (33, 0],..,0,_,,0.) be a sequence of additive mappings from F to F
with 6, =6} for i=0,..,n— 1. Then B is an admissible sequence if and only
iff 6 =38! — 3, satisfies

(ab)8 — asbso + aagﬂb&.

We use the notation ‘4% for the 4¥s derived from the sequence B and 4
for those obtained using the d,’s in the sequence 4. We have

’ AR, 87 ANy &1 Y
(ab)‘sn = q'%p% +a Alpéy + .- 4a Anpdn,

It is clear that '4]= A" for i=1,.,n—1 and that 'A7=A7=41"",
Therefore (ab)®+ %= a® ."b‘s"+a‘s"+ b‘s o, This shows that d= (3,’,—5,,
satisfies the above condition. Reversing the argument proves the other half of
the lemma.
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In Lemma 2 we need the assumption that the field F is commutative of
characteristic 0. Further, we use the fact that for J, = 1, the identity, and ¢
an ordinary derivation of F the sequence (1, d, 62, 8°,..., 6",...) is admissible.
This follows from {2, p. 38] or from results proved later in this paper.

LEMMA 2. Assume there exist two derivations 0,, 6, for F with 8, # cd;
Sfor every c in F and i, j=1,2; ie., {0,,8,} is linearly independent over F.
Then A=(1,6,6},8},...07 ' +6,), n—1>2, is an admissible sequence
which cannot be the initial segment of a longer admissible sequence.

Proof. Clearly A is admissible, by Lemma 1. We assume that such a
sequence,

B=(1,7,, 750 Ty_15Tp)s

exists with 7;= 48! for i=1,.,n—2 and 7,_,=46"""+46,. Then (ab)* =
a*b + a%b™ + ... + @25-1b™' + ab™. We have

AV =ToTy Ty To+ Ty Tpo g+ Ty g Ty o F LTy + 0
=21, ,+(n—2)0"""'=26,+né"""!

and

At = (;’)5’,"" for i=2..,n—1.
Since the A7 =(1}) 6" for i=1,..,n for the admissible sequence (1,d,,
63,...,6"), and hence,
(ab)® = a®b + na® b + ... + ( 'I' ) a® bt + -+ ab¥,
we obtain
(ab)™ = (ab)®! + 2a’b®' + na®b® — (a® ~*wb + ab® ™).
Since F is commutative, we have (ab)™ = (ba)*" and this equation leads to
2a%b% + na®b’ = 2b%a + nb®a®
or (n—2)a®b® = (n—2)a®b*, and since n > 3,
a®b® = q%p® foralla, bin F.

If we choose a fixed a, with a$! # 0 in F we obtain b% = cb® for a constant
c=al¥al") " and all b in F—a contradiction.

Remark. The condition n >3 is necessary. Any admissible sequence
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(1,6,) can be continued to a longer admissible sequence; J§; is just an
ordinary derivation of F.

As before let F be a commutative field of characteristic 0, & a derivation
of F, 6+#0, and K = {a € F;a® =0} the subfield of constants under J. It
follows from Lemma 1 that the terms 4,, &,,...,,_, determine &, in an
admissible sequence (1,9, d,, &;,..; J,5...) Up to a derivation of F. We will
write d,= f,(0,,0,5..,0,_,) +7, with 7, an ordinary derivation of F.
Lemma 2 shows that 7, cannot be arbitrary in the case of an infinite
admissible sequence. We want to investigate the case in which 7, equals a,d
for a, in K and for the fixed derivation . This means d,=a,d and J, =
Ju(0yses6,_1) +a,d for n > 2.

We point out that our assumed condition is more restrictive than appears
necessary in the light of Lemma 2. However, the case g, in F, not only in X,
seems to pose additional difficulties. It is now the problem to compute these
functions f,. Using the definition of an admissible sequence one can compute
/, directly for small n. The f,’s turn out to be polynomials g,() —a,d in J,
where the coefficients are determined by the a,’s in a particular way. Here
are the first of these polynomials:

0,=g(0)=a,d;

0, = g,(8) =a’6? + a,d;

8= g,(0)=aid’ + $a,a,6* + a,;

0, = g(8)=ald* + ala,é® + (3a,a, + $a3) 6’ + a,d;

0s = gs(8)=a}d’ + Fa,a}é* + (6aa, + 3a,al) S’

+ T(a,a, + a,a,;) 6% + a,é.

To compute the above listed terms directly is a rather lengthy and tedious
exercise. An induction step is not obvious if at all possible; the appearance
of partitions in the buildup of the A} from the d,;'s is one of the stumbling
blocks.

In any case, one can check directly that the sequence (1, d,,d,, d;,d,, d;)
is an admissible sequence for any choice of the a,’s in K and a given J and F.

3. A CONJECTURE AND SOME SPECIAL CASES

The notation in this section is as in Section 2. We will discuss a
relationship between the polynomials g,(x) which was obtained by studying
examples. We are not able to prove, in general, that the sequence of §, =
g,(0) obtained from those g,(x) is, in fact, an admissible sequence. The
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functions g,(x) are considered as polynomials over the commutative field X
of characteristic 0 and we write g,(x) for the usual first derivative of g, (x).
We consider the following relationship between these polynomials:

g.x)=na, g, ,(x)+(n—1)a,8, ,(x)+(n—-2)a,8, ,(x)
+ o +2a,,8,(x) + a, 86(x), @

with go(x) =1 and g,(0) =0 for n > 0. The derivative '(x) of a polynomial
h(x)=3"",c;x" in K|[x] is the formal derivative A'(x)=Y"" ,i-c;x'" ' If
we form the generating function,

[e 9]

H=H(x y)= Y g,(x)y"*",

A
n=>0

then (I) means that H is a solution of the partial differential equation,

oH o6H
§=5(01y2+02y3+"'+an_|J’"+“'), (1)

with initial condition H(0, y) = y. Here again the formal derivatives with
respect to x or y are used, (see [3]). The previous statement can be checked
easily by comparing the coefficients of y"*' in (II). We have g/(x) on the
left-hand side and na, g, (x)+(n—1)a,g,_,(x)+ --- +a,g,{x) with
go(x) =1 on the right-hand side.
We try to solve (II) and begin by rewriting this equation,

oH oH , .,

= a ) =0.

ax ay (aly + 2y + )
In order to use the theory of linear partial differential equations we now

assume that the coefficients a, are contained in the prime field Q of K. Using

[6, p. 304] we obtain
dx
— =1,
du

dy

E‘—z—(alyz +a,pt + )
dH

=

This leads to [dx+ [dy/(a,y*+a,y’ ++:-)=C,=C,(x,y) a constant
and | dH = H = C, a constant.

If one now considers any function ¢(w, v) in two variables and solves the
equation ¢(C,,C,)=0 for C, = H= H(x, y) one obtains a solution of (II).
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In order to find the function ¢, that leads to the solution with the right initial
condition one has to substitute the condition C,= H(0, y)= yp into the
equation for C,= C,(0, y)=C,(0,C,) which will lead to a relationship
$,(C,, C,)=0. This then is the function ¢ to be used to find H.

We consider a special case,

oH oH ,, . . :
= = W y with HQO, y)=y;, k=1,2,.. (Ir’)

As described above we must solve

dy . 1
dx = _—yT and obtain X — E)—k =C,,

and H=H(x, y)=C,. Any function ¢(x — (1/ky*), H)=0 solved for H
would lead to a solution of (II’). In order to satisfy the initial condition we
consider C,(0, y) = —(1/ky*) and substitute C,= H(0, y)= y for y in this
equation. We obtain C, = —(1/kC%), and ¢,(C,, C,) = C, + (1/kC¥%) is the
correct  functiong. Hence x— (1/ky*)+ (1/kH*)=0 and H=
(¥/W1 — kxy®)is the solution of (I1).

This means that for H= (/W1 —kxp¥)=3F g,(x)y""' we obtain a
sequence (1,8,,d,,..,0,,...) Wwith &,= g,(6), where & is an ordinary
derivation of the field F. We prove next that this sequence is in fact an
admissible sequence for F.

Using the expression just obtained, H = p(1 — kxy*)~ ¥ for the generating
function, we want to compute the corresponding J,’s, the 47’s, and finally
prove that the relationship that defines an admissible sequence holds for (1,
815 g5y Oprer). From 1/(1 —2)2*' =32 (i%e)zi for ¢ any real number
and z < 1, we obtain

(1 _ kxyk)l/k (l _ kxyk){l—k)/k-H 1?0

x j — 1\* .
=Z (k(’ ,l)+ ) xiylk+1

(i+ (- k)/k) ()

i

i=0

with ("("—i‘“ 1)* _TL- (k(j'—j) +1)

We conclude that in this case g,(x) =0 for k}n and

gum (k(i—'l)+1)*x,.

1

k(i—1)+1 .
=_(i)—x © i-k(X) for i>1; go(x)=1.
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To this sequence corresponds the sequence of mappings,
(1,0,..,0,0,,0,..., 0, 634 5005 Oy sen)s (S)

with J;, = (¥~ P*')* §', where ¢ is an ordinary derivation of F.

We will use the generating function H to compute the A7 for this sequence
and show that (S) is an admissible sequence. Therefore we consider (see
Section Q)

H*' = (T]Tk—};cﬁ”_")iH =yt a ___kxyk)(li+(l—k))/k+l
i i (s + (i +s1 —k)/k) (xyk)*
S| (LS EETV PR
That means
=] (AU ™
i=1
and

AT=0 for n—i#0modk.

- Knowing the-J,- and the 47 explicitly it is now possible to check that
(ab)®" = Y"_, a*'b% which proves that (S) is an admissible sequence.

If n # 0 mod k we have §, =0 and 9, + O possible only for i = 0 mod £. In
this case n—i#0mod k and 4} =0. This means the above equation is
correct for n # 0 mod k.

We now prove the equation

nk nk nk nk
(ab)®nx = q2v'p% 4 q?k bo 4 qlrbrk 4 ... 4 glukhSnk,

We write § for J, and using (S) and (T) we obtain as the coefficient of
a® ”b% in the expansion of (ab)’* = (ab)®'(lk+ 1]+ [(n— )k + 1}/n!),
the term (%)([k+ 1][2k+ 1] .- [(n— l)k + 1]/n') and on the right-hand
side we must compute a@d%pdw=gd% " “pé«  and  obtain
(Isk + 1J[(s + Dk+ 1] -+ [{(n— l)k + 1}/(n—s)!) as the coefficient of
a®7bPsk = ([k+ 1}[2k + 1] -+ [(s — 1)k + 1}/s1)a®""’b*. The equality
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n\[k+1]---[(n—Dk+1]
(s) n!
sk + 1][(s+ Dk + 1]+ [(n— 1)k + 1]
B (n—s)!
K+ 12k + 1] - [(s— Dk + 1]
s! ’

proves that (ab)® =Y g4""p% and the admissibility of the sequence (S).
We formulate this result as Theorem 1.

THEOREM 1. Let F be a commutative field of characteristic 0, d a
derivation of F, and k an integer >1. Then (9,) is an admissible sequence for
F, where J,=identity, 6,=0 for j#0modk, and 6, = (1/n)[]},
[k(n—j)+ 1] o~

Remark 1. For k=1 we obtain the known admissible sequence
(1,0, 0% 8°%,...).

Remark 2. If we keep F and ¢ fixed and construct the power series rings
R, over F with multiplication defined with the help of the admissible
sequence as in Theorem 1, then R, =~ R, if and only if k = k’.

If we try the above method to compute other admissible sequences from a
somewhat more complex case of (II) we encounter greater difficulties. Let us
discuss the case,

0H oOH

ekl lall 2 3. II"
=g 1) )

This time we obtain

C1=x_1ny—(1/y)+ln(y~+ l)v
C,=H=1z:

The general solution of (I1”) will then be obtained if one solves ¢(C,, C,) =
Hzyx—Iny—(1/y)+In(y+1)) for z=H=H(x,y), where ¢ is an
arbitrary function in two variables.

To find the solution with the correct initial condition H(0, y) = y we have
C,=H=z=y and C,=—InC,—(1/C,)+In(C,+ 1) for x=0. This
relationship between C, and C, is the one that leads to the solution,

x—=Iny—(1/y)+In(y+1)=—Inz— (1/z) + In(z + 1).

We obtain e~ "*((z + 1)/z) =e*(e™” - (y + 1)/y) as an implicit equation
for the function z(x, y) = H. Computing the corresponding sequence of the
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g.(x), the 8, = g,(5) and the A7 from the powers H'*' of H and finally show
the admissibility does not seem easy even in this special case.

4
In Section 3 we introduced the following conditions:

M &)=Y @—i+tag, (x)u=12.;

i=1
with go(x) =1 and g(x) =0 for j = 1, 2,....
6H oH
() Zo=F @y +ayy’ + o) HO, )= 0;

[ee]

H(x, p)=) g, (x)y"*".
0

These are equivalent descriptions of the function g,(x) with g,(6)=4,. We
conjectured further that such a sequence (1,4,, d,,...) defined in this way
would lead to an admissible sequence. We will now discuss two additional
conditions which are also equivalent to (I) and (II).

The following notation is introduced: a;; (or sometimes a; ;) is the coef-
ficient of x" in g;,;_,(x), i, j > 1. This means g,(x) =Y ;,,_;_,ayx, i, j> 1
and a, ;= a;, where the a; has the meaning as in (I) and (II).

Condition (I) is equivalent to condition (III):

1
N'" (i+n)a, ;a,;
I1+l i+j:_;n+l( ) 1. j%n,i

() a

nit,m =

zm Iall(m +n)an.m+al.2(m +n— l)an.m—l

+ o +a1.m(l +n)an,ll'

To prove that (I) and (IIT) are equivalent one compares the coefficients of x*
in (I) and obtains on the left hand the term (k + 1)a,,,, , and on the
right-hand side the sum @y ay,_+@—1Dana, .+
(w—2)apag 2+ +k+1)a,,_,a,. Therefore, assuming (I), one
obtains
1
= N a, Ju—j+ 1)

Qs r,u—k KL s (@ jar)u—Jj+1)
Withn=kand m=u—kwegetu—k+l=m+landu—j+1=n+i
and (III) follows from the last equation. Reversing the above steps shows
that conversely (III) implies (I).
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The recursion formula (III) can be expressed using matrix notation. Given
the constants a, =a, ;, a, =4a, 4,..., a, = a, ,,..., we form the strictly lower
triangular matrix

A=(cy) with c;=0forig<jand ¢;;=(j+ l)a,_;fori>j
Then

AV)  [£:(x)s 82(X)peees £a(X)seer|”

+

XZA x3A2 ann—l
ZTRNET +"'+T+'“)

= <xE +

X {ay, @ypees @ysee |7
gives the g,(x) as defined in (I) as components of the vector to the left.

We want to show that (III) and (IV) are equivalent, using the definition of
the g,(x) as defined for (I). We compute the individual summands on the
right-hand side of (IV), and obtain (XE) - [a, s Qpseee || = X 5eey X .. |7
the vector consisting of the terms of degree 1 for the g,(x). We use induction
for the other summands. We assume that

A" May, gy o [T =1105.505a,, 5 Gy 50017

with the first n — 1 components equal to 0. Then

A™ay, @y @y | T
0
2, O O
=n!{ 2a, 3a, O (05305 G, 15 Az i)

0 0
a, O 0
—n a, a, 0
’ a; a, a, 0
0
X (05505 (n+ 1) a, s (n+2)a, 5.3 (n+Da, 5]’
n—1
components

=10;05.; 05,4 113 dpir 25 Dusroms] s
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where the first n components equal zero and the (n + m)th component,

d =n! Y  afa,)n+i)

n+l,m P
itj=m+1

This means d,,,, ,=(n + 1)!a,,, , and
A"y, @y Qo] = (0 + 1030505038 115 @ 12517

with the first n components equal to zero and a,,,, ,, as the (n + m)th com-
ponent.

This proves that (III) implies (IV) and reversing the arguments shows that
these conditions are equivalent.
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