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RIGHT INVARIANT RIGHT HOLOIDIS 
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Universitat Duisburg, 4100 Duisburg, FRG. 

Right  invariant right holoids H (r.i.r. holoids) are totally (and positively) ordered 
semigroups such t h a t  a > b holds if and only if a = bc for some c # e, e t h e  identi ty of 
H. These holoids occur a s  semigroups of the  prinicipal right ideals of right invariant 
right chain rings. We investigate in which way r.i.r. holoids of Bnite rank  a re  built 
u p  from r.i.r. holoids of rank one which a re  known t o  be  s u b s e m i g r ~ u p s  of t h e  
non-negative real numbers  under addition. This  is best described by conditions on 
f ( C , a )  where C is a prime segment which is shifted over elements a E H. T h e  
functional properties of f (C, a )  a re  studied,  especially in t h e  Bnite-rank-case. These 
results a re  then  applied to  the  extension problem. Here, conditions a re  given under  
which t h e  extension splits, however even under these assumptions a n  addit ional  
problem occurs. A n  element s is called a denominator  for b if a solution z exists in 
H with za = b. I t  is crucial to  know t h e  denominators sets and  solution sets. Under  
certain condition it is possible t o  embed H into a r.i.r. holoid H' with larger sets  of 
denominators. 

1 Introduction 

With every commutative valuation domain is associated a totally ordered 
group which is isomorphic to the group on non-zero principal (:fractional) 
ideals of this ring. A right chain domain is an integral domain (not necessarily 
commutative) whose right ideals are linearly ordered by set inclusion. The 
non-zero principal right ideals of such a ring R will form a semigroup H ( R )  

Copyright O 1987 by Marcel Dekker, Inc. 
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986 BRUNGS AND TORNER 

with respect to multiplication if and only if R is right invariant, i.e. all 
right ideals are two-sided 13). Such a semigroup H(R) satisfies the following 
axioms: 

(A) H is left cancellative: hhl = hh2 implies hl = h2 for hl,  h2, h E H.  

(B) H is a right chain semigroup: For any elements hl, h2 E H there exists 
h~ H with h l h =  h2 or h 2 h =  hl. 

(C) If there exist elements h', h" E H with hlhl = h2 and h2hU = hl for 
hl, hz E H ,  then hl = h2. 

We remark that (B) implies the existence of an identity. 

Definition 1.1 A semigroup (with identity e) satisfying axioms (A), (B) 
and (C) is called a right holoid (r. holoid for short). 

SCHEIN [8] calls such semigroups left holoids whereas SKORNYAKOV [9] 
uses the term valuation semigroups, however, his semigroups are not only 
left cancellative, but also right cancellative. 

As these semigroups are originally derived from ring structures the condition 
of right invariance of a ring R leads to the following definition. 

Definition 1.2 A semigroup H is called right invariant (r.i.) if H a  a H  
for all a E H. 

It can easily be verified that a r i r .  holoid becomes a totally ordered semi- 
group by setting a < b iff b € iiH. Finally H is positively ordered (see e.g. 
[7]), the only unit of H is e itself, H\{e) is the unique maximal right ideal 
which is the maximal two-sided ideal and which is completely prime. 

We leave it to the reader to check the equivalence of the two descriptions: 

Lemma 1.3 A left cancellative semigroup H with identity e is a r.i.r. holoid 
if and only if H is a right naturally totally ordered semigroup. 
Semigroups of this type have been considered by SATYANARAYANA [7, 
Chap 3.1 Earlier results about related structures can be found in CLIFFORD 
[4], CONRAD [5 ]  and KLEIN-BARMEN [6]. 

Basic for the understanding of r.i.r. holoids is the fact that archimedian r.i.r. 
holoids are isomorphic to subsemigroups of (p+, +) the non-negative real 
numbers under addition. This is essentially HOLDER'S result, and describes 
the rank one case if we define the rank of a r.i.r. holoid H as equal to the 
number of convex subsemigroups # {e) of H ,  where e is the identity of H.  
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RIGHT INVARIANT RIGHT HOLOIDS 987 

The structure of rank two r.i.r. holoids is known as well as the structure of 
right noetherian r.i.r. holoids, see [I]. 

If Hn-l C Hn are neighbours in the chain of convex subsemigroups of a 
r.i.r. holoid H then C n  = Hn\Hn-l is called a prime segment. We inve- 
stigate in Section 3 in which way prime segments are shifted over elements. 
These results can be applied to show that for r.i.r. holoids of finite rank 
Hn-la  C aHn-1 for any a E Hn (Section 4). The factor semigroup H n / H n - l  
can be formed which is a semigroup of (IR+, +). The followin~g problem 
is considered in Section 5: In which way can Hn be described in terms of 
Hn-l and Hn/Hn- l  (extension problem)? Some conditions are given that 
assure that a semigroup R of representatives for Hn/Hn- l  exists in Hn,  see 
Theorems 5.1 and 5.2. The existence of a semigroup R of represtentatives is 
(unlike the group case) not sufficient to describe Hn in terms of' Hn-1 and 
Hn/Hn- l  Z R even if one knows in which way the elements of Hn-l shift 
over the elements of R. 

An additional difficulty arises because of the possible presence c~f elements 
s # e in Hn-l such that b = zs, b E R, has a solution z E H . Such an 
element s is called a denominator for b and results on denominatlor sets are 
obtained in Section 6. Related with this question are embedding problems. A 
construction theorem and some examples are considered in the final section. 

2 Basic definitions and preliminary results 

In the following H will always denote a r.i.r. holoid. We recall thie definiton 
of a prime ideal resp. a completely prime ideal from [7, p. 21. Wle list a few 
properties for later reference which partly can be found in [7, Theor. 3.471. 

Lemma 2.1 Let H be a r.i.r. holoid. 

(i) Each prime ideal P C H is completely prime. 

(ii) A convex subset P # 0 of H is a prime ideal if and only if' a  E H\P 
implies a2 E H\P. 
(iii) For any t E H the intersection n t n H  = P is a prime idea,l provided 
P # 0.  

Using prime ideals we define the rank of a holoid. 

Definition 2.2 Let H be a r.i.r. holoid. H is said to be of rank: n if there 
exist exactly n + 1 prime ideals including H with H = Po > PI  >I . . . > P,,. 



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ita
et

 E
ss

en
] A

t: 
12

:0
4 

3 
S

ep
te

m
be

r 2
00

7 

988 BRUNGS AND TORNER 

Sometimes it is more convenient to work with prime ideals rather than with 
convex subsemigroups. Obviously there is a natural correspondence between 
convex semigroups and (completely) prime ideals. In the following we use the 
abbreviations = H\Pi and Ci-l = Pie1\P; for i = 1,. . . , n and C,, = P,,. 

Since only the left cancellation law is assumed for r.i.r. holoids the following 
concept plays a central role. 

Definition 2.3 Let H be a r.i.r. holoid, a E H. Then E(a)  = {z E H I 
za  = a )  is called the set of a - absorbed elements and A(H) = {a E H 1 
E(a) # {e)) is the absorber radical of H. 

Without proof we list a few properties of the "absorbingn process: 

Lemma 2.4 Let H be a r.i.r. holoid, a E H\{e). The following holds: 

(i) E(a) is a convex subsemigroup of H not containing a. 

(ii) E(a j  C E(ab), E(ba). 

(iii) A(H) is a (completely) prime ideal of H.  

(iv) Let s E H\A(H) and as = bs, then a = b. 

The set M = H\A(H) forms a right Ore set in H and the semigroup HM-I = 
{as-' I a E H, s E M )  exists. The subset H = {as-' I a E J, s E M ,  a 2 s )  
is a subsemigroup of HM-' which satisfies the statements in the following 
theorem. This result is not used in the remainder of the section, so the details 
of the proof are omitted. 

Theorem 2.6 Let H be a r.i.r. holoid. Then there exists a r.i.r. holoid 2 
of the same rank as H in which H is embedded such that @\A@) is the 
positive cone of an ordered group and A(H) = A@) n H. 

3 Prime segments 

Definition 3.1 Let H be a r.i.r. holoid and Pl C P neighbours in the chain 
of (completely) prime ideals of H.  Then we say that C = P\Pl is a prime 
segment of H .  If H has a minimal prime ideal P then P itself is called a 
prime segment, we allow PI = 0. 

Lemma 3.2 Let H be a r.i.r. holoid. Then every element t E H is associated 
with a prime segment C(t). 
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RIGHT INVARIANT RIGHT HOLOIDS 989 

PROOF: If t = el then C(e) = {e). Otherwise let P = n Pi, Pi prime then 
with t E Pi and Pl = n t n H .  It is clear that P > Pl and that for a prime 
ideal Q with Q > Pl there exists n with tn E Q, and hence t E Q as Q is 
prime, thus P c Q. Set C(t) = P\Pl. 

We order the prime segments by writing C < C' if and only if C # C' and 
s H  > t H  for s E  C,  t E C'. 

For every z ,  a E H there exists a uniquely determined element z' E H with 
za  = ax'. It is evident that these commutation rules contain valuable infor- 
mations on H ,  hence it would be desirable to understand the maippings (o, 
from H to H that send z to 2'. However, we describe in this section what 
happens to the prime segment C(z) instead of the element z under p,. We 
are already familiar with one extreme case where a segment C is contained 
in E(a) and C a  = a follows. 

Lemma 3.3 Let H be a r.i.r. holoid, C = P\Pl a prime segment arnd a E H.  
Then there exists a prime segment C' = P1\P; with Ca aC'. 

PROOF: If s a  = a for some s E C, then C G E(a) and C a  := a. The 
statement follows with C' = {e). Otherwise s a  = asl  for all s E C and 
sl # e. If there exist prime ideals Pi, Q and P' with Pi c Q c P' and 
s l a  = at l ,  tl E P1\Q and 3 2 4  = at2,  tZ E Q\Pi  for s l ,  3 2  E C,  we can assume 
that s;H s 2 H ,  s; = s2r say. We obtain sya = at; and s;a = szlra = at2+ 
for some r' E H.  Hence, t; = t2r', a contradiction, since n t ; H  > IQ. rn 

Corollary 3.4 Let H be a r.i.r. holoid, C a prime segment of H, a E H. If 
for some P f- C we have s a  E a C  then C a  C aC. 

Lemma 3.2 allows us to define a function f (a, -) for every a E H from the set 
of prime segments to itself by setting f (a, C)  = C' if and only if C a  C aC'. 

Let {CA I X E A )  be the set of prime segments such that C, < Cg if and only 
if a < p. Then we occasionally write f (a, A)  = 7 instead of f (a, Cx) = C,. 
This function is almost injective; exept that, of course, prime selgments in 
E(a) are all mapped to {e): 

Lemma 3.6 Let H be a r.i.r. holoid, Cl # C2 two distinct primer segments 
in H. Then f (a, Cl) = f (a, C2) for some a E H implies f (a, Cl) =: {e). 

PROOF: We can assume that every element in C? is larger than every element 
in Cl ;  let s E Cl,  t E C2 with s a  = asl ,  ta = atl with sl # e # tl in the same 
prime segment of H .  This implies that there exists an integer n with s?+'H c 
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990 BRUNGS AND TORNER 

t l H  s;H. It follows from the choice of s and t that t H  C sn+'H, so there 
exists r E H with sn+'r = t .  We obtain sn+'ra = sn+'ar' = as;+'r' = a t l f l r '  
where ra = ar' and s;+' = tlrl' with r', r'' E H ,  r" # e. On the other hand: 
sn+'ra = ta = a t l ,  leading to a contradiction. 

The following is an obvious Corollary to Lemma 3.4: 

Corollary 3.6 If Cl < C2 for prime segments Ci in the r.i.r. holoid H ,  then 
f ( a ,  C l )  5 f (a ,  C2) and f ( a ,  C I )  < f ( a ,  C2) if f (a ,  G )  # { e l .  

Theorem 3.7 Let H be a r.i.r. holoid with minimum condition for prime 
ideals in H and a E H .  Then f (a ,  C )  5 C for all prime segments C of H .  

PROOF: Let us assume that the statement is wrong, so f (a ,  C )  = Cl > C 
for some prime segment C = Co. It follows from Lemma 3.5 that f (a ,  C ; )  < 
f ( a ,  Ci+') where f ( a ,  Ci)  = C;+' is defined inductively. This is impossible if 
the minimum condition holds for prime ideals. B 

Theorem 3.8 Let H be a r.i.r. holoid with maximum condition for prime 
ideals. Let a be an element in H and C be a prime segment then f (a ,  C )  5 C 
implies either f ( a ,  C )  = C or f (an,  C )  = { e )  for a suitable power of a. 

PROOF: We can assume Cl = f ( a ,  C )  < C .  Obviously f ( a ,  C l )  = f (a2 ,  C ) .  
It follows from our assumption and Corollary 3.6 that f (an ,  C )  = { e )  for a 
sufficiently large n. 

We end this section with an example that shows that the finiteness condition 
in Theorem 3.7 is necessary. 

Example 3.9 Let F = IR(t) be the function field in one indeterminate over 
the reals and let a = (aotn +. . . +an-'t +an)(botm +. . . + bm)-' be an element 
in F with aobo # 0. We write a > 0 if and only if aobo > 0. Consider the 
set H of all pairs (a ,  b) with a > 1, b E F and b > 0 if a = 1. H is a r.i.r. 
holoid if we define the operation (a ,  b)(al ,  b') = (aa', ba' + b'), the order of H 
will be the lexicographical order. H is the set of non-negative elements of 
an ordered group. Define sets Pi = { z  E H / z > ( l ,a t i - ' )  for all a E IR), 
i E Z. The set H\Pi is obviously convex and we want to show that it is a 
semigroup. Let hl 5 ( l , a l t i - I ) ,  h2 5 (1,a2ti-') for some a1 ,a2  E R. Then 
hlh2 5 ( l ,a l t i - ' ) ( l ,a2t i - ' )  = (1 ,  ( a l  + a2)tt- ' )  and hlh2 E H\P; follows. 
The Pis are prime ideals with Pi > Pi+'. One can show that Pi\Pi+' = C; 
is the prime segment containing ( l , t i ) .  Choose a = (t,O) E H .  We have 
(1 ,  t i ) ( t ,  0 )  = ( t ,  O ) ( l ,  ti+') and f (a, C;)  = Ci+' > Ci. 
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4 Right invariant right holoids of finite rank 

The results of [3] apply in particular to those r.i.r. holoids which have finite 
rank. 

Lemma 4.1 Let H be a r.i.r. holoid of rank n, a E H and i E (0, .  . . , n). 
Then we have: f (ar ,  a) < f (a ,  i) for all r E H .  Moreover, f ( a ,  i )  = i or 
f ( a k , i )  = 0 for some k 5 i. 

The proof follows immediately from Theorems 3.7 and 3.8. We study in the 
next result the way in which f (b, a) changes as b ranges over a prirfhe segment 
c k  - 
Theorem 4.2 Let H be a r.i.r. holoid of rank n and Ck a prime segment 
of H .  Then f (b, a) = i for all b E Ck or f (b, i) < i and hence f (bi, i) = 0 for 
b E Ck. 

PROOF: Using Lemma 4.1, it is enough to show that f(b,i) == i for all 
b E Ck whenever f (a, a) = i for some a E Ck. Let a be such an el~ement and 
b E Ck. By Lemma 2.l(iii) there exists a natural number m with a m H  C 
bH & am-'H. Thus am = br for some r E H and i = f (am, i) = f (br, i) < 
f (b, i )  < a. 

Since f(b, i) < i for all b E H we can construct factor holoids from a given 
r.i.r. holoid of finite rank. More generally we have the following result. 

Theorem 4.3 Let H be a r.i.r. holoid, P = H \ S  a prime ideal in H with 
S a  C US for all a E P. Then there exists a factor semigroup H I S  of H which 
is again a r.i.r. holoid, and a surjective homomorphism cp : H -, HIS with 
cp(a) = p(b) if and only if a s  = b or bs = a for some s E S. Th'e maximal 
prime ideal in H I S  is the image of P under cp. 

PROOF: We consider the set of all equivalence classes [a] = {b E H I a s  = b 
or a = b s  for some s E S). This set with the operation [a][b] = [ d b ]  is a r.i.r. 
holoid H I S  and ~ ( a )  = [a] is a surjective semigroup homomorphism. The 
details can be checked easily. m 

Corollary 4.4 Let H be a r.i.r. holoid of finite rank, P = H\S.  Then we 
have rank(H/S) =rank(H)-rank(S). 

The assumptions of Theorem 4.3 are satisfied since f(b,i) < i holds if H 
has finite rank. If {e) = So C S1 C . . . C S k  = S C Sk+l C . . . C S n  = H 
are exactly the convex subsemigroups of H, then p (S)  = cp(e) C cp(Sk+I) C 
. . c cp(Sn) = cp(H) are exactly the convex subsemigroups of H I S .  



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ita
et

 E
ss

en
] A

t: 
12

:0
4 

3 
S

ep
te

m
be

r 2
00

7 

992 B R U N G S  A N D  T O R N E R  

Definition 4.6 Let H be a r.i.r. holoid, P a prime ideal in H. We say that 
P is discrete if P2 # P.  We say that H is discrete if all proper prime ideals 
in H are discrete. 

Theorem 4.6 Let H be a r.i.r. holoid of finite rank, P = Pk a non-discrete 
prime ideal. Then for i < k either f ( p ,  a )  = 0 for all p E P and Sip = p or 
f(b,i)  = i for all b E Pk\Pk+l = Ck. 

PROOF: We pick b E Ck and i < k. Since P is not discrete we have P = Pk.  
This means that we can find b j  E Ck with b = bl . . . b k .  If bin H > b,H for 
a certain io and j = 1 , .  . . , k then b j  = bjnrj for some r, E H and b = btr  
for a certain r  E H. By Theorem 4.2 we have either f ( b ,  i)  = f (bio,  a) = i or 
f ( b ,  i) < i and f (bio,  i)  < a. But this implies f ( b ,  i)  = f (bfor, a) 5 f ( b f o ,  a) = 0 
and Cib = b follows. This implies Sip = p for all p E P and proves the 
theorem. rn 

6 The extension problem 

Let H be a r.i.r. holoid of finite rank n and the notation as in Section 4. It 
follows from Corollary 4.4 that the factor semigroup exists and is a 
r.i.r. holoid of rank 1. By the classical result of HOLDER this semigroup 
is isomorphic to a subsemigroup of (R+, +), the non-negative real number 
under addition. If P = Pn # P,2 is discrete it follows that an element [ p ]  with 
p in P\P2 will be a least positive element in since otherwise there 
is an element pl E P with e # [ p l ]  < [ p ]  and [ p l ] [ p 2 ]  = [ p ]  with p2 E P. Then 
p = plp2s or ps = p l p z  for some s  E Sn-l and p E P2 in the first case. In 
the second case we have either plrs = p l p 2 ,  so rs = p2, r E P and p E P2 or 
ps = prp2, so s  = rp2 E P - a contradiction in every case. However, a r.i.r. 
holoid which is a subsemigroup of (Kt+, +) with a least positive element is 
isomorphic to the semigroup of non-negative integers under addition. The 
semigroup is equal to {[pin = [ p n ]  I n = 0,1,2 , . . . )  and { p n  I n = 
0,1,2, .  . . , ) is a semigroup of representatives of in H. We have 
proved the following result. 

Theorem 6.1 Let H be a r.i.r. holoid of finite rank n,  P  = Pn the minimal 
prime ideal of H ,  P # P2 and S = H\P. Then there exists in P an element 
p such that for every element h E H there is a unique non-negative integer 
n and a unique element s  E S with either h = pns or hs = pn. 

Again, let H be a r.i.r. holoid of finite rank n with minimal prime ideal 
P = Pn and S = Sn-l = H\P. We now consider the case P = P2 and - 
using Theorem 4.6 - have the following two possibilities: Either Sp = p for all 
p E P or n 2 2 and there exists an integer k with 1 5 k 5 n with Sk-lp = p,  
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RIGHT INVARIANT RIGHT HOLOIDS 993 

but f ( p , i )  = i for k 5 i < n and all p E P .  The next theorem (deals with 
the first of these possibilities guarenteeing a semigroup of representatives for 
H I S .  

Theorem 5.2 Let H  be r.i.r. holoid of finite rank n, P  = Pn the minimal 
prime ideal of H  and E(p)  = S  = H\P for every p E P .  Then there exists 
in H  a semigroup R of representatives for H I S  which is isomo:rphic to a 
subsemigroup of (lR+, +). 

PROOF: The r.i.r. holoid H I S  has rank one and is therefore embeddable into 
(R+, +); in particular, H I S  is commutative. If (H/S)\[e] contains a least 
element, P  is discrete and this situation was already analyzed i n  Theorem 
5.1. Otherwise we choose p E P  arbitrarily. Let [a] 2 [q] in H I S  and 
there exists an element r E H  with [a] = [q] [r ]  = [r ]  [q] .  If rlq is equivalent 
to r2q with respect to  the equivalence relation defined by S  on H I  i.e. if 
[rlq]  = [ r l ] [q ]  = [r2q] = [r2][q]  in H I S  , then [r l ]  = [rz] and so r:, E r2S  or 
rz E r l S .  This implies rlq = r2q in every case. Therefore we ch'oose rq as 
representative of [a ] .  The product (rq)(sq) = (rqs)q is again an element of 
this form. Now let { [ q i ] ) ,  [qi] # [el, be a sequence of elements in H I S  which 
is mapped to a sequence with limit equal to zero if H I S  is embedded into 
(R+, +). We assume further that q, = q and [qi+l] < [qi]. We deri.ve another 
sequence {q i )  of elements in H  from the sequence of the [qi] in the following 
way: 

There exists an rl in H  with q~ = qlrl = rlqi for some q\ in H .  Obviously 
[ r l ] [ q l ]  = [q l ] [ r l ]  = [r l ] [q: ]  so [ql] = [q;] .  We assume that 9:-, has been 
defined with [q:-,] = [qi-l] and q:-, = ri-lq:-, we choose for qi the element 
in H  with q:-, = qiri = rig: where r,  is in H .  As before, [qi] = [q:]. 

Let [a] > [el be an element in H I S .  Then there exists an i with [a] > [qi] = 
[q:], so a = q:v, [a] = [q:][v] = [v][q:]  = [vq:] for some v E H. As before 
[vq:] = [v'q:] implies v d  = v'q:. We choose vq: as the represeiotative for 
[a] if [a] > [q:]. If [b] > [q:] has the representative wq:, then vqllwq: is the 
representative of [ab] = [a] [b] .  

We write & = {vq: I [a] = [vq:] > [q:])  for the set of representatives of 
elements [a] with [a] > [qi] = [qi]. Then > R, follows, since for a 
representative wig: of [a] in & and q: = ri+lq:+l the element wig: =: ~ ~ r ; + ~ q : + ,  
is also the representative of [a] in &+I. The union R = U R; u { e )  is a 
semigroup of representatives for H I S  in H .  

Let H  be a r.i.r. holoid of finite rank n with minimal prime ideal P  = Pn 
and S  = Sn-l = H\P. Assume that a semigroup R of represerrtatives for 
H I S  exists in H.  This is not enough to describe H in terms of S  and R even 
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if the mappings 4, from S to S were known that send s to sf if sp = ps' for 
p E R. In addition one would have to know for which s E S the equations 
p = z s  have solutions in H and the actual solution sets. 

A solution h E H of the equation p = z s  determines the element s E S and 
the element p in R uniquely. However, different elements h, h' E H may 
both satisfy p = hs, p = h's. If, say ht = h', t E S, then t s  = s and t E E(S)  
follows. Conversely, every element h' with h' = ht or h't = h, t E E(S),  
satisfies p = h's if p = hs. We will discuss these problems in the following 
section. 

6 Denominators and quotient sets 

We begin this section with a definition. 

Definition 6.1 Let H be a r.i.r. holoid, P a prime ideal, S = H\P and 
p E P .  We write N(p) = {s E S [there exists z E H with z s  = p) and say 
N(p) is the set of denominators s of p and L(p, s) = {z E H I z s  = p) is 3 
quotient set. 

The next result shows that in some instances the denominator sets do not 
depend on the chosen element p and that there is a one-to-one correspondence 
between quotient sets with the same s. 

Theorem 6.2 Let H be a r.i.r. holoid of finite rank n, P = P,, the minimal 
prime ideal of H and S = H\P. Assume that there exists in H a semigroup 
R of representatives for HIS  and let pl # e # p2 be two elements in R. Then 
N(pl) = N(p2) and there is a one-to-one mapping from L(pl, s) onto L(p2, s) 
for every s E N(p,). 

PROOF: We can assume that pl < p2 in H and R. Then there exists an 
element p; in R with pip; = p2. However, R is commutative and pip; = 
p;pl = p2 follows. If we assume s E N(pl) and pl = z s  for some s E H then 
obviously p2 = p;pl = (p;z)s and s E N(p2). If sf E N(p2) then p2 = ys' and 
y = p;z for some z E H implies follows, since the other alternative yr = pi 
implies yrpl = pipl = p2 = ys', rpl = s' in S, a contradiction, here r is 
a suitable element in H .  Hence, p2 = p;pl = ys' = pizs' and p1 = zs', 
sf E N(p1). Thus s E N(pl). rn 

The above arguments also show that with every z E L(p1,s) the element 
p;z is in L(p2, s). Distinct elements zl ,  z2 E L(pl, s) correspond to distinct 
elements p;zl, p;zz E L(p2, s) and every element y E L(p2, s) is of the form 
y = p;z for some z E L(pl, s). The denominator set N(p), p E R is not 
uniquely determined by H and P. It varies with R, the semigroup of repre- 
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sentatives of HIS, which is by no means unique as can easily be seen in the 
discrete case. Let H be a r.i.r. holoid of finite rank n, P = Pn # Pi the mi- 
nimal prime ideal, S = H\P and p € P\P2. Then R = {pn I n = 0, l, 2 , .  . .) 
is a semigroup of representatives for HIS. In order to keep the drrnominator 
sets for the elements pn small we try to choose p carefully, so that p "gene- 
rates" the shifting process in respect to the function f (p, -). By ]Lemma 4.1 
one gets the idea to choose p as small as possible in the ordering: of H. We 
introduce the following notation. 

Definition 6.3 Let P # P2 be a discrete prime ideal in a r.i.r. holoid H. 
We say the element p E P\P2 is a typical shift locus for P iff (p, C )  = f (q, C)  
for every q E P with p H  2 q H  and any prime segment C C H\P'. 

We observe that a similar definition for P non-discrete is not nelcessary be- 
cause of Theorem 4.6. 

Proposition 6.4 Let H be a r.i.r. holoid of finite rank n, P # P2 its 
minimal ideal. Then there exists a typical shift locus for P. 

PROOF: If P = p H  we choose the generator p as typical shift locus for 
P and any p E P\P2 can be chosen in case E(p) = S = HI\P for all 
p E P. In all other cases consider T = P\P2 and choose q in T with il 
minimal such that f (q, i l)  = 0 and f(q, il + 1) > 0. If q' is in P with 
f(qf,i:) = 0 and i: > il, then q'H c qH, since otherwise q'r = q which 
implies f (q , i i )  = 0. In the set Tl = {q E TI f(q , i l )  = 0, f (q , i l  + 1) > 0) 
choose q with f (q, il + 1) = j2 maximal. If q' is an element in P with 
f(qf, il + 1) < j2 then, as in the above argument, q'H c pH sinc'e otherwise 
q'r = q and f (9, il + 1) = f (q'r, il + 1) 5 f (q', il + 1) < j2, a contradiction. 

We set T2 = {q E TI I f(q, il + 1) = j 2 )  and repeat the argument with il + 2 
in place of il + 1 defining a set T3 etc. The procedure ends after finritely many 
steps with sets T 3 Tl > T2 > . . .  > Tk, k 5 n -  1, and any element p E n T i  
can be chosen as a typical shift locus. 

In the next lemma we list some conditions that must be satisfied by a deno- 
minator set N(p). 

Lemma 6.5 Let H be a r.i.r. holoid of finite rank n,  P a prime ideal in H, 
S = H \ P  and p E P. 

(i) If sp = ps' for s E S, then sf E N(p). 

(ii) If sl,s2 E N(p) then Hs l  : Hs2 or Hs2  2 Hsl ,  i.e. N(p) is right and 
left naturally ordered. 
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PROOF: (i) We have sq = p for some q E P. Therefore sp = ps' = sqs' and 
p = qs', s' E N(p) follows using the fact that H has finite rank to conclude 
s' E S. 

(ii) Let p = zlsl = z2s2 for zi E H ,  S; E S then z l r  - z2 for r E H and 
s1 = rs2 follows. 

This result shows that on the one hand a denominator set N(p) must contain 
certain elements, on the other hand it usually can not contain too many 
elements, since otherwise condition (ii) would be violated. To illustrate the 
last comment assume that a r.i.r. holoid of finite rank contains an element 
p in the prime ideal P and elements e < sl < sz in S = H \ P  such that 
sls2 = s2 and s l  $! N(sz). Then s l  and s2 cannot be simultaneously in N(p). 

We observe also that in general N(p) is larger than the set {s' Ithere exists 
s E S = H\P,  sp = ps') for p E P. To see this let H be a r.i.r. holoid of 
finite rank n with minimal prime ideal P # P2. Assume that f(p, k) # 0 
for p E P\P2 and some k < n. It then follows that f (pn,  k) = 0 but still 
N(p) = N(pn) by Theorem 6.2. 

It is not surprising that additional restrictions on N(p) exist if p is a typical 
shift locus for a minimal prime ideal P in a r.i.r. holoid of finite rank. 

Lemma 6.6 Let H be a r.i.r. holoid of finite rank n,  P # P2 a discrete prime 
ideal of H and p a typical shift locus for P. Then f (s, f (p, k)) = f (p, k) for 
all k with Ck C S = H\P and s E N(p). 

PROOF: Let f (p, k) = k'. We have p = p's for some p' E P. Hence f (p, k) = 
f (p', k) = k' since p is a typical shift locus for P and f (s, k') = k' follows 
immediately. 

We conclude this section with a result about prime principal right ideals. 
This result can be used to describe right noetherian r.i.r. holoids. 

Theorem 6.7 Let H be a r.i.r. holoid, P = p H  a prime principal right 
ideal. Then qp = p for all q E H \ P .  

PROOF: We have qp = pq' and p = qp' E P for elements q', p' E H.  It follows 
that p' E P, p' = pr say, and qp = qp'q', p = p'q' = prq'. This is possible for 
r = q' = e only. m 

7 A conetrnction and an exam~le 

The following result describes a situation where a r.i.r. holoid can be exten- 
ded by adding denominators for suitable elements and quotient sets. 
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Theorem 7.1 Let H be a r.i.r. holoid of finite rank and P = pH a prime 
principal right ideal. Then there exists for any element a E H'\P a r.i.r. 
holoid containing H and of the same rank as H with {an I n E IN) C N(p). 

PROOF: It follows from Theorem 6.7 that sp = p for every element s E S = 
H\P. Let T = H\aH and F = { s  E H (there exists r E T : rs =: a )  u {e ) .  
For any elements s l , s2  E either sl = is2 or s2 = t s l ,  since rlsl  == a = r2s2 
and say, rl = r2t for some t E H which implies t s l  = 32 .  For any r E T 
denote with t the unique element in H with r? = a. We now adjoin to H 
elements zj+, with j, i E IN and r E T with satisfy the following rules 

(i) z,,-i, = if and only if j = jl,i = a' and r = r'. 

To define ~ j , - i , ~ b  for b E S we consider two cases: 

(a )  If tai-'q = b then zj,-i,,b = $9. 

( p )  If ?ai-' = bq then rtai-I = rbq = ai and an integer k exists with aks  = rb 
and s E T. We can assume that q # e and k < i follows. In this case we 
define ~ j , - i , ~ b  = z,,-i+k,,. 

Let Q c P be the prime ideal directly below P or Q = 0 if P is minimal. Then 
HI = H\Q u I j,i E IN, r E T) is a r.i.r. holoid and N ( p )  == UE"=,aia'. 

We must show that the conditions of Lemma 1.3 are satisfied. To check 
associativity, only one case presents any difficulties at all: ((z,+,?b)c) = 
~j , - i ,~ (bc )  with b, c E S .  If b = fai-'q the equation is obvious. If rlb = aks for 
k < i ,  s E T and c = ~ a ~ - ~ - l q '  then rbc = aksaai-k-'gf = rfai-'go and both 
sides of the equation are equal to pJqf. If rb = aks as in the prelvious case 
and sc = a" for t E T and g < i - k then rbs = ak+gt and both sides are 
equal to zj,-i+k+,,t with k + g < i. 
The order for the elements of H\Q in Hl is the same as the order of those 
elements in H .  In addition we have pj-ls < zj,-i,, < for every j, i in N , 
r E T and s E S. Further, zj,-i,, < ~j,-i , ,~t  if either i > a' or i = if and r < r' 
in H. 

It can be checked that this order does indeed satisfy all the conditions of 
Lemma 1.3. 

Finally, consider the set M = { ( q , ~ j , - i , ~ )  ( q E Q, j,i E N , r  E T) and 
define an equivalence relation (q l ,  zj,,-i,,,,) = (92, ~ j ~ , - i , , ~ ~ )  if and only if 
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ql#l = q2p" and it = i2, rl = r2. The equivalence classes are denoted by 
qlzj1,-*, or qz  with q E Q and z E X = { ~ ~ , - i , ~  I j E IN,i E IN,r E T). 
Then H = Hl u Q U {qzlq E Q ,  z E X ) .  We define multiplication in H by 
the following rules: For q E Q ,  z E X let q.z = qz  and ~ , , - i , ~ q  = $9. 

The order of H and H I ,  both considered as subsets of H is extended to H 
and for elements qz  the following holds: 

( a )  q p - l s  < qzj,-;, < q$ for q E Q and all s E S. 

( P )  ~ 1 z j ~ , - i ~ , r ~  < ~ 2 z j ~ , - i , , r ~  if and only if either qlpil < q2@; or qlpjl = q2pia 
and then in addition either il > i2 or il = i2 but r1 < r2. 

It is not difficult to check that all conditions in Lemma 1.3 are satisfied by 
and we will only show that for every pair of elements Lt = qlzjl,-;l,rl and 

L2 = ~ 2 ~ j . , , - ; ~ , ~ ~  with Ll < f i2  there is an element E 2 with = L2. We 
proof the following auxiliary result first. 

Let ql$lv = q2ph for q; E Q ,  jt, j2 2 1 and v # e in H .  Then either v = pk 
for some k 2 1 or v = qph. To prove this we compare ql$L and 9,. In 
the first case we have ql$lw = q2 for some w E H. Then v = wp" and we 
are done. In the other case ql$L = q2w and wu = $1 follows. This implies 
that w = pklsl ,  v = pk1s2 for s l ,  s2 E S and pklslpkas2 = $1. We conclude 
kl + k2 = j2, s2 = e. This proves the auxiliary result. 

Now let i l ,h2  be as above. Then either g l f i  < q2plt or qlpjl = qzpja with 
either il > 5 or il = i2 and rl < r2. Let il < i2 in the second case and we 
can choose h = ~~a' l - ' l - '  

A 

rz or let it = i2, r lh  = r2 and we can choose h = h. 

We now consider the first case qlptl < q2@ and apply the auxiliary re- 
sult. If v = pk for some k 2 1 then qlzjl,-i,,rl ~ k , - ; ~ , ~ ,  = qlzjl+k,-i,,,a = 
~ 2 ~ + , - i ~ , r ~  since qlp"+k = ~ 2 @ .  If v = qplt then (qlzjl,-il,rl)(q~ja,-i,,ra) = 
~ t P f ~ q z j ~ , - i ~ , r ~  = q2zjs,-ia,r2 Since qlp"qpk = q&. 

We conclude with a final example: 

Example 7.2 Consider the semigroup H with identity e generated by pl,  p2 
and where i = 3, .  . . , n, . . , k = 0 ,1 ,2 , .  . . with the following relations: 
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This defines an associative operation and every element h can be written in 
the form h = p2p::; . . .p", where en > 0 and e; < 0 is only allowed if for 
some j > i we have ej > 0 and for e, # 0 with j > s > i; if follows tlhat e, < 0 
and s = j mod 2; in particular i = j mod 2. Using this standard form one 
can order the elements of H lexicographically. The conditions of Lemma 1.3 
can be checked. We illustrate results about denominator sets an,d solution 
sets. 

The denominator set N(p7) for example is equal to N(p7) = {p;, ptp;", pgp;' 
with n, k, m, r , s  > 0 and k = 1 if m > 0, r = 1 if s > 0). The solution set 
L(p7,pS) = {z E H I zP3 = ~ 7 )  = {P~P;'P! I k E XI. 
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