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Let H = H, < ;(G;. N;) be the split holoid of a family of ordered groups G, with
convex subsets N, that contain G;", the positive conce of G;, where 7 is an ordered
index set. Then there exists a right invariant right chain domain R with H = H(R),
the associated value semigroup of nonzero principal right ideals of R. ¢ 1995

Academic Press, Inc.

Given any ordered group G, there cxists a division ring D and a su_bring
V of D with x or x~" in V for every x € D such that all one-sided ideals
of V are two-sided, i.e., I/ is an invariant chain domain, and such that G is
isomorphic to the group of principal fractional V-ideals. Thig was observed
by Krull [K32] using localizations of group algebras over G in the commu-
tative case and by Malcev-Neumann [N49] using generalized power series
rings in the gencral case. . -

A right chain domain R is a ring with identity and without zero-divisors
in which for any a, b € R cither aR € bR or bR C aR holds. T.hc'n()l'lzer.O
principal right ideals of R form a semigroup H(R) under multiplication if
and only if R is right invariant, i.e., Rr S 1R for all r € R. ' '

The semigroup H(R) = H in that case is an ordered semigroup with
identity e such that a <b in H holds if and only if ac =D for' some
e + ¢ € H. For reasons of brevity we will call semigroups of this type
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holoids in this paper, even though we used the term right invariant right
holoid in [BT8Y]. Related structures were investigated among others by
Klein-Barmen [KB438], who introduced the term *“linear holoid,” by Conrad
[Con 60], and by Schein [S79].

One can ask whether for a given holoid H there exists a right invariant
right chain domain R with H(R) = H. This question has been answered
positively in the case where H has rank I or rank 2 (the rank of H is
defined as thc order type of the totally ordered set of proper convex
subsemigroups of H), or if H is right noetherian, in which case H = O, =
{a]a < '}, the semigroup of ordinals less than a power of w, where o
denotes the order type of the natural numbers with addition as operation.
Rings with H(R) = O, for arbitrary well-ordered I were first constructed
by Jategaonkar in [J69]; another construction was given by Cohn in [C85].

Jategaonkar's intention in constructing these rings was to provide an-
swers to various open problems in ring theory, in particular to show that
there does not exist an ordinal « with J(R)* = (0) for all right noctherian
rings R (for earlicr results on Jacobson’s conjecture, sec [H65]).

In Section I the definition of a split holoid is given for a family
(G, N), <, where the G;’s arc ordered groups. Not only can the semi-
group O, be considered as the split holoid for a family consisting of copies
of (Z,N,), but in [BT89] we discussed conditions under which a holoid is a
split holoid.

The main result of the present paper shows that for a split holoid H
there exists a right invariant right chain domain R with H = H(R); sce
Theorem 4. We will use generalized power scries rings over suitably
chosen subsemigroups of the wreath product of ordered groups. Both the
constructions given by Jategaonkar [J69] and Cohn [C85], however, rely on
the localization of certain skew semigroup rings. This approach is not
available if one deals with the positive cones of ordered groups in general.

In this paper all rings have an identity and are associative, but are not
necessarily commutative. We call a ring R a domain if R has no zero-
divisors. The Jacobson radical of the ring R is denoted by J(R) =7 .
whereas U(R) = U is the group of units of R. We denote with ¢; the
identity of a group G.

1. HOLOIDS AND RESTRICTED WREATH PRODUCTS
OF ORDERED GROUPS

A scmigroup H with identity ¢ = ¢, and a (total) order relation < is
called an ordered semigroup if a < b implies ac < bc, ca < cb for ele-
ments «a,b,c € H. If, in addition, @ < b holds if and only if b = ac for
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¢ # ¢, then H is called a holoid. 1t follows from this definition that a > ¢
for all @ € H. that for a,b € H there exists b € H with ba = ab’, and
that ab = ac impliecs b = c. The other cancellation law holds if and only if
H is embeddable into an ordered group. We now describe a particular
class of holoids which we encountered in [BT89].

Let G,.....G, be ordered groups with ¢; = ¢ the identity of G,
Gr={g, € G/1g; = e} the positive cone of G;, and G"C N, a convex
subset of G, for iel={l..... n}. We then consider the set H =
H! (G..N) of n-tuples I =(g,,...,8). g €N, for i €[ for which
either /1 = (e,,...,e,) = ¢, or for which the leading component is posi-
tive, i.e., g, > e,. but g, = ¢, for j > m. The operation on H is given as
follows: Let /1 =(g,,....g,) and IV =(e,.....€4, .- LLr---. 8}) be ele-
ments in A with g, > ¢,. Then

B = (G 8aa 1 BB Shoro- o 81)-

The ordering on H is lexicographical, i.e.. /i = (e,,....€;, . g--.» &)
>N =(e,....€,1 1.8 ---- &) for g;>e; and g > e, if and only if
cither j > k or j = k and g; > g;. It then follows that H = H/_ (G;, N) is
a holoid which we call the split holoid of the family (G,, N)),.,. We
assume that cach G, is nontrivial. The holoid H is not embeddable into a
group if I contains at least two elements.

The above construction can be extended to a set of groups {G;|i € I}
for an ordered index set /, where we assume that only finitely many
components of an element /1 € H are distinct from the identity. The
semigroup O, of all ordinal numbers less than the power w’ of w, with
addition as operation, falls into the above described class of split holoids,
where G, = (Z, +) with N, = G;'= N, and a well-ordered index set I.

Let A and B be two ordered groups. We define the base group C of the
wreatlt product A \ B as the direct sum of B-indexed copies A, of A
ordered lexicographically. We denote with ¢, the b-component of an
element ¢ € C. Then A\ B is defined as the semidirect product of B
with C, i.e.,

W=A\B={bc|b €B.ceCandch =bc" (c"), = cp-1}.

The group W is again an ordered group with the lexicographical ordering
and b'c > ey if &' >ep or b’ =e¢, and ¢, > e, for b minimal with
c, * ¢ (see, for example, [F67]). The group B is naturally embedded into
W by identifying be. in W with b € B, and similarly 4 is embedded into
W if the element egyc, with ¢, =a €A and ¢, equal e, otherwise, is
identified with @ € A. Of course, the order of I extends the order of A4
as well as the order of B and b > a in W for every b > ¢, and a € A.
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Given ordered groups G,,...,G, with convex subsets G C N, C G, for
i€l ={l,.... n}. we consider the wreath product W = I} = ('...(((I?I !
Q:) VGy) L U G,). Next we define a subgroup S =S, of W=, by
induction as follows. Let S, ={¢;} and S, = {x = ¢,c € Wele, = L':”~
lor. g <e, € G, and €., =Sk—1 €S;_}. Every element v € S: can be
written as x =¢,c = e;5,_,x; where (x,), = ¢, for g < ¢, € G. The
set of all such elements v, is denoted by X,. Each X, is a subgroup of
W,. It follows that cvery clement s & S, =358 has the form s =
Cp--rC by X, =x...x, with e, € G, C W and uniquely determined
Y € Xy S W, k€l Hence, S = X\ ... X, with X, = {e))

LEMMA 1. The following rules hold for elements Y€ X and g, € G;:

() Forallg; € G*\le)), g € Gioand i < < nwe have 8 '8 €X,
(i) Forallx; e X, x; € X, 1 # jwe have XX =X -
(1.11) Forall g, € Gi.' Y, €EX,, i <jwehave g’ vig = X EX,.
(iv) Forall g; € G'\{e}}. x; € X, i <jwe have g 'vg € X,

Proof.  We consider W, = W,_, \ G, with the basc group C and observe
Fhat the clements g, € G, and x; € X, occur in the e¢;-component of C for
1 <J.

(i) The element g/ 'g,¢; is contained in the g;-component of C and
hence in X; for g, > e

(.ii) and (iii) follow since x; has a trivial e;-component in C.
. .(w) .Thc element gj".‘r,-gj has trivial g-components in its decomposi-
tion in C for all g € G; with g <g; and is therefore contained in X; for
g>e¢. 1

We consider the carlicr constructed split holoid /4 = H/L (G;, N,). The
embeddings of the G;’s into W afford also an embedding of the und,erlying
ordercd set of the holoid H into W. We denote the image of 1 € H by
he W and observe that /i — /1 is an order-preserving cmbedding. but not
a semigroup monomorphism for 1 > 1. However, the next result shows

that for i, ' € H the elements Al and 77 differ in W only by some
s eSS,

LEMMA 2. Let H be the holoid and S © W be the groups defined above.
We obtain:

() Ifhs = Ii's' fors.s'€ S, it € H, thenh = I and s = s'.
(i) Foralley, #+h € H, s € Swe have i >s € W.
(iii) Forall h € H we have i™'Sh € S and g7'g,g, € S for e, # g €
G'. g eG andj>i. S

(V) If h,IW € H, s5,5' € S, then there exists s € S with hsi's’ = nli's"
in W.
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W#z={hslheH, s€Sisa subsemigroup of W with h~'zh co
forany h € H.

Proof. (i) and (ii) arc immediate consequences of the definitions of H,
S. and the order in W.

(iii) We prove by induction on k that h='sh e S for h, s € W,. This
is truc for k =1. For h=g,...g, with ¢, #g,€G/, g EN. i=
l,.... k. it follows that

hotsh =g giti(8i'sg) 8o -8 = &7 gt i8-8

with g; 'sg, =y, € X, (Lemma 1(iv)) since § = X ... X,:,. The ;Ielnlellt
yi € G, commutes with g; for every j <k by Lemma 1(iii) and /™ 'sh =
gl 8 8k --- & =¥ € S follows.

Ifh=g ..g withe #g €G’ and r <k and s =x,...x,, then

hlsh = (g, ...8) " (x1-.. ) (g - &)

41(-"1-~--"k—|)(gr---31)][(8r---8|)_l-‘5k(8r---81)]-

=[(g,---gl)

The element in the first square bracket is in S by induction, and
(g, ..-8) 'xlg, ...g) =x,, since g7'x,g,=x, for i <k by Lemma
1(iii). The second statement follows from Lemma 1(i).

(iv) We have hsh's' = hiti' ™ 'sli’s' = hi's’s' for s = W'sheS by
(iii). It remains to show that il = 't for reS. Let h=g,...g and
h' =gi...8, with e, # g, € G}. Then hh'= (g, ... g, Xg;...8}). Since
g 'gigieSfore #+¢g,€G’, g €G, j>iwehave

Wi =g, ... 8:8u(8 "8k-18) (- ) (8K '8181) 8k 1 --- &1

where the clements g, 'g;g, are in X, for i <k by Lemma 1(i) and
therefore commute with cvery element g € G; for j <k (see Lemma
1(iii)). This proves (iv). o

(v) By (iv), # is a subsemigroup of W. We consider i~ 'Ifsh for
It's €%, h € H. Since
h="Iish = h=' Ihir='sh

—
"o

and h~'sh e s by (iv), the statement follows if we show Kh = hl's" for
some A" € H, s" € S. We have W'h =hh" in the holoid H for somc
element /" € H. We obtain, by applying (iv) twice, the following equa-
tions: /th = I'ht = It = hi't't with 1,0 € S. |}
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Let / be an ordered index set and let & be the family of finite subsets
of 1. For the set {G;|i € I} of ordered groups G, with convex subsets
G, 2N, 2 G we define for every element o = {i,.. sl € with i) <
fy < -+ <i, the split holoid H, = H, . «(G;, N, ) and the wreath product
W,=(0.. (G, G )\ 1G,). By Lemma 2 there exists a subsemi-
group 7, containing a subgroup S, , and an order-preserving embedding
from (H,. <) into (¥,, <) such that properties (i)-(v) in Lemma 2 hold.

If a isasubset of B = {j,,...,j}. for a, B € 5 with Ju<lJjs < o <,
then there exists an embedding of H,, into Hpy and, as we show below, an
embedding of W, into W, which induces embeddings of S, into S; and of
7, into %, respectively; the restriction of *, to H, is equal to *. Clearly,
1, can be considered as a subholoid of Hj and we use induction on r and
n as well as the embeddings of the groups 4 and B into A \ B to define
the embedding of W, into We. If a € B’ =B\{j} then an embedding
exists from W, into W}, by induction, and of W into Wy = W\ G If
i, =Jj, then W, = W,.\ G, for o' =a\{j,} and W, can be cmbedded
into Wy, by induction and hence W, can be embedded into W;. The direct
limit lim , , . - H, exists and is the split holoid H = H;c (G;, N)) of the
family (G;, N}); ¢ ;. Similarly. the direct limit lim _, __ W, exists and is an
ordered group; we denote it with W, the wreath product of the groups
{G;1i € 1} and W contains the subsemigroup .#'= lim 77, and S =

- = aEy
hm - a Ey_su S‘%

COROLLARY 3. Let H = H,;. (G, N,) be the split holoid of a family of
ordered groups G; with convex subsets G;* C N, where I is an ordered index set.
Then there exist a subsemigroup % of the wreath product W of the groups G,, a
subgroup § of 7, and an order-preserving embedding * from (H, <) into #
such that properties (\)~(v) in Lemma 2 hold.

Proof.  Statements (i)=(v) hold for each H,, W,, %, S, , and ", for all
@ €%, and hence for H, W, 7, S, and *. |

2. THE CONSTRUCTION OF THE RINGS

We can now prove the main result.

THEOREM 4. Let G, i € 1. be a set of ordered groups G; for a (totally)
ordered index set I and let N; be a convex subset of G; which contains the
positice cone G of G; for each i. Then there exists a right invariant right
chain domain R such that H(R), the ralue semigroup of R, is isomorphic to
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the split holoid H = H; _ (G, N)). The ring R is obtained us a suitable subring
of the generalized power series ring over the wreath product of the G,.

Proof. Given the set (G,. i € I) of ordered groups we can construct the
wreath product W of the G;’s with the subsemigroup # determined by H,
the subgroup § €.#. and the mapping ~ from H into 7 such that (i)~(v) in
Lemma 2 hold. Since }) is an ordered group, there exists £ = Q{W}), the
ring of generalized power series Lwyg, ., where g, € Q, the field of rational
numbers, with well-ordered support {iw g, # 0} (sec [N49}). Since .7 is a
subsemigroup of IV (Lemma 2(v)), it follows that R = {Zwq, € E|w €7}
is a subring of E.

Let @ = Dwg, be an element in R and let w, = minf{w |g,. # 0} with
wy = hys, for hy, € H, 5, € §. We show that a = /it for a unit © € R. We
prove by contradiction that h(,< f for w = hs in the support of «. From
the assumption h < h“ it follows that there exists an clement ¢;, < neH
with /il = I,. Thus hil = IT., and by Lemma 2iv) il's' = h, for some
s’ € S. This is a contradiction, since > ssJ' s _(use Lemma 2(ii)) which
implies hu— hli's' > hssy ' > /1(,, since w = fis > h(,s“

For w, < w €.7 there exists an element w’' € W with ww' = Ep(,w’ =
w = hs. Since h“ < /1 n W, we have lz“ < hin H and so h,' = h for some
I" in the holoid H. Hence, Iz(p(,w = lzuhs = lzulz ts for some ¢ € S (Lemma
2iv)). We obtain w' = s; 'its €7 by Lemma 2(v) and

= ZW(Iu- = i’\(ls(lql\‘.,(l + E W’[]:‘.r)

w>ey

follows. The element 1 + £w'ql, =1 —m is in R and has the inversc
1 + £m' in E which is also an element of R since its support is in .7} we
conclude that a = IT[,H for a unit u in R, since s, has an inverse in R and
0+#gq,, €Q

On the other hand, no element /i with /1 # ¢ is a unit in R (use Lemma
2(i)). Hence every principal right ideal in R is of the form iR and R is a
right chain domain with AR c IUR if and only if # > /I' in H. It follows
from Lemma 2(iii) and (v) that R is right invariant which implies hRI'R = I
I'R = Ili'sR = TR, using Lemma 2(iv), i.e., H(R) = H as ordered semi-
groups.

We note that the field @ of rational numbers in the above construction
can be replaced by any skew field.

The rings R constructed in the last theorem are local right Bezout
domains. If [ contains morc than one clement, then the ring R is not a left
Ore domain, since Rg, N Rg.g, = (0) for g; € G \{e;},i = 1,2, and hence
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R is not a left Bezout domain (see also [Sm67]). However, every finitely
generated left ideal is a free R-module of unique rank, since R is a semifir
(see [C85, p. 65]). The left projective dimension of R can, however, be
arbitrarily large; see [B69].

If the index set / contains exactly one element. say / = {1}. then the ring
R in the above theorem is the chain domain with value group G, as
constructed by Neumann.

If the index sct [ is well ordered and (G,, N,) = (Z.N,) for all i €I,
then the ring R in the theorem is a right principal ideal ring. We obtain a
representation of the holoid O, as the semigroup H(R) of a right invariant
right chain domain, a problem that was solved by Jategaonkar [J6Y].
Conversely, if R is a right noetherian right invariant right chain domain,
then H(R) = O, for some well-ordered index set I (see [BGY]) and O, is
isomorphic to the split holoid H = H, . (Z,N,).. It follows (see [J69]) that
the rings constructed here for the particular split holoids O, = H =
H; - (Z,Ny), with I well ordered. can serve as counterexamples for the
Jacobson conjecture, to illustrate various phenomena connccted with
unique factorization and primary right principal right ideals, and to pro-
vide examples of rings R with right projective dimension R = 1 and left
projective dimension R > n for any given .

Since the prime idcals P in the right noetherian case are principal, we
have P? # P for P # (0). Arbitrary right chain domains for which this
condition holds are called discrete. The set of prime ideals in a discrete
right chain domain is inversely well ordered by inclusion. This follows since
all prime ideals are completely prime in this case, the union of prime
ideals P, is again a prime P, and P = P, for some p,, sincc P # P:.

Next we describe the class of split holoids H = H,_,(G,, N;) which
occur as the holoids H(R) of discrete right invariant right chain domains.
For each i € [ the split holoid H; = H;_ (G, N;) which can be considered
as a convex subsemigroup of H with correspondmU prime ideal P, of R
equal to (1]l h € H\ H,) wherc /i is the principal right ideal of R that
corresponds to s € H for the canonical isomorphism between H and
H(R). Since we have H; < H; for i <j,but P, D P, it follows that / is well
ordered if R is discrete.

Similarly, it follows that for each G; the chain of convex subgroups (see
[F67, p. 79D must be well ordered by inclusion with C'/C = Z for every
subgroup C of G; where C' is the minimal convex subgroup of G;
containing C.

Conversely, if the above conditions concerning / and G, are satisfied,
then H(R) = H; . ,(G,;, N,) is discrete for arbitrary convex subsets G;"C N,
of G,.

We conclude with an example that illustrates the influence of the
denominator sets N; and shows that a right invariant right chain domain
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can contain several prime ideals that are principal right ideals and others
that are not.

EXAMPLE 5. Let G, ={y) ®<{x)=Z & Z be the direct sum of 1wo
infinite cyclic groups {y) and {x) with y"x" > e ifn >0 orn =0 and
m >0, and let G, = {z) also be infinite cyclic. If we choose N, = G| (N,
does not have to be defined) than R as constructed in the above theorem for
H = H,_, J(G,. N)) has the following prime ideals:

RO ( "In=1,2....) DZR > (V).

If we choose N, = G|, then
iR D (}:t_"|ll = 1.2,...) D (zy‘"ln = 1,2,...) 2 (0)

are the prime ideals. In general, if i € I has an immediate predecessor in I, if

) , . Lt
G; has a smallest positive element g; ..., and if Ny = G for all j <1, then
P, = g; ninR is principal.

Remark 6. We can extend the definition of a split holoid to also
include the holoids one obtains if the pair (G;, N;) is replaced by the pair
(K, K;) where K is a right cancellative holoid; even though such a holoid
K; is embeddable into an ordered group, it is not necessarily isomorphic to
the positive cone of its quotient group. The construction given above
applies to this additional case.
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