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Right invariant right holoids H (r.i.r. holoids) are totally (and positively) ordered
semigroups such that a > b holds if and only if a = bc for some ¢ # e, ¢ the identity of
H. These holoids occur as semigroups of the prinicipal right ideals of right invariant
right chain rings. We investigate in which way r.i.r. holoids of finite rank are built
up from r..r. holoids of rank one which are known to be subsemigroups of the
non-negative real numbers under addition. This is best described by conditions on
f(C,a) where C is a prime segment which is shifted over elements a € H. The
functional properties of f(C,a) are studied, especially in the finite-rank-case. These
results are then applied to the extension problem. Here, conditions are given under
which the extension splits, however even under these assumptions an additional
problem occurs. An element 8 is called a denominator for b if a solution z exists in
H with zs = b. It is crucial to know the denominators sets and solution sets. Under
certain condition it is possible to embed H into a r.i.r. holoid H' with larger sets of

denominators.

1 Introduction

With every commutative valuation domain is associated a totally ordered
group which is isomorphic to the group on non-zero principal (fractional)
ideals of this ring. A right chain domain is an integral domain (not necessarily
commutative) whose right ideals are linearly ordered by set inclusion. The
non-zero principal right ideals of such a ring R will form a semigroup H{R)
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986 BRUNGS AND TORNER

with respect to multiplication if and only if R is right invariant, i.e. all
right ideals are two-sided [3]. Such a semigroup H(R) satisfies the following
axioms:

{A) H is left cancellative: hh, = hh, implies h; = h, for hy, hyyh € H.

(B) H is a right chain semigroup: For any elements h,, h, € H there exists
h € H with hlh = hg or hzh = hl.

(C) U there exist elements k', k" € H with hih' = hy and hyh" = h, for
hl, hz c H, then hl = hg.

We remark that (B) implies the existence of an identity.

Definition 1.1 A semigroup (with identity e) satisfying axioms (A), (B)
and (C) is called a right holoid (r. holoid for short).

SCHEIN (8] calls such semigroups left holoids whereas SKORNYAKOV [9]
uses the term valuation semigroups, however, his semigroups are not only
left cancellative, but also right cancellative.

As these semigroups are originally derived from ring structures the condition
of right invariance of a ring R leads to the following definition.

Definition 1.2 A semigroup H is called right invariant (r.i.) if Ha C aH
for all a € H.

It can easily be verified that a r.i.r. holoid becomes a totally ordered semi-
group by setting ¢ < b iff b € aH. Finally H is positively ordered (see e.g.
[7]), the only unit of H is e itself, H\{e} is the unique maximal right ideal
which is the maximal two-sided ideal and which is completely prime.

We leave it to the reader to check the equivalence of the two descriptions:

Lemma 1.3 A left cancellative semigroup H with identity e is a r.i.r. holoid
if and only if H is a right naturally totally ordered semigroup.

Semigroups of this type have been considered by SATYANARAYANA (7,
Chap 3.] Earlier results about related structures can be found in CLIFFORD
(4], CONRAD [5] and KLEIN-BARMEN (6].

Basic for the understanding of r.i.r. holoids is the fact that archimedian r.i.r.
holoids are isomorphic to subsemigroups of (.IR+’+) the non-negative real
numbers under addition. This is essentially HOLDER’s result, and describes
the rank one case if we define the rank of a r.i.r. holoid H as equal to the
number of convex subsemigroups # {e} of H, where e is the identity of H.
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The structure of rank two r.i.r. holoids is known as well as the structure of
right noetherian r.i.r. holoids, see [1].

If H,_; C H, are neighbours in the chain of convex subsemigroups of a
r.ir. holoid H then C, = H,\H,_, i8 called a prime segment. We inve-
stigate in Section 3 in which way prime segments are shifted over elements.
These results can be applied to show that for r.i.r. holoids of finite rank
H,.,a C aH,_, for any a € H, (Section 4). The factor semigroup H,/H,_,
can be formed which is a semigroup of (IR*,+). The following problem
is considered in Section 5: In which way can H,, be described in terms of
H,_, and H,/H,_, (eztenston problem)? Some conditions are given that
assure that a semigroup R of representatives for H,/H,_; exists in H,,, see
Theorems 5.1 and 5.2. The existence of a semigroup R of representatives is
(unlike the group case) not sufficient to describe H, in terms of H,_; and
H,/H,_, = R even if one knows in which way the elements of H,_; shift
over the elements of R.

An additional difficulty arises because of the possible presence of elements
s # e in H,_; such that b = zs, b € R, has a solution z € H . Such an
element s is called a denominator for b and results on denominator sets are
obtained in Section 6. Related with this question are embedding problems. A
construction theorem and some examples are considered in the final section.

2 Basic definitions and preliminary results

In the following H will always denote a r.i.r. holoid. We recall the definiton
of a prime ideal resp. a completely prime ideal from (7, p. 2]. We list a few
properties for later reference which partly can be found in |7, Theor. 3.47].

Lemma 2.1 Let H be a r.i.r. holoid.
(i) Each prime ideal P C H is completely prime.

(ii) A convex subset P # @ of H is a prime ideal if and only if a € H\P
implies a2 € H\P.

(iii) For any ¢t € H the intersection Nt"H = P is a prime ideal provided
P #0.

Using prime ideals we define the rank of a holoid.

Definition 2.2 Let H be a r.i.r. holoid. H is said to be of rank n if there
exist exactly n + 1 prime ideals including H with H=Py, D P, > --- D Pa.
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Sometimes it is more convenient to work with prime ideals rather than with
convex subsemigroups. Obviously there is a natural correspondence between
convex semigroups and (completely) prime ideals. In the following we use the
abbreviations S;_, = H\P; and C;-; = P;_/\P;fori=1,.---,nand C, = P,.

Since only the left cancellation law is assumed for r.i.r. holoids the following
concept plays a central role.

Definition 2.3 Let H be a r.i.r. holoid, a € H. Then E{a)
za = a} is called the set of a - absorbed elements and A(H)
E{a) # {€}} is the absorber radical of H.

{z e H|
{ac H |

Without proof we list a few properties of the »absorbing” process:

Lemma 2.4 Let H be a r.ir. holoid, a € H\{e}. The following holds:

(i) E(a) is a convex subsemigroup of H not containing a.

(it) E(a) C E(ab), E(ba).

(iil) A(H) is a (completely) prime ideal of H.

(iv) Let s € H\A(H) and as = bs, then a = b.

The set M = H\A(H) forms a right Ore set in H and the semigroup HM~! =
{as7' | a e H,s € M} exists. The subset H = {as™! |a € J,s € M,a > s}
is a subsemigroup of HM~! which satisfies the statements in the following

theorem. This result is not used in the remainder of the section, so the details
of the proof are omitted.

Theorem 2.6 Let H be a r.ir. holoid. Then there exists a r.i.r. holoid H
of the same rank as H in which H is embedded such that H\A(H) is the
positive cone of an ordered group and A(H) = A(H) N H.

3 Prime segments

Definition 3.1 Let H be ar.i.r. holoid and P; C P neighbours in the chain
of (completely) prime ideals of H. Then we say that C = P\P, is a prime
segment of H. If H has a minimal prime ideal P then P itself is called a
prime segment, we allow P, = 0.

Lemma 8.2 Let H be ar.i.r. holoid. Then every element t € H is associated
with a prime segment C(t).
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PROOF: If t = ¢, then C(e) = {e}. Otherwise let P = N P;, P; prime then
with ¢t € P; and P, = Nt"H. It is clear that P D P, and that for a prime
ideal @ with @ D P, there exists n with {® € @, and hence t € Q as Q is
prime, thus P C Q. Set C(t) = P\P,. n

We order the prime segments by writing C < C' if and only if C # C' and
sHDOtH forse C,te .

For every z,a € H there exists a uniquely determined element z' € H with
za = az'. It is evident that these commutation rules contain valuable infor-
mations on H, hence it would be desirable to understand the mappings ¢,
from H to H that send z to z’. However, we describe in this section what
happens to the prime segment C(z) instead of the element z under ,. We
are already familiar with one extreme case where a segment C is contained
in E(a) and Ca = a follows.

Lemma 3.3 Let H bear.ir. holoid, C = P\P, a prime segment and a € H.
Then there exists a prime segment C' = P'\ P{ with Ca C aC".

PROOF: If sa = a for some s € C, then C C E(a) and Ca = a. The
statement follows with C' = {e}. Otherwise sa = as, for all s € C and
sy # e. If there exist prime ideals P{, @ and P' with P C @ C P’ and
s1a = aty, t; € P\Q and s,a = aty, t; € Q\ P for sy, s, € C, we can assume
that st H C s, H, s? = s,r say. We obtain sfa = atf and sfa = s;ra = at,r’
for some r' € H. Hence, 7 = t,r', a contradiction, since Ni{H 2O Q. m

Corollary 3.4 Let H be a r.i.r. holoid, C a prime segment of H,a € H. If
for some ¢ € C we have sa € aC then Ca C aC.

Lemma 3.2 allows us to define a function f(a,—) for every a € H from the set
of prime segments to itself by setting f(a,C) = C" if and only if Ca C aC".

Let {C) | A € A} be the set of prime segments such that C, < Cj if and only
if a < . Then we occasionally write f(a,A) = ~ instead of f(a,C\) = C,,.
This function is almost injective; exept that, of course, prime segments in
E(a) are all mapped to {e}:

Lemma 3.5 Let H be a r.i.r. holoid, C; # C, two distinct prime segments
in H. Then f(a,C;) = f(a,C,) for some a € H implies f(a,C;) = {e}.

PROOF: We can assume that every element in C, is larger than every element
in Cy; let s € Cy, t € C; with sa = as;, ta = at, with s; # e # ¢, in the same
prime segment of H. This implies that there exists an integer n with sf*' H C
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t,H C st H. It follows from the choice of s and ¢ that tH C s"t H, so there
exists r € H with s"t'r = t. We obtain s"*'ra = s"tar' = asit'r’ = atyr"r’
where ra = ar’ and st = ¢;r" with ¢, 7" € H, r" # e. On the other hand:
s"*tlyg = ta = at,, leading to a contradiction. m

The following is an obvious Corollary to Lemma 3.4:

Corollary 3.8 If C, < C, for prime segments C; in the r.i.r. holoid H, then
f(a, Cl) S f(a; Cz) and f(a': Cl) < f(a‘: 02) i f(a" 02) # {e}

Theorem 3.7 Let H be a r.i.r. holoid with minimum condition for prime
ideals in H and a € H. Then f{a,C) < C for all prime segments C of H.

PROOF: Let us assume that the statement is wrong, so f(¢,C) =C, > C
for some prime segment C = Cy. It follows from Lemma 3.5 that f(a,C;) <
f(a,Ciyy) where f(a,C;) = Ciy, is defined inductively. This is impossible if
the minimum condition holds for prime ideals. »

Theorem 3.8 Let H be a r.i.r. holoid with maximum condition for prime
ideals. Let a be an element in H and C be a prime segment then f(a,C) < C
implies either f(a,C) = C or f(a", C) = {e} for a suitable power of a.

PROOF: We can assume C; = f(a,C) < C. Obviously f(a,C;) = f(a%,C).
It follows from our assumption and Corollary 3.6 that f(a",C) = {e} for a
sufficiently large n. m

We end this section with an example that shows that the finiteness condition
in Theorem 3.7 is necessary.

Example 3.9 Let F = IR(t) be the function field in one indeterminate over
the reals and let @ = (apt" + - -+ an-1t+an){bot™ +- - - +bn) ! be an element
in F with agby # 0. We write a > 0 if and only if agbp > 0. Consider the
set H of all pairs (a,b) witha > 1, b€ Fand b>0ifa=1. Hisar.ir
holoid if we define the operation (a, b)(a’, b') = (aa', ba' + V'), the order of H
will be the lexicographical order. H is the set of non-negative elements of
an ordered group. Define sets P; = {z € H | z > (1,at'?) for all « € R},
i € Z. The set H\P; is obviously convex and we want to show that it is a
semigroup. Let hy < (1,187 1), ke < (1, apt?=!) for some o, a; € R. Then
hihy < (1,00t 1) (1, azt™=1) = (1, (0 + a2)t*?) and hyhy, € H\P; follows.
The P!s are prime ideals with P; D P;y;. One can show that P\P;;; = C;
is the prime segment containing (1,*). Choose a = (t,0) € H. We have
(l,ti)(t,O) = (t: 0)(11t‘+1) and f(a: Ci) = Cs'+1 > Ci.
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4 Right invariant right holoids of finite rank

The results of [3] apply in particular to those r.i.r. holoids which have finite
rank.

Lemma 4.1 Let H be a r.i.r. holoid of rank n, a € H and 5 € {0,---,n}.
Then we have: f(ar,i) < f(a,{) for all r € H. Moreover, f(a,1) = i or
f(a®, i) = 0 for some k < 1.

The proof follows immediately from Theorems 3.7 and 3.8. We study in the
next result the way in which f(b, ) changes as b ranges over a prime segment
Cs.

Theorem 4.2 Let H be a r.ir. holoid of rank n and Cj a prime segment
of H. Then f(b,4) =1 for all b € Ci or f(b,4) < ¢ and hence f(*,1) = 0 for
be Cy.

PROOF: Using Lemma 4.1, it is enough to show that f(b,1) = ¢ for all
b € C; whenever f(a,t) = i for some a € Ci. Let a be such an element and
b € C. By Lemma 2.1(iii) there exists a natural number m with a™H C
bH C g™~'H. Thus a™ = br for some r € H and ¢ = f(a™,1) = f(br,1) <
fhi)<i. m

Since f(b,1) < i for all b € H we can construct factor holoids from a given
r.i.r. holoid of finite rank. More generally we have the following result.

Theorem 4.3 Let H be a r.i.r. holoid, P = H\S a prime ideal in H with
Sa C a8 for all ¢ € P. Then there exists a factor semigroup H/S of H which
is again a r.i.r. holoid, and a surjective homomorphism ¢ : H — H/S with
©(a) = p(b) if and only if as = b or bs = a for some s € §. The maximal
prime ideal in H/S is the image of P under o.

PROOF: We consider the set of all equivalence classes [a] = {b€ H |as=b
or a = bs for some s € §}. This set with the operation [a][b] = [ab] is a r.i.r.
holoid H/S and ¢(a) = [a] is a surjective semigroup homomorphism. The
details can be checked easily. m

Corollary 4.4 Let H be a r.i.r. holoid of finite rank, P = H\S. Then we
have rank(H/S) =rank(H)—rank(S).

The assumptions of Theorem 4.3 are satisfied since f(b,5) < ¢ holds if H
has finite rank. If {e} =S C 5 C...CSH =5SC SHnuC...C S =H
are exactly the convex subsemigroups of H, then ¢(S) = ¢(e) C ©(Sk+1) C
-+ C p(8,) = @(H) are exactly the convex subsemigroups of H/S.
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Definition 4.5 Let H be a r.i.r. holoid, P a prime ideal in H. We say that
P is discrete if P2 # P. We say that H is discrete if all proper prime ideals
in H are discrete.

Theorem 4.8 Let H be a r.i.r. holoid of finite rank, P = P, a non-discrete
prime ideal. Then for 1 < k either f(p,s) =0 forallp€ P and S;p = p or
f(b,3) =i for all b € Pe\Pryy = Ci.

PROOF: We pick b € C} and i < k. Since P is not discrete we have P = P*,
This means that we can find b; € Cy with b = b; - - b If b H 2 b;H for
a certain ig and j = 1,---,k then b; = b;,r; for some r; € H and b = bk r
for a certain r € H. By Theorem 4.2 we have either f(b,1) = f(b;,,5) =4 or
f(b,3) <iand f(bi,,3) < ¢. But this implies f(b,1) = f(bk r,i) < f(b,5) =0
and C;b = b follows. This implies S;p = p for all p € P and proves the
theorem. =

5 The extension problem

Let H be a r.i.r. holoid of finite rank n and the notation as in Section 4. It
follows from Corollary 4.4 that the factor semigroup H/S,_; exists and is a
r.ir. holoid of rank 1. By the classical result of HOLDER this semigroup
is isomorphic to a subsemigroup of (IR*,+), the non-negative real number
under addition. If P = P, # P? is discrete it follows that an element [p] with
p in P\P? will be a least positive element in H/S,_,, since otherwise there
is an element p; € P with ¢ # [p] < [p] and [p;]|p:] = [p] with p, € P. Then
P = p1p28 OF ps = p;p; for some s € S,,_; and p € P? in the first case. In
the second case we have either p;rs = p;p,, 80 rs = p,, r € P and p € P2 or
ps = prps, 80 § = rp, € P - a contradiction in every case. However, a r.i.r.
holoid which is a subsemigroup of (IR*,+) with a least positive element is
isomorphic to the semigroup of non-negative integers under addition. The
semigroup H/S,_; is equal to {[p]" = [p"] | n =0,1,2,---} and {p" | n =
0,1,2,---,} is a semigroup of representatives of H/S,_, in H. We have
proved the following result.

Theorem 5.1 Let H be ar.i.r. holoid of finite rank n, P = P, the minimal
prime ideal of H, P # P? and S = H\P. Then there exists in P an element
p such that for every element h € H there is a unique non-negative integer
n and a unique element s € S with either h = p"s or hs = p".

Again, let H be a r.i.r. holoid of finite rank n with minimal prime ideal
P =P, and S = S,_, = H\P. We now consider the case P = P? and -
using Theorem 4.6 — have the following two possibilities: Either Sp = p for all
p € P or n > 2 and there exists an integer k with 1 < k < n with Si_;p = p,
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but f(p,3) =1 for k <1 < n and all p € P. The next theorem deals with
the first of these possibilities guarenteeing a semigroup of representatives for
H/S.

Theorem 5.2 Let H be r.i.r. holoid of finite rank n, P = P, the minimal
prime ideal of H and E(p) = S = H\P for every p € P. Then there exists
in H a semigroup R of representatives for H/S which is isomorphic to a
subsemigroup of (R*, +).

PROOF: The r.i.r. holoid H/S has rank one and is therefore embeddable into
(R*, +); in particular, H/S is commutative. If (H/S)\[¢] contains a least
element, P is discrete and this situation was already analyzed in Theorem
5.1. Otherwise we choose p € P arbitrarily. Let [a] > [¢] in H/S and
there exists an element r € H with [a] = [g][r] = [r]lg]. If riq is equivalent
to r,q with respect to the equivalence relation defined by S on H, i.e. if
[riq] = [ri]lg] = [r29] = [r2][g] in H/S , then [r] = [r;]) and s0 vy € r,S or
r; € riS. This implies r;q = ryq in every case. Therefore we choose rg as
representative of [a]. The product (rq)(sq) = (rgs)q is again an element of
this form. Now let {{g;]}, [a:] # le], be a sequence of elements in H/S which
is mapped to a sequence with limit equal to zero if H/S is embedded into
(R*,+). We assume further that g, = g and {gi41] < [gi]. We derive another
sequence {¢}} of elements in H from the sequence of the [g,] in the following
way:

There exists an r; in H with gy = ¢.7; = r1q] for some ¢} in H. Obviously
rillas] = [aiiri] = [n]l@}] so [a:] = lgt]. We assume that gi_, has been
defined with [¢'_,] = [gi—1] and ¢!_, = r;_1¢}_; we choose for ¢! the element
in H with g}_, = ¢;r; = riq} where r; is in H. As before, [g;] = [g}]-

Let {a] > [e] be an element in H/S. Then there exists an i with [a] > [gi] =
[g'], so a = glv, [a] = [gi][v] = [v]lg}] = [vq}] for some v € H. As before
lvgl] = [v'q}) implies vg, = v'q}. We choose vg} as the representative for
[a] if [a] > [g!]. If [b] > [qi] has the representative wgq!, then vqiwg; is the
representative of [ab] = [a][b].

We write B; = {vg} | [a] = [vg}] > [¢}]} for the set of representatives of
elements [a] with [a] > [¢}] = {g]. Then Ry D R; follows, since for a
representative v;q; of [a] in R; and ¢} = riy1q},, the element viq} = viri1ql,,
is also the representative of [a] in R;;;. The union R = UR; U {e} is a
semigroup of representatives for H/S in H. m

Let H be a r.i.r. holoid of finite rank n with minimal prime ideal P = P,
and § = S8,-; = H\P. Assume that a semigroup R of representatives for
H/S exists in H. This is not enough to describe H in terms of § and R even
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if the mappings ¢, from S to § were known that send s to s' if sp = ps' for
p € R. In addition one would have to know for which s € S the equations
p = =3 have solutions in H and the actual solution sets.

A solution h € H of the equation p = zs determines the element s € S and
the element p in R uniquely. However, different elements k, h' € H may
both satisfy p = hs, p = h's. If, say ht = k', t € S, then ts = s and ¢t € E(S)
follows. Conversely, every element h' with A’ = ht or k't = h, t € E(S),
satisfies p = h's if p = hs. We will discuss these problems in the following
section.

6 Denominators and quotient sets

We begin this section with a definition.

Definition 6.1 Let H be a r.ir. holoid, P a prime ideal, § = H\P and
p € P. We write N(p) = {s € § |there exists z € H with zs = p} and say
N(p) is the set of denominators s of p and L(p,s) = {z € H | zs = p} is
quotient set.

The next result shows that in some instances the denominator sets do not
depend on the chosen element p and that there is a one-to-one correspondence
between quotient sets with the same s.

Theorem 6.2 Let H be ar.i.r. holoid of finite rank n, P = P, the minimal
prime ideal of H and § = H\P. Assume that there exists in H a semigroup
R of representatives for H/S and let p, # e # p, be two elements in R. Then
N(p1) = N(p2) and there is a one-to-one mapping from L(p,, s) onto L(pa, s)
for every s € N(p,).

PROOF: We can assume that p; < p, in H and R. Then there exists an
element p) in R with p,p}, = p,. However, R is commutative and p;p, =
pip: = p, follows. If we assume s € N(p,) and p, = zs for some s € H then
obviously p, = pbp: = (pyz)s and s € N(p,). If s' € N(p;) then p, = ys' and
y = p,z for some z € H implies follows, since the other alternative yr = p}
implies yrp; = phpy = p2 = ys', rp; = ' in §, a contradiction, here r is
a suitable element in H. Hence, p; = pip, = ys' = phzs' and p, = z¢,
s'€ N(p,). Thus s € N(p,). m

The above arguments also show that with every z € L(p;,s) the element
pyz is in L(ps,s). Distinct elements z,,z, € L(p;, ) correspond to distinct
elements pyz,pyz; € L(p,, s) and every element y € L(p,, ) is of the form
y = phz for some z € L(p;,s). The denominator set N(p), p € R is not
uniquely determined by H and P. It varies with R, the semigroup of repre-
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sentatives of H/S, which is by no means unique as can easily be seen in the
discrete case. Let H be a r.i.r. holoid of finite rank n, P = P, # P? the mi-
nimal prime ideal, § = H\P and p€ P\P2 Then R={p" | n=0,1,2,--}
is a semigroup of representatives for H/S. In order to keep the denominator
sets for the elements p" small we try to choose p carefully, so that p gene-
rates” the shifting process in respect to the function f(p, ~). By Lemma 4.1
one gets the idea to choose p as small as possible in the ordering of H. We
introduce the following notation.

Definition 6.3 Let P # P? be a discrete prime ideal in a r.i.r. holoid H.
We say the element p € P\ P?is a typical shift locus for P if f(p,C) = f(q,C)
for every ¢ € P with pH C gH and any prime segment C C H\P.

We observe that a similar definition for P non-discrete is not necessary be-
cause of Theorem 4.6.

Proposition 6.4 Let H be a r.i.r. holoid of finite rank n, P # P? its
minimal ideal. Then there exists a typical shift locus for P.

PROOF: If P = pH we choose the generator p as typical shift locus for
P and any p € P\P? can be chosen in case E(p) = § = H\P for all
p € P. In all other cases consider T = P\P? and choose ¢ in T with 1,
minimal such that f(g,4;) = 0 and f(q,5: +1) > 0. If ¢’ is in P with
f(¢s%y) = 0 and ¢} > 1, then ¢ H C gH, since otherwise ¢'r = ¢ which
implies f(g,4}) = 0. In the set Ty = {q € T|f(q,%1) = 0, f(g,%; + 1) > 0}
choose ¢ with f(q,%; + 1) = j, maximal. If ¢' is an element in P with
f(d's%1 + 1) < j» then, as in the above argument, ¢’ H C gH since otherwise
g'r =g and f(g,5; + 1) = f(¢'r, 41 + 1) < f(¢',41 + 1) < 7, a contradiction.

We set T, = {g € T | f(g,%1 + 1) = j=} and repeat the argument with 1, + 2
in place of {; + 1 defining a set T etc. The procedure ends after finitely many
steps with sets T DT} DT, D --- DT, k <n—1, and any element p e N T
can be chosen as a typical shift locus. m

In the next lemma we list some conditions that must be satisfied by a deno-
minator set N(p).

Lemma 6.5 Let H be a r.i.r. holoid of finite rank n, P a prime ideal in H,
S=H\PandpeP.

(i) If sp = ps' for s € S, then §' € N(p).

(ii) If s;,82 € N(p) then Hsy, C Hs, or Hs, C Hs,, i.e. N(p) is right and
left naturally ordered.
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PROOF: (i) We have sq = p for some g € P. Therefore sp = ps' = s¢s’ and
p = gs', 8’ € N(p) follows using the fact that H has finite rank to conclude
ses.

(11} Let p = 218y = 2,8, for z; € H, s; € S then z,r — z; for r € H and
8, = rs; follows. m

This result shows that on the one hand a denominator set N(p) must contain
certain elements, on the other hand it usually can not contain too many
elements, since otherwise condition (ii) would be violated. To illustrate the
last comment assume that a r.i.r. holoid of finite rank contains an element
p in the prime ideal P and elements ¢ < 8, < s; in § = H\P such that
818, = 3, and 8; € N(s2). Then s, and s, cannot be simultaneously in N(p).

We observe also that in general N(p) is larger than the set {s' [there exists
s € S = H\P,sp = ps'} for p € P. To see this let H be a r.ir. holoid of
finite rank n with minimal prime ideal P # P2. Assume that f(p,k) # 0
for p € P\P? and some k < n. It then follows that f(p",k) = O but still
N(p) = N(p") by Theorem 6.2.

It is not surprising that additional restrictions on N(p) exist if p is a typical
shift locus for a minimal prime ideal P in a r.i.r. holoid of finite rank.

Lemma 6.6 Let H be ar.i.r. holoid of finite rank n, P # P? a discrete prime
ideal of H and p a typical shift locus for P. Then f(s, f(p, k)) = f(p, k) for
all k with C, € § = H\P and s € N(p).

PROOF: Let f(p, k) = k'. We have p = p's for some p' € P. Hence f(p, k) =
f(p's k) = k' since p is a typical shift locus for P and f(s, k') = k' follows
immediately. m

We conclude this section with a result about prime principal right ideals.
This result can be used to describe right noetherian r.i.r. holoids.

Theorem 6.7 Let H be a r.ir. holoid, P = pH a prime principal right
ideal. Then gp = p for all ¢ € H\P.

PROOF: We have gp = pq' and p = qp' € P for elements ¢',p' € H. It follows
that p' € P, p' = pr say, and gp = qp'q’, p = p'q' = prq’. This is possible for
r=¢ =conly. =

7 A construction and an example

The following result describes a situation where a r.i.r. holoid can be exten-
ded by adding denominators for suitable elements and quotient sets.
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Theorem 7.1 Let H be a r.i.r. holoid of finite rank and P = pH a prime
princip§ right ideal. Then there exists for any element a € H\P a r.i.r.
holoid H containing H and of the same rank as H with {a" | n € IN} C N(p).

PROOF: It follows from Theorem 6.7 that sp = p for every element s € S =
H\P. Let T = H\aH and F = {s € H |there exists r € T : rs = a} U {e}.
For any elements s;, s; € either s; = ts; or s, = ts;, since r13; = a = r;3,
and say, r; = rot for some ¢t € H which implies ¢ts; = s;. Foranyr €T
denote with ¥ the unique element in H with r¥ = a. We now adjoin to H
elements z;_;, with 7,9 € IN and r € T with satisfy the following rules

(i) zj—ip =zj—op fandonlyif j=j'i=4and r=1o"
(i) (Zj1,—i0 ) (Zia,minra) = Tiitin,—iara

(ili) Szj—ip = Tjip

(V) Zj—iep = PP, PTjmie = Bigi,i

To define z;_;.b for b € § we consider two cases:

(a) If Fa*~'q = b then z;_;,.b = p’q.

(B) If Fa'! = bq then rFa‘~! = rbg = a’ and an integer k exists with a¥s = rb
and s € T. We can assume that ¢ # ¢ and k < 1 follows. In this case we
define z; _;,b = T _iy,-

Let @ C P be the prime ideal directly below P or @ = @ if P is minimal. Then
H, = H\QU {z;—i, | 7,4 € IN,r € T} is a r.i.r. holoid and N(p) = U2, Fa'.

We must show that the conditions of Lemma 1.3 are satisfied. To check
associativity, only one case presents any difficulties at all: ((z;-;,b)c) =
z; i, (bc) with b,c € S. If b = Fa'~!q the equation is obvious. If rb = a*s for
k <i,s €T and c = 3a"*"!¢ then rbc = a*s3a**-'¢' = rra‘~!¢' and both
sides of the equation are equal to piq'. If rb = a*s as in the previous case
and sc = a% for t € T and ¢ < ¢ — k then rbs = a*t9¢ and both sides are
equal to z; _;1k4ge With K+ g < 1.

The order for the elements of H\Q in H, is the same as the order of those
elements in H. In addition we have p/~'s < z;_;, < p for every j,iin N ,
rc T and s € S. Further, z; _;, < z;_s, if eitheri > ¢ ori =1 and r <r
in H.

It can be checked that this order does indeed satisfy all the conditions of
Lemma 1.3.

Finally, consider the set M = {(g,%;-i¢) | ¢ € @,5,3 € N,r € T} and
define an equivalence relation (q1,%j,,—i1r1) = (925 Zjs,—isr,) i and only if
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@ip' = g,p”* and ¢; = 4, r; = r,. The equivalence classes are denoted by
q1%j,—i,p, OT gz With g€ Qand z € X = {z;_;, | j € N,i e IN,r € T}.
Then H = H; UQ U {gz|g € Q, z € X}. We define multiplication in H by
the following rules: For ¢ € Q,z € X let g.z = gz and z;_,.q = p’q.

The order of H and H,, both considered as subsets of H is extended to H
and for elements gz the following holds:

(a) gpi~'s < gzj—i, < qp’ forge Q and all s € S.

(B) 91%;,,—ir2 < 92%j;,—isr, if and only if either g,pt < gop or qipt = gop”
and then in addition either £; > i, or 4, =1, but r; < rs.

It is not difficult to check that all conditions in Lemma 1.3 are satisfied by
H and we will only show that for every pair of elements hy = Q1Zj,,—iy,ry a0d
Ry = QaZj, _ires With hy < R, there is an element h € H with Ak = h,. We
proof the following auxiliary result first.

Let ¢,p/tv = g;p’* for ¢; € Q,J1,7. > 1 and v # e in H. Then either v = p*
for some k > 1 or v = gp». To prove this we compare g;p/*t and ¢;. In
the first case we have q,p""w = ¢, for some w € H. Then v = wp and we
are done. In the other case q,pt = ¢,w and wv = p follows. This implies
that w = pk1s;, v = p*is, for 3,3, € § and p*1s,p¥1s, = ps. We conclude
ki + k2 = 72, 82 = e. This proves the auxiliary result.

Now let hy, ks be as above. Then either g;p" < quf’ or q,pi' = g,p’* with
either t; > 12 ori; = i, and r; < r;. Let 1), < ¢, in the second case and we
can choose h = F,a"1=9"1r, or let i; = 12, rh = r; and we can choose h=h.

We now consider the first case ¢;p”* < ¢,p» and apply the auxiliary re-
sult. If v = p* for some k > 1 then DNTjymiyyry Thyminrs = QTG bkminry =
q2zn,—m ra since QIP“'H‘ = Q2P“ fv= qp“ then (‘h%,.—.,,r,)(qz;,,—.,,r,) =
‘hP’ 9Ty, ~igrs = 92Zj3,~ig,rs since 9117“ P” = 921?”

We conclude with a final example:

Example 7.2 Consider the semigroup H with 1dent1ty e generated by p;, p,
and p;p7¥, wherei=3,.-.,n,---, k=0,1,2,- - with the following relations:

(PipTa)(Pepils) = pepit, ifj<k-1
= pipp’3t ifi=k-1
= piri., ifj=k

=penpePilz” i i=k+1
= P:P,‘_”i“p,f_'. ifj=k+2
- pJp;—ZpEpk-.g 3f] > k + 2
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This defines an associative operation and every element h can be written in
the form h = pirpint -+ pi' where e, > 0 and e; < 0 is only allowed if for
some j > 1 we have e; > 0 and for e, # 0 with j > s > 4, if follows that ¢, < 0
and s = 7 mod 2; in particular { = j mod 2. Using this standard form one
can order the elements of H lexicographically. The conditions of Lemma 1.3
can be checked. We illustrate results about denominator sets and solution
sets.

The denominator set N(p”) for example is equal to N(p”) = {p}, p¥pr™, pips*
with n,k,m,r,s > 0and k= 1if m > 0,r = 1 if s > 0}. The solution set
L(p",p*) = {z € H | zps = pr} = {prp3'p} | k € Z}.
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