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Most of the results presented in this first volume have been obtained during the
last fifteen to twenty years. However, many of the problems that led to the investi-
gation of this particular kind of rings are of much earlier date. New problems arise
as an attempt is made to understand and treat right chain rings systematically.

A right chain ring R is a ring with unit element whose right ideals are linearly
ordered by set inclusion. These rings are obvious generalizations of commutative
valuation domains as well as of division rings.

Such rings appear as coordinate rings of Hjelmslev planes (Klingenberg [54], [55]),
as building blocks for the localizations of non-commutative Dedekind rings (Gwynne/-
Robson [71]) or of FPF-rings (Faith/Page [84]) and as ‘valuation domains’ of ordered
non-commutative division rings (Schroder [86], Morandi/Wadsworth [89]). Domains
with a distributive lattice of right ideals (i.e. Priifer domains in the commutative
case) are characterized by the fact that their localizations at maximal right ideals are
right chain rings (Brungs [76]). Osofsky showed in 1968 that local rings whose cyclic
modules have cyclic injective hulls are right and left chain rings. Roughly speaking
right chain rings are often the ‘atoms’ in structure theorems of noncommutative ring
theory, in particular for right semihereditary rings.

Right and left chain domains are exactly the valuation rings considered by Math-
iak ([77], [86]) or the total rings in Cohn ([89], p. 3). Schilling [50] used the term
valuation ring for total and invariant subrings of a skew field. Such rings occur in the
construction of division rings (Amitsur [72], Cohn [61] or B. Jacob/A.R. Wadsworth
[86] and in many other papers) and in the computation of SK; for skew fields
(Draxl/Kneser [80]). A right chain domain R such that its skew field Q(R) = D
of quotients is finite dimensional over its center K is also a left chain domain, but
not necessarily invariant.

More recently, Dubrovin introduced a generalization of chain rings for which ma-
trix rings over chain rings are the easiest eamples and which have a richer extension
theory than the previously mentioned types of valuation rings (Dubrovin [84], [85];
Brungs/Grater [90}; Wadsworth [89]).

In these notes we will attempt to treat one-sided as well as noninvariant chain
rings.

*This work was partially supported by a grant from Volkswagenstiftung.



This Part 1 deals with the basic definitions and general facts. It is subdivided into
9 chapters. Main topics are right ideals, two-sided ideals, prime ideals, zero-divisors,
annihilators, prime segments, chain conditions, localizations, various degrees of non-
commutativity, chain conditions in right chain rings and overrings of right chain rings.
For example, it is proved in Chapter 1 that the intersection of the powers of any non-
nilpotent ideal is a completely prime ideal in a right chain ring. A rather intriguing
topic is the still open question whether or not prime ideals that are not completely
prime can exist in right chain rings. We call this type of prime ideal ezceptional (see
Chapter 6). We describe conditions necessary for the existence of such ideals and
its implications. In particular, an exceptional prime ideal () is always paired with a
completely prime ideal P as its upper neighbour in the lattice of prime ideals such
that there is no two-sided ideal properly between P and Q).

Fundamental for the understanding of right chain rings is also the knowledge
of the prime segments or equivalently the rank-1-case. Examples show that it is
not possible at this time to treat the most general case. It is therefore necessary
to introduce various conditions, like right invariance (all right ideals are two-sided)
or the condition that there exists another two-sided ideal between any two prime
ideals (then R is called locally archimedean)(see Chapter 7). Right noetherian right
chain rings are right invariant (see Chapter 6) and a chain ring R in a division
ring D is locally archimedean if D is finite dimensional over its center. Finally,
the consequences of various chain conditions on prime ideals in R are investigated
(Chapter 8). Chapter 9 is devoted to the study of overrings of right chain domains
in their quotient fields where we restrict ourselves to the case where R is of rank 1.

Throughout the sections examples are given that also provide an introduction to
construction methods which are discussed in detail in later chapters.

In the following chapters of the next parts we will deal with chain rings in finite
dimensional division algebras and Dubrovin valuation rings; with the structure of
rank-1-discrete valuation rings with ordered fields and the geometric structures over
right chain rings.

There will be a chapter on modules over chain rings and a chapter on completions.

The semigroup of the principal right ideals of a right invariant right chain ring
forms a holoid which is a generalization of the positive cone of an ordered group. We
will prove a structure theorem for a certain class of holoids.

Throughout we will consider examples and construction methods for right chain
rings.
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Part I
Fundamental terminology and
basic results

1 Some properties of right chain rings and first theorems

After introducing the basic definitions and notations we prove some elementary facts about right
ideals, especially the so-called standard right ideals. Although a detailed discussion of prime ideals
in right chain rings will be presented in Chapter 6 we prove here in a first theorem (Theorem 1.15)
that idempotent ideals are completely prime and that the intersection of powers of a non-nilpotent
ideal I'is a completely prime ideal. Of particular interest is the situation in which there exists an
additional two-sided ideal between any two neigbouring prime ideals. Then (), cn 2 Requals @ for
all z € P\Q (Theorem 1.21).

1.1 Terminology and notations

All rings are associative, but in general not commutative. Every ring has a unit
element, denoted by 1, which is inherited by subrings, preserved by homomorphisms,
and acts as the identity operator on modules. Rings may have zero-divisors. Rings
without zero-divisors will be called domains. Furthermore, for a ring R we set R* =

R\{0}.

DEFINITION 1.1 (i) A ring R is called a right (left) chain ring if either aR C
bR or bR C aR (Ra C Rb or Rb C Ra) for any elements a,b € R. If R is both
a right and a left chain ring then R is called a chain ring.

(ii)) A right chain ring R is called a right Hjelmslev ring (sometimes called affine
Hjelmslev ring) if every non-unit in R is a right and left zero-divisor in R. If
in addition R is a chain ring, we speak of a (projective)Hjelmslev ring.

It follows immediately from the definition that right chain rings are local rings
(see Lambek [66], p. 75), that is, R has exactly one mazimal right ideal, the Jacobson
radical of R which is denoted by J(R) = J. Trivially, J(R) is a two-sided ideal
consisting of the non-units of R; the group of units R\J is denoted by U(R) = U.

Rings of this type occur in various circumstances, but often under different names.
In the commutative case the term generalized valuation ring is used for rings which are
not necessarily a domain (see Warfield [69a], [70], Shores [74]). Schilling’s valuation
rings (see [50]) are not necessarily commutative chain domains, however all one-
sided ideals are assumed to be two-sided, in other words, the ring is invariant,i.e.
Ra = aR for all a € R. (Right) Valuation ring is a name used by several authors (see
Posner [63], Beauregard [73], Koehler [76], Jain [78], [84], Goel/Jain [78], Jain/Saleh
[87], Faith [79], van Geel [81], Chacron [85], Mathiak [77], [81], [86] and others),



whereas Dubrovin [78], [84] applies the term valuation ring to a larger class of non-
commutative rings. Gilmer ([72], p. 184) and Froeschl [76] speak of a chained ring,
whereas Clark/Liang [73] and Clark/Drake [73] restrict the word chain ring to the
finite case. However, the term chain ring can also be found in a more general context
(see Skornyakov [64], [66], Brameret [63], Dubrovin [78], [80], [82], [83] and others).
Chain rings in a geometrical context were first considered by Klingenberg [54], [55]
in several papers since 1954. (Right) Hjelmslev rings are used as coordinate rings of
affine as well as projective desarguesian Hjelmslev planes (see a forthcoming part). In
particular, their algebraic structure contains valuable informations for the geometrical
context.

Many examples of right chain rings will be given in the following chapters and
starting in Chapter 3, several construction methods will be discussed in Part 3. A
class of right chain rings will be introduced in Chapter 3 which illustrates various
phenomena that do not occur for chain rings.

The next lemma lists some observations that follow directly from the definition.
First a further notation: Let A O B be right ideals which are neighbours, that is,
A D C D B for a right ideal C implies A = C or B = C, we write A > Bor B < A
for short. If we include the case of equality we set A > B resp. B < A.

LEMMA 1.2 Let R be a right chain ring. Then the following is true:

(i) The lattice of right ideals of R is linearly ordered by inclusion.
(ii) Al finitely generated right ideals are right principal.

(iii) Let R be in addition a domain. Then any two principal left ideals with nonzero-
intersection are comparable.

(iv) Let R be in addition a domain with the property that the intersection of any
two principal left ideals is 5 (0). Then R is a chain domain.

(v) Let A, B be right ideals with A >~ B, then A = aR and B = aJ for some a # 0
in R.

By statement (v) right ideals which are lower neighbours are of type aJ for some
a € R. This is the only case where a right ideal B is not equal to the intersection of
the principal right ideals strictly containing B.

PROOQF: (i) Take right ideals A, B and assume A ¢ B. Thus an element a € A\B
exists showing z € aR for all z € B. So we obtain B CaR C A.

(i1) Obviously all finitely generated right ideals of a right chain ring are principal.

(i) Let 0 # Ra N Rb, hence ria = ryb for some ri,72 € R. We may assume
r1t = ro and we obtain a = tb, that is, Ra C Rb.

(iv) follows from (iii).

(v) Let a € A\B, hence A DaR »~aJ D B,thus A=aR and B=4aJ. u

We remark that by (iv) right chain domains which are not left chain rings are not
left Ore.



Let us recall some terminology which will be used in this context. A ring R
is said to be a right Bezout ring, if for any two principal right ideals, their sum
and intersection are again principal. Left Bezout rings are defined similarly, and a
ring which is both left and right Bezout is called a Bezout ring (see Cohn [63]). If
one restricts this property to principal right ideals having nonzero intersection we
obtain the definition of a weak Bezout domain resp. weak Bezout ring. It is shown
in Cohn [63] that the definition of a weak Bezout domain is left-right symmetric. By
Beauregard ([73], Prop. 1) local weak Bezout domains are the so-called weak valuation
domains. Let us say that R is a weak valuation domain if aR NbR 5 0 implies either
aR C bR or bR C aR. By the above cited result the left-right symmetry of this
definition is obvious. Since a right chain domain R is a weak valuation domain, the
statements (iii) and (iv) follow immediately.

We say that a ring R is right distributive if

ANn(B+C)=(AnB)+(ANC)

for any right ideals A, B,C C R.
The next result describes local right Bezout or right distributive rings as right
chain rings.

PROPOSITION 1.3 For a ring R the following assertions are equivalent:

(a) R is a right chain ring.
(b) R is a local right Bezout ring.
(c) R is a local right distributive ring.

PROOF: (a) implies (b) as well as (c).

To show that a local right Bezout ring R is a right chain ring let 0 # a,b € J and
we have aR + bR = cR for some ¢ € R, hence aR,bR C cR. If a and b are both in
¢J, then cR = ¢J and ¢ = 0, a contradiction. Hence we have w.l.o.g. aR = cR and
thus bR C aR = cR.

To prove that (a) follows from (c) choose any a,b € R and aR = aRN (bR + (a —
b)R) = (aRNbR) + (aRN(a —b)R) implies a = (a —b)t + r for r € aRNIR. It
follows that a(1 —¢t) € bR, bt € aR. Ift ¢ J, bR CaR. If t € J then 1 —t is a unit
in R and aR C bR follows, i.e. R is a right chain ring. m

1.2 Right ideals in right chain rings

In this section we summarize a few basic results on right ideals in right chain rings.
The following useful lemma shows that a right ideal ] C R is a left ideal if UI = I.

LEMMA 1.4 (Test-units-Lemma) Let R be a right chain ring and a € R. Then
Ra CUaR. More precisely, for any xz € R there existy € R, u € U with z = uy = yu
and ya € aR.



PROOF: If z is a unit or za is in aR, we are done. Otherwise we have zas = a for
some s € J, hence 1 + s € U. Then za(1l + s) = za + a = (1 + z)a and we conclude
ra = (1+z)a(l+s)™! € UaR and the statement follows with u = 14z, y = (1+z) '=z.
n

The next lemma lists several facts on right ideals:

LEMMA 1.5 Let R be a right chain ring.

(i) Let A be a right ideal of the multiplicative semigroup of the ring R. Then A is
also a right ideal of R.

(i1) An additive subgroup A of R is a right ideal ezactly if Au C A for allu € U.
(ii1) A right ideal A of R is a two-sided ideal exactly if uA C A for allu € U.

(iv) Let A be a right ideal and B be a two-sided ideal. Then the complex multiplica-
tion A - B reduces to ring multiplication, that is

A-B={Yab |a € Ab € B}={ab|a € A,b € B}.

PROOF: (i) It is sufficient to prove that A is an additive subgroup of the ring R.
Let a,b € A and w.l.o.g. ar = b. Then a —b = a(1 —r) which is in A by assumption.

To prove (ii) let bbein A and r € J. Then 1+r € U, s0 b(1 +r) € A and hence
br € A.

(iii) This follows immediately from Lemma 1.4.

(iv) Obviously {ab |a € A,b € B}is contained in A-B. Let 3 a;b; € A-B. W.lo.g.
assume a1 R D a;R and a1r; = a;. Then Y a;b; =a1 3 rib; € {ab|la € A,b € B}. m

An immediate consequence of Lemma, 1.5 is the following observation.

LEMMA 1.6 Let I be a right ideal in a right chain ring R.

(i) Then I = U,y ul is the minimal two-sided ideal containing I and I = ey ul
15 the mazimal two-sided ideal contained in I.

(ii) T is nil if and only if the right ideal I is nil.

Note the a right ideal 7 is called nil if all elements in I are nilpotent, that is, for
each a € I there exists n € N satisfying a™ = 0.

PROOF: (i) Lemma 1.4 and 1.5 show that RI = U,¢py ul holds. This is clearly
the minimal two-sided ideal over I. Any two-sided ideal contained in I is contained
in ul for every u € U. That I is two-sided follows using Lemma 1.4.

(ii) obvious. w

Hence in the class of right chain rings there is no counterexample to the Koethe-
Conjecture which asks for the existence of nil ideals provided the ring contains a nil
right ideal.

If we take an arbitrary right ideal I the next two-sided ideals I, I may differ
substantially and may possibly coincide with the next neighbouring prime ideals.
This special situation is analysed in detail in Section 1.5 and Chapter 6.
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For the sake of completeness we recall the definition of a prime ideal. Although
we give the definition for one-sided prime ideals, we will usually consider two-sided
prime ideals if it is not mentioned explicitly.

DEFINITION 1.7 Let P +# R be a right ideal of the ring R.

(i) P is called completely prime if and only if zy € P impliesz € P ory- € P
where z,y € R.

(ii) P is called prime if and only if ztRy C P impliesxz € P ory € P for z,y € R.
(iii) A prime ideal P which is not completely prime is called exceptional.

(iv) The intersection of all (two-sided) prime ideals of R is called the prime radical
denoted by Rad(R).

It is clear that in a right chain ring the intersection of prime (completely prime)
ideals is again prime (completely prime). The union of (completely) prime ideals
lying in a chain is (completely) prime. Note that for a completely prime ideal P in a
right chain ring we have P = sP for any s ¢ P.

Let A be a right ideal, then there exists a minimal prime ideal P containing A,
namely the intersection of all prime ideals containing A. If A does not lie in the
prime radical, then we have also a maximal prime ideal ¢} contained in A by taking
the union of all prime ideals below A. So if A is not itself a prime ideal, it makes of
makes sense to speak of the prime segment containing A consisting of all right ideals
between the two neighbouring prime ideals P and (). A precise definition will be
given later (see Definition 1.17).

The next lemma states some helpful observations:

LEMMA 1.8 (Test-squares-Lemma) Let R be a right chain ring and P a right
ideal of R. Then

(i) P is prime if and only if xRz C P impliesz € P.
(ii) P is prime if and only if X? C P implies X C P for every right ideal X.

Moreover, let P be two-sided, then

(ii) P is a completely prime ideal if and only if z* € P implies z € P.
(iv) Let A # R be a one-sided ideal with R\A multiplicatively closed. Then A is a

two-sided completely prime ideal.

PROOF: (i) If P is prime, the assertion follows directly by the definition. Now
assume xRy C P. We consider the two cases R C yR or yR C zR and obtain
zRzR C P in the first case and yRyR C P in the second case. Thusz € Pory € P
and we are done.

(ii) Let P be a prime right ideal and X2 C P for some right ideal X. For any
z € X we have xRz C X? C P, hence z € P and so X C P. Now suppose X2 C P
implies X C P. Taking X = zR it is obvious that the condition in (i) is satisfied.
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(ii1) Let P be a completely prime ideal, then z? € P implies z € P. It suffices
to prove that P is completely prime if z2 € P yields z € P. Let z,y € R with
zy € P. We have either £ = ys; or y = zs, for some s;,s; € R. In the first case
z? =z -ys; € P and hence z € P. In the second case we first note that y(zy)z € P
as P is two-sided, thus (yz)? € P and therefore yz € P. Further y? = yzs, € P
which implies y € P.

(iv) If A is a right ideal, then by Lemma 1.5(iii) it is two-sided, and clearly A
is completely prime. The same arguments hold in the case of a left ideal A using
Lemma 1.5(ii). =

See Thierrin [57] for a related result.

Note that by definition semiprime ideals are exactly the intersections of prime ide-
als. By a result of Levitzki and Nagata (see Goodearl/Warfield [89], p. 27) semiprime
ideals P are exactly those with zRz C P implying z € P. Thus in a right chain ring
each semiprime ideal must be prime proving again statement (i) in Lemma 1.8 in the
case where P is two-sided.

1.3 Some standard right ideals

We will now define some sets and ideals associated with a given right ideal. In the
following, R will always be a right chain ring and I a right ideal of R.
For s € R we set

Is7!' = {z € Rlzs € I}

This set contains I and is closed under addition, but in general it is not a right
ideal. Obviously, if I is a two-sided ideal, then Is~1 is a left ideal. By the following
construction we do get a right ideal associated with I:

LEMMA 1.9 Let R be a right chain ring, I a right ideal of R, P a left ideal of R
and S = R\P. Then I C IS = ,esIs™! is a right ideal of R. Clearly, if I is a
two-sided ideal, then so is IS™!.

PROOF: Take z € IS7!, s0 zs € I for some s € S. Let r € R. If rs € sR, then
zrs € zsR C I, so zr € IS™!. In the other case, s = rst for some ¢t € R, and then
st € S because P is a left ideal. Thus zs = zr(st) € I implies zr € IS™!. =

We make a few easy observations concerning the right ideal 1S~! above. If INS #
0, then 1 € IS! and 15~ = R. Therefore we will usually assume that I is contained
in P = R\S. Furthermore, one can easily check that for any right ideals Iy, I; of R
with I; C I,S™! we have [;S™! C I,S™'. The most important situation is the one
where P is a completely prime ideal.

COROLLARY 1.10 Let R be a right chain ring, P = R\S a completely prime
ideal and I a two-sided ideal contained in P. Then I1S™! is again a two-sided ideal
and closed under S-quotients, that is, (1S71)S~! = IS~1.
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- ~For the following investigations we will always take for P a completely prime ideal
of R, and we set again S = R\P. Of course, given a right ideal I and a completely
prime ideal P D I as above we can also consider the associated right ideal IP. To
clarify the relationship between I1S~! and IP we introduce one further right ideal
associated with I and P:

I(I) = Nyep(IP)z™! = {r € R|rP CIP}

In other words, if  is a two-sided ideal, Z([) is the annihilator of the left R-module
P/IP.

LEMMA 1.11 Let R be a right chain ring, P = R\S a completely prime ideal and
I a right ideal.

(i) For I CaR CIS™! we have (aR)S™! =1S"1.
(i) (IS~Y)P=1IP.
(i) If IP c I, then Z(I) = I1S™1.
(iv) If IP C I holds, then for all a € I\IP we have aP = IP.
(v) IP is a two-sided ideal if and only if IS™! is a two-sided ideal.

PROOF: (i) If we apply Corollary 1.10 to I C aR C IS~! we obtain IS~! C
(eR)S™! C1S-L.

(ii) Let = € IS~!, say zs € I for s € S. Hence zP = zsP C IP. The other
inclusion is obvious.

(iil) Suppose ¢ € I(I), so zP C IP. Since IP C I, this immediately implies that
zs € I for some s, since zR C aR or aR C zR for some aS with IP CaR C1,i.e.
z € I1S™. The inclusion IS~ C Z(I) follows from (ii).

(iv) Obviously we have aP C IP for any a € I\IP. Take zp' € IP and assume
zs = a, thus s € S and we obtain p’ € P with sp’ = p which shows zp = zsp’ = ap’ €
aP.

(v) If IS~! is two-sided, then so is IP = (IS~!)P. If IP is a two-sided ideal, then
obviously so is Z(I). Hence IS~ is also a two-sided ideal. m

COROLLARY 1.12 Let R be a right chain ring, 0 # a € R, P = R\S a completely

prime ideal. Then the following assertions are equivalent:

(a) (aR)S™! is a two-sided ideal of R.
(b) aP is a two-sided ideal of R.
(c) a ¢ RaP.
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PROOF: By Lemma 1.11(ii) assertion (a) implies (b), whereas the implication (b)
to (c) is obvious. We only have to show that (c) implies (a). Let z € (aR)S™!, r € R.
Take s € S with zs € aR, say zs = ab. If rzs ¢ aR, then for some v € R:

a = rzsv = rabv, and hence bv € S by (c). Thus v € S and so sv € S, which proves
that rz € (aR)S™'. m

In the corollary above we have described the relationship between two rather
special right ideals associated with a principal right ideal a. As we will see in the
following these ideals play an important role. Also then the reason for the term
P-associated will become clear.

We will call (aR)S~! and aP standard P-associated right ideals. If the completely
prime ideal P is not idempotent, we have P = (pR)S™! for each p € P\P? and each
right ideal a P equals (apR)S™!.

COROLLARY 1.13 Let R be a right chain ring and P = R\S a completely prime
ideal. Then we have:

(i) (aR)S™'=aRU{z € R |zs = a for some s € S}.
(ii)) Let 0 # aR C bR. Then the following assertions are equivalent:
a) a = bs for some s € R.

(a)
(b) (aR)S~! = (bR)S™.
(c) aP = bP.

PROOF: (i) Obviously the right-hand side is contained in the left-hand side of
the equation. To prove the opposite inclusion we may assume a # 0, otherwise
0-5S' = {z |zs =0 for some s € S} and we are done. Let z € (aR)S~"\aR, hence
zs = ar with s € S and a = «t for some ¢t € R. We assume t € P. Then zs = ztr,
hence z(s —tr) = 0 leading to s = 0 as sR D trR. This implies 2t = a = 0, a
contradiction.

(ii) To prove that (a) implies (b) apply Lemma 1.11(i) for I = aR. The condition
(c) follows from (b) by Lemma 1.11(ii). If we assume (c) and a = bs for s € P we
obtain aR = bsR CbP = aP and a = 0, a contradiction. =

Elements a,b € R* satisfying the conditions above are called right-S-associated,

and we abbreviate this as a ~g b. Left-S-associated is defined similarly.

1.4 First results on prime ideals

We prove a first theorem on prime ideals. Note that by the Test-squares-Lemma 1.8
a two-sided ideal is completely prime if its complement is closed under squares.

LEMMA 1.14 Let R be a right chain ring.

(i) If A is a right ideal of R, then there is no prime right ideal P with (,en A™ C
P C A.
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(i) Ift € R, then there is no completely prime ideal P with N,eNnt"R C P C tR.

(iii) Let P be a right ideal whose complement is multiplicatively closed. Then P is
a completely prime ideal.

PROOF: (i) Let n be minimal with A® C P. As P is prime, we must have n =1
leading to the contradiction P = A.

(ii) follows by using Lemma 1.8(iii).

We have U - P C P, thus by Lemma 1.5 P is two-sided. m

- This result provides examples of segments of right ideals which do not contain
prime ideals. The following theorem shows that under additional conditions the
limits for these segments are the best possible.

THEOREM 1.15 Let R be a right chain ring.

(i) Nonzero idempotent ideals are completely prime.

(i) If A is an ideal which is not nilpotent, then P = ,en A" is a completely prime
tdeal.

(iii) Ift € J is not nilpotent, then P = Nt R is a prime right ideal. Moreover,
if P is a two-sided ideal, then P is completely prime.

PROOF: (i) Let (0) # A = A? be an ideal of R. Suppose a € A but a? € A. Then
A CaJ and thus A = A2 CaA Ca?J C a*R C A. This contradiction shows that A
is completely prime.

(i) Set P = ,en A" If P = A" for some n € N, then A*® = A" hence P is
idempotent and by (i) the assertion follows. If P C A™ for all n € N, take any ¢ ¢ P,
and there exists n € N with A™ C tR. Then we obtain P C A?" C tA" C t2R. Hence
t2 ¢ P.

(iii) As t is not nilpotent, we have t"*'R C t"R for all n and thus N,ent"R C t"R.
Let z ¢ P. We have to show that xRz € P holds. Note that there is an n € N with
t"R C 2R, hence t**R C t"2R C zRzR. Thus N,ent"R C t*"R C £Rz and we are
done.

To show that the prime right ideal P = ,nt" R is completely prime if it is
two-sided, take z ¢ P and we have to show that 22 ¢ P. We have t" = za for some
n €N, a € R and hence t>* = zazxa. In the case ax € =R, we are done. Otherwise
there exists r € J with azr = z. As P is two-sided, we conclude zr ¢ P, thus zrq =
t™ for some ¢ € R, m € N. We obtain z2q = z(azr)q = (za)zrq = t"t™ = t"+™,
which implies 22 ¢ P. m

We remark that idempotent right ideals are not necessarily completely prime (see
Theorem 1.15(i)). There exist right chain domains R with exactly two prime ideals,
namely J and (0) such that (0), J and R are the only two-sided ideals of R. In
such a ring all right ideals A with (0) € A C J which are not right principal, are
idempotent; assume A®> C A. Take any a € A\A? and aR C A implies aRA C A?
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where RA is a two-sided ideal. Hence, RA = J, aJ C A% As the element a € A\A?
was chosen arbitrarily, A = aR follows. For an example, see Section 6.5.

We consider finitely generated prime ideals. If J O J? holds, the maximal ideal
J is finitely generated. Take m € J\J? and let J O m'R D mR, hence m'r = m for
some r € U which proves the assertion. Otherwise m'r € J?2 C J, a contradiction.
Note that in contrast to the commutative situation, there exist right noetherian right
chain rings with more than one prime ideal which by definition are right principal.
Examples are given in Chapter 3. On the other hand, we easily deduce that in chain
rings a completely prime ideal # 0 which is finitely generated equals the maximal

ideal J.

LEMMA 1.16 Let R be a chain ring and P a completely prime ideal 5# 0 which is
right principal. Then P equals the mazimal ideal J.

PROOF: Assume P = pR C J and take any a € J\P.Then p € P = Pa = pRa C
pJ and hence p = 0 follows. m

1.5 Two-sided ideals and prime segments

We consider the right ideals between two prime ideals. We fix the following notations.

DEFINITION 1.17 Let R be a right chain ring and P DO @ neighbouring prime
ideals resp. set ) = 0 provided P # (0) is the prime radical. We call the lattice
interval [P, Q[ of right ideals the prime segment [P, Q, that is,

[P,Q[={X |P 2 X DQ, X a right ideal of R}.

The prime ideal P will be called the leader of the segment. In the case of [P,0] and
P the prime radical we sometimes speak of the radical prime segment.

If A is an arbitrary right ideal, P the intersection of the prime ideals containing
A, and Q the union of the prime ideals strictly contained in A, we say that [P, Q|
is the prime segment generated by A. Set Q = 0 if A does not contain any prime
ideals.

The next results give some informations on the structure of the right ideal lattice
between two neighbour prime ideals. Of particular interest is the situation in which
there is a further (two-sided) ideal in a prime segment.

DEFINITION 1.18 A prime segment [P, Q)| is called simple, if there is no two-
sided ideal properly between P and Q.

Next we describe quite natural situations where prime segments are never simple.

LEMMA 1.19 Let R be a right chain ring and [P,Q[ a prime segment. Assume P
is not the prime radical, then
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(i) If P is a non-idempotent prime ideal, then [P, Q)] is not simple and Q) is com-
pletely prime.

(ii) If P = aR is a right principal (two-sided) prime ideal, then [P, Q[ is not simple
and Q) is completely prime.

Assume P is the prime radical, then we have:
(iii) If P? # (0), then [P,0[ is not simple.

PROOF: (i) By assumption @ C P? C P is a two-sided ideal and @ completely
prime using Theorem 1.15(ii).

(ii) Note @ C P? = aRaR C aJ C aR, since RaR is a two-sided ideal. The rest
follows from (i).

(iii) In this case we have either P # P? and the statement follows immediately,
or P = P2 If we assume P = P? # (0), then there exists an element ¢ € P with
zP # 0. We show that zP is a two-sided ideal which is clear if R is two-sided.
Otherwise, let u be a unit with uzr = z and » € J. Since u"zr® = z and the
elements in P are nilpotent, it follows that r ¢ P and hence rP = P. Therefore,
uzP = uzrP = zP. It follows that uzP C zP for all units in R and 0 # zP # P, is
a two-sided ideal by Lemma 1.4. m

It will be shown that the existence of a further two-sided ideal in a prime segment
[P, @ has strong consequences. The situation then resembles the commutative case.

DEFINITION 1.20 Let R be a right chain ring and A a right ideal with [P, Q|, the
prime segment generated by A, not simple. Then the radical of A, V/A for short, is
defined by

VA={z €R|3Fk eN:z* € A}.

As it will be shown in Theorem 1.21 the radical v/A in a non-simple segment
[P, Q[ will be the leader P of that prime segment, hence it equals the intersection of
all prime ideals containing A.

The next theorem provides some information on P and @) in the case where the
prime segment [P, Q[ is not simple.

THEOREM 1.21 Let R be a right chain ring with the prime segment [P, Q[ not

simple. Then we have:

(1) Q is completely prime if [P,Q[ is not the radical segment. In this case there
ezists for every z € P\Q a two-sided ideal X € [P,Q[ with X C zR and

nnGN X" = Q
(1) @ = Npen ™ for all two-sided ideals I € [P,Q[, I # P.

(iii) Let P be an idempotent prime ideal. Then P is the union of all two-sided ideals
properly contained in P.
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(iv) For every z € P\Q) there ezists a two-sided ideal X € [P, Q| with zR C X, and
Nhen X" = Q.
(v) @ =Nhenz"R for all z € P\Q.
(vi) Let P be a completely prime ideal. Then P = /T for any right ideal I € [P, Q].
(vi)) @ = Npen I™ for all right ideals I € [P,Q[, I # P.

PROOF: (i) We take some two-sided ideal X € [P,Q[, X # P. By Lemma
1.14(i) we have @ C Nuen X". Since [P, Q[ is not the radical segment, X is never
nilpotent. Thus Theorem 1.15(ii) implies that N,en X™ is completely prime which
leads to @ = MN,en X" and proves the assertion.

(ii) follows from the proof (i) if [P, @] is not the radical segment. In the remaining
case I must be nilpotent since otherwise M,en I™ would be a prime ideal.

(iii) By Theorem 1.15(i) the prime ideal P is completely prime. Let A be the
union of all two-sided ideals I strictly contained in P. Since R is a right chain ring,
A is an ideal of R and @ C A as [P, Q] is not simple. If A C P, then A is not a prime
ideal, so there exists a two-sided ideal X D A with X? C A. But then A C X C P,
contradicting the definition of A.

(iv) If P is not idempotent, we choose X = P and apply (ii) to P2. Otherwise,
by (iii) there exists a two-sided ideal X C P, zR C X, and the intersection ,epn X™
equals @ by (ii).

(v) If [P, Q[ is the radical segment, we are done, since z is nilpotent and @ = 0.
By (iv) there exists a two-sided ideal X with z € X and N,y X™ = Q. Therefore
Mhen "R C Q. By (i) @ is completely prime, so the other inclusion is obvious. The
other inclusion follows from (i).

(vi) To prove P = +/T it is enough to show P C V1, since P is completely prime.
For € P we have z" € I for large enough n by (v).

(vii) Since I # P there exists z € P\Q with I C zR and by (iv) we have
zR C X C P for a two-sided ideal X C R with (Yx = (. Since @ is prime, Q CNI".
n

COROLLARY 1.22 Let R be a right chain ring and [P, Q[ a prime segment which
is either not simple or the radical segment. Then we have z & Rz P for any x € P\Q.
Furthermore, if P is completely prime and not the prime radical, then r ¢ P implies
rz gzP.

PROOF: If [P,Q[ is the prime radical, £ = rzp = r"zp™ with p € P leads to
z = 0, since each element in P is nilpotent. Next assume that P is not the prime
radical, ¢ = uaep € UzP = RzP with v € U, p € P. We take a two-sided ideal
I € [P,Q[ with p € I and Nyen I™ = @. (use Theorem 1.21(iv)) and z € Q follows
contradicting z € P\Q@.

To prove the last assertion, assume rz = zp with r ¢ P, p € P. By Theorem
1.21(i) there exists a two-sided ideal X € [P,Q[ with X C zR and M,en X™ = Q.
Again by the same theorem there exists n with p* € X. We have r™ ¢ P, since P

16



is completely prime, and r"¢q = z for some ¢ € P. We obtain r*(z — ¢p™) = 0 and
r"z = 0, since ¢p" € zJ. By assumption @) is a prime ideal and therefore completely
prime by Theorem 1.21(i) which leads to z € @, a contradiction. m

We add a further characterization for the situation where [P, Q[ is simple.

THEOREM 1.23 Let R be a right chain ring, P D @ neighbour prime ideals. Then

the following assertions are equivalent:

(a) [P, Q] is simple.
(b) There ezists a prime right ideal P' with Q Cc P’ C P.

PROOF: (a) = (b) Let P D @ be simple, hence P? = P and P is c.prime by
Theorem 1.15. We now construct a right ideal P’ satisfying ) € P’ C P and we prove
that P’ is prime. Take any a € P\@ and set P’ := |JyR where y runs through the set
of those elements with ys = a for some s € R\P. Let ¢ ¢ P’ and assume zRzR C P'.
As Rz R is two-sided, we conclude zRzR = z P C P’, hence z P C yR for some y with
ys = a for some s € R\P. The element z does not lie in P’, hence 2zt = y and thus
also t € P; otherwise z € P’. This shows yR = ztR C zP, hence zP = yR. As P is
idempotent, we have ¢t = ¢,t, with ¢;,t, € P. Then ¢ P = yR = zt;t,R C zt; R CzP
leads to a contradiction.

(b) = (a) Now we assume that the prime segment [P, Q[ is not simple. If P
is not idempotent, we have (| P* = @ and there is no prime right ideal P’ with
P > P' 5 @ by Lemma 1.14(i). In the case where is P idempotent, we apply
Theorem 1.21 to find a two-sided ideal I with P D I D P’ provided P’ is a prime
right ideal with P D P’ D Q. The ideal I cannot be idempotent by Theorem 1.15,
hence (,en I™ = Q. Again Lemma 1.14(i) leads to a contradiction. m

Right chain rings with an additional two-sided ideal between each pair of prime
ideals will be discussed in detail in Chapter 7.

1.6 Three classes of classical examples

The ring R of integral elements in a number field F over Q is a Dedekind domain
and the localizations Rps of R at a maximal ideal M are therefore valuation rings,
that are commutative chain domains. In this way one obtains an interesting class of
examples of discrete valuation rings.

Krull [32] pointed out that given an ordered commutative group G one can form
the group ring F'G over any commutative field F' and F'G contains the subring Ry of
elements

R0={Zgag€FG|e§gifag7‘-0}.

The subset S = {ga, € Ry | a. # 0} of Ry is multiplicatively closed and R,S™! = R
is a valuation ring. The set of nonzero principal ideals is given by {gR |e <g, g € G}.

This construction cannot be extended to noncommutative linearly ordered groups
G, since the group ring is not necessarily ordered (see Passmann [85]). However, let
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k be-a division ring, G an ordered group, then by k[[G]] we denote the set of all
generalized power series a = ¥ ga, over k and G which have well-ordered support,
that is

supp(a) = {g € G | a, #0}.

Further we assume the commutation rule
ag=ga,a€k,geqdG.

Since the supports are well-ordered, this leads to a multiplication of a,b € k[[G]] in

which the sums
(ab)y = ) anby—1
hEG

are finite. The ring k[[G]] is sometimes called the Malcev-Neumann-ring of generalized
power series. We will discuss modifications of that construction later.

The Malcev-Neumann theorem asserts that the ring k[[G]] is a skew field: If
a =Y ga, and go = min supp(a) we can write

a= 90(1 - q)ago

where the support of ¢ only contains elements > e. Since
(1-q)'=14+q+¢+... €k[[G]]

we have

al=a'(1+q+¢*+.. )9 " .
PROPOSITION 1.24 Let G be an ordered group, k a skew field. Then the subring

R={a=) ga, € k[[G]] | min supp(a) > e}uU {0}
of the Malcev-Neumann skew field k[[G]] is a chain domain. More precisely we have:

(i) R is a duo (or invariant) ring, that is Ra = aR for all a € R.
(ii) The set of nonzero principal right (left) ideals is given by {gR | g > e} ({Ry |
g 2e}).
(i) The (two-sided) ideals of R correspond to the upper classes of Gt = {g € G |
g > e}, the prime ideals to the convex subsemigroups of G*.

(iv) The residue field of R, that is R/J, is isomorphic to k.
Homomorphic images of rings constructed by using the above methods will serve

to illustrate some of our results, and various generalizations and modifications of
these constructions will be discussed later.
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2 Zero-divisors

A description of the left annihilators of prime ideals in right chain rings is given (Lemma 2.6). Of
particular interest is the connection between the size of the ideal N; of all right zero-divisors in a
right chain ring R and the lefi-right annihilator A" for a right ideal A of R (Theorem 2.9). We
have P'* = P for a prime ideal Pin a chain ring R (Proposition 2.10).

2.1 Zero-divisors in right chain rings

We observed earlier that chain domains are closely related with valuations on skew
fields. However, other applications motivate the investigation of right chain rings
with zero-divisors. An affine Hjelmslev ring is a right chain ring R in which all non
units are left and right zero-divisors. Such rings occur as coordinate rings of affine
Hjelmslev planes. Examples can be obtained as localizations of homomorphic images
R/I of right chain domains R provided I satisfies certain annihilator conditions. A
criterion whether R/ leads to a Hjelmslev ring can be derived by studying the double
annihilators P! of all prime ideals in R/I.

This condition is satisfied if the prime ideal lattices satisfies certain chain con-
ditions. Further, questions about zero-divisors arise naturally in the discussion of
mudules over right chain rings. Occasionally it is of advantage to replace a chain
domain R by a homomorphic image R/I with many zero-divisors, since the mapping
that associates the left annihilators A’ with the right ideal A provides then a useful
link between the lattice of right ideals and the lattice of left ideals.

DEFINITION 2.1 An element a in a ring R is called a right (left) zero-divisor if
ba = 0 (ab= 0) for some b € R*.

We denote by A" respectively A' the right respectively left annihilator of a set
A+# 0in R, ie A" = {t € R | At = 0} respectively A' = {t ¢ R |tA =0}. If
t € R, we write " instead of {t}" if there is no danger of confusion. Hence a is a
right zero-divisor if and only if a' & (0).

We list some well known properties of annihilators in the next lemma.

LEMMA 2.2 Let A, B be right ideals of an arbitrary ring R.
(i) If A C B then B' C AL
(ii) A C A",
(iii) Al = Al
(iv) (AuB) = A'nB".
For a multiplicatively closed subset S C R containing U we define
N(S)={teR|3se€S\{0}:ts =0}

and
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N,(S)={t € R|3s € S\{0}: st =0}.

Obviously, N;(S) and N,(S) are two-sided ideals if R is a right chain ring, by
Lemma 1.8 and 1.5(iii). Moreover

N(R)=N=R\li={t € R |t" # (0}
respectively
N.(B) =N, = {t €R |t # (0)}

is the set of all left respectively right zero-divisors of R. Their complements are
denoted by T; respectively T,.. Applying Lemma 1.8(iv) it is evident that N; and N,
are completely prime ideals.

LEMMA 2.3 Let R be a right chain ring, A a right ideal and T, the set of non right

zero-divisors.

(i) Ni and N, are completely prime ideals.
(ii) If A C N,, then A' % (0); if N, C A, then A' = (0).
(iii) ATt C A",

PROOQOF: (i) already done

(ii) Let s € N,\A. Then A C sR and therefore (0) # s' C A'. The second
statement in (ii) is obvious.

(iii) We take z € AT, ' and may assume zr = a for some r € T, a € A. Let y
be any element of A!, thus ya = 0 which implies yzr = 0 and by r € T, the assertion
yz = 0 follows. m

In Section 2.3 we will give examples for chain rings which show that in the case
where A = N, both possibilities N! = 0 or N! # (0), can occur. Furthermore,
equality need not hold in (iii) (use Remark 3.10(iv)).

We investigate the relationship between the size of NV, and the set of right ideals
A with B = A" for some fixed right ideal B. The next lemma gives some partial
results.

LEMMA 2.4 Let R be a right chain ring. Then we have:
(i) If (aR)" = aR holds for all a € R, we have B < B" for each right ideal B.

Furthermore, N, = J ts valid.

(ii) The following assertions are equivalent:
(a) (aR)'" = aR for alla € R*.
(b) r' N Ry # (0) fory ¢r'.
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PROOF: (i) Assume B C bR C B'". We obtain B" C (bR)'" = bR C B'" which
proves B < B'". We have (aR)' # (0) for a € J, since (aR)"" = aR.

(ii) (a) = (b) We set yr = a and observe (yR)' c (aR)'. Choose z € (aR)'\(yR)',
thus ¢y # 0 and zyr = 0 follow.

(ii) (b) = (a) Suppose (aR)" D aR for some a € R*. Let y € (aR)"\aR, hence
yr = a for a suitable r € J. The inclusion (aR)' C (aR)"! implies zy = 0 for all
z € R with za = 0. Hence zyr = 0 leads to zy = 0, contradicting the assumption. m

For right chain rings the results above are as good as possible. For example, the
fact N, = J does not necessarily imply that (aR)"" = aR holds (see Remark 3.10(iii)).
. The following statement is an observation of Mazurek ([89], Prop. 6).

PROPOSITION 2.5 Let R be a right chain ring. Then N; C N¥ and N} C N;.
If R is a chain ring, then N} = Nj.

PROOF: Assume there exists an element a € N;\N¥. Hence ab = 0 for some
b € R* and ac # 0 for some ¢ € N!. As ¢ ¢ bR holds, we obtain b = cr with
r € R\N; and so 0 = ab = acr. But now r ¢ N,(R) implies ac = 0, a contradiction.
Thus we have N; C N¥ and N! C N' C N; follows. Analogously we prove the
statement if R is a left chain ring. m

Especially fruitful in the case of prime ideals is the following description of left
annihilators of prime ideals.

LEMMA 2.6 Let R be a right chain ring and P = R\S a completely prime ideal.
Then for all 0 + a € P' we have (aR)S™! = P!

PROOF: For 0 # a,b € P' we have aP = bP and by Corollary 1.13 (aR ) =
(bR)S~1. Therefore, P’ C (aR)S™! and by Lemma 1.11(ii), we obtain (aR)S™!
»

We observe that in case P! = (0) the conclusion of the lemma remains valid for
a=0.Ifzs=0forz #0, s €S, then z € P', a contradiction.
If P is properly contained in N,, we obtain an alternative description of P'.

COROLLARY 2.7 Let R be a right chain ring and P = R\S be a completely prime

ideal. Then the following are equivalent:
(a) P CN,.
(b) Ni(5) #0
If the equivalent conditions (a) or (b) hold then Ni(S) = P'.
PROOF: (a) = (b) By definition s' # (0) for any s € N,\P, thus N;(S) # (0).
(b) = (a) By Ni(S) # (0) we get some s € S N N,, thus P C N;.

Let 0 # a € Ni(S), hence as = 0 for some s € S. We obtain 0 = asR D aP
and a € P'. Thus it remains to prove P! C Ny(S). Applying Lemma 2.6 we have
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P! = (aR)S~!. Now take any z € (aR)S~!. Hence zt € aR, say zt = ar, for some
t €S. Ifr € sR, then ot = ar = 0 and z € N,(S) follows directly. If not, there exists
u € § with s = ru, otherwise su = r would lead to 2t = ar = 0 and we are done.
Thus we get ztu = aru =as =0. As tu € S, z € Ni(S5) follows. m

2.2 Zero-divisors in chain rings

In the following we will turn to the case of chain rings where zero-divisors can be
dealt with easier.
The next lemma can be found in Mazurek [89].

LEMMA 2.8 Let R be a chain ring. Then N; C N, if and only if there exists an
ideal A of R with A™ = (0) and A' # (0).

PROOF: Let us assume that N; C N,. We note that N7 = (0) and N} = (0),
using Lemma 2.3(ii) and its right left symmetric version since R is a chain ring. If
N! # (0), then A = N, satisfies the statement of the Corollary 2.5 and we can put
A= N,

Now assume that A" = (0) and A' # (0) for some two-sided ideal A. By the
symmetric version of Lemma 2.3(ii) we have Ny C A C N,. If N; = N,, then
N, = N, = A. Hence Nf = A" = (0) and N! = A' # (0), which is impossible by
Proposition 2.5. m

Lemma 2.4 suggests a certain relationship between the size of N, on the one hand
and the annihilator right ideals A'" on the other hand. In the case of chain rings we
obtain the more precise result (ii) of the following theorem. Furthermore, an exact
description is given for the relationship between A and A" for any right ideal A of
the chain ring A.

THEOREM 2.9 Let R be a chain ring and set T, = R\N,. Then we have:

(i) Foralla € R: (aR)T ' = (aR)" = ((aR)T1)".
(i1) N, = J if and only if (aR)" = aR for some element a € J,a # 0.
(iii) Let A be a right ideal and A' # (0). Then A™ = AT ! or A"N, = A.

PROOF: (i) By Lemma 2.3(iii) we know (aR)T! C (aR)". If (aR)" = aR, we
are done. Otherwise take any 0 # z € (aR)"\(aR), hence aR C zR C (aR)" and
(zR)" = (aR)", (zR)' = (aR)! follow (use Lemma 2.2). Set zs = a. Next we show
that (sR)' N Rz = (0) which implies (sR)! = 0 since R is a left chain ring and s € T,
proving (aR)" = (aR)T . Let yz € (sR)' NzR and yzs = ya = 0 implies y € (aR)".
By (aR)! = (zR)! we obtain yz = 0. It remains to show (aR)T ! = ((aR)T ). We
observe ((aR)T )" = ((aR)'")" = (aR)" which finishes the proof of (i).

(ii) If N, = J, we have U = T, and the statement follows from (i). To prove the
converse assume aR = (aR)" = (aR)T! (by (i)) and j € T,. Hence, there exists
z € (aR)T;! with zj = a, a contradiction.
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(iii) For an arbitrary right ideal we have A C A". First we consider the case
A = A", Obviously (AT ') = A!, hence (AT!)"" = A™ = A. On the other hand
A C AT C (AT 1Y) and A" = AT ! follows. Now assume A C A™. Take any a
with A C aR C A" and one obtains (aR)"” = A" and by (i) A" = (aR)'" = (aR)T*.
Hence, AT C A".

Assume AT ' c A". Hence for all z € A we find an element a € A"\A with
ap = z for some p € N, which proves A C A" N,.

To prove AN, C A we recall from above that A" = (aR)'" for any a € A'"\A.
It is therefore enough to show that (aR)"N, C aJ which follows from (aR)""N, =
((aR)T-')N, = aN, by (i) and 1.11(ii), since N, is a completely prime ideal contained
inJ. m

We point out that it follows from (iii) of the above theorem that either A" = A
or A < A" if N, = J which is the case if R is a Hjelmslev ring (see Torner [74]).

The last theorem has shown that the standard N,-associated right ideals (aR)T!
are stable under the left-right-annihilating process. The same applies for prime ideals.

PROPOSITION 2.10 Let R be a chain ring and P a completely prime ideal with
P! = (0). Then the following holds:

(i) P'" = P.
(ii) P'r = P'.
(iii) P = P.

PROOF: (i) We can assume that P = (0). By Lemma 2.6 we have (aR)S~! = P!
for0#a € P. If P C P"™ = ((aR)S™)", then there exists s ¢ P with zs = 0 for all
z € (aR)S™1. If there exists y € R with ys = a we havey € (aR)S ! anda = ys = 0,
a contradiction. Otherwise ya = s ¢ P implies a € P'\P and P = aP = (0), again a
contradiction. Hence, P = ((aR)S™!)" = P'r.

(ii) If P = N,, we apply Proposition 2.5: P' = N! = N/, hence P'" = N = N! =
P! follows.

If P C N, then by Theorem 2.9(iii) applied to A = P' we have P'T"! = P!
of P¥"N, = P!. In the first case we show that P'T"' = P! where P' C P'T ! is
obvious. If z € PITT'1 then zs € P! for some s € T, = R\N,, in particular s ¢ P.
Hence, 0 = zsP = z P, since P is completely prime, and z € P'. In the second case
we must show P C P'. Assume otherwise there exists a € P""\P', hence ap # 0
for a suitable p € P. Now take any t € N,\P and tp’ = p with p’ € P follows leading
to ap = atp’ = 0 since at € P N” = P!  a contradiction.

By (i) and (ii) we obtain P = (P!")\r = P = P. m

We remark that by Proposition 2.10(i) the mapping P — P' on completely prime
ideals in chain rings is injective provided P' # (0) holds. However, in contrast to the
case of chain rings, in right chain rings this property does not hold in general (see

Remark 3.10).
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2.3 Examples

We close this chapter with two examples.
First we show that, as mentioned after Lemma 2.3, the annihilator of the maximal
ideal J can be zero as well as nonzero.

EXAMPLE 2.11 Let R be the real numbers and k any skew field. As described in
Proposition 1.24 we construct a chain ring R whose set of nonzero principal right
ideals is given by {gR | ¢ € R*} where R* denotes the set of nonnegative numbers.
Let I, = Ug>1 gR respectively Iy = Uy>1 gR be (two-sided) right ideals.

Then the left (right) annihilator of the mazimal ideal in R/I, is zero whereas
J(R/ L) respectively J(R/I,)" is nonzero.

The next example shows that even in the case of duo chain domains zero-divisors
are not permutable, i.e. zy = 0 does not always imply yz = 0 for z,y € R and R a
chain ring.

EXAMPLE 2.12 Take the linearly ordered group ' of rank 2 given by

(o1, a2) + (Br, B2) = (on + a2, a2 + )

with ay,az, 1, B2 real numbers and e the Euler number and lexicographic ordering.
Again build the Malcev-Neumann ring over I' and any skew field k. Let R be the
corresponding chain domain in k[[']]. By I we denote the ideal of elements in R
whose minimum of the support is larger or equal than (1,1) € I'. Let z be an element
in R with min supp(z) = (0,1), y an element with min supp(y) = (1,1 —e). Hence

min supp(zy) = (0,1) # (1,1 —e) = (L,e+ 1 —€) = (1,1)
whereas
min supp(yz) = (1,1 —e) + (0,1) = (1,(1 —e)e® + 1) = (1,2 —¢) < (1,1).

This shows that in the homomorphic image R/I = R the product of (z+I)(y +I)
equals zero, however (y + I)(z + I) # 0. We remark that R is a Hjelmslev ring.
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3 Distributive rings and right noetherian right chain rings

Right noetherian right chain rings are exactly the local principal right ideal rings. Jategaonkar
[69], [70] showed that this class of rings contains interesting counterexamples to various conjectures
in ring theory and in Brungs [69] und [76] it was shown that these rings play for right noethe-
rian right distributive domains the role discrete valuation rings play for Dedekind domains in the

noncommutative case.

3.1 Right noetherian right chain rings

A ring R is called right noetherian if every non-empty family of right ideals contains
a maximal element. If a right chain ring is right noetherian, then all its right ideals
are principal and, as we will show below, two-sided. The commutative noetherian
valuation rings are the rank 1, discrete valuation rings whose semigroup of non-
zero ideals is isomorphic to the natural numbers under addition. For each segment
H; = {a | a < w!} of ordinals less than a power w! of w, the order type of N, there
exists a right noetherian right chain domain R whose semigroup H(R) of non-zero
ideals is isomorphic to H;. Conversely, H(R) is isomorphic to some Hj if R is a right
noetherian right chain domain.

PROPOSITION 3.1 The following conditions are equivalent for a ring R:

a) R is right noetherian right chain ring.

(a)
(b)
)
)

R is a local principal right ideal ring.

R is a right noetherian local right distributive ring.

(c
(d) R is a ring in which every non-empty family of right ideals contains ezactly one

mazimal element.

(e) R is a ring in which the lattice of right ideals is inversely well-ordered by inclu-
ston.

PROOF: The equivalence of (a), (b) und (c) follows from Proposition 1.3. Con-
dition (a) implies (d) since the noetherian condition implies that every non-empty
family of right ideals has a maximal element and there is only maximal element since
R is a right chain ring. Condition (e) is just a rephrasing of conditions (d) and (a). =

The next result shows that a right noetherian right chain ring R is right invariant
1.e. for r,a € R there exists ' € R with ra = ar’.

LEMMA 3.2 Let R be a right noetherian right chain ring. Fvery right ideal of R
is a two-sided ideal.

PROOF: Every right ideal A of R is right principal that is A = aR for some
a € R. By Lemma 1.5(iii) we are done if Ua is contained in aR. Otherwise there
is an element v € U with aR C uaR. Obviously, u"aR, n € N, defines a strictly
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ascending chain of right ideals which leads to a contradiction. Hence UaR C aR
follows. m

It follows that all prime ideals in such rings are completely prime and make use
the fact that the chain of prime ideals is inversely well ordered by inclusion to index
them by ordinal members.

Hence, let

J=Po=poRDP1=p1RD...DPa:po,R DPa+1=pa+1RD... (1)

be the chain of prime ideals P, in R with J = P, and p, a generator of the principal
ideal P,. We have P2 = p!R # P, if P, # (0). It follows by Theorem 1.21 that
Pot1 = Mhen PR, and P, = N, P3 for a limit ordinal .

We prove in the next result that PQ = @ for prime ideals P D @ in R.

LEMMA 3.3 Let R be a right noetherian right chain ring and let P = pR,Q) = ¢R
be prime ideals with P D Q. Then pq = qe for some unit € € U.

For poR = P and @ = pgR we have p,pg = pgea,p With €, € U.

PROOQF: There exists r; € R with pry = ¢ and r; € gR since @ is completely
prime. Hence, ry = ¢ry and ¢ = pr; = pgry = ¢p'r; for ry,p’ € R. It follows that
p'r; € U and hence r; must be units in R if ¢ # 0 as R is local. m

If 0 # a is an element of J, let p, R be the minimal prime ideal containing aR.
Then (by Theorem 1.21) N,,en P2 R is either (0) or a prime ideal py4+1 R and there
exists a maximal with aR C p2?R. Hence, a = pLa, for a; € R with a1 R D p.R.
The element a determines uniquely the index « and the exponent n; the element a;
is determined up to factors from the right.

Using induction and the assumption that R is right noetherian one obtains the
following result:

LEMMA 3.4 Let R be a right noetherian right chain ring with Eqn. (1) as its
chain of prime ideals. Then every right ideal aR # R, (0) can be written in the form
aR=p}!---P}:Rwitho; > a; > ... > a, and the a; and n; are uniquely determined
by a.

If 7 denotes the order type of the chain of right ideals of R, we say 7 is the type

of R and if
T=w'n +w?ny+ ... ftwng1+ne+1=7+1 (2)

with p; > ps > ...pr_y > 1, then the p, are indexed by a < p; unless 7 has the
special form 7 = w” + 1 in which case the p, are indexed by a < p; and R is a
domain. (see Hausdorff [35] for the terminology)

In particular, R is a domain if and only if 7 is of the form 7 = w?* +1 in which case
the semigroup H(R) of non-zero ideals of R is isomorphic to H,, = {a |a < w”'}.
Let the type 7 of the right noetherian right chain R be given by

T=wny .t e+ l=7 41
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as in Eqn. (2). Let H, 41 = {a |< w”*'}and H = H,,;1/ < 7" > as the ordered
semigroup with the set {a |a < 7'} U {00} and with the operation

aoﬁz{a+6 fora+ <7

fo'e) otherwise

If we map aR = p! ...p% R onto w™ny + ...+ w*n, for aR # (0), R onto (0) and
the ideal (0) to oo we obtain an isomorphism between the semigroup of all ideals of
Rand H=H, +1/ <7 >. H is called the Rees factor semigroup of H, +,, see Fuchs
[66].

We can reformulate these results as follows:

THEOREM 3.5 Let R be a right noetherian right chain domain ring with
R=L>L=J>L>...0,D>...0L,D...(0)= I,
as the chain of right ideals. Then
II:{I"+" if pto<7
pre I.  for p+o>1
The ideal I, is a prime ideal if and only if o = W* for some k.

All right ideals I are left primary in the following sense: z,y € R, zy €I, y ¢ 1
implies z" € I for n € N large enough.

LEMMA 3.6 Let R be a right noetherian right chain ring. Then each ideal is left
primary.

PROOF: Let I = aR and z,y € R with 2y € R, y € aR. If no power z" of z is
contained in aR we obtain an ascending sequence of ideals A, with A, = {r € R |
z"r € aR} and hence A,, = A4 for some m. If 2" € yR for some n € N, then
z" = yr, 2"t = zyr € aR, a contradiction. Hence, y = z™r for some r € R and
zy = 2™*!r ¢ aR and y = z™r € aR follows, a contradiction. m

We conclude this section with some observations about right noetherian right
chain rings that satisfy additional conditions.

PROPOSITION 3.7 Let R be a right noetherian right chain ring of type 7 > w+1.

(a) R is not left noetherian.
(b) R is not left Ore.

PROOF: If R has type 7 > w + 1 then there exist two prime ideals P, = ppR and
P, = py R different from (0) and pop; = pi€ for a unit € in R by Lemma 3.3. To prove
(a) one observes that I, = Rpie™" defines a strictly ascending sequence of left ideals
of R.

To prove (b) it follows from the factorization of elements in R as discussed before
Theorem 3.5 that Rp; N Rp; = (0). m
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3.2 Examples

Jategaonkar [69] constructed right noetherian right chain rings R for arbitrary type
7 = 7' 4+ 1. These examples showed in particular that for right noetherian rings R
there is no common bound p with J? = (0) where J is the Jacobson radical of R
(Jacobson conjecture). We will construct a right noetherian right chain ring of type
T=w?+1.

EXAMPLE 3.8 Consider the function field K = k(t1,ts,...) over a commutative
field k in infinitely many indeterminates t,. The localization A of K|[z|, the com-
mutative polynomial ring in one indeterminate = over K, at the ideal zK|z], is a
commutative noetherian valuation ring. We define a monomorphism o by ¢° = q for
g€k, z° =t and ty = t;y; fori=1,2,....

Let R be the skew power series ring R = Al[y,0]] = {£2, y'a; | a; € A} where
ay = ya’ defines the multiplication. The right ideals of R have the form y*z™R and
po =z, p1 =y with zy = yt1,t; € U(R) and R has type T = w? + 1.

EXAMPLE 3.9 We define Ally,0]] as in the previous ecample, but R =
Ally, oll/(y%z?) where y?z%A[[y, o] = (y*2?) is a two-sided ideal of this ring. Then R
is a right noetherian right chain ring of type 7 = (w2 + 2) + 1 with two prime ideals
zR D yR # (0) where we wrote z again for the image of z in R.

REMARK 3.10 For this ring R we can make the following observations:

(i
(it

(iii

) N.(R) = J since yz,z # 0 but (y*z)z = 0.

) Ni(R) = yR since y(yz?) =0, but z"a = 0 if and only if a = 0.

) ForI =yzR we have I C I, since I' = (yzR)! = y’R and I = (y’R)" = z’R.
)

(iv) Since N, = J we have T, = U and hence I = IT! C I'" which shows that
Theorem 2.9(iii) cannot be extended to right chain rings.

(v) For P = yR a prime ideal we obtain (yR)"" = (y*R)" = 2’R C R ; in particular,
P' is not a prime ideal.

Since P = P is possible for prime ideals in right chain rings (in contrast to
Proposition 2.10(i) for chain rings) one cannot conclude that the mapping which
assigns P! to P for prime ideals P in a right chain ring R is injective. The next
example illustrates this point.

EXAMPLE 3.11 We define Ally,o]] as in Fzample 3.8 and consider R =
Ally,o]l/(yz). Then J and yR = P are distinct prime ideals in R, but J' = yR =

P! +#£(0).
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3.3 Right distributive rings

We begin by recalling a definition made earlier.

DEFINITION 3.12 A ring R is called right distributive if and only if
AN(B+C)=(AnB)+(AnC(C)

for any right ideals A, B,C of R.

Proposition 1.3 shows that a local ring is right distributive if and only if R is a
right chain ring. The commutative distributive domains are the Priifer domains (see
Gilmer [72]) and such rings R are also characterized by the fact that their localizations
Rpr at a maximal ideal M are valuation domains. The noetherian Prifer domains
are exactly the Dedekind domains. We have the following result in the general case:

THEOREM 3.13 A domain R is a right distributive ring if and only if S = R\N
is a right Ore system and Ry = RS~! is a right chain ring for every mazimal right
ideal N of R.

PROOF: We show first that a maximal right ideal N in a right distributive ring
R is two-sided. Otherwise, there exists s € R with sN ¢ N and thus sN + N = R;
so there exists nyj,ny € N with sny + n, = 1. Hence, nys = s(1 —nys) and 1 —n;s €
sSIN={reR|sreN}=K and1 —n;s ¢ N. This implies R = K + N and for
D = K NN we obtain
R/D = R/K & R/N

as right R-modules. Moreover, by the definition of K, we have a monomorphism « :
R/K — R/N given by a(r+ K) = sr+ N. The module R/D has a distributive lattice
of submodules. However, for M; = R/K,M; = R/N and M3 = {m; + amy | my €
M} we obtain the contradiction M5 = M3N(M;+ M) # (MsnM;)+(MsnM;) = (0)
since a is a monomorphism.

We prove next that R\N = S is a right Ore system. If s;,s, € S we have
s$171 + ny = 1 and syry + ny = 1 for certain r; € R, n; € N. Hence 1 = sy(s171 +
n1)Ty + Ny = $981717T2 + S2n17T2 + ng, so S is multiplicatively closed.

Let r € R,s € §, then we have

rR=rRN(sR+(r —s)R)=(rRnsR)+ (rRN(r —s)R)

and r = (r —s)t + a for some ¢t € R,a € R N sR follows.

We obtain r(1 —t),st erRNsR. Ift € N, then 1 —t € S and (1 —t) = su for
some u. If t ¢ N, then st =rb € S and b € S follows. This shows that S is a right
Ore system, the ring of quotients RS™! = {rs™! |r € R,s € S} exists and is a right
chain ring by Proposition 1.3.
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Conversely assume that R\N = S is an Ore system and that RS™' = Ry is a
right chain ring for every maximal right ideal N of R. Then we have

(A(B+C))Rv = ARy N(BRn + CRn)
= (ARN N BRN) + (ARN N CRN)
[(ANB)+(ANC)RN

for any maximal ideal N and any right ideals A, B,C of R. Hence, AN (B + C) =
ANB)+(ANC) and R is distributive, since NI Ry = I any right ideal I of R where
the intersection is taken over all maximal right ideals N of R. This last fact holds by
the following argument: let a € N IRy, then a = bysy' for by € I, sy ¢ N. Hence
T(a)={r € R|ar € I} € N for all maximal right ideals N, hence T'(a) = R 31, so
acl. m

COROLLARY 3.14 A right Bezout domain R is right distributive if and only if
all mazimal right ideals N of R are two-sided.

PROOF: It remains to show that S = R\N is an Ore system and AS™! is a right
chain ring provided N is a maximal right ideal in the Bezout domain R which is also
two-sided. That S is multiplicatively closed follows as in the proof of the previous
theorem.

If s €S,r € R,then rR+ sR = dR,s = ds;,r = dr;,s;R+ rR = R for some
diry € R,s1 € S. Hence there exist z,y € R with s;2 + riy = 1 and s1(zs; — 1) =
—rzs1, r1(yr1 —1) = —s1zry follows. If y € N, then yr; —1 € S and if y € S then
ysy € S which proves that S is a right Ore system. By Proposition 1.3 Ry = RS™!
1s a right chain ring since it is a local Bezout domain. m

COROLLARY 3.15 A right noetherian right distributive domain R is right invari-
ant. All prime ideals of such a ring are completely prime. We have PQ = @ for prime
tdeals Q C P in R and P, P, = P, P, for two mazimal prime ideals P,, P, of R.

PROOF: Since R = N Rn and every Ry is invariant by Lemma 3.2, R is invariant.
Hence, every prime ideal of R is completely prime. If N is a maximal right ideal, we
have either P ¢ N and PRy = Ry, PQRNy = QRN or P C Ry and QRny C PRy
and therefore PQRy = PRNQRN = QRN by Lemma 3.3. Finally, we can assume
P, # P, and P, + P, = R follows. Hence, P, and P, cannot be both contained in the
same maximal right ideal N, and P,P,Ry = PPRNP,Ry = P,RyP Ry = P,P Ry
follows for all N. Hence PP, = P,P,. m

3.4 Right artinian right chain rings

A right artinian ring is right noetherian, hence, if R is also a right chain ring, we
have J = mR, m"R = m™*'R for a certain n € N and m"R = (0) follows.
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PROPOSITION 3.16 The following conditions are equivalent for a right chain
ring R.

a) R is right artinian.
b) J is nilpotent.

(
(
(c) J = mR with m nilpotent.

(d) Fach right ideal is a power of J.

If R is a chain ring then R is right artinian if and only if it is left artinian.

PROOF: We have shown above that (a) implies (b).

(b) = (c) J is finitely generated since otherwise J = J2.

(c) = (d) Let I be any right ideal # R, (0) and m*R = J*¥ C I with k minimal.
Hence I = aR C m*"'R,a = m*~!r for some r € R. It follows that r cannot be a
unit, r = mr; and I = aR = m*R.

(d) = (a) Since J™ = (0) for some n, there are only finitely many right ideals in
R.

To prove the final statement of the proposition it is enough to show that Em =
mR = J for J # (0). Obviously, we have Rm C mR. The left ideal Rm is two-
sided unless there exist u € U, v € J with vmu = m (see Lemma 1.4). In this case
m = vmu = mv'mu for some v € R and m = 0 follows, a contradiction that shows
that for chain ring the conditions (a) - (d) are left right symmetric. m

The rings characterized in Proposition 3.16 are well known, see for example Lesieur
[67], Jonnson; Monk [69]. Krull [32] calls commutative rings of this type primary and
structure theorems exist (see Clark; Drake [73], Clark; Liang [73]) for finite right
chain rings, even though a classification by invariants has been given only for finite
right chain rings satisfying additional conditions.

We conclude this chapter with an example given first by Baer ([42], p. 310f) that
shows that a right artinian right chain ring which is left noetherian is not necessarily
a left chain ring. This is in contrast to the result about right chain domains proved
in Lemma 1.2 (iv). Related examples were given by Camillo ([75], p. 24f), Jain et al.
[76] and Courter [82].

EXAMPLE 3.17 Let F be a field with a monomorphism o : ' — F and F° C F.
Let A = F|z,0] be the skew polynomial ring in X with elements r = ¥ za;,a; € F
and multiplication defined by ax = za’. Then zA is a two-sided ideal and R =
A/(z*A) is a right chain ring with J = R and J* = (0). However, for a € F\F° we
have Rz ¢ Rxa ¢ Rz, i.e. R is not a left chain ring. (We denote the image of = in
R again by x). If [F : F°] is finite with basis {by,...,b,} then {1,zby,...,zb,} s a
basis for A as left vector space over F. In particular A is left artinian. For F = Q(t)
and o with o(t) = t", t an indeterminate over the rationals Q we have [F : F°] = n.
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4 Associated prime ideals

With every proper right (two-sided) ideal I of a right chain ring R, is associated a completely prime
ideal P-(I) D I (R(I) D I) and B(I)/I (B(I)/I) is the set of right (left) zero-divisors in- R/T
whenever I is two-sided. For right ideals I the minimal completely prime ideal P containing I is
the corresponding right associated prime ideal if and only P = +/T holds and I is right P-primary
(Proposition 4.8). Associated prime ideals of various types of right ideals are calculated. It is
proved that related right ideals A,B (i.e. ss1A = t 1B for some s ¢ A, t ¢ B) have the same
right associated prime ideals. From this it follows (Theorem 4.19) that P = |J A, where the union
is taken over the class of right ideals related to A and P is the right associated prime ideal of A
The associated prime ideals are also helpful in computing double annihilators in case R is a chain
ring: We prove that P'” is again completely prime if P is a completely prime ideal and P # (0)
(Proposition 4.14).

4.1 Preliminaries on associated prime ideals

If R is a commutative valuation ring, I an ideal of R, then the minimal prime ideal
P over I is the prime ideal of R minimal with the property of containing I. However
there are other prime ideals connected with 1.
The set
P.(I)={a € R |a"z €I for some n € N}

(see Jacobson [80], p. 432) is a prime ideal of R for any z € R\I, since (ab)"z €
I, b = ra for some r € R say, implies r*(ab)® = b*"z € I. It follows that P,(I) = P
for z ¢ P and that

P(I)={peR|pzelforsomez ¢I}= |J P:(I)
z€R\I

is the prime ideal of all elements in R that induce zero-divisors in R/I.

We consider an example. Let R be a commutative valuation ring with G =
Q& Q ®Q as a group of values and v the corresponding mapping from R* into G.
Then I = {r € R |v(r) > (2,1,a) for all a > v2}isanideal of R. 1 RO P, D P, C
P53 D (0) 1s the chain of prime ideals of R then P; is equal to P, the minimal prime
over I. Let z; be an element of R with v(z,) = (2,1,1), say, then P,,(I) = P, if
v(zz) = (2,1/2,0), then P, (I) = P, and if v(z3) = (1,1,0), then v(z3) = Ps = P.
Finally P(I) = P,.

The sets P,(I) are not necessarily prime ideals for an ideal I in a commutative
noetherian ring R (for example P;((12Z)) = 6Z in the ring Z of integers), but the
prime ideals among the P,(I) are associated prime ideals of I. Furthermore, P(I) =
Userva P=(I) is the set of elements in R that induce zero-divisors in R/I, but for
commutative noetherian rings R in general it is not an ideal. We recall that /T =
{a € R |a™ € I somen} =_, P, where {P; |i =1,...,s} is the set of associated
prime ideals of I.

We return to a right chain ring R and let I # R be a right ideal in R. We use the
following notation for the sets of elements relatively prime to I (see Térner [76]):
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DEFINITION 4.1 Let R be a right chain ring. For a right ideal I # R we define
Ss(I)={seR|tsel=>tel}

similarly for a two-sided ideal I # R :
SiI)y={seR|stel=>tel}.

We set P.(I) = R\S,(I) (P(I) = R\Si(I)) and call this set the right (( left) associ-
ated prime ideal with respect to the right (two-sided) ideal I.

It will be proved in Theorem 4.2 that P.(I) is in fact a completely prime ideal.
These prime ideals occur in the literature in various contexts. P,([) is called ‘adjoint
a droite’ to the two-sided I provided P,(I) itself is two-sided (Brameret [63}). Math-
iak [86], p. 85) introduces the prime ideals P,(I) for two-sided ideals I in a chain
domain. Matlis ([59], p. 66) defines an ideal I in a commutative valuation ring R as
archimedean if P.(I) = P(I) = J(R).

With the terminology of Section 1.3 we obtain the following equivalent description:

PI)={peR|Ir ¢l:prel}={peR|p'IDI}=IR\I)"
P(I)={peR|3Ir¢l:rpel}y={peR|Ip' DI}=(R\I)"'I

It is obvious that I is contained in P/(I) and P,(I). We note that for any com-
pletely prime ideal P we clearly have P(P) = P,(P) = P. For arbitrary rings the
complement of the set of elements relatively prime to an ideal is not an ideal. For
right chain rings however we have the following result:

THEOREM 4.2 Let R be a right chain ring. If I # R is a right ideal then P.(I)
is a completely prime ideal containing I. If I is a two-sided ideal then Pi(I) is
also completely prime and contains I. For I = (0), we have P.(0) = N,(R) and
P,(0) = Ni(R).

PROOF: Obviously P.(I) = P is a right ideal of the semigroup (R, -) and there-
fore by Lemma 1.5(i) it is a right ideal of the ring R. As the complement R\P is
multiplicatively closed and contains U, the right ideal P is a two-sided completely
prime ideal by Lemma 1.4. This proves the first part.

Now let I be a two-sided ideal and P = Py(I). To show that P is a left ideal
consider 1,z € P with z1t1,29t; € I and ¢;,; ¢ I. We can assume that t;r = ¢,
and z1t17 + xoty = (21 + 24)t € I follows. It is clear that R . P is in P which proves
that P is a left ideal. As the complement of P is multiplicatively closed and contains
the set U of units we have P .U C P and P is a right ideal by Lemma 1.5(iii). =

The left and the right associated prime ideals may not coincide as the following
example shows:

EXAMPLE 4.3 Again take R as in Ezample 3.8. Consider the ideal I = yzR.
Then P(I) = yR and P.(I) = zR.
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This observation leads to the following terminology:

DEFINITION 4.4 Let R be a right chain ring and I a two-sided ideal. The ideal
I is called P-symmetric if P(I) = P,(I) = P is satisfied.

The next result follows from the definition and states that the images of P,([)
(P(I)) in R/I are exactly the right (left) zero-divisors in R/I.

LEMMA 4.5 Let R be a right chain ring, I a two-sided ideal and R = R/I. Then

we have

(i) Ni(R) = P(I)/I and N,(R) = P,(I)/I.

(ii) For a two-sided ideal L D I of R we have P(L/I) = P(L)/I and P.(L/I) =

4.2 Associated prime ideals and the radical of an ideal

We investigate the relationship between the radical of I and the associated prime
ideals of I for a two-sided ideal.

LEMMA 4.6 Let I be a right ideal of the right chain ring R with P,(I) = P where P
is the minimal prime ideal containing I. Further assume that the segment generated
by I is not simple. Then I is a two-sided ideal. If in addition PI # 0 holds, we have
P(I)=P.

PROOF: Let [P, Q[ be the segment generated by I and P,(I) = P completely
prime. To show that I is two-sided assume ux ¢ I,u € U,z € I. Hence, uzv = « for
some v € R and v € R\P by Corollary 1.22. It follows from the definition of P, (1)
that uz € I, a contradiction.

Obviously we have P = P,(I) C P(I). To prove Pi(I) = P take s € R\P and
st € I for some z € R. We have to show that z is in I. This is obvious if szt = «
for some t € R. Otherwise sz = zt. If ¢ is not in P,(I), then z € I. It remains
to consider the case t € P, z ¢ I. If P is the radical then t* = 0 for some n and
s"z = 0. However in this case (0) = s"zR D s"I D PI which contradicts PI # (0).
If P is not the radical of R, then sz = zt with s ¢ P, t € P contradicts Corollary
1.22. m

In Example 4.3 we have for I = yzR that P = P(I) = yR is the minimal prime
ideal containing I, but P C P,(I) = zR. This shows that the second statement in
Lemma 4.6 is not left-right-symmetric.

We recall that the set

ViI={z€eR |3 eN:z"el}

is called the radical of the two-sided ideal I. It follows from Theorem 1.21(vi) that
P = /T where P is the minimal prime ideal containing I, provided P is completely
prime. If this additional condition is not satisfied, i.e. P is an exceptional prime, then
VT is neither a left nor a right ideal (see Chapter 6).

This leads us to the following definition specializing the notion in Lemma 3.6.

34



DEFINITION 4.7 Let R be a right chain ring and I a two-sided ideal in the prime
segment [P, Q[ with P completely prime. I is called right P-primary if ab € I,a ¢ I
implies b" € I for some n € N where a,b € R. Dually, we define left P-primary.

By Theorem 1.21(vi) we have /T = P.

PROPOSITION 4.8 Let R be a right chain domain and I a two-sided ideal in the
prime segment [P, Q[. Then the following conditions are equivalent:
(a) I is right P-primary.
(b) P.(I) =
PROOF: (a) = (b) By Definition 4.7 P is the minimal prime ideal containing
and P C P.(I). To prove R\P C R\P,(I) assume zs € I, s € R\P and z ¢ I.
Hence, s™ € I C P, which contradicts P a completely prime ideal by definition.
(b) = (a) Assume P,(I) = P. By Theorem 4.2 P is a completely prime ideal.

Suppose ab € I and a ¢ I. If b ¢ P, the assumption P = P,(I) implies a € I. Hence
we can assume b € P and by Theorem 1.21(v) we obtain 4" € I for some n € N. m

With Lemma 4.6 we obtain the following result:

COROLLARY 4.9 Let R be a right chain domain and I a right P-primary two-
sided ideal. Then I is also left P-primary.

4.3 Associated prime ideals of right ideals of special types

Next we describe explicitly the associated prime ideals for various types of right ideals
in right chain rings, in particular of right ideals of the form IP and IS~! for P = R\S
a completely prime ideal of R and I a right ideal.

PROPOSITION 4.10 Let R be a right chain ring, P = R\S a completely prime
ideal and I # R a right ideal of R. Then we have:
(i) P,(P)= P(P)=P.

(ii) For all a € R with aP # (0) we have P,(aP) = P. In particular, J = P.(aJ)
forall0#a € J.

(iii) Let IP # (0). Then P.(IP) C P.

(iv) P.(I) CP if and only if I = IS~1.

(v) For all0 # a € P we have P,((aR)S™!) C P.
)

(vi) Let P.,(I) = P and Q = R\T be a completely prime ideal with @ C P and
1Q # (0). Then P.(IQ) = Q.
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PROOQF: (i) follows from the definition.

(i) Since we have a ¢ aP, we conclude P C P,(aP). Assume P C P,(aP) and
s ¢ P exists with zs € aP, = ¢ aP. Let zs = ap for some p € P. If zs = 0, then
(0) = zP = zsP = aP, a contradiction since s ¢ P. Hence, zs = ap # 0. We
compare aR and zR. If ar;, = z with r; ¢ P, then ap = zs = ar,s implies zs = 0
since p = rysj for some j € J. If a = zry, we obtain zs = ap = zryp and again zs = 0
follows, a contradiction. Hence, P C P.(aP) is impossible proving P = P,(aP) and
(i).

(i) If IP C I holds, then IP = aP for some a € I\IP by Lemma 1.11(iv) and
(iii) follows from (ii). Hence assume I = I P and we show R\P C R\P,(IP). Take
s € R\P and z € R with zs € IP. We have zs = yp for some y € I, p € P.
If £ ¢ I = IP, then y € zR and hence zs € zP leading to zs = 0 and further
IP CzP = zsP = (0), a contradiction. Hence, z € I, and we are done.

(iv) Assume P,(I) C P and take ¢ € IS™'. Then zs € I for some s € S = R\P,
hence z € I. We obtain IS~! C I and so I = IS~'. Conversely, assume I = IS™1.
Let z € P,(I)\P, then tz € I for some t ¢ I and t € IS~ = I, a contradiction.

(v) Note that by Corollary 1.10 we have ((aR)S™!)S~! = (aR)S™!, hence the
assertion follows by (iv).

(vi) Assume first that P,(I) = P = Q. If IQ C I, we have IQ = aQ for some
a € I\IQ (Lemma 1.11(iv)) and P,(IQ) = P,(aQ) = Q follows by (ii). The case
IQ = I is obvious. We now turn to the case @ C P. Applying (iii) it remains to prove
that Q@ C P,(IQ). If IQ C I, then IQ = a@) and P,(aQ) = @ for some a € I\IQ).

We assume I = IQ and choose p € P\Q. Then there exists ¢ ¢ I such that
tp =2 € 1, since P,(I) = P. Since z € I = IQ we have ¢ = tp = ab,a € I,b € Q.
Therefore z = 0 sincea =tj, j € J and p ¢ @, jb € Q. We obtain IQ C tQ = (0),

a contradiction. m

In the case of chain rings the statements become smoother.
LEMMA 4.11 Let R be a chain ring, then we have:
(i) P.((aR)S™Y) =P for all0 #a € P.
(i) P(aR)=J forall0#£a€J.

(ii1) Let (0) # I be right ideal, P.,(I) = P and Q@ = R\T a completely prime ideal
satisfying I CQ C P. Then P,(IT™') = Q.

PROOF: (i) By Proposition 4.10 (v) it remains to prove P C P,((aR)S™!). If
P = (aR)S™! we are done (Proposition 4.10(i)). Now we assume (aR)S™! C P
and take p € P\(aR)S™!. We have either b;p = a or p = bya. If in the first
by ¢ (aR)S™!, then p € P,((aR)S™!). If b € (aR)S™!, say bys = a for some
s € S, we have a = bjp = bysp’ = ap’ for p = sp’ and p’ € P since sP = P,
hence a = 0, a contradiction. In the other case, b, € (aR)S™!, we may assume
bys = a for some s € S, otherwise if b, = as holds, p = bya = asa € (aR)S™!
would follow. Hence, a = sa’ for ¢’ € R, since (aR)S™! C P C sR. We obtain
p = bya = bysa’ = ad’ € (aR)S™, a contradiction.
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(ii) follows from (i)

(i) If I ¢ IT~! we are done by (i) and Lemma 1.11(i). Hence we may assume
I = IT-! which implies P = P,(I) C Q by Proposition 4.10(iv), hence P = Q and
P(IT"YY=P(I)=P=Q. =

Next we are asking for the left associated prime ideals of two-sided P-standard
right ideals in case of chain rings. By understanding this relation we are able to
control a shifting process on prime ideals which will also be studied for right chain
rings under additional conditions in Chapter 7 and 8.

Let P be again a completely prime ideal in a chain ring R and Pa # (0) a left
ideal. Then Pa +# (0) is a right ideal if and only if Pa C aJ. To see this, first let Pa
be a right ideal and assume par = a for some r € R, p € P. Hence, a € Pa leading
to a = 0, a contradiction. Hence we have Pa C aJ.

Now let Pa C aJ and take pa € Pa, u € U. If au = ra for some r € R we are
done. We are also finished if rau = a for some r ¢ P. However, rau = a with r € P
leads to a = 0 using Pa C aJ.

PROPOSITION 4.12 Let R be a chain ring, P = R\S a completely prime ideal
and a € R.

(i) If Pa # (0) is a two-sided ideal, then there ezists a completely prime ideal
P, = R\S, with Pa = aP,. We have P = P, if and only if P(Pa) = P,(Pa).

(i) If S™Y(Ra) # (0) is a two-sided ideal, then there ezxists a completely prime
ideal P, = R\S; with S7'(Ra) = (aR)Sy'. We have P = P, if and only if
P (S~!(Ra)) = P,(S7"(Ra)).

(iii) Assume Pa = aPy as in (i) and let Q) be the lower neighbour of P as a prime
ideal. Assume in addition that Q) is completely prime and Qa # (0). Then we
have Qa = a@Q)y where @, is the lower neighbour of P\ as a prime ideal which
is again completely prime.

PROOF: (i) Set P, = {z € R | az € Pa}. First we show that P, is a right
ideal. Let r € R and z € Py, so az = pa with p € P. If ar = s,a for some s;, then
azr = par = ps,a € Pa, hence zr € P,. Otherwise we have syar = a with s, € J. If
s € P, then a = sqar € Par C aJ, so a = 0 - a contradiction. Thus s; ¢ P and so
p = qs, with ¢ € P. In this case azr = par = gs;ar = qa € Pa, so zr € P,.

Now we want to prove that P, is a left ideal. Take u € U. If au = va for a suitable
v € R we are done. Otherwise we have vau = a with v € P because of Pa # (0).
The proof then proceeds with the same arguments as above.

Finally it remains to show that P; is completely prime. If z ¢ P; then az = qya
or gaz = a with ¢1,q; & P. As ¢%, g5 € P, we obtain z? ¢ P; in both cases.

(ii) Let P,(S7'(Ra)) = P, = R\S; with P, a completely prime ideal. Hence,
(aR)ST! € S~'(Ra) since S~'(Ra) is two-sided and therefore aR C S~(Ra). Then
zs; € aR with s; € S; implies z € S~!(Ra). To prove equality, assume (aR)Sy! C
S~!(Ra) with y € S7'(Ra)\(aR)ST'. We have yp = a for some p € P, otherwise
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y € (aR)ST! would follow. Since P,(S~!(Ra)) = P, we find y' ¢ S™!(Ra) with
y'p € S™!(Ra). Hence, sy'p = a with sy’ = y for some s and s € S follows showing
y' € S71(Ra), a contradiction.

(iii) Obviously, by (i) there is a completely prime ideal Qa = aQ,. There cannot
be any completely prime ideal @ with @ C @} C P, otherwise (i) would induce
a completely prime ideal Q' with Q'a = aQ} and Q C Q' C P. It remains to show
that there cannot be an exceptional prime ideal @] with @, C Q] C P;. As it will
be shown in Theorem 6.2 we have P2 = P, and P? = P follows. Note that by
Qa = aQ, C aJ an equation uas = a for some unit v € U implies s ¢ @), hence
Q' = {z € R | za € aQ}} is a two-sided ideal with Q@ C Q' C P. Since P2 = P is
idempotent, [P, @[ is not simple, by Theorem 1.21 a two-sided ideal I withQ Cc I C P
must exist causing again a two-sided ideal I; to exist (use symmetrical arguments)
with Ja = al; and Q) C I; C Py, a contradiction. m

The symmetric case when P = P, in the last proposition is of particular interest
and will be investigated later.

We recall that P! = (aR)S™! for some a € P'if P is completely prime by Lemma
2.6. Applying Lemma 4.10(v) and 4.11(i) we obtain Lemma 4.13.

LEMMA 4.13 Let R be a right chain ring and P a completely prime ideal with
P! # (0). Then P.(P") C P. If R is, in addition, a left chain ring, then equality
holds.

It is easy to show that in right chain rings the equality does not hold in general;
take the ring R in Example 3.9. Then P,((zR)') = P.(yR) = yR C 2R = P.

As mentioned in Proposition 2.10(i) we saw that P = P if P is a completely
prime ideal and P” # (0). The next result gives information about right-right anni-
hilator ideal P for completely prime ideals P with P™ # (0).

PROPOSITION 4.14 Let R be a chain ring and P # 0 a completely prime ideal
with P™ # (0). Then

(i) P.(P") = P.
(il) P is completely prime.

PROOF: (i) First we show: R\P,(P") C R\P". Let z be in R\P,(P") and

assume z € P™". Take 0 # z € P". Since P C P,(P"), ¢ & P7, so z = sz for
some s € R. We obtain s € P", hence z = 0, since z € P, a contradiction. Thus
P C P(P").
Conversely, let £ € P,(P"). Then there exists t ¢ P" with tz € P". We must show:
zz = 0 for any z € P". Let z € P", then ut = z for some u € R since t ¢ P". If
u ¢ P, we apply the symmetric version of Lemma 4.13 to conclude that v € R\P,(P")
and obtain ¢ € P". Therefore u € P, and hence zz = utx = 0. Thus P.(P") C P,
which proves (i).

The statement (ii) follows from (i) and Theorem 4.2. m
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4.4 - The set of right ideals with a fixed right associated prime ideal

We pointed out earlier that the prime ideals P,(I) and P;(I) reflect essential properties
of the two-sided ideal I in a right chain ring. We will obtain some information about
the distribution of right ideals with the same associated prime ideal in the lattice of
right ideals of R. The next result shows that for P.(I) = P and for a completely
prime ideal @ = R\T C P we have P.(IQ) = Q = P.(IT™ "), but P.(L) D Q for all
right ideals L with IQ c L C IT!.

THEOREM 4.15 Let R be a chain domain whose prime ideals are completely prime
and (0) # @ = R\T C P = R\S be prime ideals. Let I # (0) be a right ideal with
I CQ and P.(I) = P. Then we have:

(i) In the prime segment generated by I there ezists a right ideal I' with Q) as its
right associated prime ideal. If I is two-sided, I' can be chosen to be two-sided.

(i) IT! is the smallest right ideal containing I with Q) as its right associated prime
ideal. We have IT™! = (aR)T~?! for any a € IT '\I.

(ii) IQ # (0) is the largest right ideal contained in I with Q) as its right associated
prime ideal.

(iv) If L is any right ideal with IQ C L C IT!, then we have P,(L) D Q.

PROOF: (i) Take IT! and apply Lemma 4.11(iii). If I is two-sided, so is IT™!
(use Lemma 1.9).

(i) By Lemma 4.11(iii) we know that P.(IT~!) = @ holds. Since P,(I) #
P.(IT7') we have I C IT"! and IT™! = (aR)T" for any a € IT"!\I. If L D I,
P.(L) = Q for a right ideal L, then I C L and (aR)T~' C L for any a € L\I.

(iii) Again we have P,(IQ) = @ using Proposition 4.10(vi). This implies that
IQ c I, hence IQ = aQ for some a € I\IQ by Lemma 1.11(iv). For ay,a; € I\IQ
with a; R D a;R we have a;r = a; with r € T. Any ideal L D a@ with P,(L) = @
would contain at least one element a € I\IQ and hence all such elements, since
(aR)T~! C L. This would imply I = L, however P,(I) = P,(L) = @ is contradicting
our assumption.

(iv) follows from (ii) and (iii). Note that there cannot be an ideal L with I1Q C
L c IT7* with P.(L) = @ = R\T" C Q. Otherwise L = LT'"! would imply
IT''CL. m

In the next result we describe a right ideal I with associated prime ideal P = R\S
in terms of the special right ideals (aR)S~! and aP. As a consequence we show that
if I with P.(I) = P is two-sided, then there exist standard P-associated ideals in a
neighbourhood of I which are also two-sided.

THEOREM 4.16 Let R be a chain domain, P = R\S D> @ = R\T completely
prime ideals with [P, Q[ not simple. Further let (0) # I be a right ideal with P.(I) =
P. Then we have:
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(i) I = Uses(aR)S™1.
(ii) I = (gsaP.

(ili) Assume that I is a two-sided ideal. Then we have I = U,epcr(aR)S™ with I’
a subset of I such that (aR)S™! is two-sided for anya € I'.

(iv) Assume that I is a two-sided ideal. Then we have I = (,epcpyyaP with I' a
subset of R\I such that aP is two-sided for anya € I'.

PROOF: (i) Since (aR)S™! C I holds for all a € P, the equation is obvious.

(ii) First, aP C I for some a ¢ I could never hold. Otherwise take any b € I\aP
and b = as follows for some s € S, since b ¢ aP. However, s € P.(I) = P since
a ¢ 1,b € 1, a contradiction. So, I C N,¢;aP. Assume there exists b € (Nugs aP)\I,
hence b € bP, again a contradiction.

(iii) We consider U(aR)S;elI\IQ and prove (aR)S™! is two-sided for a € I\IQ.
Then we restrict the elements over which the union of (aR)S™! is taken to those
elements of aR lying between IQ and I. It suffices to show that (aR)S™! is two-
sided. Let p € P\Q, hence there exists ¢ ¢ I with 2p = 2z € I for some z € I. We
can assume that 2R C aR holds, otherwise multiply z = zp by some p’ € P\Q. If
(aR)S™! is not two-sided we have uag = a for some ¢ € P. Without loss of generality
Rq C Rp. We obtain z = ar = uaqr = uar’p = zp for v’ € R, hence x = uar’ € I, a
contradiction since I is assumed to be two-sided.

(iv) with similar arguments as in (iii) m

We consider right ideals Ay, A € A related to a right ideal A and show that they
have the same right associated prime ideals P = P.(A). In addition we show that
P = J)ea A and obtain some information about N¢p Aa.

DEFINITION 4.17 Let R be an arbitrary ring and A, B right ideals. A, B are
called related provided there exist s ¢ A, t ¢ B satisfying s™'A = t"'B.

We recall that s'A = {z € R | sz € A}. The relation defined above is an
equivalence relation. We only prove its transitivity, the rest is obvious. Let s71A4 =
t7!B and v™!B = w™!C. W.lo.g. assume tr = v. By a straightforward calculation
one shows that (sr)™'A = w™!C holds with sr ¢ A. The following results will be
used in different situations, for example in the classification of injective modules over
right chain rings.

LEMMA 4.18 Let A, B be right ideals of a right chain ring R. If s7'A = t"'B
with s € A, t ¢ B, then P,(A) = P.(B).

PROOF: Let s7'A = t"'B. Take p € S,(A) = R\P,(A). Suppose zp € B.
First we assume t2; = z for some z; € R. Then zp = tz,p € B, so sz;p € A. As
p € S.(A) we get sz, € A and thus tz; = = € B, hence p € S,(B) = R\F.(B). Now
assume t = 2, for some 2z, € R\P. But then z2), = p for some 2;, € S,(A) and
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Tp = T2 = tzj € B, so szj € A. Thus s € A, as z; € S,(A), and this is again a
contradiction. m

We note that zA # 0 for some right ideal implies A related to zA. To prove this
we claim that 27!(zA) = A where A C z7!(zA) is obvious. If, conversely, an element
z € 27 (zA)\A exists then z is not a right zero-divisor, but zz = za € zA for some
a € AC zR. Then a = 23,5 € J and zz = 0 follows, a contradiction which shows
that z7!(zA) = A and z A is related to A for every 0 # r € R.

THEOREM 4.19 Let R be a right chain ring, A # R a right ideal in R. Further,
let Ay, A € A be the set of all right ideals related to A; with P,(A) = P = R\S and
D = Nyep Ax we obtain:

(i) P = Uxea Ax-
(i) P.(D) C P.
(i) (a) If N.(R) C P, then D = (0).

(b) If P C N,(R), then either D = (0) and P = P.(0) = N,(R) or D # (0)
and D = P!,

PROOF: (i) Obviously, Uyep Ar = (R\A)"'A = P,(A) (see the remarks after
Definition 3.1).

(i1) We show that S = S,(A4,) C S,(D). Let s € S and assume zs € D. Then
zs € A, for all A € A follows. Hence, ¢ € A, forall A € A and ¢ € D,s € S,(D) as
claimed.

(iii)(a) By (i) there exists a right ideal Ay with P D Ay D N,(R). As A, contains
regular elements the right ideal A, is never the zero-ideal, thus R Dz A, # (0) for
any ¢ € R*. As mentioned above A and z A are related. If d € D then d € dAy CdJ
and so d = 0. Hence D = (0).

(ii)(b) If D = (0) we obtain by (ii) that P,(D) = P,(0) C P and by assumption
P C N,(R). Since N,(R) = P,(0) we conclude P = N,(R) = P.(0). We consider next
the case D # (0) and must show D = P'. Let 0  z € D. If we assume zA) # (0) for
some A € A, then Ay, C xR C D and as zA, is related to Ay, also D C zA) follows,
a contradiction. Thus we have zA) = (0) for all A € A, hence by (i) zP = (0) and so
D C P'. By (ii) P! C D follows and we have shown D = P'. u
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5 Localization of right chain rings

Right chain rings can be localized at every completely prime ideal (Proposition 5.5). In the case of
chain domains R each overring in the quotient field of Q( R) is obtained as a localization of R and
again a chain domain (Proposition 5.3). This is not true for right chain domains (Example 5.7).
For arbitrary right chain rings we describe the left (right) zero-divisors of the localized ring in terms
of the left (right) associated prime ideal of the kernel which itself is zero or the annihilator of a

completely prime ideal (Proposition 5.6).

5.1 Quotient rings of right chain domains

If R is a right chain domain, R is a right Ore ring and the right quotient ring Q(R)
exists. If, in addition, R is a chain domain, each element of Q(R) has the form a or
a~! with a € R. Conversely, if the quotient ring of a domain R has this property,
then R is a chain domain. This was noticed by Brameret [63]. Radé [70] calls a
subring R of a skew field D total if £ € D\R implies z=! € R (see also Cohn (89}, p.
3).

We summarize these observations:

PROPOSITION 5.1 (i) A right chain domain R is a right Ore domain and its

skew field of quotients exists.
(ii) If a right chain domain R is left Ore, then R is a chain domain.

(iii) R is a chain domain if and only if R is a total subring of its skew field D of
quotients.

Statement (ii) was already mentioned in Lemma 1.2(iv).
We consider the localization of R at a completely prime ideal.

LEMMA 5.2 Let R be a right chain domain and P = R\S a completely prime ideal.

Then the localization Rg exists and is again a right chain domain.

PROOF: S is multiplicatively closed since P is completely prime and r = sry or
rsgy =sfors; € S,ry e Rifr € R,s € Sis given; Rs = {rs! |r€eR,s €S} m

Each localization Rg is an overring of R in Q(R). The next result shows that for
a chain domain R, all overrings of R in Q(R) are obtained by localization. However,
this does not remain true for right chain domains (see Section 5.3 for an example).

PROPOSITION 5.3 Let R be a chain domain, K = Q(R) its skew field of quo-
tients. Then there is a one-to-one correspondence between the set of rings T between
R and K and the set of completely prime ideals of R given by P — Rg where S = R\P
is an Ore system, T — P = R\S with S = {s € R |s €e U(T)}. Rs is the ring of
quotients of R with respect to the Ore-system S and again a chain domain.

PROOF: Let T be an overring of R and let P = R\S be defined as in the
proposition. Then, p € P, € R implies pr,rp € P, s1,s; € S implies s;s; €
S, U(R) C S and P is a completely prime ideal of R with Rs =7. m
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5.2 Localization of right chain rings

Let S be a multiplicatively closed subset of a right chain ring R that contains the
set U(R) of units of R and is saturated, i.e. s;s, € S implies s;,s, € S. Then
P = R\S is a completely prime ideal of R by Lemma 1.5 and 1.8. Conversely, if P
is a completely prime ideal in the ring R, then S = R\P is a multiplicatively closed
set that is saturatetd and contains U(R).

For the right chain ring R and the completely prime ideal P = R\S consider the
set

I={a€R|3s,s €S:sas’ =0}
We recall the following definitions
Ni(S)={a € R|as =0 for some s € S}
and
N,(S)={a € R |sa=0 for some s € S}.

Both sets are two-sided ideals (see Section 2.1). The next result shows that I is a
two-sided ideal with the property that as or sa € I,s € S,a € R implies a € I.

LEMMA 5.4 Let R be a right chain ring and R\S = P a completely prime ideal.
Then the following is valid:

(i) The set I = {a € R | 35,8’ € S : sas’ = 0} = Ny(S) UN,(S) is a two-sided
ideal.

(i) M(S)UN,(S)={a|3s,s' € S:sas’ €1}.
(i) P(I),P(I) C P.

PROOF: (i) Ni(S) UN,(S) € {a | 3s,8' € S: sas’ = 0}. The converse inclusion
also holds: As N;(S),N,(S) are two-sided ideals, we have to consider two cases:
Ni(S) € N(S) or N.(S) C Ni(S). Let Ni(S) C N,.(S) and sas’ = 0. We have
sa € Ni(S) which implies sa € N,(S), hence a € N,(S). The case N,(S) C Ni(S5) is
treated similarly and I = N;(S) U N,(S).

(ii) Obviously we have {a | 35,8’ € S : sas’ =0} C {a | 35,8’ € S : sas’ € I}.
Now take any ¢ € R with sas’ € I for suitable s,s’ € § and by (i) we obtain
tsas't’ = 0 for some t,t' € S.

(iii) Assume that for some ¢t € S the element ta lies in I, thus stas’ € I with
s,s’ € S which shows a € I. The other inclusion can be checked with the same
arguments. m

The set S of images in R = R/I of elements in S is a right Ore set of S is
multiplicatively closed. In addition, S consists of non-zero divisors of R by Lemma
5.4(ii) and the ring R[S '] = {r5' |7 € R,5 € S} exists and is denoted by Rs or
R[S7']. We summarize these observations:

43



PROPOSITION 5.5 Let R be a right chain ring and R\S = P a completely prime
ideal. Let I = Ni(S)UN,(S)={a € R|3s €S :sa=0oras =0} Then the
following holds:

(i) I is a two-sided ideal of R and no element of S = S/I is a zero-divisor in
R/I=T.
(ii) R is a right chain ring and S a right Ore system.
(iii) R[S = {rs7! |7 € R,5 € S} is a right chain ring with P[S™] as its mazimal
ideal.
We will usually denote the ring ﬁg—l] by R[S~1] and its maximal ideal by PR[S™?]
and we will use the following terminology:

For a right ideal A of R we denote by A®* = A[S~!] = AR[S™!] the extended right
ideal and by B¢ = ¢~'(BNR) the contraction of a right ideal B of R[S™'] in R where
¢ is the canonical mapping from R to B C R[S ].

We are interested in results which describe the left and right zero-divisors in

R[S,

PROPOSITION 5.6 Let R be a right chain ring and P = R\S a completely prime
ideal. Let I = Ni(S) UN,(S). Then we have:

(i) Ni(R[S7Y]) = P(I)[S7!] and N,(R[S™!]) = P.(])[S7"].
(i) If R is, in addition a chain ring and I # (0), then we have:
N.(R[S7Y]) = P[S7Y] or Ni(R[S7!]) = P[S™!]. Hence, each element of R[S™!]

which is not a unit is either a left or right zero-divisor.

PROOF: (i) If @ € R is a left zero-divisor in R, hence @b # 0, then so is a3}
for any 5§ € 5. The opposite implication is also true: Let @~! be a left zero-divisor
in R[S, hence as~16t ' = 0 for some 0 # 6t ' € R[S '] and @55 = 0 follows.
Finally we have 3716 = 5,37}, so @b, = (0). The rest follows by Lemma 4.5, since
N(R/I) = P(I)/I and N,(R/T)/I.

(ii) It suffices to prove PI) = P or P,(I) = P provided R is a chain ring.
Without loss of generality we assume I = N,(S) # (0). Using the symmetric version
of Corollary 2.7 we obtain P* = N,(S) = I. Lemma 4.14 then implies P(P") = P. m

5.3 Examples

The next example shows that overrings of right chain rings are not necessarily right
chain rings again.

EXAMPLE 5.7 Take the ring R as constructed in Frample 3.8. The ring R is
a right invariant right chain domain which is not a left chain domain. In L =
Q(R) we have the ring R_, = yRy™! which can be described as A_y[[y,o]] where
Ay = k(z,ty,...)[u]) withu =yzy™! an indeterminate over k(z,t1,...). The ring
T = {a € R_y | a(0) € A} is an overring of R, but not a right chain ring, for ezample
y and yu are not comparable in T since u € A_;\A.
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Whereas in the chain ring case at least one of the left or right zero-divisor sets in
a localized ring equals the maximal ideal (provided the kernel # (0)) the following
example shows that localization in a right chain ring which consists of elements which
are either units or left- /right zero-divisors may lead to a domain which is not a division
ring.

EXAMPLE 5.8 Let R be a right noetherian right chain ring as described in Chap-
ter 8, in particular let R possess the prime ideals J = ¢R DO P = yR D @ = zR
satisfying zz = 0. Set R\P = S. Then Ni(S) = @, N.(S) = (0), and hence
T = Ni(S) UN,(S) = Q. Thus Pi(Q) = P,(Q) = @ and RIS-1] = R/Q[(S/Q)"].
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6 Prime ideals in right chain rings

Central for the investigation of prime ideals in right chain rings is the open question whether
exceptional prime ideals, i.e. prime ideals which are not completely prime, can exist in such rings.
In Theorem 6.2 we describe the idealtheoretical prerequisites in right chain rings for the existence
of prime ideals that are exceptional and list more information about-such a situation (Proposition
6.7). In particular, an exceptional prime Q is always paired with a completely prime ideal P= P?
as its upper neighbour such that [P, Q[ is simple. These results lead to a division of right chain
domains with exactly two completely prime ideals into three specific classes (Corollary 6.3). Finitely
generated prime ideals P % (0) in a chain ring R are either J or the maximal prime ideal below J
in which case P is an exceptional prime. Simple segments are investigated further and an example
of a right chain domain is given where R O J DO (0) are the only two-sided ideals, i.e. Ris almost

simple.

6.1 Exceptional prime ideals - a first characterization

We consider two questions concerning prime ideals in right chain rings R.
(i) Do there ezist prime ideals P,Q in R with [P, Q[ simple?

Dubrovin [80] presented the first example of such a ring which will be referred in
Section 6.5. Further examples were given by Mathiak [81] and Brungs/Térner [84b].
These rings are nearly simple in the following sense.

DEFINITION 6.1 A local ring R is called nearly simple if J and (0) are the only
two-sided ideals of R.

A second question seems to be more challenging:

(i1) Does there exist a right chain ring R with a prime ideal which is not completely
prime?

Posner [63] hinted that such ideals might exist in right chain rings without giving
further evidence. A classification of hypercyclic rings by Osofsky [68] is complete
only if exceptional prime ideals do not exist in chain rings. V.K. Goel and S. K.
Jain encountered this existence problem in [78] and it was mentioned explicitely in
[78] and [84] by Jain. A geometric version of this problem was discovered by Torner
in [74] and it was formulated along with (i) as a ringtheoretical problem in [76] by
Brungs and Tdrner. Dubrovin [83] announced an example of a chain ring with an
exceptional prime ideal, but there is a gap in the proof; see Schroder [90].

We will describe conditions that are necessary for the existence of such exceptional
prime ideals.

THEOREM 6.2 Let R be a right chain ring, () an exceptional prime ideal and
P the intersection of all completely prime ideals containing Q. Then P = P? and
there are no two-sided ideals properly between P and @, that is, the segment [P, Q|
is simple. Moreover, Q # (0) implies @Q* # Q and Q is nilpotent or N,en Q™ s

completely prime.
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PROOQF: Let I be a two-sided ideal with @) ¢ I C P. As (@ is prime, ) C I*
for all n, hence Q@ C N,enI™. But N,en I™ is a completely prime ideal by Theorem
1.15(ii), hence P = N,enI® € I?> C T C P. This implies I = P and P = P2. The

last assertion follows from Theorem 1.15. m

Using Theorem 6.2 we are able to give an idealtheoretical characterization of right
chain domains of rank 1.

COROLLARY 6.3 If R is a right chain domain with exactly two completely prime
ideals J and (0), then one of the following cases occurs:

(i) R is a right invariant right chain domain.
(ii) R is nearly simple.

(iii) R has an idempotent mazimal ideal and possesses an exceptional prime ideal Q)

with MNen @™ = (0).

In the cases (i) or (i1i) the mazimal ideal is idempotent.

PROOQOF: First we assume that all prime ideals are completely prime. If J is not
idempotent, then J = aR and (aR)™ = a™R is a chain of two-sided ideals intersecting
in the zero ideal (Theorem 1.15(ii)). Hence for any z € R\{0} there is some n € N
and a unit v € U with £ = a™u, and thus R = a™R is a two-sided ideal, i.e. R is
right invariant.

Now assume that J is idempotent. If there is no further two-sided ideal # (0), J,
we are in Case (ii). Hence assume the existence of a two-sided ideal I # J,(0). If
I = @ is prime, it must be an exceptional prime and by Theorem 6.2 assertion (iii)
follows.

In the remaining case we may assume that there exists a two-sided ideal I which
is not prime, hence [P, (0)[ is not simple. Corollary 1.22 can be applied showing
uz € R for all z € P\(0), u € U and by the second statement in Corollary 1.22
Uz C zU follows leading to Rz C R (use Lemma 1.5). m

6.2 Arithmetic in simple prime segments

In Theorem 1.21 we proved several results for non-simple prime segments. We will
show by an example that simple prime segments do exist. We will obtain several
results for the case when the prime segment [P, Q[ with @ an exceptional prime is
simple (Theorem 6.2) and additional conditions must be satisfied for this situation
to occur.

We begin with a technical result.

PROPOSITION 6.4 Let R be a right chain ring, A C B two-sided ideals of R with
no two-sided ideal X between A and B. Let z € B\A with 2> ¢ A and 2R # B. Then
there ezists a unit u with A C 2R C N,en(uz)* R, in particular A C Nyen(zu)"R.
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PROOF: Let z € B\A. By Lemma 1.5 there exists u € U with z = uzw,w € J.
We consider the following cases:

Case 1: w = zq with ¢ € R; then z = uzw = uz’q = uz(uz®q)q = (uz)?zq® =
(uz)"zq"™ for all n € N. Thus z € M,en(uz)"R. Hence in this case A C zR C
Mrwen(uz)™ R and in particular, as A is a two-sided ideal A C N,en(zu)™ R follows.

Case 2: z = wq with ¢ € J; then uz? = uzwq = zq € zR. Note further that for
a unit v € U with vz € zR also vz? € zR follows. Hence, either there exists a u € U
for which the condition of Case 1 is satisfied or we have uz? € zR for any u € U,
hence Rz?R C zR. By assumption z? ¢ A and zR # B, hence A C Rz*R CzR+# B
contradicting the the assumption that there is no two-sided ideal between A and B.
Thus, for any z € B\A there exists a unit « such that the condition in Case 1 is
satisfied and the proposition is proved. m

COROLLARY 6.5 Let R be a right chain ring, P,Q neighbouring prime ideals
with [P, Q[ simple. Then for any x € P\Q there exist units u,v € U with Q CzR C
Mren(uzv)"R and Q C Npen(zvu)"R. If Q is completely prime we can choose v = 1.

PROOF: Note that P? = P, since otherwise [P, @[ is not simple. This implies
that zR C P for any z € P. If Q is completely prime, then clearly z? ¢ @ for any
r € P\Q. If Q is an exceptional prime ideal, then for any z € P\Q there exists a
unit v with (zv)? € Q, since otherwise xRz C ) (by Lemma 1.4), contradicting the
fact that @ is prime. Now apply Proposition 6.4 to zv. =

The nil radical Nil(R) of a ring R is defined as the sum of all nil ideals (see for
example Wisbauer [88]). With the last corollary we obtain the following result:

COROLLARY 6.6 Let R be a right chain ring. Then the prime radical Rad(R)
equals the nil radical. Hence, Rad(R) = 4/(0).

PROOF: The prime radical is nil, hence contained in the nil radical. We are done
if the prime radical is completely prime and can therefore assume that the prime
radical equals the exceptional prime ideal () with P completely prime as its upper
neighbour in the lattice of prime ideals and [P, Q[ simple. However, Corollary 6.5
shows that in such a case the prime ideal P is never nil, so the nil radical equals the
prime radical in both cases. m

It follows from Corollary 6.5 that for any z € P\Q with [P, Q[ simple, there exists
a unit w € U with (zw)" ¢ @ for any n. The next result shows that for ) exceptional
there also exists a unit v with (zv)? € Q. We say that z € R is Q-nilpotent if z" € Q
for some n € N.

PROPOSITION 6.7 Let R be a right chain ring, P D @) neighbouring prime ideals
with () exceptional prime.

(1) Let z € P\Q be not Q-nilpotent, then Q@ C Nnen 2" R.
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(ii) For each z € P\Q there ezists at least one unit v with (zv)? € Q.

(i) Let z € P\Q be Q-nilpotent. If Q is nilpotent, then MN,enz"R = (0). If Q is
not nilpotent, then M,en "R = Maen Q7 s a completely prime ideal.

(iv) For any a € Q there are z,y € P\Q withaR CzyR C Q.
(v) If Q* # 0, then zy ¢ Q? for any z,y € P\Q-

PROOF: (i) As z is not @Q-nilpotent, @ C Menz"R. If @ = MNen ™R, then
Theorem 1.15(iii) would imply @ completely prime contradicting our assumption on
Q.

(ii) Let  be in P\Q. Obviously M,cy uzR is a two-sided ideal containing @,
hence by Theorem 6.2 we have = N,y uz K. If we assume that zUz is contained
in P\@Q we will show that @ is completely prime, a contradiction to our assumption.
By Lemma 1.8 it suffices to prove that y ¢ @Q implies y?> ¢ Q for any y € P\Q. As
@ = Muev urR we have ys = uz for some s € J,u € U. By Lemma 1.4 we find
81 € U such that s;sy = ys’ for some s’ € R and s, = ss,. From uz € P\Q,s, €U
we conclude uzs uz = yss;ys = y?s’s which lies again in P\Q, since zs,uz € Uz C
P\Q by assumption. Hence y? is not in @, a contradiction that shows that zvz is in
@ for some v € U and proves (i).

(i) If = is Q-nilpotent then MN,en "R C Npen @ and @ nil implies N,y "R =
(0). In the other case P, = M, Q" is completely prime by Theorem 6.2 and
Mhen 2R = Py by Theorem 1.21(v).

(iv) By (ii) there exists ¢ € P\Q with 22 € Q. Let a € Q and a = zy follows
for some y € R. If we assume y ¢ P, we obtain P C aR which contradicts the fact
that @ is prime, hence y € P and we are done if y ¢ . Otherwise, y € @, we have
y = zs for some s € J and we obtain aR = zyR = z?sR C z%R, so y = x satisfies
the assertion (iv).

(v) Assume zy = ab with a,b € Q. Then a = zr for some r € R, and zy = zrb.
Since y € @, b € @ we have y —rd ¢ Q. Hence @? CzQ C z(y —rb)R = (0), a

contradiction. m

6.3 More on prime ideals in right chain rings: finitely generated prime
ideals

In this section, ) will always denote an exceptional prime ideal in the right chain
ring R and P the minimal completely prime ideal containing Q.

We will show that P.(Q) = P and that for a chain ring PQ = QP. The result of
Lemma 1.16 will be extended: A finitely generated prime ideal # (0) in a chain ring
is either equal to J or it is exceptional in which case it is the prime ideal just below

J.
PROPOSITION 6.8 Let R be a right chain ring. Then we have

(i) P(Q) = P.
(ii) PQ CQP
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PROOF: (i) If s ¢ P and ts € @, then tP C tsR C Q. Now @ is prime and
P Z Q, hencet € Q. On the other hand P C P,(Q) because P,(Q) is completely
prime.

(ii) Set I = {z € P | zQ C QP}. As Q is a two-sided ideal, so is I. Obviously
@ CI CP. As [P,Q] is simple (by Theorem 6.2) we must have I = Q or I = P. By
Proposition 6.7(ii) there exists ¢ € P\Q with 2 € Q. For ¢ € Q, there exists r € R
with ¢ = zr and by (i) it follows that » € P and Q C zP. Therefore zQ C z?P C QP.
Thus I = P. m

In the case of a chain ring we obtain by symmetric arguments:

COROLLARY 6.9 Let R be a chain ring. Then we have:

(i) P(Q) =P =PF(Q).
(il) PQ =QP.
We consider right principal prime ideals.

THEOREM 6.10 Let R be a chain ring, I 5 0 a prime ideal of R. If I is finitely

generated as a right ideal, we have one of the following situations:

(i) I=J and I = Ra = aR for some a € R.

(i1) I is the mazimal prime ideal below J, further I is exceptional prime and I =
Ra = aR for some a € R.

PROOF: By Lemma 1.16 we are left with the case that I = aR is an exceptional
prime ideal. Now let P be the minimal prime ideal above I; this is completely prime
by Theorem 6.2. Assume P # J. Let * € J\P. Then a = rz for some r € R. By
Proposition 6.8 (i), r € I, say r = as. Hence a = asz and sz € J which implies
a = 0 - a contradiction. Thus P = J. It remains to show that I = Ra. Clearly,
Ra C aR. If ar ¢ Ra for some r € R, then a € Jar and hence by Proposition 6.8(ii)
a € Jar CalJ, a contradiction. m

This theorem is obviously not true for right chain rings as the examples in Section
3 show.

6.4 Investigation of Q/NQ"

Our goal is to obtain informations on the lattice of two-sided right ideals in the
prime segment [Q), NQ"[, where @ is an exceptional prime ideal. It is obvious that
one should assume P = J where P the minimal completely prime ideal containing @,
otherwise any two-sided ideals lying above P induce two-sided ideals in the segment
under discussion. Finally we further assume N Q™ to be completely prime and = (0).

PROPOSITION 6.11 Let R be a chain ring, Q) an ezxceptional prime ideal with J
the minimal completely prime ideal containing Q. Assume further (0) C Q"~'. Then
we have: '
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(1) Let I be a two-sided ideal with Q® ¢ I c Q™! or (0) c I C Q™! with
mazimal n. Then (i1) I = Q™ 'J or (i2) I = Rs = sR for some s € R with
Js=3sJ =Q" or Js = sJ = (0).

(ii) There is an abundance of non-two-sided right ideals in the lattice interval (0) #

Qlc C Qk—l .

PROOF: First note that J? = J by Theorem 6.2. We can assume that Q™ = (0),
otherwise rename R/Q™ as R. Suppose I # Q™ 'J. Now the right annihilator I" of
I is a two-sided ideal with Q C I" C J. By Theorem 6.2 we get I" = Q (Case 1) or
I" = J (Case 2).

Case I: I" = Q. Let a € Q""'J\I. As I C Ra C Q" ! we have Q C (Q" )" C
(Ra)” CI" = @, hence @ = (Ra)” = I". Now let z € J\Q. By Proposition 6.6 (ii)
there exists u € U with (zu)? € Q. If az ¢ I, then also azu ¢ I and by the above
@ = (Razu)". Thus azuzu = 0 since (zu)? € @ = (Ra)", but zu ¢ Q. Contradiction.
Hence az € I for any z € J\Q and so aJ C I C aR which implies I = aJ. By the
choice of the element a we get Q" 'J = aR leading to Q" 'J-J = aJ = Q" 'J = aR,
a contradiction.

Case 2: I" = J. Suppose I is not finitely generated as right ideal. Let 0 £ r € I,
then there exists s € I with rR C sR, hence r = st with ¢ € J and thus r = 0,
contradiction. Therefore I is finitely generated as right ideal, say I = sR, and,
of course, sJ = (0). In particular, since I is assumed to be two-sided, Rs C sR
follows and by Lemma 7.12 (can be checked directly, see the proof) we have sJ C Js.
Obviously Us C sU is valid. Next we show Js C sJ which implies sR C Rs (use
again Lemma 7.12). Let z € J\Q. Then there exists a unit w € U with (zw)? € Q.
If zs = sy with y € U, then zwzws € sU, contradicting the fact that Qs = (0).
Thus Js C sJ showing at least Bs = sR.

(i1) By (i) in the best possible case there are the following two-sided ideals in the
lattice interval Q¥ < sR = Rs C Q*"'J < Q*!. Note that sR can never equal
Q*F1J, since J = J? and sJ = Q% 1J? = Q*1J = sR would follow. The same
arguments show that Q*¥~!J has no lower neighbour as a right ideal. Hence by (i),
the interval [Q*~1J, sR[ must contain an abundance of right ideals which are not
two-sided. m

6.5 An example of a nearly simple chain domain

The following example originates in a idea of Dubrovin [80].
Let G be the group of affine linear functions on the rational number field Q, i.e.

G={a:t >at+bja,beqQ, a>0}
Denoting an element & € G by the pair (a,b) we obtain the multiplication rule

(a1,b) - (az,b7) = (a1a2,a1b2 + by).
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kot 6 ot @48 a 'senmivdirect product of theradditive group (Q,+) and the:multiplicative group -
(Q>0, -). We define a right order on G which is not an order.
' A'group G with-an order relation <, is said to be a right ordered group provided
<, is a linear order relation satisfying the right monotony law, i.e.

a< b=ac< beforall ce@G.

A right order on G can also be defined as follows: The set P C G is called a generalized
positive cone provided P satisfies the following conditions: (i) PP C P, (ii) P NP1 =
{1} and (iii) PUP~! = G. Then we set

a<,bcba"teP
Each riglit order on G corresponds to a left order by
a<be=abeP<=b"1< a.

In the case where <, is a left and right order, (G, <,) is obviously an ordered group.
Exactly in this case the generalized positive cone is a normal subsemigroup of G, i.e.
cPc ! C Pforall c eG.

Let G be again the above mentioned group of affine linear functions and € any
irrational number in R. It is easy to check that evaluation each function a € G at ¢

defines a generalized positive cone P and hence a right (left) order can be defined on
G. We set

aegP e < a(e).

The corresponding left order can be described geometrically. Let oy = (a1,b1), 02 =
(az,b;) and a; < @ or equivalently oy a; = (a7’ay,a7tb; —a7'h,) € P leading to

e <ajlaze + a7'b; —a7'ly

finally showing
a; S ag <= a6+ b <axe+ b

Thus the intersection of the graphs representing the group elements with the line
through (&,0) parallel to the second axis describe the right linear order.

Next we want to construct a chain ring associated with G as described above.

G is the semidirect product of its subgroups

H={1,9) |q€eQ}=(Q+)

and the subgroup

L={(k0)|0<keQ}=(Qs0") |
In particular we have (k,0)(1,b) = (1, kb)(k,0) where o, : H — H with o(1,b) =
(1, kb) defines an automorphism of H for every g = (k,0) € L. We want to show that
the group ring K[G] is an Ore domain for every skew field K. If a = 3" c;hi, b = Y d;A]
are two elements in K[H], then they are elements in K[Hy] where Hj is a finitely
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W U esgenerated  subgrotp of 'H generated by:the h;’s'and h;’s and as such is a direct sum

of finitely many infinite cyclic subgroups. Applying the fact that R[z] is Ore if R is
Ore shows that K[H] is an Ore domain. |

We have A = K[G] =¥ K[H][L, o] where o indicates that we now deal with a skew
group ring with the commutation rule

(k,0)a = a(k,0) for a € K,

but
(k,0)(1,b) = (1, kb)(k,0) for (1,b) € H,(k,0) € L.

Again, an element ¥ a;g;, a; € :K[H], ¢g; €L, is contained in K[H][Lo, o¢) for
a finitely generated subgroup L, C L which is a finite product of infinite cyclic

subgroups:
Lo'—'— (gl) X... X (gm)

and
K[H][Lo,00] = K[H][{91),75,] .- - [{gm ), Tgm]
is again an Ore ring, since it is an iterated skew polynomial ring over an
Ore ring. The automorphisms o, are extended from H to K[H][Lo,00] =
K[H][{91),04,])...[{gi-1),04_,] where they map the elements of K as well as the
giyJ < t, to themselves. Hence, the group ring K[G] will be a right and left Ore
domain.
As mentioned earlier G admits a left order and a right order with P the generalized
positive cone. From this we conclude that the set of elements of the semigroup ring
- K[P]'which do not lie in the maximal ideal M = ¥, . gK[P] is a right and left Ore
system. The localization of the ring K[P] with respect to this Ore system will be
-denoted by R. Since the group G is linearly right ordered, it follows that the ring R
is a chain domain. As each elements is by construction a product of an element of the
positive cone P and a unit, each principal right ideal can be uniquely written as gR
for some g € P. Thus the inclusion in the lattice of right ideals inversely corresponds
to the left order <; on G, e.g.

gRDAR <= g < h

Now we prove that R is a nearly simple ring. Considering the subgroup H of the

group G we know that for every element (a,b) € P there exist elements (1,z) and

(1,y) such that (1,z) > (a,b) > (1,y) > (1,0). Therefore it is sufficient to prove

the equation J(R)(1,z)J(R) = J(R) for any positive element (1,z). This follows, in

- turn, from the fact-that for any-elements+(1,z) > (1,y) > (1,0)-there exist positive

elements (ai1,b1), (az,b;) of the group G such that (a1,b1)(1,x)(az,8) < (1,y). To
see this, we set a; = a;',b; = (1 —q;)/e, i = 1,2, and find that

(a1, b,l)(l’ z)(az, b,2) = (1, a12),

if we choose k; sufficiently small. It now remains only to take the rational numbers
b1, b2 so close to b, ¥, that we satisfy the inequality a;e + b; > ¢, 1 = 1,2 such that
the last equation remains valid.
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ooeie*Qur understanding of the left: and ‘right order -in+G-enables us to describe the
various possibilities of powers of an element x which are mentioned in Proposition
6.7.

Let £ € R be the group element z = a =(a,b) € P, hence o™ : t — a™t + (a1 +
...+ a+1)b

Case 1: 0 < a < 1. The evaluation of the limit function at ¢ reads

n-1 1

lim,eo(a”e + (a" 1+ ... +a+1)b) =0+ lim,._.oo(zo: a')b = ——b=4.

Thus the constant function t — # as a ring element will-be a lower bound in :the
lattice of right ideals for all powers o™ R, even more is valid: N,en @™ R = SR.

Case 2: 1 < a. Note a € P implies a(e) = ac + b > ¢, set § = a(e) —e. By
induction a™(e) —e = (a® ' +a""? + ...+ 1)é, hence

lim,a"(€) = oo.

This means that for any 0 # ¢ € R there is a power of a such that ¢cR D o™R, hence
Nren @™ R = (0).
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7 Degrees of noncommutativity in right chain rings

- In this chapter we develop useful notions concerning various degrees of noncommutativity. An im-
portant class is formed by the so-called locally archimedean right chain rings whose prime segments
are not simple. Equivalent characterizations are given in Theorem 7.1 and 7.6. The class is closed
- unter localizations (Theorem 7.18), which is not true for right invariant right chain rings. However,
this result holds for semiinvariant right chain rings which include the class of right invariant rings.
Moreover, in the domain case, each right semiinvariant chain ring is a localization of a right invari-
ant one (Theorem 7.21).An example of a noninvariant, but semiinvariant ring as well as of a locally
archimedean ring is given.

7.1 Locally archimedean right chain rings

Since a detailed treatment of general right chain rings does not seem possible at
present, we investigate various classes of right chain rings defined through conditions
that restrict the degree of noncommutativity in some way. For example, noncommu-
tativity can be measured by the distribution of two-sided ideals within the lattice of
right ideals £, (R).

Grater [84a] observed that the valuation rings R of a division algebra finite di-
mensional over its center are locally invariant which can be defined by the condition
that between any two prime ideals of R there is a further (two-sided) ideal of R. We
consider the corresponding condition for right chain rings.

THEOREM 7.1 Let R be right chain ring. Then the following properties are equiv-
alent:

(a) The right ideal N, en @™ R is two-sided for any a € R.
(b) For any a € R we have Ra? C aR.
(c) For any a € R there ezists n = n(a) € N such that Ra™ C aR.

(d) Any prime segment, except possibly the radical prime segment contains a two-

sided ideal.

We recall from Section 1.5 that the radical prime segment [P, (0)[ is never simple
provided P? # (0).

PROOF: (a) = (b) Let a € R, a # 0. If Ra® € aR then a = ua?s for some u € U,
s € J. Thus a = (ua)™as™ for all n € N, hence a € N,en(ua)"R. By assumption, the
intersection is a two-sided ideal, so ua € N,en(ua)®R which implies ua =0 =a - a
contradiction.

(b) = (c) is trivial.

(¢) = (d) Let @ c P be prime ideals and suppose [P, Q[ is simple. Then by
Corollary 6.5 we can find £ € P\Q and v € U such that Q@ C zR C M,en(uz)"R.
Choose n € N with R(uz)" C= uzR. Hence we obtain RzR C R(uz)"R C uzR
which implies RzR = zR. Since ¢ ¢ @, RzR is a two-sided ideal satisfying @ C
RxzR = xR C P, a contradiction.
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e (d) =p(a) Let ar€<R. -Clearly, we’'can-assume-that a-€ J and a is not nilpotent.

Then there exists a prime ideal segment [P, Q[ with @ C aR C P which is not simple
by assumption. Theorem 1.21(v) proves the assertion. m

DEFINITION 7.2 A right chain ring R that satisfies the equivalent conditions of
Theorem 7.1 is called locally archimedean.

Note that this is in fact only a condition on the non-units which are not nilpotent.

In the following result further properties of locally archimedean right chain rings are
listed.

COROLLARY 7.3 Let R be a right chain ring. Then the following holds:

(i) If R is locally archimedean, then each prime ideal is completely prime.

(i) If J is the only prime ideal of R, then R is locally archimedean, moreover R is
right invariant.

(iii) Let R be locally archimedean. If there is a prime segment [J, P[ with J D P as
neighbouring prime ideals, then for all a € J\P we have: Ra C aR.

(iv) Let P = R\S be the smallest prime ideal containg aR for some a € R. Then
aP as well (aR)S™! is two-sided.

PROOF: (i) follows from Definition 7.2 and Theorem 6.2.

(ii) The conditions of Theorem 7.1 are trivially satisfied since they are void. Note
further that J is nil. Note further that J is nil. Let ra € Ra # (0) and assume
ra ¢ aR, henc ras = a for some s € J leading to a = r"as™ = 0, a contradiction.

(iii) Assume ra ¢ aR fora € J\P and r € R. Then a = raj € RaJ, contradicting
Corollary 1.22. .

(iv) If aP c UaP, then there exists s € S with as € UaP = UasP, contradicting
Corollary 1.22, as z = as € P\Q. Hence UaP C aP and thus aP is a two-sided
ideal. That (aR)S™! is two-sided follows from Corollary 1.12. m

The next result shows that a chain domain R is locally archimedean if and only
if R is locally invariant as defined by Grater in [84a).

- PROPOSITION 7.4 Let R be a chain ring. Then the following conditions are
equivalent:

(a) R is locally archimedean.

(b) For any a € R with a® # 0 the minimal prime ideal containing a satisfies
Pa =aP.
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PROOF: (a) = (b) Of course, we can assume a # 0,a € J and denote the
prime segment generated by aR by [P,Q[. By Corollary 7.3(i) the prime ideal P is
completely prime. By assumption (a) [P, @[ is not simple if P is not the radical,
otherwise Lemma 1.19 guarantees the existence of a further two-sided ideal since
a? # (0) implies P? # (0). To prove aP C Pa we take ap € aP and have to consider
the cases riap = a (Case 1) respectively ap = rya (Case 2). We apply Corollary 1.22
- showing that Case 1 is impossible whereas in Case 2 the element r, must lie in P.
By symmetric arguments Pa C aP follows.

(b) = (a) Let a € P\Q for neighbouring prime ideals Then Pa = aP is a two-sided
ideal lying in [P, @[, hence by Theorem 7.1(d) R is locally archimedean. m

DEFINITION 7.5 Let R be a chain domain. If R satisfies one of the equivalent
conditions of Proposition 7.4 the ring R is called locally invariant.

Grater’s terminology locally invariant is justified by the fact that localization at
an arbitrary prime ideal produces a chain ring which is invariant in its first prime
segment (see Corollary 7.3 (iii)).

The next result characterizes locally archimedean right chain rings by a condition
on commutator elements.

THEOREM 7.6 Let R be a right chain ring, then the following conditions are equiv-
alent:
(a) R is locally archimedean.

(b) For any prime segment [P, Q[ which is not the radical segment and z,y € P\Q
we have zy = yzs or yz = zys for s € R\P.

- = :PROOF:"(a) = (b) We will use two results which are proved later, but indepen- ;

dently of Theorem 7.6:

(%) The localization Rp of a locally archimedean right chain ring at any prime ideal
P is again locally archimedean (see Theorem 7.18).

(%#%) The semigroup of principal right ideals of a locally archimedean right chain
domain with exactly one or two prime ideals is commutative.

The last theorem (*x) is an application of a result of Holder (see Fuchs [66], p. 74)
and will be proved in a later part.

Let [P, Q[ be a prime segment. Let z,y € P\Q where [P, Q] is a prime segment
that is not the radical segment. We know that @) is completely prime since R is locally
archimedean and R,S7! exists for R; = R/Q, S1 = (R/Q)\(S/Q), S = R\P which
is again locally archimedean by (x). We can apply (*%) and obtain z,y,R; Sy 1 =
n RSTY, iz = zy18; or g1zt = 2,y for some s, t € S with z1,y1,51,1
denoting the images of z,y,s,t in Ry. If z,y181 = y,7,, say, then zys = yz + ¢ =
yz+yrq =yz(l + ¢') for ¢,¢' € Q,1+ ¢’ € U(R) which proves (b).
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sk (bYy=y"(a) We'are done-if we have proved Ub? C bR using Theorem 7.1. Assume

ubbt = b with t € J, b # 0 and hence (ub)"bt" = b holds. If b lies in the prime radical,
then ub is nilpotent which leads to the contradiction b = 0. Thus we may assume
that there are neighbouring prime ideals P O @ with b € P\Q and hence ub € P\Q.
We compare the products of ub and b.

Case 1: ub-b=1>b.ub.s for some s ¢ P. Thus b = ub’t = b-ubs,so b=10, a
contradiction.

Case 2: ub-b-s = b -ub for some s ¢ P. Again two cases occur:

Case 2a: 3q =t for some ¢ € R. Hence bubq = ubbsq = ubbt = b, a contradiction.

Case 2b: s = tq for some ¢ € J and hence ¢ ¢ P. We calculate bub = ubbs =
ubbtq = bgq. By ubR C qR we have qv = ub for some v € J, hence bqv = bubv = bub,
so bub = 0 leading to b = (ub)?bt? = u(bub)bt? = 0, a contradiction. m

We mention without proof (see also Thierrin [57]) the following related result
which characterizes a larger class of right chain rings including locally archimedean
right chain rings via commutator relations.

THEOREM 7.7 Let R be a right chain ring, then the following conditions are equiv-
alent:

(a) All prime ideals are completely prime.

(b) For all z,y € R the elements zy and yz are in the same prime ideal segment
(i.e. there exist neighbouring prime ideals P D Q with zy,yz € P\Q).

7.2 Right-shifting of prime ideals in locally archimedean right chain rings

In Chapter 4 we had already discussed situations in chain rings where completely
prime ideals P can be shifted over arbitrary elements a to obtain again completely
prime ideals @ satisfying Pa = a). It does not seem successful to discuss such
shiftings in right chain rings in general, however in locally archimedean right chain
rings nice results can be obtained. Recall that by Proposition 7.4(b) Pa = aP always
holds in locally archimedean chain rings where P is the minimal completely prime
ideal containing a. Soon we are able to generalize this result for arbitrary right chain
rings by which we will obtain specializations of Corollary 1.22.
Let P be a completely prime ideal, a € R and Pa # (0). Further assume Pa C aJ.
~ This condition is always satisfied if Pa is a two-sided ideal, since otherwise a € Pa,
leading to a = 0. The converse conclusion holds in chain rings, as mentioned before
Proposition 4.12,

By P™(a) we denote the minimal completely prime ideal @ with Pa C a@), hence
Pa C aP™(a). I"(P,a) stands for the smallest two-sided ideal L satisfying Pa C aL.
If there is no danger of confusion, we write P™(a) = P™ respectively I"(P,a) = I".

Some observations are summarized in the next proposition.

PROPOSITION 7.8 Let R be a locally archimedean right chain ring, P a com-
pletely prime ideal, a € R and Pa # (0) satisfying Pa C aJ. Then we have:
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(i) If P is idempotent, then P™ = I™.
(ii) Let ra = as # 0 with r ¢ P, then we have s ¢ P™.
(iii) Let ras = a with r ¢ P, then s ¢ P™ follows.

PROOF: (i) Assume Pa C aI™ with I C P". Then P"a = Pa C a(I™)" for any
n and so Pa C N,en(I7)". By Theorem 1.15 the intersection of the powers of I” is
again a completely prime ideal C P”, contradiction.

(i1) Let ra = as,r ¢ P and assume s € P™. Hence there exists p € P with pa # 0
such that pa = aq and t"R C ¢R for some n, say s" = qu for some v € R. Then
r™a = as" = aqu = pav and r"w = p for some w € P leads to r"a = pav = r*wav =
r"aw’v. Hence r"a = 0 which implies Pa = (0), a contradiction.

(iii) Let ras = a@ and r ¢ P. Assume s € P". Then we find a power of s, say s"
with ap’ = pa for some p’R D s"R and p € P. Then a = r"as™ € r"ap’R = r"paR C
PaR CaJ. So a =0, a contradiction.

u

The next result establishes Proposition 7.4 for arbitrary locally archimedean right
chain rings under a weak additional assumption.

LEMMA 7.9 Let R be a locally archimedean right chain ring, P the minimal com-
pletely prime ideal containing 0 # a € R. Assume further aP # (0). Then
P™(a)=P.

PROOF: First we consider the case when R is not a domain and P the prime
radical. Let p € P. Then the case par; = a can never occur. Thus pa = ar; for any
p € P. Assume there exists p € P with pa = ar; and r, ¢ P. Then p"a = 0 = ar}
leading to aP = (0), a contradiction.

If P is not'the prime radical, we have a® # 0. Again we have to consider the
cases par; = a (Case 1) and pa = ar; (Case 2). Since p and ¢ lie in the same prime -
segment, some power of p is contained in aR, hence a = p"ar} = ar'ar?, again a
contradiction. Thus we have Pa C aR and by a? € aP it follows P C P™. Again
assume pa = ar, with r, ¢ P. For sufficient large n we have p" = aq with ¢ € P.
Thus p”a = aga = a®¢’ = ar}. Finally for some r3 € P we obtain r}r; = a leading to
a contradiction. Hence P" = P. m

Whereas we don’t know whether Pa is a two-sided ideal in general under the
condition Pa C aJ, the right ideal a P™, however, is indeed a two-sided ideal. Its left
and right associated ideals are of interest in the next chapter. Here we prove:

PROPOSITION 7.10 Let R be a locally archimedean right chain ring, P a com-
pletely prime ideal in R and a € R satisfying (0) C Pa CaJ. Then we have:

(i) aP™ is a two-sided ideal.
(ii) P(aP") = P.
(iii) P.(aP™) = P™.
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PROOF: (i) Let ap € aP" and r € R. If ra = ar,, we are done. Otherwise
‘rar, = a for some r; ¢ P™ using Proposition 7.8. Thus r;p, = p for some p, € P"
and rap = rargp; = ap;, € aP™ follows.

(ii)) Take s ¢ P and sz = ap’ € aP". Next we compare zR and aR to obtain
either zr; =-a (Case 1) or z = ar; (Case 2) with r;,r, € R. In-the first case we
-conclude sa = szr, = ap'r, with s ¢ P, p'r;-€-P™ contradicting Proposition 7.8. If -
in the second case r; € P™ we are done. Assume otherwise r, ¢ P™. If sa = as’,
then s’ ¢ P™ by Proposition 7.8, and so ap’ = sz = sar, = as'r; leading to as'r; = 0
and so Pa C aP™ = (0), a contradiction. Otherwise sas; = a and by Proposition 7.8
again s, ¢ P™ and with similar arguments as above a contradiction can be reached.
Thus we have proved: “P/(aP™)-C P: To prove the-converse inclusion, note that ais
not in aP™ and we obtain Pa C aP™ showing P C P(aP™).

(iii) Since a ¢ aP™ we clearly have showing P™ C P,(aP™). To check the opposite
inclusion assume P C P.(aP™) and let p' € P.(aP™)\P". Hence there exists z ¢ aP”
with zp’ = ap; € aP™ with p; € P™. Again we compare aR and zR to obtain either
zs; = a (Case 1) or ¢ = asp (Case 2) for some 5; € R, s; ¢ P™. In the first
case we conclude zp’ = ap, = zs;p, with p’ ¢ P™, however s,p; € P™, so zp’ = 0
follows. If s;R C p'R, we obtain a = 0, otherwise s;r = p’ for some r ¢ P™ and
aP™ = (0) follows, a contradiction. Thus we have £ = as; which is also impossible
since zp' = as; = ap, holds with p, € P", s, ¢ P". Hence, P* = P,(aP™). u

7.3 Right semiinvariance and stronger conditions

Before we present further concepts we introduce some invariance terminology.

DEFINITION 7.11 Let R be a ring.

(i) An element a € R is called right invariant, if Ra C aR, that is: the right ideal
generated by a is two-sided. If all elements a € R are right invariant, R is
called right invariant.

(ii)) An element a € R is called duo or invariant if Ra = aR. The ring R is said to
be duo or invariant if all elements are duo.

(iii) Let P be a completely prime ideal of R, then R is called right P-semiinvariant
if Pa C aR for all a € R.

(iv) The ring R is said to be right semiinvariant if R is right J-semiinvariant.

Similarly, left versions of (i), (iii) and (iv) are defined.
We continue with some easy observations relating our invariance conditions.

LEMMA 7.12 Let R be a ring and a € R.

(i) If R is a right semiinvariant right chain ring and Ra € aR. Then Ja C aJ.
(ii) Left invariant right chain rings are chain rings.

(iii) If R is a chain ring, then for b+# 0 we have Ra C bR if and only if aJ C Jb.
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(iv) If R is a chain ring, then Ra C aR if and only if aJ C Ja.
(v) For a chain ring R the following are equivalent:

(a) R ts right semiinvariant.

(b) R is left semiinvariant.

(c) For any a € R we have aR C Ra or Ra C aR.

Hence, we call right semiinvariant chain rings semiinvariant.

PROOF: (i) Assume na € aU with n € J, say na = au. On the other hand
va ¢ aR for some v € U. Hence vna = vau ¢ aR, a contradiction.

(ii) Let a,b € R with aR C bR. Then also Ra = RaR C RbR = Rb.

(iii) Suppose Ra C bR. If we assume aJ € Jb, we have b = ras = br's for
some s € J, r',r € R and ra = br’. Hence b = 0, a contradiction. On the other
hand consider the case aJ C Jb. If there exists ra € Ra\bR, then b € raJ C Jb, a
contradiction.

(iv) is a special case of (ii) if a ## 0, but obviously also true for a = 0.

(v) We show that (a) and (c) are equivalent.

(a) > (c)lf Ra Z aRand aR Z Ra,thena € RaJ anda € JaR,soa € JaJ Cal,
leading to a = 0.

(c) = (a) If Ra C aR then trivially Ja C aR. By (iii), aR C Ra implies even
JaCalJ. m

Part (iii) of the Lemma shows that the A-valuations and V-valuations introduced
by Mathiak [82] are equivalent.
We observe the following result for P-semiinvariant right chain rings.

LEMMA 7.13 Let R be a right P-semiinvariant right chain ring and Q C P a
prime ideal. Then @ is completely prime.

PROOF: By definition, if Q = P, then @ is completely prime. If we assume that
@ C P is not completely prime we find a completely prime ideal P’ C P with [P’, Q[
simple. Take a € [P',Q[, then we have P'aR C aR, hence there is a two-sided ideal
between P’ and @ contradicting the fact that [P/, Q[ is simple. =

Among the P-semiinvariant conditions the right J-semiinvariance (i.e. the semiin-
variance) can be characterized in various ways. For chain domains R semiinvariance
implies a linear order on the set of conjugate rings aRa™',a € Q(R)\{0}. Mathiak
[77] calls these rings subinvariant where we prefer the term semiinvariant. Hence the
structure of the set of conjugate rings of a right chain domain R can be viewed as a
further key in studying different invariance properties.

Although right invariance is already a large step towards the commutative situa-
tion we observe phenomena which are far away from commutativity. For example, in
case of right invariance the set {z € R | za € aU} is multiplicatively closed, so the
maximal two-sided ideal P # (0) with Pa C aJ is a completely prime ideal. There
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is not much known about the ideal generated by X where Pa = aX. If we denote
by P™ the minimal prime ideal @ with Pa C aQ (see Proposition 4.12), the function
7, is not continuous as we will see in a later chapter. If P O P’ are neighbours in
the lattice of prime ideals P* 5 P'" are in general not neighbours; however in the
situation of chain rings (see Proposition 4.12) the situation is clear. In particular =
need not be surjective so that large gaps can occur.

These observations suggest the following useful, however very restrictive notion
for right chain rings:

DEFINITION 7.14 A right invariant right chain ring R is called strongly invariant
if for any a € R and (completely) prime ideal P we have P*(a) = P.

Note that in a strongly invariant right chain ring we have Pa C aP and for each
prime ideal @ with Pa C a@Q we get P C Q. If R is a right invariant right chain
ring with exactly one prime ideal # (0), R is strongly invariant: Assume ra = au
for some a # 0, r € J, u € U, so r*au™ = a with r"R C aR for a sufficient large
n, leading to a contradiction. For further examples see a forthcoming part. Strongly
right invariance is a rather restrictive condition, e.g. no prime ideal # J and (0) can
be finitely generated:

LEMMA 7.15 Let R be a right chain ring. Suppose Ja C aJ for alla € R. Then
no prime ideal P # (0), P 3 J, is finitely generated.

PROOF: Suppose P = pRand P # J. Takez € J\P, then there exists y € J with
p=2zy,s0y € P, as P is completely prime by Lemma 7.13. Hence p € JpR C pJ,
sop=0.m

PROPOSITION 7.16 If R is a strongly right invariant duo chain ring (strongly
duo chain ring, for short), then Pa = aP for anya € R and completely prime ideal P.

PROOF: follows from Proposition 4.12. =

THEOREM 7.17 Let R be a strongly right invariant right chain ring.

(1) If @ C P are neighbour prime ideals then (P\Q)a C a(P\Q) for alla € R.
(ii) For any completely prime ideal P we have (R\P)a C a(R\P) for alla € R.
(iii) For any two-sided ideal I we have Py(I) = P,(I).

PROOF: (i) Let p, € P\Q, so p1a = ap; with p, € P. We want to show that we
can choose p; € P\Q. Since R is strongly right invariant there exist ¢,,¢q2 € P\Q
with ¢1a = aq;. Then for some n € N : ¢} = pyr with r € R, so pyra = ag}. If
P2 € Q and pya # 0 we get a contradiction. Thus we now assume p;a = 0. But then
0= pyra = ¢fa = aqy, so 0 € a(P\Q).
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(ii)-Let sa € (R\P)a for some s € J. Then there exist prime ideals Py, P, which
are neighbours with P C P, C sR C P,. By (i) we have sa € a(P,\P2) C a(R\P). It
remains to show that ua € a(R\P). Note that ua = av implies v € U, since otherwise
a = u"lua = u~lav = av'v for some v’ € R leads to a = 0.

(iii) Let s; € P(I), hence there exists t g I with s;¢ € I. Together with (i) we
obtain st = ts;, thus s; € P(I) which proves S;(I) D S,(I). Let s; € S(I) and
tsy € I. If s; € U then, of course, t € I, so s; € S,(I). Thus we can assume that
there are neighbour prime ideals Q, C @1 with s € @,\@Q2. Clearly, A(I) C Q,.
Let p; € @1\Q2, then p;t = tp, with p; € Q;\@2 by (i). Without loss of generality
81R D p,R (otherwise replace p; by a suitable power). Then also p;t = tp; € I. As
1 € Q2 we have p; € Si(I), hence t € I. This proves s, € S5,(I),s0 S,(I)=S;(I). =

7.4 Invariance properties and localization

In Section 5.2 we discussed the general question whether rings of fractions exist for
right chain rings. Now we want to present result on the preservation of invariance
properties under localization. It turns out that the classes of locally archimedean
rings, semiinvariant rings and strongly right invariant rings are closed with respect
to localizations.

THEOREM 7.18 Let R be a locally archimedean right chain ring and S = R\P,
where P is a prime ideal. Then R[S™1] is locally archimedean.

PROOF: We want to use the characterization of locally archimedean rings given
in Theorem 7.1(d). Let [P[S™!}], P2[S™Y][ be any prime segment different from the
radical segment in R[S~!]. Then, [P, P;[ contains a two-sided ideal I, for example
take I = aP;, a € P)\P,. Then sz = a for some s € S implies sz = zt (Case
1) or szt = z (Case 2), s ¢ P, in both cases using Corollary 1.22. We obtain
S~ aP,[S7Y]) CaPi[S7Y]. Hence [P[S71], P;[S™!][ is not simple. m

PROPOSITION 7.19 Let R be a right P-semiinvariant right chain ring, P a prime
ideal and S = R\P. Then R[S™] is a right semiinvariant right chain ring.

PROOF: Let 0 # as™! € R[S™!]. We have to show: P[S~!]as™! C aR[S™']. Let
p € P and a = sb, so ps~la = pb. If pb € aR[S~!] we are done. Otherwise we have to
consider the case pbg = a with p € P. Let sp’ = p with p’ € P. Then we conclude:
3(p’bg — b) = 0 which implies sb = 0, hence a =0 in R[S7!]. m

COROLLARY 7.20 Localizations of right semiinvariant right chain rings are
again right semiinvariant rings. In particular, localizations of right invariant right
chain rings are semiinvariant rings.

It follows from the corollary that localizations of right invariant chain rings are
semiinvariant. The next result shows that the converse holds for semiinvariant right
chain domains.
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THEOREM 7.21 Let R be a right semiinvariant right chain domain. Then there
erists a right invariant right chain ring A and a prime ideal P = A\S in A such that
R = A[S7].

PROOF: Set A = {r € R | ra € aR for all a € R}. Then A is a ring and
J(R) C A. Let u e U(R)\A. Claim: u™! € A. Let a = uar with r € J. If b = u~1bs
for some b € R, s € J, we consider the cases ag; = b and a = bg;. By symmetry, it
suffices to treat the case aqy = aqg = b. Then uarq = aq = uagqr’ with ' € R. Thus
br' = aqr' = u'b, so br's = u"lbs = b, a contradiction. Obviously, this implies that
A is a right chain ring. As R is a domain, ra = ar’ with r € A implies r’ € A, hence
A is right invariant. Localizing at P = J(R) C A gives R, that is R= A[S™!]. m

An example of a semiinvariant chain domain which is not invariant is given in
Section 7.5. The next result gives conditions under which the localization of a right
invariant right chain ring is again right invariant.

PROPOSITION 7.22 Let R be a right invariant right chain ring, P a prime ideal
and S = R\P. Then the following are equivalent:

(a) R[S7Y] is right invariant.

(b) Let I be the kernel of the canonical homomorphism R — R[S™!]. Then for all
a € R\I: Sa CaS.

If (a) or (b) holds, then N,(S) C Ni(S), hence I = Ny(S).

PROOF: (a) = (b) Let R[S™!] be right invariant, so s~'a € aR[S™!]forall s € S.
This implies s~'a = apt™!, respectively sap = at in R[S™!]. If sa € aP (in R), then
at € I, 50 a € I which implies a = 0 in R[S™}].

(b) = (a) Let @ € P\I,s € S, s0 a = sb for some b € R. If b = ar, then s7'a €
aR[S~1] - done. Otherwise a = br, and by (b) r € S. Therefore s™'a = b= ar~1.

The additional assertion follows by (b). =

The result above and the next proposition give another justification for the intro-
duction of strongly right invariant right chain rings.

THEOREM 7.23 Let R be a strongly right invariant right chain ring, P a prime
ideal and S = R\P. Then R[S™!] is also a strongly right invariant right chain ring.
Moreover, if the kernel I # (0), then J(R[S™']) = Ni(R[S™!]) = N,(R[S™")), that is,
R[S7Y] is an affine Hjelmslev ring.

PROOF: That R[S™!] is right invariant follows directly from Proposition 7.22(b)
together with Theorem 7.17. In the same way the strong right invariance can be
checked. That Ni(S) = N,(S) follows by 7.17(i) using the arguments of the proof of
Theorem 7.17(iii). =
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7.5 An example of a semiinvariant chain domain

We consider an example of a semiinvariant, but not invariant chain domain. This
construction was essentially given by Radé [70] and provided the first examples of
such rings.

We begin with F' = R(t) the field of rational functions in one indeterminate ¢t over
the real numbers and define an order on F by

agl” + .-+ ap
Bol™ + -+ b
This order is nonarchimedean, in particular ¢ > a for any a € R. Next, consider-the
group

0<

= 0< aobo.

G = {(a,b) | a,b € F,a > 0}
with
(a1, b1)(az, ) = (a1az,a1b, + by)

as operation and

(a1,b1) < (az,b;) <> a; <ayor a; =a; and b; <b,
defines an order on G with

G+={(a,b) la=1and b>0ora>1and b€ F}

as the (extended) positive cone.

The Malcev-Neumann generalized power series ring D = k[[G]] over a field k
contains a chain domain R = k[[G*]] which is invariant (Proposition 1.24).

We will define an overring R, of R which is not invariant, but semiinvariant by
Theorem 7.21. Denote

A={r|z€qG, FreR: z>(1,r)}

I z,z, € A, 7923 > (1,71) -(1,72) = (1,71 + 72), hence A - A C A. On the other
hand A is not an invariant set in G. For, if (a,b) € G, then (a,b)™! = (a”?, —a~1b)
and

(a,b)(1, =1)(a,b)"! = (1, —a).
Selecting an element a € F such that r < a for all » € R (in the case of F' = R(t) we
may take a = t), we obtain a transform of the element (1, —1) € A which does not
belong to A. We consider now the following subset of k[[G]]

Ry = {a=)_ga, € K[[G]] | supp(a) C A}.

Obviously R; + Ry C R; and a € R, implies —a € R;. Since A - A C A, we get
R; - Ry C R;. Hence R, is a subring in k[[G]] containing k{[{G*]]. By Proposition 5.3
R, is a chain domain and hence a localization at a prime ideal P. It is easily checked
that P consists of all elements in k[[G]] whose smallest element of the support lies in

N={z=(a,b)eG | eR: (1,r) <(a,d)}.
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R, is not invariant as the following calculation shows. Take t = a and let = =
(a,0) -1, y = (1, —1) -1 be one-element series in k[[G]]. With the same arguments as
above we notice

z.y-z7 =(1,—a) 1 ¢ Ry,
hence the subring R, is not invariant, however semiinvariant as proved in Corollary
7.20.

7.6 Examples of locally invariant chain domains

We consider the following situation: Let D be a division algebra, finite dimensional
over its center K. If R is a total subring of D, i.e. z € D\R implies z~! € R, then
V = RN K is a valuation ring of K and we say R is an extension of V in D. Cohn
[81] showed that the extension R of V is invariant if J(V') and (0) are the only prime
ideals of V, i.e. V has rank 1. We will consider the general situation in Part 2, but
discuss here an example of an extension R of a rank 2 valuation ring V which is not
invariant in D.

LEMMA 7.24 Let R be a chain domain with Q(R) = D and [D : K] finite for K,

the center of R. Then R is a locally invariant chain domain.

PROOF: We show that (d) in Theorem 7.1 holds for R. Let zP € [P,Q[ where
[P, Q[ is a prime segment. There exists an n > 1 such that the elements {z,z?,...,z"}
are linearly dependent over K. Hence, there exist ¢;,...,¢c, € K with ¢;z+...cpz™ =
0, not all ¢; = 0. Therefore, indices i < j exist with ¢;z'R = ¢;z’R and 2'™'R =
c}'lc;R =zRfor 0 # z = cj‘lc,- € K and hence 2™ R = zR = Rz for some m and
z € K. Note that in each case some power of = defines a two-sided ideal, thus by
Proposition 6.7 we have ™ ¢ (). Therefore using Theorem 7.1 a two-sided ideal # P
exists in [P, Q[. m

Consider L = Q(z) and the two extensions V;, V; of Zs = {a/b € Q |5 [ b} the
5-adic valuation ring in L. Hence V; = Z[i](5-s), V2 = Z[i](24:) and let D = L[[t, 0]]
be the skew Laurent series field with elements 33 | t'a; and at = ta® defining the
multiplication. The center of D is Q[[t]] = K and [D : Q[[t?]]] = 4. The subring

V={_3("a|a €Q, a €}
t=0
has rank 2 and 5V = J(V), P = (t,t%,tzl_S, ...), (0) are its prime ideals.
There are two extensions of V in D:

Ri={d tai|a €L, ao eV}
=0
and -
Rg = {Ztia; |a,~ € L, ag € ‘/2}
=0
and t"'R;t = R,. However, the ideal tR, is not a left ideal, since 7t =ty and
t = F5t(2 —1) with 2 —1 € J(R,y).
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8 Chain conditions on prime ideals

It will be shown that chain conditions on prime ideals imply the symmetry of certain right-left
conditions. For example, B(I) C P-(I) for any two-sided ideal I in a locally archimedean right
chain ring with DCC for prime ideals (Theorem 3.4). This implies that a semiinvariant right chain

domain is right-invariant if DCC holds for prime ideals (Theorem 3.6).:An example of a chain ring -

R without DCC or ACC for prime ideals given and B(I) # B(I) is shown for a certain two-sided
ideal Tof R

8.1 Chain conditions - preliminary remarks

If an ordered group G satisfies the minimum or maximum condition on convex sub-
groups then every convex subgroup is normal in G (see Fuchs [66], p. 82). This result
carries directly over to the ring case:

LEMMA 8.1 Let R be an invariant chain domain with minimum or mazimum con-
dition on prime ideals. Then the localization Rp at any prime ideal P is again an
invariant chain domain.

PROOF: Note that by assumption each principal left ideal is a principal right ideal
and vice versa, hence Ra = aR for any a € R. These ideals form the positive cone
of an ordered group G under ideal multiplication. As described in Schilling [50] the
elements in the complements of prime ideals exactly generate the convex subgroups
in G. Thus by the previously cited result we have aPa~! C P for all 0 # a € R and
P an arbitrary prime ideal and the statement follows from Proposition 7.22. m

We will prove related results for chain rings and right chain rings. We begin with
some general observations on chain conditions on prime ideals in a right chain ring
and recall that in such a ring the union as well as the intersection of prime ideals is
again a prime ideal.

PROPOSITION 8.2 Let R be a right chain ring. Then the following conditions
are equivalent.

a) The set of prime ideals satisfies the minimum conditions.

b

)
)
(c) Each prime ideal # J has an upper neighbour in the lattice of prime ideals.
(d)

Every descending chain of prime ideals becomes stationary (DCC).

The set of completely prime ideals satisfies the minimum condition.

PROOF: The equivalence of (a) and (b) is obvious.

(a) = (c) Let Py # J be a prime ideal. By assumption the set of prime ideals
strictly containing Py has a minimal element which is an upper neighbour.

(c) = (a) Let S be a set of prime ideals. Obviously the intersection on all prime
ideals P € S is a prime ideal, say Qo. As Qo has an upper neighbour, say @;, the
prime ideal (Jp must be an element of S.
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(a) = (d) is obvious.

(d) = (c) Let @ be an arbitrary prime ideal # J. Let @Q; be the minimal element
in the set of all completely prime ideals D Q. If there is no prime ideal between @,
and @, we are done. Otherwise there exists an exceptional prime ideal @; and by
Theorem 6.2 the intersection of the powers of @), equals Q. Thus @, is the upper
neighbour of ¢ and @; the upper neighbour of @), as prime ideals. m

We obtain a dual version for the maximum condition:

PROPOSITION 8.3 Let R be a right chain ring. Then the following conditions

are equivalent.

(a) The set of prime ideals satisfies the mazimum conditions.
(b) Every ascending chain of prime ideals becomes stationary (ACC).

(c) Fach prime ideal which is not the prime radical has a lower neighbour in the
set of prime ideals.

(d) The set of completely prime ideals satisfies the mazimum condition.

The following example shows that the two chain conditions are independent. Let
G be the group G = T ;N C; with C; a copy of (Z,+) for every ¢ € N. A commutative
valuation ring associated with G and the lexicographical order does not satisfy the
minimum condition for prime ideals, but the maximum condition, a valuation ring

associated with the same G but inverse lexicographical order satisfies DCC for prime
ideals but not ACC.

8.2 Minimum conditions for prime ideals in right chain rings

We remind the reader that by Rad(R) = NP, P prime in R, we denote the prime
radical of the ring R.

THEOREM 8.4 Let R be a locally archimedean right chain ring whose prime ideals
satisfy the minimum condition and I a two-sided ideal which is not in the prime radical
Rad(R) if R is not a domain. Then we have Pi(I) C P.(I).

Note that only in the non-domain case there is a restriction on I.

PROOF: Let I be a two-sided ideal. If I is prime, then I is completely prime by
Corollary 7.3(i) and P(I) = I = P,(I) follows by Proposition 4.10(i). So I can be
assumed not to be prime, in particular I # (0) by assumption. The ideal I defines
a prime segment, say [P, Q[.- We will prove the assertion of the theorem segment by
segment. Hence, assume [P, Q[ contains a counterexample L. If P,(L) = P, Lemma
4.6 can be applied and P,(L) = P follows. Thus for a counterexample L we have the
following situation:

P(L)=P,DP.(L)=P,DP>Q

Since the minimum conditions holds for prime ideals there exists an upper neighbour
of P,, say P}, in the lattice of prime ideals.
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We choose L minimal with respect to P,. Note that P, = P.(L) D P holds and
any two-sided ideal L' € [P, Q[ (under the general assumption) with P.(L') C P;
satisfies Pi(L') C P,(L'). Choose any s € P{\Pz, so {},eN "R = P,. Hence there
exists ¢ ¢ L with sz € L. As P is completely prime, we have zR € [P,Q[. Since
z ¢ L, we have szR C zR, thus sz = zt for somet € Rand t € P, = P.(L)
follows. In the case when R is not a domain, the element ¢ can never lie in the .
prime radical Rad(R), since sz ¢ Rad(R). So the powers of t define a completey
prime ideal, say P3 = t"R. Note that ¢ never lies in P. Assume otherwise t € P,
then s"z = zt" = z%r for a sufficient large n and r € R. We conclude s"v = z, so
s"z = s"vz?.zr = s"zv'zr for some v’ € R using Theorem 7.1. This leads to sz = 0
which is impossible by s",z ¢ @ and Q completely prime.

Hence the situation is the following:

P(L)=P, 2P, 5P, =P,(L)= [ s"R2tR>P,= (Jt"R2P 2L >Q.
neN neN

From P;\P; we choose an element p under the following restrictions with z as
specified above.

Case 1: There exists p € P,\Ps with prq = z for some q € R.
Case 2: (P,\P3)x C zR.

Case 1: We assume pzq = z for some p € P,\Ps, ¢ € R. Since p"zq™ = z follows
for each n, the element ¢ can never lie in the prime radical nor the smallest prime
ideal # (0) in the domain case. Each ¢ generates a prime segment [P,, Q4[> ¢R.
Choose p under these conditions such that P, = P’ is minimal. -Such a prime ideal
P’ is never the union of prime ideals strictly contained in P’ since ¢ € P’. Again we
have s"¢, = p for all n € N and ¢, € P,\P; follows.

If for some n we have q,zR C =R, say ¢,z = zq,, we obtain

T = pzq = 8"q,xq = s"‘lsxq;q €L,

since sz € L, a contradiction. Thus we may assume ¢,zR O zR for all n, say
¢nzq,, = z. By assumption on ¢ we have ¢_ R D ¢*R for some k, since ¢/, ¢ Rad(R)
and each prime segment is not simple (use Theorem 1.21). We set ¢’z = ¢* and
obtain

k—1_n k—lsn—

z = p*zg* = p*pagk = pFls"quagt = pFlsMguzg s = pF sz = p 1(sz)z,

thus z = p*~1s"1(sz)z € L, a contradiction.

Case 2: We assume (P;\P;)z C zR. Since L O Q and P,Q D @ follows. Then
choose p € P,\P; arbitrarily. For each n € N we find ¢, € P,\Ps with s"¢, = p.
Then we have pz = s"g,z = s"zq], for some ¢, € R and any n by assumption.
Thus pz = s™zq], = zt -t" ¢/, hence pz € ztN,ent"R C (zt)P3 C LP;. Note
that even if R is not a domain, LP; # (0), since pz # 0 for some p € P,. Since
P; C P, holds, P,(L) = P, implies P,(LP3) = P; C P, by Proposition 4.10(vi).
Again LP; D @ holds, so P(LP3;) C P; by induction. However, p ¢ Ps, pr € LP;
implies ¢ € LP; C L, a contradiction.
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Hence, there cannot exist a counterexample. m

We now draw some conclusions from Theorem 8.4.

In Section 7.2 for a prime ideal P with Pa C aJ we had defined P™ = P™(a) as
the minimal completely prime ideal Q with Pa C aQ. It was proved in Lemma 7.9
that in a locally archimedean right chain ring we have P = P"(a) where P is the
minimal prime tdeal containing aR. This result turns out as a special case of a more -
general statement.

THEOREM 8.5 Let R be a locally archimedean right chain ring whose prime ideals
satisfy the minimum condition. Let P be any prime ideal and a # 0 an element of

R which is not in the prime radical provided R is not a domain. Assume further
Pa CaJ. Then we have P C P™(a).

PROOF: If P is the prime radical the assertion is obvious. Thus assume P D
Rad(R).

Let Rad(R) C Pa C aP™(a) = aP™ and consider the two-sided ideal aP™ (use
Proposition 7.10. P~ is not the prime radical when R is not a domain and so
aP™ O Rad(R). We apply Theorem 8.4 to the two-sided ideal a P™ which satisfies
the prerequisites of the assertion. The rest follows from Proposition 7.10. =

THEOREM 8.6 Let R be a right semiinvariant right chain ring with the minimum
condition for prime ideals and 0 # a € R satisfying a ¢ Rad(R) provided R is not a
domain. Then Ra C aR.

PROOF: If Ra Z aR, then a = uas for some u € U, s € J and hence Ja C aJ as
R is right semiinvariant (use Lemma 7.12(i)). Thus J™ C J and by Theorem 8.5 we
obtain J™ = J.

Consider the two-sided ideal RaR. If J = RaR then P(J) = P,(J) = J, otherwise
choose j € J\RaR and b exists in R with jb = a. If b = rjar, € RaR, then
a = jb = jriary € aJ, using Ja C aJ we obtain a contradiction and P,(RaR) = J
follows. Since a semiinvariant ring R is locally archimedean we obtain P.(RaR) = J
by Theorem 8.4.

We turn back to the chosen elements a,u,s with a = uas,s € J. We may
assume that in case J? C J the element s is not a generator of J, otherwise consider
a = u™as". Hence, there exists ¢ € J with tR D sR, say tv = s for some v € J. By
P.(RaR) = J we find b ¢ RaR with bt = rjar, € RaR. If r| is a non-unit, we have
ria = ar} for some r{ € R, that is bt = arjr;. If r; is a unit rename r]'b as b and
we have bt = ar for some r € R. Obviously bw = ua for some w € J and u as chosen
above. Thus we conclude a = uas = bwtv = btw'v = arv using Jt CtJ and so a =0
follows which finally proves the theorem. m

COROLLARY 8.7 Let R be a right semiinvariant right chain domain whose prime
ideals satisfy the minimum condition. Then R is right invariant.
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PROPOSITION 8.8 Let R be a right invariant right chain domain whose prime
ideals satisfy the minimum condition, further let S = R\P. Then R[S™'] is right
mnvariant.

PROOF: If P = J, we are done. So assume P C J and sa = ap for some
s € S, p € P. Let [P, P,| be the prime segment generated by sR. Note that
P, D P holds. By Theorem 8.5 we have P, C P[(a), thus s;a = ap, for some s; with
P, D8R D P, and p; ¢ P. W.lo.g. we may assume ;R C sR, say st = s; which
leads to ap, = s1a = sta = sat’ = apt’ for some t' € R. Since pt’ lies in P, however
p1 ¢ P we obtain a contradiction. =

8.3 Minimum and maximum conditions for prime ideals in chain rings

As it can be expected one obtains more specific results in case R is a chain ring.

THEOREM 8.9 Let R be a chain ring and I a two-sided ideal of R. Assume
that the minimum condition holds for the prime ideals of R that contain I. Then

In view of Proposition 5.6(ii) and Lemma 4.5 it is sufficient to prove the following
theorem:

THEOREM 8.10 Let R be a chain ring with minimum condition for prime ideals.
Then Ni(R) = N.(R).

PROOF: Without loss of generality it can be assumed that N.(R) C Ni(R), and after
localizing at S = R\N;(R) we may further assume that N,(R[S™!]) C N/(R[S7!]) =
J(R[S~]) (Proposition 5.6). Therefore it suffices to consider the case N;(R) = J(R),
which implies in particular (Ra)™ = Ra for all @ € R by Theorem 2.9(ii) . Therefore
we may restrict ourselves to the following situation: We set N,.(R) = @, Ni(R) =

and assume Q C J. For b € J\@ we have Q C Rb and thus Q" D (Rb)" # (0) follows
By Proposition 4.14(ii) the ideal @' is a completely prime ideal.

Independent of any chain conditions for prime ideals @ = Q" is impossible. To
prove this assume:

Step 1: @ = Q. Thus Q' = Q™" and by Proposition 2.10(ii) Q" = Q™™ since

# (0), hence @' = Q" and therefore Q' # (0). Take any a # 0,a € Q'. We
conclude @ C (Ra)" and as Q = N,, we thus have @ = (Ra)" and finally Q" = Q' =
(Ra)" = Ra (Theorem 2.9(ii)). As the element a € Q' was chosen arbitrarily, we
have Ja = (0). Hence J C (Ra)' = (Q")! = Q" = Q. Contradiction!

Step 2: Since N,(R) = @ we have Q™ C N,(R) = Q. We now assume Q" C @
and hence Q™ # (0). The process can be iterated. We write Qo = @, Qi+1 = QI
and we have @; C Q¢ by assumption. By the minimum condition for prime ideals
there must exist a smallest index k with Q, = @}, = Q¥ hence Q7 = Q7™ = Q;
by Lemma 2.10(iii), a contradiction. =

71



COROLLARY 8.11 Let R be a chain ring with minimum condition for prime ide-
als, P a completely prime ideal in R. Then P' = P’.

PROOF: If both annihilators of P are zero, we are done. Thus we can assume
that P' # (0). By the left symmetric version of Proposition 4.14(i) it follows that
P(P") = P!.. Applying Lemma 4.13 we obtain P,(P') = P. Theorem 8.9 implies
P = P". Now we get by Proposition 2.10 P! = P/ = P". m

We don’t know whether an analogous result holds if we assume the maximum
condition for prime ideals. However, Mazurek [89] gave an equivalent characterization
under this condition:

THEOREM 8.12 Let R be a chain ring with the mazimum condition for prime
ideals. Then N,(R) = Ni(R) if and only if P" = P' holds for any completely prime
tdeal P of R.

Before we give his proof we need a further lemma which can also be found in
Mazurek’s paper:

LEMMA 8.13 Let R be a chain ring with N,(R) C Ni(R) and P a completely
prime ideal with PT C P'. If we put Ag = P and A4, = A}, for n € No, then Ay, is
completely prime and Agny3 C Agny1 C Az C Agnyz for any n € Ny.

PROOF: If P" = 0, then Lemma 2.8 gives N; C N,, a contradiction. Therefore
Pr # 0, and A; = P is a completely prime ideal in view of Proposition 4.14. If
P'" C P, then Proposition 2.10 and 4.14 imply P! C P = P7, a contradiction.
Hence, Ay # 0,A; is a completely prime ideal and Aq C A;. We shall prove by
induction on n that A}, # 0, that A,,,, is a completely prime ideal, and that
Azn C Agnqs for all n € Ny. Let us suppose that the result is true for some n. From
the induction hypothesis and Proposition 2.10 we get A}, , = A = A} #0.

So Lemma 2.8 implies A} ., # 0, and therefore As.44 = A3}, is a completely
prime ideal by Proposition 2.10. I A,,.4 C Ajn42, then Proposition 2.10 gives
Agnya = A7, = A L, C AL ., = A" = A,,, a contradiction. Thus we have
Agntz C Azpta.

It follows from the above and from Proposition 2.10 that Agn4s = A}, C A}, =
Aznyr. m

Now we are able to prove Theorem 8.12.

PROOF: If N, = N,, then Lemma 8.13 and the symmetric version of Lemma 8.13
imply P = P! for any completely prime ideal P.

Now assume that N, # N;,. We consider only the case when N, C N;. Then
NI # 0, since otherwise N; C N, by Lemma 2.3. If N = NI, then N = N by
Proposition 2.5, so Proposition 2.10 implies N; = N! = N7' = N,, a contradiction.
Hence we have P™ # P! for a completely prime ideal. m

For (projective) Hjelmslev rings R we have N,.(R) = N;(R) = J and Lemma 8.13
can be applied to obtain a result by Térner ([74], Satz 5.28).
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THEOREM 8.14 Let R be a projective Hjelmslev ring whose prime ideals satisfy
the mazimum or minimum condition. Then for each completely prime ideal P we
have P' = PT.

A detailed analysis shows that Radé’s ring [70], see the next section, provides
an example of a chain ring which neither satisfies DCC nor ACC for prime ideals.
Furthermore, in this ring there exist two-sided ideals whose left and right associated
prime ideals do not coincide.

We close this section with a short proof of a consequence on semiinvariant rings:

THEOREM 8.15 Let R be a semitnvariant chain ring with minimum condition on
prime ideals. Then R is a duo ring.

PROOF: We may assume without loss of generality that aR C Ra for an element
0#a€R.

Case 1: Ja # (0). Since aR C Ra implies Ja C aJ (see 7.12) we can apply
Lemma 4.12 and obtain a completely prime ideal @ with Ja = a@Q. From Theorem
8.9 and Proposition 4.12 we get Pi(Ja) = J = Q = P (aQ), so J = @, that is
Ja = aJ and by 7.12(iv) Ra = aR follows.

Case 2: Now suppose Ja = (0) which implies J C (aR)', hence J = (aR)' D (Ra)".
However, take any j € J and ra € Ra, thus jra = 0, which shows J = (Ra)'.
Obviously we have (Ra)"" = J™ and by Corollary 8.11 Ra C (Ra)'" C J™ = J' follows.
Thus aJ = 0, which leads to Ra = aR. m

THEOREM 8.16 Let R be a chain ring with mazimum or minimum condition on
prime ideals. Assume aR = Ra for some a € R, i.e. a is a duo element. Then
Pa = aP for any completely prime ideal P, that is, a is strongly duo.

PROOF: (a) Suppose the maximum condition on prime ideals holds. Set § =
{P | P completely prime ideal and Pa # aP}. Assume S # 0. As Ja = aJ, the
set § has a maximal element @ # J. As Qa # aQ, say Qa C aQ, in particular
a@ # (0). By Proposition 4.12 aQ) = @,a for some completely prime ideal @,. If
Q1 CQ, a@ = @Q1a C Qa C a@ follows, a contradiction. Hence, we have Q C ¢,
so aQ) = @1a = a@Q), since ) was maximal under the restriction. But this implies
a@ = (0), a contradiction to a@ # (0).

(b) Suppose the minimum condition on prime ideals holds. From Theorem 8.8
we know P(I) = P,(I) for any ideal I. With the arguments from above and by
Proposition 4.12 we get Pa = aP. m

COROLLARY 8.17 Let R be an invariant (or duo) chain ring with mazimum or
minimum condition on prime ideals. Then P(I) = P,(I) for all two-sided ideals I.
In particular R ts strongly duo.

73



PROOF: Let I be a two-sided ideal of R and p € P,(I). To be more precise, let
[Py, P;| the prime segment generated by p. There exists ¢ ¢ I with pz € I. Hence,
by Theorem 8.16 we have Piz = 2P, and Py = zP,, so there exists p’ ¢ P,\P, with
pz = zp'. Such an element p’ however lies in P,(I) showing P/(I) C P,(I). With
symmetric arguments the proof is finished. m

8.4 A counterexample

We return to the example of Section 7.5 to make the following observations about
invariant chain ring k[[G*]] = R constructed there:

(a) R does not satisfy DCC or ACC for prime ideals.
(b) There exist in R two-sided ideals I with B(I) # P.(I).

To recall the definition of R let F' = R(t) be the field of rational functions in one
indeterminate ¢ over the real numbers with

(@ant™ + -+ 4+ a1t + ag)(bpt™ + - -+ byt + bo)_1 > 0 if and only anb, > 0
defining an order on F. Then G = {(a,b) | a,b € R(t),a > 0} with
(@1,b1)(az, b2) = (a1a2, azbs + by)

as operation is an ordered group and we show that (a) holds by defining sequences
of convex subsemigroups of G*.
Consider the sets

IL = {zeG* | eRY:(1,rt') <z} withi=1,2,...
= {zeGt|F eR :(1+rt7,0)<z}withi=1,2,...

The complement of II; is multiplicatively closed and convex in G and we obtain a
strictly decreasing sequence of prime ideals in R:

POPD>:--DPD:--,

where P; equals the set of elements in R with support in Pz; for i = 1,2,...
If ay,a, € F with a,,a; < 1+ st~ for all s € Rt then

aa2 < (14 st")z =1+42st~" + (.st"')2 <1+43st™

since st~* < 1 in F which shows that the complement of §; is a convex subsemigroup
of G. Hence, we obtain a strictly increasing sequence of prime ideals in R:

hCc@QC---CQunC---,

where @; equals the set of elements in R with support in ;.
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(b) Next we construct a two-sided ideal I in R which is not symmetric, that is,
P(I) # P.(I). We define I by those elements of R whose support lies in

O={z€G|Fr eRt:(t’rt) <z}

O is an upper set, that is, ¢ € I and z < y for any y € G implies y € ©. Again we
do the calculation in G instead of in R.

We claim: Py(I) # P,(I). Take the element (1,t~! + 1) € G. To multiply this
element in O, we use (t2,0) and obtain

(£2,0)(1L,t7 +1) = (2,7 + 1)) = (A, + 1) € ©.

However (t2,0) ¢ ©.
On the other side let

0> (Lt '+ 1)t a) = (tfa+t71 +1)

leading to rt < a+1+t~! for some r € R*. By t~! < 1 we obtain as a consequence
the necessary condition rt < a + 2. Since 2 < (r/2)t this implies (r/2)t < a showing
(t2,a) € ©. These observations carry over to the ring case by choosing element in R
with a corresponding support and show P;(I) # P,(I).
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9 Overrings of right chain domains

Some examples show that in the lattice of overrings of a right chain domain R much more compli-
cated phenomena occur than in the case of a chain ring. Overrings T are no longer localizations of
the ground ring in general. In particular in the case of R a right invariant chain domain some con-
struction principles are discussed (Proposition 9.3 and Theorem 9.11). This suggests to study right
chain overrings with additional properties for which we obtain some structure theorems. An expan-
sion theorem is presented describing overrings in terms of unions of conjugated subrings (Theorem
9.13). The chapter closes with some examples.

9.1 Introductory remarks and some easy properties of overrings

In commutative ring theory a domain R with the property that each overring of R
is a quotient ring of R is said to have the QR-property (see Gilmer [72], p. 334).
It is known that a domain with the QR-property is Priifer. The converse fails, but
under the additional hypothesis of integral closure for R it can be proved (see Gilmer
[72], p. 324) that any overring of a Priifer domain is an intersection of quotient rings.
Rings R of that type are said to have the QQR-property (see Gilmer {72], p. 339).

Generalizations to classes of noncommutative domains are also known, e.g. for
left /right principal ideal domains (Brungs [71]) resp. for Bezout domains (Beauregard
[73]). However these rings are left /right symmetric. In general, it can not be expected
that similar results hold for rings with only a one-sided structure as the right chain
domains considered in Brungs [71] demonstrate.

The aim of this chapter is an analysis of overrings of a right chain domain R in its
quotient ring Q(R) = D. For chain rings the situation is similar to the commutative
case as pointed out in Section 5.1. We will show that in the lattice of right chain
overrings there is no chain domain between any two right chain domains unless the
larger one is already a chain domain.

As by Example 5.7 an overring of a right chain domain need not to be a right
chain ring again, we will mostly restrict our attention in this chapter to overrings
T C Q(R) = D which are again right chain domains.

Obviously the trivial condition U(R) € U(T) and so J(T) N R C J(R) hold for
any overring T'. On the other side non-units of R may turn into units of 7. We set
P={zeR |z ¢T} CJ(R). 1t is evident that R\P is multiplicatively closed.
If z € P, € R and zr € R\P, then also ¢ P, a contradiction. So P is a right
ideal, hence a two-sided ideal by Lemma 1.14 and P is completely prime. Hence, we
obtain R C Rp C T C Q(R). Therefore, in order to keep aside effects caused by
localizations we may often assume that no non-unit in R becomes a unit in T, that
is R is mazimally localized in T'.

Any element of T is of the form ab~! with a,b € R, b # 0. Let ab™! € T and
R a right chain domain. Since a = bz or ay = b holds for some z € R, y € J each
element of T is of one of the types

ab™! = aza™' (Type 1) or ab™! = by~1b6"! (Type 2).
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‘This terminology does not a priori provide a-disjoint classification. Since any over-
ring T is a sophisticated union of elements of Type 1 as well as Type 2, the structure
of T heavily depends on these elements.

Note that a right chain domain R has rank 1 provided R has exactly one com-
pletely prime ideal # (0).

We summarize a few observations:

LEMMA 9.1 Let R be a right chain domain and T C Q(R) an overring of R. Then
we have:

(i) ‘The set P of elements of R which-are non-units in.T-is «a completely prime
tdeal in R and RCRp CT.

(ii)) Assume R to be of rank 1, i.e. J(R) is the only nonzero completely prime ideal.
Then y=! €T for some y € J(R) implies T = Q(R).

(iii) Assume T C Q(R). Then we have: Mvey(ry\{o} ¥T = (0).

PROOF: (i) was already proved.

(ii) By (i) we have P C J(R), hence P = (0) and so Rp = Q(R).

(iil) Let ¢ € Mbesiry\o3 ¥T- I z is of the form ara™' we have (ara™')a = ar €
Mees(r\fo} bT- Since ar ¢ ar®T it follows £ = 0. On the other hand, if z = ar~'a™!

we get (ar~'a™l)ar =a € Mses(r)\{o} T, hence a = 0, a contradiction. =

Whereas the lattice of right ideals in R is cofinal with that of 7', the maximal
ideal J(T') even when T is local, is in general not T-generated by J(R) (see again
Example 9.14). Example 9.15 will show that we can not expect the overrings to be
of rank 1, even if R is of rank 1. In fact the rank is not even bounded.

We recall from Chapter 7 that in particular in a strongly right invariant right
chain ring we have Ja C aJ for any a € R. Under additional assumptions for R we
obtain the following results.

LEMMA 9.2 Let R be a right semiinvariant right chain domain and T C Q(R) an
overring of R. Then we have:

(i) Assume aza™ = by~ 6" € T. Then =z € U(R) follows. If R is in addition
strongly invariant, each element is either of Type 1 or of Type 2.

(ii)) Assume R is of rank 1. Then each element of T is either of Type 1 or of Type
2.

(iii) Let T be right invariant and R mazimally localized in T, then each element in
T is of Type 1.

PROOF: (i) We consider the cases br; = a and b = arz. In the first case we have
rizry! = y~! and so yriz = r; follows. As R is semiinvariant and y € J we obtain
riy'z =r, for some y’ € R showing x € U(R). If b = ar; holds we get = = ryy~ 'y,
thus zry = r; leading again to z € U(R). If R is assumed to be strongly invariant,
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~-then in the first case y’ € J(R) follows leading to r; = 0, a contradiction. In the
second case we get r, = zry = ryz’y for some 2’ € R, hence by y € J again a
contradiction.

(ii) follows directly from (i).

(iii) By (av™'a™)av = a and the right invariance of T we obtain av’v = a for
some v’ € T which shows that v is a unit in T, a contradiction. m

9.2 Conjugated rings as overrings in the right invariant case

Next we are considering for some obvious overrings of R. Let b # 0 be a right
invariant element of R, i.e. Rb C bR and so R C bRb~! follows. Hence bRb™! = R® is
an overring of R, the b-conjugated ring of R, which is again a right chain domain ~ R.
These overrings will play a central role. We may interpret the situation as follows:
in the overring R’ a step forward is made in order to let b become a duo element.
Since (brb~1)b = br holds for any r € R, each element of R occurs in the overring
R’ as a right hand factor of b caused by a shifting process from left to right. This
procedure can be iterated: Consider R¥ as an overring of R®. Then each element
of R’ originates in shifting over b some element of R from left to right. We remark
that this process will never become stationary if b was not duo to begin with. Thus
a right invariant element b defines an overring T = Unen B*" C Q(R) in which the
element b is duo!
The next proposition summarizes and extends some of these elementary facts.

PROPOSITION 9.3 Let R be a right chain domain and a,b € R*. Then the
following assertions are valid:

(i) R® ts an overring of R if and only if only if the element a is right invariant,
i.e. aR is a two-sided ideal. R*™ is an overring of R if and only if a is left
invariant.

(ii) R* ~ R for any a € R*.

(iii) Let T be an overring of R and a € T right resp. left invariant in T, however
not duo. Then {T*"} resp. {T°™"} are infinite ascending chains of overrings
of T and hence right chain domains and overrings of R in Q(R) = D.

(iv) Let a, s # 0 be right invariant elements in R and b = as. Then R* C Rb, and
equality holds if aR = bR. In particular, if R is right invariant, the conjugated
overrings R*, a € R* form a chain.

(v) Let a € R be a right invariant element. Then T = U,en R is a right chain
overring of R in which a is duo.

(vi) Let a,b € R with aR D bR be right invariant elements where the element b is
in addition assumed to be duo. Then a is also a duo element.

(vil) Let R be a right invariant right chain ring and assume that the minimal prime
ideal # (0) contains a duo element. Then R is an invariant chain domain.
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PROOF: (i) Obviously R C R®* = aRa™! if and only if Ra C aR.

(i) R and R*® are isomorphic via r — ara™!.

(iii) follows from (i).

(iv) Let b = as with s € R*. Then bRb~! = a(sRs~1)a~! D aRa~! by (i). The
equality is obvious if s € U(R).

(v) see the remarks before Proposition 9.3

(vi) By (iv) we have R C R* C R® = R as the element b is assumed duo, hence
R = R*® which implies that a is duo.

(vii) Note that with a duo any power of a is again duo, thus for any b # 0 we find
a duo element a with aR C bR. Thus by (vi) any b is duo and since R is a domain,
R is also a left chain ring. m

Next we turn to the question posed at the beginning of this chapter and provide
a partial answer.

PROPOSITION 9.4 Let R be a right invariant right chain domain with the mini-
mum condition for prime ideals. If R satisfies the QQR-property, that is, each overrmg
is a localization of R, then R is a chain domain.

PROOF': We assume that R is not a chain domain. Then there exists some a € R
which is not a duo element. Hence Ra c aRandso RC R* CR¥ Cc-.-C R*" C
is a strictly increasing set of overrings by Proposition 9.3(iii). Since each overring
is required to be a localization, there must be a decreasing sequence of prime ideals
which does not become stationary. Contradiction. m

Nevertheless overrings T obtained by conjugation may possess elements of R which
have become units in T without T being a localization as the following example shows.

EXAMPLE 9.5 Take R as a right noetherian right chain domain with ezactly two
prime ideals R O yR # (0) (see Ezample 3.8). In particular we have the com-
mutation rule zy = ye for some ¢ € U(R). Then yRy™! is an overring of R in
which £ = yey™! is a unit, however yry=' is a nonunit. We will show that yRy™}
s never a localization. Assume otherwise R(yR) = yRy"l holds. Then each yry™?
with arbztrary reR,r#0 can be written as y"z*uz~', u € U(R), m,l,k € No. Set
yry~! = y™zFuz~!, hence ry~ 'z = y™1z*u. Since Ty = ye and so ye~! = zy holds
for some € € U(R), we obtain ry~'z' = rely~! = y™ " aku. It follows

1 m— la:ku

re =y Yy
= y™ zFyu’ for some v € U(R)
= ymekul

m .k, 1.~

We obtain r = y™e*u’e™" which shows that the r’s are restricted to a subset of R, a
contradiction.

The conjugated rings R® discussed so far are again contained in some specific
overring, namely the ring constituted by all the elements of Type 1. This ring is a
chain domain as the next proposition states.
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PROl:OSITION 9.6 Let R be a right invariant chain domain and R = User» R°.
Then R is an invariant chain domain all of whose overrings in Q(R) are again chain
domains. If R is of rank 1, then so is R.

PROOF: As the rings R*, a € R* form an increasing chain as far the corre-
sponding sequence of right ideals aR is decreasing (Proposition 9.3), R is a right
invariant right chain domain. In order to prove R to be a left chain domain con-
sider elements £ = ara™! and y = asa™!, again using the fact that the conju-
gated rings are linearly ordered by inclusion. Let s = rt for some t € R then
y = asa™! = (asr~'a71)(ara™!) = as(ar)~Y(ara~!) = (ar)t(ar)~'z. To show that
Uacr+ R* is left invariant use zy = ara~lasa™ = arsa™! = ars(ar)~lara™! = y'z
where y’' = ars(ar)™.

By Proposition 5.3 each overring of a chain domain in its quotient field is a
localization at a prime ideal.

Now assume that R is of rank 1. Let ava™! € R, hence ava™! lies in J(R) if and
only if v € J(R). We remark that the semigroup of principal right ideals in case
where R is of rank 1, is commutative (a result which will be proved independently
in a forthcoming part). Thus av = vau for some u € U(R) and so ava™! = v(aua™!)
with aua™! € U(R), hence ava™'R = vR. This shows that each principal right ideal
of R, say ava™?, is contained in some right ideal which is generated by an element
of R, namely v € R. Hence J(R) = Uses(r) bR. Since also Msrcr bR = (0) holds by
Lemma 9.1(iii), R is of rank 1. m

.Overrings lying in R can be described more closely. In this context the following
condition is of interest defining an extraordinary situation for elements of Type 1.

(%) A conjugate of a unit in R may be a non-unit in T, that is, there may exist
elements u € U(R), = € R with zuz™! € J(T).

PROPOSITION 9.7 Let R be a right invariant right chain domain of rank 1 and
T an overring of R lying in R. Assume further that T is again a right chain domain.
Then we have:

(i) Let zaz™! = yby~' € T. Then aR = bR.

(i) Let zbz~? be in T with b € J(R). Then we have aT D zbz™*T D cT provided
aR D bR DcR.

(i) The set of elements { = zaz™ € T | a € J(R)} defines a completely prime
ideal Py which is also the minimal prime ideal # (0) in T. Further we have
Nnen 2" T = (0) for any z € P,.

(iv) The overring T is of rank 1 if and only if there ezists no elements satisfying
Condition (x). In this case we have: zaz™! € U(T) if and only if a € U(R).

PROOF: (i) Let zaz™! = yby~!. Without loss of generality we assume tR D yR,
thus zr = y for some r € R. We obtain yr~tary™! = yby~! and so rlar = b leading
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to aRrR = r RbR since R is right invariant. The semigroup of principal right ideals in
a right invariant right chain ring of rank 1 is commutative (see a forthcoming Part),
hence aR = bR follows.

(ii) We set ar = b and assume contrary zbz™ 1T D aT, thus zb~'z~'a € T. By
Proposition 9.3 a lies in R®, hence a = za’z™! and obviously aR = a’R holds using
again the commutativity of the multiplication of ideals in R. By assumption we have
zb™la'z™! € T, so b 1a'z~! = ydy™! for some d € R using Lemma 9.2. From (i) we
obtain a’R = bdR, thus bR D a’'R = aR, a contradiction. The rest of the inclusion
can be proved by similar arguments.

(iii) Obviously elements a € R are also elements of R* for any = € R, say a =
za'z™! and a € J if and only @' € J holds. So P, is a two-sided ideal whose
complements is multiplicatively closed. Let z = zaz™! € FP,. Then for any b € J(R)
by (ii) we find n € N with T D 2"T = za"z~!T since R is of rank 1. That
Mwen 2" T = (0) follows from Proposition 9.1(iii). By results of Chapter 6 there
cannot exist an exceptional prime ideal inside Fp.

If Condition (x) is satisfied for some zuz™!, such an element does not lie in P,
hence Py C J(T). On the other side P, = J(T) implies that elements zuz™!, u €
U(R) are units in T contradicting Condition (%). The rest is obvious. m

9.3 Overrings under restricted conditions

It is natural to ask how the lattices of right ideals of T' and R are related. Here we
deduce conditions on the structure of J(T') induced by J(R).

The next theorem provides some detailed information on this connection in the
case when R is of rank 1 and R does not necessarily consist of elements of Type 1
exclusively. Note that by Corollary 6.3 it cannot be excluded that right chain domains
of rank 1 might exist with an exceptional prime ideal (0) C @ C J. In such a case
J(R) is idempotent and, in addition, N,en @™ = (0) holds.

PROPOSITION 9.8 Let R C T C Q(R) be right chain domains where R is of

rank 1.

(1) For any completely prime ideal P # (0) in T we have J(R)T C P.

(ii) T possesses a minimal completely prime ideal Py 5 which is the intersection of
all completely prime ideals # (0) of T

PROOF: (i) Suppose P C aT for some a € J(R). If R is right invariant we have
a" € P for some n € N (use Lemmma 9.1(iii)). Then there exists a unit u € U(R)
such that (au)" € P for some n € N. Contradiction.

(ll) Set Po = np:_)J(R)T P u

What can be said about the ideal lattice in T between the two neighbouring
completely prime ideals Py and (0)? Does there exist an ezceptional prime ideal in
P,? The next result answers this question negatively.
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THEOREM 9.9 Let R C T C Q(R) be right chain domains where R is of rank
1 and Py # (0) is the minimal prime of T. Further assume that R does not an
exceptional prime ideal.

(1) Py does not contain an ezceptional prime ideal.

(i) [Po,(0)[ is simple provided T contains an element of Type 2 or R is nearly
simple.

Recall that for a right ideal I we denote by I resp. I the smallest (resp.
largest) two-sided ideal containing I (lying in I). A straightforward proof shows
I = Uuev(r) ul resp. I = Nyeu(ryul.

PROOF: (i) If R is right invariant and T lies in R, that is, all elements of T are
of Type 1, the assertion (i) follows from Proposition 9.7(iii).

Next we assume that R is nearly simple, however T' consists only of elements of
Type 1. So we have J(R)? = J(R). Assume otherwise that there is an exceptional
prime ideal 0 C Q C Po. Since N,eN @™ = (0), however J(R) is idempotent by Corol-
lary 6.3, some elements of J(R) NT cannot lie inside ). On the other side elements
in J(R) NQ constitute a two-sided ideal in R as it can be checked straightforwardly,
a contradiction.

Next we are dealing with the case where T contains an element of Type 2, say
w = av~'a"! with v € J(R), a € R. We will show that the neighbouring prime ideals
of the right ideal aT are aT and aT which are in addition completely prime, hence
aT = (0) and aT = Py, so [P, (0)][ is simple.

We obtain wav = w"av™ = a for arbitrary n € N. Suppose the largest two-sided
ideal contained in aT, namely aT, is not zero. Applying Lemma 9.1(iii) we have
aT NR # (0). If R is right invariant we have v™ € aT N R for some n € N. We obtain
a € aT, hence a is a right invariant element in T and @ = w"av™ = awjv™ follows,
a contradiction. In the other case R is nearly simple, so ,ey(r) uvR = (0), hence
uv € aT for some u € U(R) and thus v € aT'. Again a lies in a¢T and we use the
same arguments as before. Thus ¢T = (0).

Since R is a domain and there is no two-sided ideal between aT and aT = (0),
the two-sided ideal aT must be idempotent, hence aT is a completely prime ideal by
Theorem 1.15. As there is no two-sided between aT and aT the segment [aT, (0)[ is
a simple prime segment. This completes the prove of (i).

(ii) As proved in (i) P does not contain an exceptional prime ideal. By the proof
of (i) we may restrict to the case where T contains only elements of Type 1. So
we are done if [Py, (0)[ turns out to be simple. If [P, (0)[ would not be simple, we
have MNpen 2*T = (0) for all £ € Py (use Theorem 1.21). However, by Corollary 6.5
we find elements 0 # z,u,v € R, u,v € U(R) with 2T C Npen(uzv)*T, again a
contradiction. m

What can be said about the consequences of the pathological situation described
by condition (x)? By Theorem 9.9(ii) we may restrict to the case where all elements
of T are of Type 1, so T C R and by Proposition 9.7 there is no exceptional prime
ideal in Py. Thus [F,, (0)[ defines a prime segment and the following theorem holds.
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THEOREM 9.10 Let R C T C Q(R) be right chain domains where R is in addi-
tion right invariant and of rank 1. Further assume that T is an overring satisfying
Condition (). Then at least one of the following possibilities is true.

(a) Po C J(T), that is, T has at least two non-trivial completely prime ideals.
(x) The prime segment Py D (0) is simple.

PROOF': As mentioned before we may assume that all elements of T are of Type 1.
Further let v = aua™ € J(T') with v € U(R). Finally assume that P, equals J(T),
hence T possesses exactly two prime ideals, namely Py and (0). Since v-au™! .u™! =
au~! holds with v € J(T), the element au~! is not right invariant in T, hence by
the characterization of right chain domains of rank 1 (see Corollary 6.3) T has to be
nearly simple. This shows that the remaining assertion (b) is true. m

9.4 A correspondence between overrings and right ideals

Next we describe two elementary, nevertheless important construction methods for
overrings which both together lead to a Galois correspondence of two-sided ideals and
certain overrings. In Proposition 9.6 a union of a-conjugated rings was taken with a
running over the complement of the zero ideal. This idea can be generalized.

Let R be a right chain domain and I a two-sided ideal. Further assume that any
a ¢ I is right invariant, that is Ra C aR for all a ¢ I. Each element a with aR D I
resp. aR D I defines an a-conjugated ring R* O R. Next we consider

U Ra = Dl
aRDI
which is an overring of R by Proposition 9.3. Let I # (0) be a two-sided ideal, the
same applies to
U R* =D,
aRJI
which is again an overring of R. The question arises when these two constructions
do coincide, respectively when different two-sided ideals lead to the same overring. -
Obviously we have D; D I. Note that D, O I implies D, > I, hence I is of the form
bJ for some b € R. On the contrary, if I is assumed to be a lower neighbour, we have
I = bJ by Lemma 1.2(v). Then bR D bJ and D; = bR > I follows.

Again we have D; D I. Assume D; O I. With the same arguments as above we
conclude D, > I leading to D, = bR and I = bJ for some b € R. In addition, the
maximal ideal J must be not finitely generated and hence J is idempotent otherwise
J =mR and I = bJ = bmR follows contradicting Dy D I.

The converse is also true, that is, if I is a lower neighbour and J not finitely
generated, then Dy > I follows.

Dually since each right ideal I # (0) can be represented as a union of principal
right ideals contained in I we may consider

Ra
(0)#aRCI
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" provided ‘R is“assumed to be right invariant. Since the conjugated rings are linearly
ordered under inclusion, these intersections are again right invariant right chain rings.

THEOREM 9.11 Let R be a right invariant chain domain and C be the class of
overrings which are unions or intersections of a-associated rings of R. Then we have:

(i) C is linearly ordered by inclusion with R as the minimal and U,p5(0) R* as the
mazimal element.

(ii) Let 0 # a and [P,Q|[ the prime segment generated by aR. Then U,en R* =
Usrog R’

(iii) The mapping I — U,p~1 R* is an order-reversing injective mapping of two-
sided ideals which are not lower neighbours to overrings in C.

(iv) The mapping I — U,po1 R* is an order-reversing injective mapping of two-
sided ideals which are not lower neighbours to overrings in C.

(v) The mapping I — (ozarcr R® is an injective order-reversing mapping of two-
sided ideals to overrings in C.

(vi) Let I be a two-sided ideal which is not a lower neighbour, then U,por R* =
Mogarcr B*-

PROOF: (i) To prove that Cis linearly ordered use the fact that R is right invariant
and apply Proposition 9.3(iv). U.er- aRa™' = Usrs)aRa™! = R is obviously the
maximal element of the chain and by Proposition 9.6 a right invariant right chain
domain.

(ii) Since R is right invariant, each prime ideal is completely prime, hence
MmeN @"R equals @ by Theorem 1.21. Further bR O cR implies R® C R° which
proves U,eN R = Usr>@ R’

(iii), (iv) use the remarks mentioned above.

(v), (vi) can be checked directly applying the considerations above. m

9.5 A structure theorem for right invariant overrings

Let R be a right invariant right chain domain of rank 1 and R C T C Q(R) where
T is also assumed to be a right invariant right chain domain also. We will prove a
structure theorem which covers the examples known so far. As R is of rank 1, by
Lemma 9.1(ii) no element of J(R) possesses an inverse in T, so we have J(R) C J(T)
and J(R) = J(T) N R follows. Lemma 9.2(iii) implies that any element of T is of
Type 1. In other words, T is always contained in the chain domain R = Usr>(0) R*
(see Proposition 9.6). In particular this implies that R is the unique invariant chain
domain containing the right invariant ring R. Moreover, R is again of rank 1 and
with the same arguments used in the proof of Proposition 9.6 the overring T has also
rank 1.
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As we had realized before, the a-conjugated rings play a major role in the case
~of overrings of rank 1. These rings will turn out to be the ’building blocks’ for any
overring T'. We set

T.=TNR*={z €T |3reR:z=ara"'},

so T, is a subring of T'. Since T, is the intersection of two right chain domains con- -
tained in R, the subring T}, is again a right chain domain. With the same arguments
T, is also right invariant. These subrings T, generate T'; to be precise

T=T=nR= |J(TnR)= U T, (3)
a€R* a€R*
Obviously we have
T, = R®if and only R* CT. (4)

Since by Proposition 9.3(iv) the conjugated rings R® are linearly ordered, we have
for any a,b € R
T, CTy, if aR DbR. (5)

In particular
T, =T,, for any u € U(R) (6)

follows, thus the intersections are independent of the generator of the correspond-
ing principal right ideal and form an increasing sequence of overrings provided the
'parameter’ right ideals are decreasing. Proposition 9.7(iv) implies

ava™' € U(T) if and only if v € U(R),

hence U(T) NnT, = U(T,).

By Equation (4) T, equals R® provided R®* C T. Even more is true: for any
a € R* each T, is a conjugated ring, however of some subring of R. Thus the external
structure of overrings is connected with the internal structure of specific subrings,
this will be discussed in the following and will lead to an expansion theorem.

For any a € R* we define

R,={reR|3z GT::va=ar}=a’1Taa=Rﬂa'1Ta.

By definition R, consists of those elements of R which can be obtained by shifting
some x € T over a € R. We have (R,)* = T, and R, is a subring of R. Rewriting
Equation (4) leads to

R, = R if and only if R* CT. (7)

LEMMA 9.12 Let R be a right invariant right chain domain of rank 1 and T a
right invariant overring. Then R, C R is a right invariant right chain domain of

rank 1. If Rb C Ra holds for some a,b € R, we have Ry, C R,.
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PROOF: Since T, is an intersection of two right invariant right chain domains, so T,
is a right invariant right chain domain and so is R,.

To prove that R, is of rank 1 it suffices to show that each u € U(R) N R, is a unit
in R,. Let za = au, u € U(R) for some z € T. Since T is of rank 1, z has to be a
unit in T, so z7'a = au~! and u~! € R, follows.

We have b = ga. Hence 7% D T* and R, D R, follows. In particular we have
R, = Ry provided b = ga for some unit ¢ € U(R). m

It is our aim to exhaust T by conjugated rings of R resp. subrings of R. We have
T = U.er+ Ta by Equation (3). Assume that there exists a € R with R* C T. Since
T, =T,, for any u € U(R) there exists a right ideal I; C R with

|J R* CT and R* T provided aR C I, (8)
aRQIl

If in (8) the union resp. the associated ring R® with I; = bR equals T', we are done.

In the situation described above we have determined an ideal I; and a subring
R, namely R itself such that conjugated subrings of R; exhaust T as far as possible.
This process can be extended in the following way.

Now assume that we have already constructed some ideal I; and some subring
Ry, such that the a-conjugated subrings of Ry with a ¢ I approximate T as good as
possible. We choose some b € I;_;\I; and an element r € R such that ¢b = c € I}
holds. We set Rxy1 = R, and R4y C R follows. Again we define a right ideal Ix4q
subject to the condition R}, CT, d ¢ Ix;1. Again we take the union of conjugated
rings of Ry, as ’far as possible’.

We summarize: Any overring T as described aboved can be approximated step by
step via a union of conjugations of subrings of R. The subrings can be chosen to form
a decreasing sequence when the union is taken over segments of ideals of R. To make
sure that this process stops after w steps we make the construction procedure discrete
stopping at each power of an arbitrary element a € J(R). Hence, the fact that the
semigroup of principal right ideals is archimedean leads to the following ’expansion’
theorem:

THEOREM 9.13 Let R CT C Q(R) be right invariant right chain domains, R a
ring of rank 1. Then for any sequence (a,)neN Of elements of R satisfying Ra, D
Ran41 and Nen @n R = (0) the rings R,, form a descending chain of right invariant
right chain subrings of R and

T = U (Ra")a"

neN
holds. In particular for any 0 # a € J(R) we have T = |,eN 0" Rana™ holds.

PROOF: First we show: R, = R,, 2 R,,,, = R;. Let r € Ry, hence za,4; =
any1r for some ¢ € T. We set ga, = an41, 80 Tanyy = zqa, = qz'a, for some
z’ € T and through zan4; = an417 = ga,r we obtain a,r = z'a,, hence r € R;.
Since any a € R* is contained in some a,, by Equation (5) T, C T,, follows. Hence
Users Ta = Ua,eN Tan, = (Ra,)*" follows.
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If in particular a, is chosen as a™ for some nonunit a # 0 the assertion follows
since M,en a"R = (0). m

9.6 Examples

The reader is advised to look again at Example 5.3 to see how overrings are build up
in the way described by Theorem 9.13.

As can be seen from the ring R in Example 5.3 we may have an infinite ascending
chain of overrings R! which are not localizations. But not even the sublattice of
those overrings which are themselves chain domains is a chain.

EXAMPLE 9.14 We consider again the right chain ring R constructed as Example
5.8. The overrings T) = L(z2,)[[t, 0]] and Tz = L(22,)[[t, o]] are right chain domains
which are not comparable.

EXAMPLE 9.15 Replace the monomorphism in Ezample 5.3 by o : z; — z;,,(n €
N). Take the free abelian group G generated by {z_,, ...,z_1} and canonically linearly
ordered with 1 < z_, < ... < _,. The quotient ring of the group ring L[G] contains
a valuation ring N D L[z_,,...,x_1] which can be obtained by the induced order

valuation. The ring T = N[[t,0]] is a right invariant right chain domain of rank
n+ 1 satisfying R C T C Q(R).
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