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EMBEDDING RIGHT CHAIN RINGS IN
CHAIN RINGS

H. H. BRUNGS AND G. TORNER

1. Introduction. The following problem was the starting point for this
investigation: Can every desargucsian affine Hjelmslev plane be embedded
into a desarguesian projective Hjelmslev plane (8]? An affine Hjelmslev plane
is called desarguesian if it can be coordinatized by a right chain ring R with a
maximal ideal J (R) consisting of two-sided zero divisors. A projective Hjemslev
plane is called desarguesian if the coordinate ring is in addition a left chain ring,
i.e. a chain ring. This leads to the algebraic version of the above problem,
namely the embedding of right chain rings into suitable chain rings. We can
prove the following result.

Let R be a right chain ring of type (2) or (3) (the definitions are given in
the next section) with finitely generated maximal ideal J(R) = mR. If we
assume further that the characteristic of R is different from the characteristic
of R/J(R) then R is a chain ring. On the other hand, if we assume that there
exists a ring monomorphism ¢ from R to R, with rm = ma(r), o(m) = m,
where R; is a subring of R, then R can be embedded into a chain ring whose
lattice of right ideals is isomorphic to its lattice of left ideals and is isomorphic
to the lattice of right ideals of R. This result is used to solve the above exten-
sion problem in case R contains a division ring of representatives of R/J(R)
and satisfies some additional condition.

2. Definitions and preliminaries. All rings considered in this paper have
a unit element. A right (left) chain ring is a ring with a linearly ordered lattice
of right (left) ideals. A ring which is a right and left chain ring is called a
chain ring. If every element in J = J(R), the maximal ideal of a (right) chain
ring, is a two-sided zero divisor, R is called a («ffine) projective Hjelmslev ring,
for short (4 H-) PH-ring. We write U(R) for the group of units of R. A ring
is said to be right tnvariant (invariant) if Ra £ aR (Ra = aR) holds for all a
in R. More details about the incidence structures mentioned in theintroduction
can be found in [1] and [11].

Our problem can be formulated as follows: Let R be a right chain ring. Does
there exist a ring extension S of R which is a chain ring and satisfies the
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following condition (1)?

(1) US) N R = U(R); and for any « in S there exists an s in U(S) with

as in R.

This condition will guarantee that the lattices of right ideals of R and S
respectively are isomorphic. If R is a right noetherian right chain ring with at
least two nonzero prime ideals R > xR > yR # (0) we have xyR = yR, but
Ry 2 Ryx 2 Ry. This implies that for such a ring R no extension in the above
sense exists (see [4]).

We therefore consider the following two types of right chain rings.

(2) J(R) is the only prime ideal of R;
3) J(R) and (0) are the only prime ideals in R.

3. The case: char (R) > char (R/J). We assume in this section that R
is a right chain ring of type (2) or (3) satisfying

(4) char (R) # char (R/J).

This property implies the existence of a central element z 0 in R, contained
in J(R).

3.1. THEOREM. Every right chain ring R with (4) of type (2) or (3) is right
1invariunt.

Proof. 1If R is of type (2) it follows that the elements in J(R) are nilpotent
and this together with the assumption that R is a right chain ring implies that
R is right invariant. Now let (0) and J be the only prime ideals of R and let 2
be a nonzero element in J with sR = Rz. If J = zR it follows that R, z'R,
i =1,...and (0) are the only right ideals of R and R is right invariant. Other-
wise we form the intersection L of all two-sided nonzero ideals of R. Two-sided
ideals Z # (0) lead to right chain rings R/Z of type (2) and this implies that
every right ideal / D L is a two-sided ideal in R. We are therefore left with the
case L # (0). It follows that L is not a prime ideal and elements a, b not in L
exist with «bin L and «Rb # (0). We obtain L = «bR, since abR is a two-sided
ideal, and since «bJ is a two-sided nonzero ideal as well, L = abR = abJ
follows. This implies L = (0), a contradiction, and proves the theorem. (See
[5] for related problems and results.)

3.2. COROLLARY. A prime right chain ring satisfying (3) and (4) has no zero
divisors.

We need the result that the semigroup H of principal right ideals of a right
chain ring R of type (2) is commutative (see also [3; 7]). H is a linearly
ordered semigroup and &, £ ks holds for clements &, = aR, hy = bR if and
only if aR = bR. H has a unit element ¢ = R and a largest element 0 = (0).
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It follows that iy < h, holds if and only if there exists an element k3 in H with
Inhs = ke In addition, the cancellation laws hold in the following form:

(1) hiho = hihy 5 0 implies hy = k3, and
(i1) hohy = hshy % 0 implies ha = hy.

Il

To prove this let &y = aR, hy = DR and h; = ¢R and assume b = cd for d in
J(R). This leads to the contradiction «cdR = acR in the case (i). In the case
(ii) one obtains cdaR = caR and using (i), duR = aR follows. The ideal I =
{r € R; raR & uR} is a prime ideal different from J(R) and (0) and this
contradiction proves (ii).

3.3. LEMMA. The semigroup H of a right chain ring of lype (3)~is commautative.

Proof. The result is obvious if H = H\{e{ contains a least element. We can
assume that A’ does not have a smallest element. Let z;, &, be two elements
with ks # hohy. If we assume hikhy < hohy % 0 we proceed as follows: hohy =
hihac; ¢ in H'. There exists an element z in H' with 22 < ¢,z £ hy, z £ he and
integers m, # with 2 < & < z2"*'and 2" £ he < 271 We obtain hyhy, =hihec
> zm+7+2 > ok, a contradiction. If we assume hha < hohy = 0 we consider
first the case iy < hy. Then there exists 2 = 1 with k¥ < by £ b5t and hy =
ho*h for some b in H'. We get it < ho, and hoht £ by < 0 and hhy < ke < 0
follows. Application of the first part shows that /2 and s, and therefore i, and k,
commute. It remains to consider the case hihs << hohy = 0 and hy < he. As
before we obtain an integer 2 2 1 and an element A in H’ with A* < h, £
Bi5 1 and he = ¥k, and as before, I < k. We see that i,k # 0and if ki = 0
we apply the previous argument with & < k; to prove that , and & commute.

We can now prove the main result of this section.

3.4. THEOREM. Let R be a right chain ring of type (2) or (3) wilh finitely generated
muaximal ideal J = mR and char (R) # char (R/J). Then R is « chain ring.

It is sufhicient to prove this result for chain rings of type (2). The next lemma
leads immediately to the proof of the theorem and can actually be used to
prove the above result for a larger class of right chain rings (see Remark 3.6).

3.5. LumMa, Let R be a chain ring of type (2). We ussume further that there
exists an clement m in J with 0 # Rm* = m*R for some k = 1 und that

B) (@) = {u € Rim*u = 0} £ mR.
ThenmR = Rm.
Proof. We define a sequence of subrings R£; of R in the following fashion:
R =Ry, Ry =1{binR;Jain R; with um = mb}.
It follows that the R, form a descending chain:

RzRizRy2...2R; 2R ...



1082 H. H. BRUNGS AND G. TORNER

The associated semigroup H of all the principal right ideals of R is commuta-
tive. This implies that elements «, b in R with «b = 0 commute. In particular
am = 0 implies me¢ = 0 and « is contained in M R, together with the element
m. Let n be the nilpotency index of m, i.e. m® = 0, m™! # 0. Using the above
notation we have Rm* = m*R,,, = m*R. For each « in R exists therefore an
element b in Ry, with m*a = m*b and « — b in (m*)" < mR follows.

We prove, using induction on j, that m’R < R,y holdsforj =n —1,.. .,
1,0.

The containment m*"'R < R, is trivial. We assume m/* 1R < R;,;. Let
r = mu be an element in m’/R. Then there exists an element b in R4, with
a — binmR, say u — b = mc for some ¢ in R. This leads to r = m#b + m?*'¢c
which is an element in Ry, using induction. We conclude that R = Ry = R»
and Rm = mR follows.

3.6. Remark. The statement in Theorem 3.4 remains true for right chain rings
of type (2) or (3) satisfying (4) as long as the associated semigroup of principal
right ideals is isomorphic to one of the following semigroups:

(i) (@, +); (i) (@, +) MN[0, 1]; (i) (Q, +) M [0,1]) U {e0}.

In addition, it must be assumed that the principal ideal gencrated by the
central element (whose existence is guaranteed by (4)) is not the upper neigh-
bour of the zero ideal. Condition (3) in Lemma 3.4 will then be satisfied and
an abritrary principal right ideal «R can be obtained from mR by either
“taking roots” ((aR)* = bR) or by using powers of certain right ideals. One
obtains «R = Ru for arbitrary a in R.

4. Two embedding theorems. We can now restrict ourselves to the case
in which

(6) char (R) = char (R/J)

is satisfied.

We begin with the solution of our problem for right invariant right chain
rings of type (3). We need the result, that the semigroup of nonzero principal
right ideals of such a ring R is commutative (Lemma 3.3 and (3]). It is obvious
that R is an integral domain and embeddable in a division ring of quotients

Q(R).

4.1. TuEorEM. Let R be a right tnvariant right chain ring of type (3). Then
S=UR,0#uinJ(R), R, = aRa™', is ¢ chain ring cxtension of R and the
lattices of right ideals in R and S respectively arc isomorphic.

Proof. Since R is right invariant, Ra < aR follows for every element « in K.
But, the multiplication of principal right ideals is commutative which implies
that J(R)a = aJ(R). From this we conclude that U(S) N\ R = U(R) holds;
otherwise there exist nonzero elements x, ¢ in J(R) with x~! in R,. This leads
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tox~! = are~'and ¢ = xar = ux'r for some x’ in J(R),  in R, and the contra-
diction ¢ = 0, To prove the second part of condition (1) (Section 2) for S let
y = bxb~! be an element in S for some x in R, b in J(R). Then there exist a unit
{in R with xb = bxt and y(bth—') = x for the unit btb—! in S. One checks, by
computing it directly, that Sy < yS =< Sy for all y in S, and it follows that S is
an invariant chain ring, satisfying condition (1).

The first example of an A H-ring which is not a PH-ring was probably given
by Baer in [2] using an idea of Ore in [9]:

Let F be a commutative field with a monomorphism ¢ which is not an iso-
morphism. The vector space FF @ I can be made into a ring E using the
multiplication (a, b)(¢’, V) = (ue’, a?b’ + ba'). The right ideals of E are
EDI=1{(,0b);b€ F} D(0)and E is a right chain ring, but E(0, b) 2
E(0,V°) 2 E(0,%) for b in F\F.

The next result gives a solution to our problem for right chain rings of type
(2) (or (3)) if the maximal ideal is a principal right ideal and an additional
condition is satisfied:

4.2, THEOREM. Let R be a right chain ring of type (2) (or (3)) with finilely
generaled maximal right ideal J = mR. We assume further:
(7) There exists a monomorphism o from R into R with ¢ (m) = m und rm =
ma(r).
Then there exists u chain ring S satisyfing condition (1) and solving owr embedding

problem.

Proof. If R = R’ we can take S = R. Otherwise we consider a set S| which
is the disjoint union of the set R and a set 7" with 7" = {l;; £ € R\R°}. We can
extend the mapping ¢ to a one to one and onto mapping ¢, from S; to R by
mapping [, in S; to & in R. This mapping can be used to define a ring structure
on S, and o, is then an isomorphism between S, and R, and S, contains R as a
subring. This process is repeated and we obtain a sequence of rings

]<=S|)C51C52C

with isomorphisms o, from S, to S;_; with ¢y = ¢ and ¢, is an extension of o,
The lattice of right ideals in S is still of the form

S, OmS; D...Dm"S; DOm™S; D ... D (0) and

rm = ma,;(r) holds for 7 in S,.
This last statement is proved by induction on :
rm = Ul'_l (O'i(r)m) = a',-_l(mal_l (0,(7)) = mU’i(r).

We form the ring S = \U S, D R. This ring is a local ring with maximal ideal
mS. For an element 7 in S there exists an index ¢ and an element ¢ in S;y; with
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ogu1(q) = r in S, This implies S = mS and it follows that S is a chain ring
containing R and satisfying condition (1).

This result can be applied immediately to the following situation:

4.3. COROLLARY. Assume R 1s a right chain ring of type (2) with finitely
generated maximal ideal J = mR. If R contains a division ring D of representa-
tives of R/J and dm = ma(d) holds for any element d in D, with o(d) in D also,
then R is embeddable in a chain ring S satisfying (1).

Let R be a right chain ring as in Corollary 4.3 without the special condition
that o(d) is again in D. We will then have the more general equation dm =
m(d, +mds + ... + m"*d,_) withd;inDforj=1,...,n — 1 where # is
the nilpotency index of m. This case will be treated in the next section.

5. AH-rings as skew polynomial rings. In this section the following
assumptions are made: R is an 4 H-ring of type (2), R contains a skew field D
of representatives of R/J and J = mR is finitely generated as a right ideal.
Finally, let # be the nilpotency index of m.

The multiplication in R is determined by

(8) dm = md® + m¥® + ... + m"1di

where the §,; are mappings from D into D. Since R is a right vector space with
basis {1, m, ..., m™1}, it is obvious that the é,’s are endomorphisms of the
additive group of D; §, is a monomorphism from D into D. We will use the
notation and some arguments from [10]. If we put ¢®i = a, and
Qo = . 2, Wipge (@ = 0fork > t)
TR

one obtains
1
©)  (@);= D ag.pby fori=1,...,n —1,a,binD.
=1

The following identity, nceded later, can be easily checked:
n-1

(10) D Gurrwn-1-0 = i forw =1,2,. ...
1=0

We would like to apply Theorem 4.2 to solve our embedding problem for a ring
R satisfying the assumptions listed at the beginning of this section.

This means that a monomorphism ¢ from R into a subring S; of R must be
found with ¢ () = m and rm = ma(r) for r in R.

This we could do under an additional assumption on the mappings §,:

(11) D C D% and 68,y =869 withd = 88,7, 1=1,...,n — 2.
Assuming (11) one checks that the following identity is true:

(12) Ly, 1—1) + Agt1,1=1) = dG41,0p, A in D.
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Given an element 4 in R. Then 4 can be written as
A =a) +ma(l) +...+m"la(n — 1) with a(z) in D.

We have Am = mB for some element B in R and B = "2} m* (), but only
the b(¢)’'sfor7 = 0,...,n — 2are uniquely determined by 4:

13) b))y =alih +al(i —1)a+...+a0)yy; O=Z1=Zn—2).

In order to make (13) a valid equation for # — 1 as well, we define a mapping
8, from D into D by

6, = 6" 14,

It is now possible to prove (9) for 2 = # and a monomorphism ¢ from R to R
with rm = ma(r) can be given.
We have:

(14)  (ab)n = (ab)*™ ' = (ab)®* '
(ashy + anby)® ™' (using (9))

(@’ + ap®)’! (using (11))
n-1 n—1
Zl {Lb(k.n'l)bk + I.Z:l al(k.n‘l)bkb (using (9))

k=
= Y agmbe (using (11) and (12)).
k=1
We claim that
15) o(mia) = miay +m*las+ ... +ma—y; 1=0,...,2—1

defines a monomorphism from R to R with a(m) = m, rm = ma(r).

Let «, b be elements in D. We will show that ¢(ab) = o(«)a(b). It is enough
to prove that («b), equals the coefficient of m™ 1 in o(a)o (b).

Let

n—1 n-1
o(@) = 2, Mm%, and o(b) = > M by
=0 w=

Using (9) we obtain

n—1 n-1 n-1
a(a)a(b) = ZO m” Zﬂ Zu M gy (0, )0 0410
o= w= §=

The coefticient of m™! is therefore equal to

n-1 n-1

Z Z ([v+l(w.n—1—u)bu'+ly

w=0 p=0

since v 4+ s = n 4 1. If we apply (10) we see that this expression is equal to

-1

n
D Qwiimbos = Zl A wmbp = (ab),.
w=

n
w=0
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The mapping ¢ defined by (15) is therefore a homomorphism from R into R
with o(m) = m, rm = me(r). That ¢ is also a one-to-one mapping is obvious.
We obtain therefore the following result:

5.1. THEOREM. Let R be an AH-ring of type (2) containing a skew field D
of representatives of R/J, where J = mR is the maximal ideal of R. Let

am = madt + m2a®t 4+ ... + m™ a1 forain D,

and assume that D C D% and §, = 68, holds for § = 88, and 1 =1, ...,
n — 1. Then R can be embedded into a chain ring S satisfying (1).

5.2. Remark. The assumption §; = §'-1§, is always true if the nilpotency
index # of m is equal to 3.

5.3. Remark. Let R be given as in the beginning of this section. Then R/m™ 'R
is embeddable in a chain ring.

Example [6; p. 38]. Let K[y; «, 8] be a skew polynomial ring over a (skew)
field X with monomorphism « and an a-derivation 8. Let ya = a*y 4+ a%. In the
quotient field K (y; «, 8) consider the subring generated by K and y~1. We
obtain with x = »~! the following:

ax = xa* + xa’x = xa* + xsb + x2Wbx = ...

We see that K[x]/(x*) = R provides us with an example of a ring R satisfying
the conditions of Theorem 5.1.
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