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Introduction 1
„The story so far: In the beginning the Universe was

created. This has made a lot of people very angry
and been widely regarded as a bad move.

— Douglas Adams
The Restaurant at the End of the Universe

1.1 Introduction and main results

Let (Ω,A,P) be a probability space. At the center of this thesis are symmetric Feller processes.
That is, strong Markov processes defined on (Ω,A,P) with values in some topological space S
that possess additional regularity properties. Many stochastic processes fall into this class, for
example Brownian motion, Lévy processes or random walks. We generalize the state spaces
from metric measure spaces to uniform measure spaces and show how hitting times play an
important role in the analysis of such processes.

This research was initially motivated by the question under which conditions a sequence X(n)

of symmetric Feller processes converges to a limiting process X(∞).

1.1.1 Motivation

One of the earliest results of such a convergence is Donskers invariance theorem. It was
obtained by Monroe D. Donsker as a result of his doctoral dissertation and published in
[Don51]. Loosely speaking, Donsker showed that a simple symmetric random walk (linearly
interpolated) converges in distribution to the Brownian motion as random variables on the
space of continuous functions on the unit interval, C([0, 1]). More precisely, suppose (ξn)n∈N

is a sequence of independent and identically distributed real valued random variables with
E

[
ξ
]
= 0 and E

[
ξ2

]
= σ2. Define S 0 = 0 and for each n ∈ N set S n :=

∑n
k=1 ξk. Moreover, for

n ∈ N, t ∈ [0, 1], ω ∈ Ω set

X(n)
t (ω) :=

1
√

nσ
S ⌊nt⌋(ω) +

nt − ⌊nt⌋
√

nσ
ξ⌊nt⌋+1(ω). (1.1)

Then X(n) : Ω→ C([0, 1]) and
P(n) ⇒W, (1.2)
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weakly as probability measures on C([0, 1]), whereW denotes the Wiener measure. Sometimes
this result is phrased as “the simple symmetric random walk converges to the Brownian motion
in the scaling limit”.

In [Sko56], Anatolii Skorokhod laid the groundwork for the analysis of processes that are
not necessarily continuous but may contain jumps by introducing a topology (actually four
different topologies) on the space of function f : [0,∞)→ S that are continuous from the right
and possess limits from the left. Here S denotes a complete and separable metric space. We
call such functions càdlàg1 functions and denote the space of such functions by DS ([0,∞)).
We refer to the space DS ([0,∞)) equipped with the Skorokhod topology as the Skorokhod
space or pathspace.

Charles Stone considered in [Sto63] Markov processes on subsets of the real line such that
“the random trajectories do not jump over points in the state space”2 and depend continuously
on a speed measure ν when considered on their “natural scale”. Stone was able to show that
under certain conditions on the convergence of the state spaces as well as the speed measure,
such processes converge in the Skorokhod topology to a limiting process. Donskers functional
limit theorem can be considered an example of Stones result.

More than 50 years later, Siva Athreya, Wolfgang Löhr and AnitaWinter extended Stone’s
result to an invariance principle for random walks on metric measure trees in [ALW17]. Here,
metric measure trees are metric spaces (T, r), that have a tree-like structure and are equipped
with a measure ν. The speed-ν motion on a metric measure tree (T, r, ν) is a ν-symmetric
Feller process which is determined by the structure of the tree, encoded in the metric r, and
the measure ν. The speed-ν motion was constructed earlier in [AEW13] using Dirichlet forms.
It is worth pointing out that this construction makes use of the geometry of the tree through its
metric. The speed-ν motion can therefore be considered to be on its natural scale.

In [ALW17], the authors were able to show the very elegant result that the speed-ν(n) motions
X(n) started in ρ(n) on a sequence of rooted metric measure trees

((
T (n), r(n), ρ(n), ν(n)

))
n∈N

converges weakly in path space to the speed-ν motion X(∞) started in ρ(∞) on a rooted metric
measure tree

(
T (∞), r(∞), ρ(∞), ν(∞)

)
whenever(

T (n), r(n), ρ(n), ν(n)
)
−→

(
T (∞), r(∞), ρ(∞), ν(∞)

)
, (1.3)

as n→ ∞, in pointed Gromov-Hausdorff vague topology and a uniform bound on the lengths
of edges emanating from a ball around the root holds. Pointed Gromov-Hausdorff vague
convergence takes place when the rooted metric trees

(
T (n), r(n), ρ(n)

)
can be isometrically

embedded into a common metric space (S , d) so that
(
T (n), r(n), ρ(n)

)
converge in the pointed

Hausdorff sense as subsets of the metric space (S , d) and the push-forwards of the measures
ν(n) under this embedding converge vaguely.

To illustrate this result consider again the simple symmetric random walk on Z. We can
consider Z as a (graph theoretic, discrete) tree where x, y ∈ Z are connected by an edge (x ∼ y)

1from French: continue à droite, limite à gauche
2[Sto63, p. 638]
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if and only if |x − y| = 1. We let r(x, y) = |x − y| be the Euclidean metric and ν(A) = #(A ∩ Z)
the counting measure. Then, X = (Z, r, 0, ν) is a rooted metric measure tree and the speed
ν-motion X on X is the ν-symmetric Feller process that jumps from x ∈ Z to y ∈ Z with x ∼ y
at rate

γxy =
1

2ν({x})r(x, y)
=

1
2
. (1.4)

The total jumprate at x ∈ Z is then γx :=
∑

y:y∼x γxy = 1. Hence, X is the continuous time
version of the simple symmetric random walk. Now define for each n ∈ N a rooted metric
measure tree X(n) =

(
T (n), r(n), 0, ν(n)

)
by setting

T (n) := Z, r(n)(x, y) := |x − y|/
√

n and ν(n)(A) := ν(A)/
√

n. (1.5)

The metric spaces
(
T (n), r(n)

)
are all naturally embedded into R and they converge to (R, d)

in the Hausdorff topology where d denotes the Euclidean metric on R. Moreover, for real
numbers a < b, the set [a, b] ∩ T (n) contains of the order of

√
n(b − a) many points. More

precisely, (√
n(a − b) − 1

)
/
√

n ≤ ν(n)([a, b]) ≤
(√

n(a − b) + 1
)
/
√

n. (1.6)

Consequently, ν(n) ⇒ λ weakly as n → ∞, where λ denotes the Lebesgue measure on R.
Moreover, the jump rates of the speed-ν(n) motion X(n) is γ(n)

x = 1/n. The spaces X(n) converge
pointed Gromov-Hausdorff weakly to X(∞) = (R, d, 0, λ) and the speed-ν(n) motions converge
to the speed-λ motion on R which is simply the standard Brownian motion. Note that the same
result remains true when we rescale the metrics r(n) by a constant factor c > 0, as long as we
make up for this rescaling by also rescaling the measures ν(n) by c−1. In this sense, constant
factors can be shifted between the measure and the metric.

The result of Athreya, Löhr and Winter was extended by David Croydon in [Cro18] to so-called
resistance forms. Resistance forms are a tool that was developed by Jun Kigami and others
(cf. [Kig01]) to describe and analyze random walks on fractals and fractal-like graphs like the
Sierpiński Gasket (see Figure 5.2). Technically, a resistance form is a symmetric bilinear form
E on a subspace F of the real valued functions on some set S satisfying certain conditions to
ensure that E induces a metric R, called the resistance metric, on S by virtue of the following
variational principle

R(x, y) := sup
{
| f (x) − f (y)|2

E( f , f )

∣∣∣∣∣∣ f ∈ F , E( f , f ) > 0
}
, x, y ∈ S . (1.7)

We will discuss the concepts related to resistance forms in more depth in Section 5.6. On the
other hand, a resistance form together with a Radon measure ν on the metric space (S ,R) gives
rise to a regular Dirichlet form on L2(S , ν) which in turn uniquely defines a ν-symmetric Feller
process with values in S . Again these processes can be considered to be on their natural scale
as processes on the metric measure space (S ,R, ν). Croydon showed that under an additional
uniform recurrence condition an analogue of the invariance principle of [ALW17] holds. That
is, the processes X(n) associated to a sequence of resistance forms (E(n),F (n)) on a sequence

1.1 Introduction and main results 3



of sets S (n) started in ρ(n) converges weakly in pathspace to a ν(∞)-symmetric Feller process
started in ρ(∞), whenever(

S (n),R(n), ρ(n), ν(n)
)
→

(
S (∞),R(∞), ρ(∞), ν(∞)

)
(1.8)

pointed Gromov-Hausdorff weakly as n→ ∞.

All these results have in common that they are basically low dimensional in the sense that the
processes hit points with positive probability, i.e. Px ({∃t > 0 : Xt = y}) > 0 for all x, y in the
state space. In other words, singletons have positive capacity (for the definition of capacities
and other potential theoretic notions see Section 5.4). However this property fails in higher
dimensions, for example for the Brownian motion in Rd for d ≥ 2.

A complementary result that closes this gap was shown by Kohei Suzuki for Brownian motions
on Riemannian Manifolds. The Brownian motion on a Riemannian manifold M equipped
with the volume measure dV is again constructed by means of its Dirichlet form which is
given in terms of the Laplace-Beltrami operator on M. The Laplace-Beltrami operator, on
the other hand, is again related to the metric d on M through the Riemannian metric (see
Section 5.7). The Brownian motion on a manifold M can therefore again be considered to be
on its natural scale. In [Suz19a], Suzuki showed that under a uniform bound on the Ricci
curvature of a sequence of Riemannian manifolds, the convergence of these manifolds in the
Gromov-Hausdorff weak topology3 implies pathwise convergence of the Brownian motions
on said manifolds.

All these results have in common that the geometry of the state space and the probabilistic
behavior of the processes defined on these state spaces are linked. This is what is meant by
the expression that the processes are on their natural scale. This connection is maybe best
illustrated by the occupation time formula for the speed-ν motion X on a metric measure tree
(T, r, ν),

Gy f (x) := Ex

[∫ τy

0
f (Xt) dt

]
= 2

∫
T

r
(
y, c(x, y, z)

)
f (z) ν(dz), (1.9)

where τz := inf { t > 0 | Xt = y } is the first hitting time of y ∈ T and c(x, y, z) ∈ T denotes the
unique branchpoint of the three points x, y, z ∈ T . The occupation time formula relates the
Green operator Gy on the left to the geometric structure and the speed measure through the
Green kernel gy(x, z) = r

(
y, c(x, y, z)

)
on the right.

If we now consider a ν-symmetric Feller process X on a “nice” metric measure space (S , d, ν)
the question arises wether this process is on its natural scale and what is actually the natural
scale for X?

Consider for example the random walk on a finite weighted graph G = (V, µ) (see Section 4.5.1).
Here V , Ø denotes the set of vertices and µ : V × V → [0,∞) is a symmetric map that
represents the weights (or inverse lengths) of edges between vertices. That is, two vertices

3Suzuki actually uses pointed measured Gromov convergence (pmG) that was introduced in [GMS15]. However,
this topology is weaker than the topology of Gromov-Hausdorff weak convergence (cf. [Suz19a, Remark 2.2.
b)])
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x, y ∈ V are connected by an edge of length µ−1
xy if µxy > 0 and there exists no edge between

x and y if µxy = 0. Such a graph comes with at least two natural metrics, the simple graph
distance d(x, y) which is the minimal number of vertices on a path from x to y (minus 1) and
the weighted graph distance dµ(x, y) which is simply the length of a shortest path between x
and y. Neither of these metrics represents the natural scale for the random walk on G. Instead
the natural scale is given by the resistance metric which can heuristically be understood as the
electrical resistance between two vertices when we think of the graph as an electrical network
where the vertices are connected by resistors with a resistance given by µ−1

xy .

Moreover, if we have a sequence
(
X(n)

)
n∈N

of symmetric Feller processes living on a sequence

of metric measure spaces
{ (

S (n), d(n), ν(n)
) ∣∣∣∣ n ∈ N

}
, under which conditions does this sequence

converge to a limiting process? Since the processes have a priori no relation to the metrics
d(n), we remove the metric from the state spaces and consider uniform spaces instead of metric
spaces as state spaces for symmetric Feller processes. A Uniform space (S ,U) is a topological
space with an additional structure that is just enough to define uniform continuity. In this sense
uniform spaces are intermediates between topological spaces and metric spaces.

The idea to consider uniform spaces as state spaces is not new and goes back to Adam
Jakubowski who introduced the Skorokhod topology on uniform spaces in [Jak86]. However,
this idea had only little resonance.

1.1.2 Main results

One of the central results of this thesis is the introduction of uniform spaces as state spaces
for stochastic processes. This entails a careful study of the space of càdlàg functions with
values in a uniform space (S ,U). We show that the Skorokhod topology is uniformizable and
describe the Skorokhod uniformity in terms of a family of pseudometrics (Proposition 3.14
and Theorem 3.16). Moreover, we show how many known quantitative results, in terms of
the Skorokhod metric, can be reformulated as qualitative statements which hold true for the
Skorokhod uniformity. For example we proof a result about relative compactness in DS ([0,∞))
by replacing the convergence of the modified modulus of continuity by a quantitative statement
in Theorem 3.21.

Of particular interest is Theorem 3.27 where we characterize the convergence in DS ([0,∞))
by the convergence of hitting times of certain sets. This result is new even in the context of
metric spaces. The theorem was proven jointly with Gerónimo Rojas and it will appear in his
dissertation for the metric case. For A ⊂ S we define the first contact time of A by

γA(ω) := inf
{

t > 0
∣∣∣ {ω(t), ω(t−)} ∩ A , Ø

}
. (1.10)

Moreover, for each t > 0 let θt : DS ([0,∞))→ DS ([0,∞)) with θt(ω( · )) := ω( · + t) denotes
the shift operator on DS ([0,∞)). Then Theorem 3.27 states the following.
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Theorem. Let (S ,U) be a uniform Hausdorff space,ω ∈ DS ([0,∞)) and (ωn)n∈N ⊂ DS ([0,∞))
be relatively compact. Then the following are equivalent.

(i) limn→∞ ωn = ω in the Skorokhod topology.

(ii) For all x ∈ S , U ∈ U, all continuity points s ≥ 0 of ω, and all D ∈ U, there exists a
E ∈ U with E ⊂ D open, such that

τ(U◦E)[x](ωn ◦ θs)→ τ(U◦E)[x](ω ◦ θs), as n→ ∞. (1.11)

(iii) For all x ∈ S , all continuity points s ≥ 0 of ω and all U ∈ U open such that τU[x](ω ◦
θs) = γU[x](ω ◦ θs) it holds that

τU[x](ωn ◦ θs)→ τU[x](ω ◦ θs), as n→ ∞. (1.12)

In Theorem 3.48 we lift this statement to the space of probability measures on DS ([0,∞))
and show how the convergence of hitting times can be used to show weak convergence of
probability measures on DS ([0,∞)). The theorem reads as follows.

Theorem. Let (S ,U) be a separable uniform Hausdorff space with a countable base. Assume
that X,

(
X(n)

)
n∈N

are DS ([0,∞))-valued random variables with distribution PX(n)
and PX

respectively. Then, PX(n)
=⇒
n→∞
PX if and only if the following conditions are satisfied.

(i) The sequence
{
PX(n)

∣∣∣∣ n ∈ N
}

is tight.

(ii) There exists a countable dense set T ⊂ { t > 0 | Xt = Xt− a.s. }, a countable dense subset
D ⊂ S and a countable baseV ⊂ U ofU consisting of open entourages such that for
all x ∈ D, all V ∈ V open with τV[x](X) = γV[x](X) a.s. and all s ∈ T it holds that

τV[x]
(
X(n) ◦ θs

) d
−→ τV[x](X ◦ θs). (1.13)

We apply our analysis of the pathspace to obtain a tightness criterion in Theorem 4.75 for
Feller processes with values in uniform state spaces. The criterion states that the a sequence of
Feller processes

(
X(n)

)
n∈N

is tight when the probability that the processes move far from their
starting point in a short time t goes uniformly to 0 in the starting point and n as t → 0. Such a
criterion was already shown in [ALW17, Corollary 4.3] as a corollary to Aldous’ tightness
criterion. Instead of using Aldous’ criterion to proof Theorem 4.75 we present a direct proof
using the Feller property.

Theorem. For each n ∈ N let X(n) be a Feller process with values in a subset S n of a locally
compact Polish uniform space (S ,U). Assume that for every open entourage U ∈ U it holds
that

lim
t→0

lim
n→∞

inf
x∈S n
Px((x, X(n)

t ) ∈ U) = 1. (1.14)
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Then for every sequence of initial distributions µn ∈ M1(S n) the family
{

X(n)
∣∣∣ n ∈ N

}
is tight

in the one-point compactification (S ϑ,Uϑ).

We follow up on the idea to analyze Feller processes by hitting times. For a symmetric Feller
process X and a closed set A ⊂ S we introduce the killed process XA which is the same as X up
to the first hitting time τA of A and is then moved to a cemetery state ϑ. In Theorem 4.65 and
Theorem 4.66, we proof that the killed process is again a symmetric (strong) Feller process
with state space Dϑ := D ∪ {ϑ}, where D = S \ A.

Theorem. Let X be a ν-symmetric (strong) Feller process with values in Sϑ and A ∈ Bϑ closed.
Then the killed process XA is again a ν|D-symmetric (strong) Feller process with values in Dϑ,
where D = S \ A.

We apply this result in Theorem 4.72 to show that a symmetric doubly Feller process is already
uniquely determined by its family of Green operators

GA : Bb → Bb, GA f (x) := Ex

[∫ τA

0
f (Xt) dt

]
. (1.15)

The theorem is stated as follows.

Theorem. Let (S ,U) be compact and X be a ν-symmetric doubly Feller process with values
in Sϑ. Then X is uniquely determined by the family of Green operators

{GA : Bb → Bb | A ∈ B closed } . (1.16)

Other than in the situation of metric measure trees and resistance forms, points do generally
not have positive capacity in our setup. That means we cannot define a resistance metric to
introduce a natural scale for symmetric Feller processes on uniform spaces. We can however
define a resistance between closed subsets of the state space in a very similar manner as in
(1.7) using the Dirichlet form of the process.

Our final result is a convergence theorem for symmetric doubly Feller processes on compact
uniform spaces. Theorem 6.1 can be formulated as follows.

Theorem. Suppose (S ,U) is a compact uniform space and for each n ∈ N∞ = N∪ {∞}, ν(n) is
a Radon measure on (S ,B) with support S (n). Let further X(n) be a ν(n)-symmetric conservative
doubly Feller process with values in Sn. Denote by P(n) = PX(n)

the distribution of X(n) and
assume that the following conditions hold.

(C1) ν(n) converges Hausdorff weakly to ν(∞).
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(C2) The family
{

Q(n)
∣∣∣ n ∈ N

}
of maps given by

Q(n) : S (n) × [0,∞)→M1(S ), (x, t) 7→ Q(n)
x,t ( · ) := Px

(
X(n)

t ∈ ·
)

(1.17)

is uniformly equicontinuous.

(C3) For every sequence (xn)n∈N ⊂ S with xn ∈ S (n) and limn→∞ xn = x∞ ∈ S (∞), the
sequence

{
P(n)

xn

∣∣∣∣ n ∈ N
}

is tight as probability measures on DS ([0,∞)).

(C4) The Green’s functionals G(n)
A converge to G(∞)

A in the following sense. For all bounded
measurable functions f ∈ Bb(S ) and all A ∈ B(S ) with τA < ∞, P(∞)

x∞ -a.s.,

lim
n→∞

G(n)
A f (xn) = G(∞)

A f (x∞), (1.18)

for all sequences (xn)n∈N ⊂ S with xn ∈ S (n) and limn→∞ xn = x∞ ∈ S (∞).

Then X(n) converges in distribution to X(∞) for all sequences of initial distributions
(
µ(n)

)
n∈N
⊂

M1(S ) with µ(n) ∈ M1(S (n)) and µ(n) ⇒ µ(∞) ∈ M1(S (∞)). In other words,

P(n)
µ(n) ⇒ P

(∞)
µ(∞) (1.19)

weakly as probability measures on DS ([0,∞)) as n→ ∞.

1.2 Outline

This thesis is structured as follows.

In Chapter 2 we introduce the notion of uniformities and uniform spaces. We present several
different ways to define a uniform structure on a set S . Moreover, we explain how uniform
spaces are related to topological spaces (uniformities induce topologies) and to metric spaces
(metrics induce uniformities). In Section 2.5 we show that uniform spaces admit Cauchy
sequences and therefore a notion of completeness. We introduce the notion of a Polish uniform
space that is a separable and complete uniform space. This allows us to define uniform
measure spaces. We also introduce a notion of uniform equicontinuity and proof a variant of
the Arzelà-Ascoli theorem for uniform spaces in Theorem 2.46 and Lemma 2.47. We close
this foundational chapter with a discussion of Hausdorff and Hausdorff weak convergence of
subspaces of uniform spaces.

Chapter 3 is dedicated to the pathspace DS ([0,∞)) of càdlàg functions with values in a uniform
space (S ,U). We pick up an idea of Jakubowski [Jak86] and define a uniform structure on
DS ([0,∞)) that is compatible with the Skorokhod topology using a family of pseudometrics.
We use the Skorokhod uniformity to reformulate many important results that are usually stated
in terms of the Skorokhod metric in a more qualitative way. In Proposition 3.19 we give a
useful criterion for convergence in the Skorokhod topology. In Section 3.3 we discuss the
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relatively compact subsets of DS ([0,∞)) and give conditions for relative compactness in the
Skorokhod topology. Section 3.4 is centered around Theorem 3.27 where we characterize the
Skorokhod convergence by the convergence of hitting times of certain sets. We continue with
a short discussion of the space of probability measure on a uniform space and show that the
concept of the Prokhorov metric can be extended to define a uniform structure, the Prokhorov
uniformity, on the space of probability measures on a uniform space. In Theorem 3.43 we give
a characterization of tightness of a family of probability measures on DS ([0,∞)) which will
come in handy when we proof our tightness criterion Theorem 4.75 in Chapter 4. We conclude
this chapter with our result on weak convergence of a sequence of probability measures on
DS ([0,∞)), Theorem 3.48.

We continue to introduce symmetric Feller processes with values in uniform spaces in Chap-
ter 4. We first introduce Markov processes to fix some notations. In particular, we introduce
filtrations, stopping times, semigroups, resolvents and ν-symmetry of semigroups. In Sec-
tion 4.2 we introduce the normal and the strong Feller property and introduce the generator.
We also state the Hille-Yosida theorem Proposition 4.40 to characterize Feller semigroups
in terms of the generator. We then continue to show that Feller processes possess càdlàg
modifications. Next we discuss hitting times and give some bounds on hitting times. In
Section 4.3 we introduce the killed process XA that is killed upon hitting a closed set A ⊂ S .
We show that the Markov property, the strong Markov property, symmetry as well as the
normal and the strong Feller property carry over from X to the killed process XA. We then
briefly discuss recurrence and transience of Feller processes and continue to show one of
our main results, Theorem 4.72, where we state that a symmetric doubly Feller process is
already determined by its family of Green operators. Before we conclude this chapter with the
discussion of two important examples, the random walk on graphs and Brownian motion on
Rd, we proof our tightness criterion Theorem 4.75 in Section 4.4.

In Chapter 5 we introduce Dirichlet forms. We start with the definition of a closed symmetric
form then define Dirichlet forms as closed symmetric forms that possess the Markov property.
We begin Section 5.2 with a brief discussion of operators on Hilbert spaces and then illustrate
the relationship between strongly continuous contraction semigroups, strongly continuous
resolvents, generators and closed forms on L2(S , ν). In the next subsection we introduce
the Markov property of the semigroup and show that a Markovian semigroup gives rise to a
Dirichlet form. We conclude this section by explicitly extending a Feller semigroup (Pt)t≥0 on
C∞(S ) to a strongly continuous Markovian semigroup on L2(S , ν). Thereby showing how a
Feller process induces a Dirichlet form. We go on to define the extended Dirichlet space and
discuss the implications of transience and recurrence for the extended Dirichlet space. Namely,
the extended Dirichlet space is a Hilbert space if and only if the Dirichlet form is transient. In
Section 5.4 we introduce important potential theoretic notions like the capacity. We begin with
a general definition of Choquet capacities and then move on to define α-capacities with respect
to a Dirichlet form (E,D). The α-capacity is given by the following variational principle.

Capα(A) := inf
{
Eα( f , f )

∣∣∣ f ∈ LA
}
, (1.20)
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where LA := { f ∈ D | f ≥ 1 ν-a.e. on A }. Moreover we characterize the minimizer of (1.20)
in Theorem 5.51 and identify the minimizer with pαA(x) = Ex

[
e−ατA

]
. For transient Dirichlet

forms we define the 0-capacity in Section 5.4.3 and proceed similar as for the α-capacity. In
Section 5.5 we define the resistance R(A, B) between two closed subsets of S as the inverse of
the 0-capacity of the killed Dirichlet form. We conclude this chapter again with two examples.
First, we formally introduce resistance forms and discuss some of their properties. Finally we
define the Brownian motion on Riemannian manifolds in a rather condensed form.

We proof the convergence theorem Theorem 6.1 in Chapter 6. We proceed thereby as follows.
We first show that under the Hausdorff weak convergence of the state spaces and the uniform
equicontinuity of the semigroup there exist subsequential limits of the semigroup that again
possess both the normal and the strong Feller property in Theorem 6.2. We then show in
Theorem 6.4 that this already implies that the sequence of processes X(n) has subsequential
limits in finite dimensional distributions. Together with the assumption that the sequence X(n)

is tight, we obtain the existence of subsequential limits in pathspace, Theorem 6.5. Finally, the
convergence of the Green operators implies by Theorem 4.72 that all subsequential limits mus
coincide, which proves the theorem. The last part of this chapter, Section 6.4, is dedicated to a
discussion of the assumptions (C1) to (C4).

The last chapter, Chapter 7 contains remarks and conjectures that are potentially of interest
for further research on the topic of convergence of symmetric Feller processes and uniform
measure spaces as state spaces.

The appendices contains some important facts that are good to have at an arms length but
which have not found their way into the main text.
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Uniform spaces 2
„Gedanken ohne Inhalt sind leer, Anschauungen ohne

Begriffe sind blind.

— Immanuel Kant
Kritik der reinen Vernunft (B 75)

In this chapter we introduce the notion of uniformities or uniform spaces. We will show that a
metric induces a uniformity which in turn induces a topology; but not the other way round. In
this sense uniform spaces are an intermediary between metric spaces and topological spaces.

Uniform spaces will serve as state spaces for our stochastic processes throughout this thesis.
Although in many cases the uniform spaces under consideration will be metrizable we want, on
the one hand, emphasize the sufficiency of the uniform structure for many results. On the other
hand, we want to equip the state spaces with a structure that is related to the processes under
consideration (think of resistance metrics) and the “correct” metric can be quite inaccessible.

Historically, the concept of uniform continuity for real valued functions was introduced by
Eduard Heine [Hei70] in 1870. Heine attributes the insight that a stronger notion of continuity
is needed to KarlWeierstrass. The concept of uniform continuity was further extended to
uniform continuity of functions on metric spaces by Maurice Fréchet [Fré06] in 1906 and
Felix Hausdorff [Hau14] in 1914. It took until 1937 that AndréWeil formally introduced
uniform spaces in [Wei37]. Weil used families of pseudometrics to define the uniform structure
and we will present this approach in Section 2.3. A different approach was put forward in
1939 by JohnW. Tukey in his dissertation which has been recompiled and published as the
monograph [Tuk40]. Tukey relied in his work on uniform coverings to define a uniform
structure. In the 1950s and 1960s there were further contributions to the theory of uniform
spaces by Vadim A. Efremovič and YuriM. Smirnov who constructed uniform spaces from
the proximity relation we will introduce in Section 2.6. In this thesis we will mainly rely on
so-called diagonal uniformities which were used in [Bou66a] by the famous author’s collective
Nicolas, Bourbaki which Weil was a founding member of. More on the history of uniform
spaces can be found in the preface to [Isb64] and in the historical appendix in [Wil70].

2.1 Diagonal uniformities

We begin with a bit of motivation. Let (S , d) and (T, r) be metric spaces. A function f : S → T
is continuous, if and only if the preimage f −1A of every open set A ⊂ S is open in T .
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Furthermore, f is uniformly continuous if for every ε > 0 there exists a δ > 0 such that
r( f (x), f (y)) < ε for all x, y ∈ S with d(x, y) < δ. We can even measure the degree of
continuity with the modulus of continuity or Lipschitz constants. In fact, the metric structure
is not necessary to define uniform continuity. Write

Bd
ε :=

{
(x, y) ∈ S 2

∣∣∣ d(x, y) < ε
}

(2.1)

for the tube around the diagonal in S 2 with radius ε > 0 and analogously Br
ε ⊂ T 2 for the ε-

tube around the diagonal of T 2. Then the condition for uniform continuity can be reformulated
as: for all ε > 0 there exists a δ > 0 such that{

( f (x), f (y)) ∈ T 2
∣∣∣ (x, y) ∈ Bd

δ

}
⊂ Br

ε. (2.2)

These tubes or entourages allow us to compare neighborhoods of different points across the
whole space to each other. This idea is generalized by uniformities, in particular by diagonal
uniformities.

Let S be a nonempty set. There are different ways to introduce a uniform structure on S . One
way is via coverings and their refinements and another way is by families of subsets of S × S .
In the literature (cf. [Wil70]) the uniformities obtained from coverings are called covering
uniformities and the latter are called diagonal uniformities. Both definitions are of course
equivalent. We will mainly focus on diagonal uniformities.

We denote by
∆ = ∆(S ) := { (x, x) | x ∈ S } ⊂ S × S (2.3)

the diagonal of the space S × S . Furthermore, we write

U∗ := { (x, y) ∈ S × S | (y, x) ∈ U } (2.4)

and say that U is symmetric if U∗ = U. For two subsets U,V of S × S we define the
concatenation of U and V as

U ◦ V := { (x, y) ∈ S × S | ∃ z ∈ S : (x, z) ∈ V and (z, y) ∈ U } . (2.5)

We can now define the main object of this section. The definition formalizes the intuition
gained from the motivation above.

Definition 2.1 (Uniformities). Let S be a nonempty set. A (diagonal) uniformity on S is a
familyU = U(S ) of subsets of S × S satisfying

(U1) if U ∈ U then ∆ ⊂ U,

(U2) if U,V ∈ U then U ∩ V ∈ U,

(U3) if U ∈ U then there exists a V ∈ U such that V ◦ V ⊂ U,
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(U4) if U ∈ U then V∗ ⊂ U for some V ∈ U,

(U5) if U ∈ U and U ⊂ V then V ∈ U.

The elements U of a uniformityU are called entourages or surroundings. A pair (S ,U(S )) is
called a uniform space. ♢

Most of the time is it enough to work with bases or even subbases of uniformities.

Definition 2.2 (Bases and subbases). Let (S ,U) be a uniform space. A family V ⊂ U of
subsets of S is called a base of the uniformityU if

U = { U ⊂ S × S | ∃ V ∈ V : U ⊃ V } . (2.6)

The elements of a baseV ⊂ U are called basic entourages.

A familyV ⊂ U is called a subbase ofU if all finite intersections of elements ofV form a
base ofU. ♢

We have indicated in the introduction that metric spaces carry a uniform structure. It is
instructive to have the following example in mind.

Example 2.3 (Metric spaces have uniform structure). Let (S , d) be a metric space. Consider
the familyV of sets of the form

Bε := { (x, y) ∈ S × S | d(x, y) < ε } , ε > 0. (2.7)

Clearly, V satisfies (U1) and (U4). For 0 < ε < δ we have Bε ⊂ Bδ and hence Bε ∩ Bδ =
Bε ∈ V andV satisfies (U2). Finally, we have for every ε > 0 that Bε/3 ◦ Bε/3 = B2ε/3 ⊂ Bε,
verifying (U3). Thus the familyV is the base of a uniformity on S . We refer to this uniformity
simply as the metric uniformity when there can be no confusion about the metric involved. □

Given a uniformityU on S we can define neighborhoods of points by setting

U[x] := { y ∈ S | (x, y) ∈ U } (2.8)

for some entourage U ∈ U. This definition can be extended to neighborhoods of sets in a
natural way by setting

U[A] :=
⋃
x∈A

U[x] (2.9)

for an entourage U ∈ U and a subset A of S .

We will show that these neighborhoods in fact give rise to a topology on S .

Recall from Definition A.4 and Proposition A.6 the properties of neighborhood bases.
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Proposition& Definition 2.4 (Topologies and uniformities). Let (S ,U) be a uniform space
and V ⊂ U a base of U. The family Nx = { V[x] | V ∈ V } forms a neighborhood base at
x ∈ S and thusU induces a topology on S which we call the uniform topology (associated
with the uniformityU) on S . Furthermore, any baseV ofU induces the same topology on S .
We call any topology that can be obtained in this way from some uniformity uniformizable.

Proof. We show that the family of subsets given by Nx := { V[x] | V ∈ V } at each x ∈ S
satisfies (i)–(iii) of Proposition A.6. By definition, (x, x) ∈ V for all V ∈ V and consequently
x ∈ V[x]. Assume that N1,N2 ∈ Nx, then there exist V1,V2 ∈ V such that N j = V j[x], j = 1, 2.
By property (U2) of Definition 2.1 we have V := V1 ∩ V2 ∈ V and hence

N1 ∩ N2 = { y ∈ S | (x, y) ∈ V1 ∩ V2 } = V1[x] ∩ V2[x] = V[x] ∈ Nx (2.10)

which implies (ii) of Proposition A.6. Consider N ∈ Nx with N = V[x] for some V ∈ V.
By Definition 2.1 (U3) there exists a U ∈ V such that U ◦ U ⊂ V and consequently, for all
y ∈ U[x] and z ∈ U[y] we have (x, z) ∈ U ◦ U ⊂ V and hence U[y] ⊂ N, verifying the final
property of neighborhood bases.

LetV′ ⊂ U be another base ofU then for each x ∈ S the family N ′x := { V[x] | V ∈ V′ } is
a neighborhood base by the same arguments as above. Now, Nx and N ′x are bases for same
neighborhood system at x and hence induce the same topologies on S , by Proposition A.3. □

It follows immediately from the arguments laid out above that the uniform topology is first
countable if the uniformity possesses a countable base. We will say that the uniform space
(S ,U) has a countable base if the uniformityU has a countable base. This does not mean, and
should not be confused with, that the topology induced byU has a countable base (second
countable) but rather a countable local base (first countable).

By taking the product of the uniform topology, any uniformity on S induces a topology on
S × S . We say that an entourage is open, closed, compact etc. if it is open, closed, compact
etc. with respect to the product of the uniform topology on S × S . In the same way we define
the interior and the closure and related notions of an entourage.

As is customary, we denote by A◦ the interior of A ⊂ S , that is the largest open set contained
in A (cf. Definition A.2). We make the following simple observation.

Lemma 2.5 (interiors of entourages are again entourages). Let (S ,U) be a uniform space.
Assume U ∈ U then U◦ ∈ U.

Proof. Let U ∈ U. In order to show the claim we show that there exists a V ∈ U such that
V ⊂ U◦. The claim then follows from Definition 2.1 (U5). By definition of an entourage (U4),
there exists a V ∈ U such that V ◦ V ◦ V ⊂ U. In order to show V ∈ U◦ we must show that
every element (x, y) ∈ V has a neighborhood that is contained in U. By construction,

(x, y) ∈ V[x] × V[y] ⊂ V ◦ V ◦ V ⊂ U, (2.11)
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hence V ◦ V ◦ V is the desired neighborhood. □

The next result can be found in [Wil70, Theorem 35.6]. The proof is straight forward but we
present it here for completeness sake.

Proposition & Definition 2.6 (Separating uniformities). Let (S ,U) be a uniform space. The
uniformityU is called separating if ⋂

U∈U

U = ∆. (2.12)

Furthermore, the uniformityU is separating if and only if (2.12) holds for some and hence
for any baseV ofU. The uniform topology is Hausdorff if and only if the uniformityU is
separating

Proof. By definition of a base it follows immediately that (2.12) holds for every base ofU if
it holds forU. On the other hand, since every base is a subset ofU, (2.12) holds if it holds for
some baseV ofU.

Now assume thatU is separating and let x, y ∈ S be distinct. Then there exists a U ∈ U such
that (x, y) < U. By Definition 2.1 (U3) and Lemma 2.5 there exists a V ∈ U open such that
V ◦ V ⊂ U. We claim that V[x] and V[y] are disjoint neighborhoods of x and y, respectively.
If there exists a z ∈ V[x] ∩ V[y] then, by definition, (x, y) ∈ V ◦ V ⊂ U which was ruled out by
assumption.

Now assume that (S ,T ) is Hausdorff, where T is the uniform topology induced byU. Let
x, y ∈ S be distinct. By definition of the uniform topology there exist V,W ∈ U open such that
V[x] ∩W[y] = Ø. Then V ∩W ∈ U is an (open) entourage that does not contain (x, y). □

Different authors use slightly different definitions of uniformities. Isbell [Isb64] for example,
includes the Hausdorff property in the definition of a uniformity.

The next lemma provides a convenient base for proofs involving uniformities. We say that
U ⊂ S × S is symmetric, if S = S ∗.

Lemma 2.7 ([Wil70, Theorem 35.9]). The open, symmetric elements ofU form a base ofU.

Proof. Let U ∈ U, then U ∩U∗ ∈ U, by Definition 2.1 (U4) and furthermore U ∩U∗ ⊂ U. It
remains to show that the open sets form a base. Let U ∈ U and V ∈ U be symmetric with the
property that V ◦ V ◦ V ⊂ U. By Lemma 2.5 we have U◦ ∈ U, completing the proof. □

It turns out that uniformities are the structure that is needed to define uniformly continuous
functions – hence the name.
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Definition 2.8 (Uniform continuity). Let (S ,U) and (T,V) be two uniform spaces. A function
f : S → T is uniformly continuous, if for each V ∈ V there exists a U ∈ U such that
{ ( f (x), f (y)) | (x, y) ∈ U } ⊂ V . ♢

If either S ,T or both are metric spaces, the function f : S → T is uniformly continuous if and
only if it is uniformly continuous with respect to the uniformities generated by metrics on S
and/or T respectively.

It follows immediately from the definition of the metric uniformity that a function f : S → T ,
where (S ,U) is a uniform space and (T, d) is a metric space, is uniformly continuous if and
only if for every ε > 0 there exists a U ∈ U such that d( f (x), f (y)) < ε whenever (x, y) ∈ U.

The trinity of topological, uniform and metric spaces becomes apparent when considering con-
tinuous functions: on topological spaces we can only discern continuous from non continuous
functions. On uniform spaces we can compare the degree of continuity at different points of a
function, which leads to the notion of uniform continuity. In metric spaces, however, we can
even measure the degree of continuity via the modulus of continuity and compare the degree
of continuity across functions.

We conclude this section with a couple of examples.

Examples 2.9 (cf. [Wil70, Examples 35.3]). Let S be a non empty set.

(i) The uniformity U = { U ⊂ S × S | ∆ ⊂ U } is called the discrete uniformity. The
discrete uniformity generates the discrete topology.

(ii) The uniformity U = {S × S } is called the trivial uniformity. The trivial uniformity
generates the trivial topology. □

The next example illustrates that there may exists multiple uniformities that induce the same
topology.

Example 2.10. Let S = R. For any r ∈ R the sets of the form

Ur :=
{

(x, y) ∈ R2
∣∣∣ x > r and y > r

}
∪ ∆ (2.13)

form a base for a uniformityU on R which is not the discrete uniformity (e.g. the unit ball is
not contained inU). On the other hand, for every x and every r < x we have Ur[x] = {x} and
henceU generates the discrete topology on R. □

On the other hand, different metrics may induce the same uniformity.

Example 2.11. Let (S , d) be a metric space. Assume α > 0, then the metrics d, αd and
√

d all
induce the same uniformity on S . □
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2.2 Weak uniformities

Similar to the weak topology induced by a family of functions one can define the weak
uniformity.

Definition 2.12 (Weak uniformities). Let S be a set and (T,V) an uniform space. Further let
F := { f : S → T } be a family of maps from S to T . The weak uniformityUF generated by F
is the coarsest uniformity on S such that all f ∈ F are uniformly continuous. ♢

Proposition 2.13 (A base for weak uniformities). Let S be a non empty set and (T,V) a
uniform space. Let further F ⊂ { f : S → T } be a non empty family of maps from S to T and
define for each f ∈ F the map F f : S × S → T × T by

F f (x, y) = ( f (x), f (y)). (2.14)

Then the collection of sets

W :=

 n⋂
i=1

F−1
fi Vi

∣∣∣∣∣∣∣ n ∈ N, fi ∈ F , Vi ∈ V for all i ∈ N

 (2.15)

forms a base for the weak uniformityUF on S .

Proof. We first show thatW is a base, i.e. satisfies properties (U1) to (U4). By definition,
∆(T ) ⊂ V for all V ∈ V and clearly, F−1

f (∆(T )) = ∆(S ). Hence, ∆(S ) ⊂ W for all W ∈ W
showing (U1). Property (U2) follows immediately from the definition ofW. Properties (U3)
and (U4) are consequences of the corresponding properties of V. We only show (U3) as
(U4) can be shown by a similar argument. Assume W = F−1

f V for some f ∈ F and V ∈ V.
Then there exists a V ′ ∈ V such that V ′ ◦ V ′ ⊂ V and set W′ := F−1

f V ′. For i = 1, 2, 3
let xi ∈ S be such that (x1, x2), (x2, x3) ∈ W′. Then there exist yi ∈ T , i = 1, 2, 3 such that
xi ∈ f −1{yi} for i = 1, 2, 3 and (y1, y2), (y2, y3) ∈ V ′. Thus, (y1, y3) ∈ V and hence (x1, x3) ∈ W
and consequently W′ ◦W′ ⊂ W. The same conclusion follows for general W ∈ W from the
observation that for two subsets A, B ⊂ S × S and A′, B′ ⊂ S × S such that A′ ◦ A′ ⊂ A and
B′ ◦ B′ ⊂ B it holds that

(A′ ∩ B′) ◦ (A′ ∩ B′) ⊂ (A′ ◦ A′) ∩ (B′ ◦ B′) ⊂ A ∩ B. (2.16)

We have shown thatW is indeed the base for a uniformityUF on S . It remains to show that
every uniformity on S with respect to which all f ∈ F are uniformly continuous, containsW.
But this follows immediately from the definition ofW. □

Remarks 2.14. (i) In (2.15) it suffices to restrict choice of the Vi to a base ofV.
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(ii) In the case where (T, d) is a metric space the weak uniformity associated with a family
F = { f : S → T } is generated by the sets of the form

n⋂
i=1

F−1
fi Bδ, (2.17)

where n ∈ N, δ > 0, f j ∈ F for all 1 ≤ i ≤ n and

Bδ := { (u, v) ∈ T × T | d(x, y) < δ } . (2.18)

To see this recall that the sets Bδ, δ > 0 are a base for the metric uniformity. Furthermore,
the inclusion Bε ⊂ Bδ for ε < δ is preserved under the preimage operation and hence
we can choose δ = mini=1,...,n{δi}. ♢

For a more detailed account on weak uniformities see [Wil70, Chap. 37]. For our purpose
weak uniformities generated by real valued function will suffice. Observe that the topology
generated by the weak uniformity generated by F coincides with the weak topology generated
by F (cf. the remark after [Wil70, Definition 37.7]).

2.3 Uniformities and pseudometrics

Recall from Definition A.26 that a pseudometric on a set S is a distance function ρ : S ×S → R
that satisfies all the axioms of a metric except that ρ(x, y) = 0 does not necessarily imply x = y.
That is, ρ is non negative definite, symmetric, satisfies ρ(x, x) = 0 for all x ∈ S and the triangle
inequality holds.

Pseudometrics, or rather families of pseudometrics provide a different way to characterize
uniform spaces. Given a non empty index set I , Ø and a family { ρi | i ∈ I } of pseudometrics
on S we can define a uniformityU on S using the sets of the form

Uρi
ε := { (x, y) ∈ S × S | ρi(x, y) < ε } i ∈ I, ε > 0

as a base of U. An important question is when is a uniformity generated by a family of
pseudometrics separating or, equivalently, when is the uniform space (S ,U) Hausdorff.

Lemma 2.15 (Pseudometrics and separating uniformities). Let S , Ø and Γ = { ρi | i ∈ I } a
family of pseudometrics on S . Then the uniformity generated by Γ is separating if for each
pair (x, y) ∈ S 2 \ ∆ there exists a ρ ∈ Γ such that ρi(x, y) > 0.

Proof. Let (x, y) ∈ S 2 \∆. By assumption there exists a ε > 0 and a ρ ∈ Γ such that ρ(x, y) > ε.
Hence, (x, y) < Uρ

ε and thus
⋂
ρ∈Γ

⋂
ε>0 Uρ

ε = ∆. □

18 Chapter 2 Uniform spaces



More interestingly, every uniformity can be obtained from a family of pseudometrics (cf.
[Bou66b, IX Theorem 1.4.1]). To construct such a family of pseudometrics on a uniform
space (S ,U), consider the space S × S endowed with the product uniformityU2. That is the
coarsest uniformity that makes the projections uniformly continuous. ThenU is generated
by the family of all pseudometrics that are uniformly continuous on S × S (see [Bou66b, IX
§1.5]).

These observations lead to the following result. (see e.g. [Jak86])

Proposition 2.16 (Consistent families of pseudometrics). Let (S ,U) be a uniform Hausdorff
space. Then there exists an index set I and a family { ρi | i ∈ I } of pseudometrics on S
generatingU with the properties

(i) for all x, y ∈ S with x , y there exists an i ∈ I such that ρi(x, y) > 0

(ii) for all i, j ∈ I there exists an index k ∈ I such that max{ρi, ρ j} ≤ ρk.

Proof. By Lemma 2.7 we can choose a baseV ofU consisting of the open and symmetric
entourages U ∈ U. For U ∈ V set ρU(x, y) = 1U

(
(x, y)

)
. It is easy to check that ρU is a

pseudometric. Furthermore it is evident from the construction that the family { ρU | U ∈ V }
generates U. By the Hausdorff property, for each pair (x, y) ∈ S 2 \ ∆ there exists a basic
entourage U ∈ V such that (x, y) < U and hence ρU(x, y) > 0, showing (i). Now let U,V ∈ V,
by definition of a uniformity, U ∩ V ∈ U and hence there exists a basic entourage W ∈ V
such that W ⊂ U ∩ V . Assume ρU(x, y) > 0 then, (x, y) < U and hence (x, y) < W and we have
ρU(x, y) = ρW(x, y) = 1. The same holds for ρV , establishing (ii) □

We use the common short hand a ∨ b := max{a, b} and a ∨ b := min{a, b} for a, b ∈ R.
Analogously we set for real valued functions f , g : Ω→ R

( f ∨ g)(ω) := max{ f (ω), g(ω)}, ( f ∧ g)(ω) := min{ f (ω), g(ω)}, ω ∈ Ω. (2.19)

Without loss of generality we can always take the family { ρi | i ∈ I } to be bounded by 1.

Lemma 2.17 (Truncated pseudometrics generate the same uniformity). Let { ρi | i ∈ I } be a
family of pseudometrics on S andU the uniformity generated by this family. ThenU is also
generated by the family { ρi ∧ 1 | i ∈ I }.

Proof. The claim follows immediately from the observation that for all 0 < ε < 1 and i ∈ I{
(x, y) ∈ S 2

∣∣∣ ρi(x, y) < ε
}
=

{
(x, y) ∈ S 2

∣∣∣ ρi(x, y) ∧ 1 < ε
}
. (2.20)

□
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Apparently there is a close connection between uniformities and (families of) pseudometrics.
So it comes as no surprise that AndréWeil used families of pseudometrics, so called gage
structures, to originally define uniformities in [Wei37].

Definition 2.18 (Gage structures). Let S be a nonempty set and I , Ø some set of indices. A
family G = { ρi | i ∈ I } of pseudometrics on S is called a gage structure if it satisfies

(i) whenever ρi, ρ j ∈ G then max ρi, ρ j ∈ G

(ii) if ρ is a pseudometric on S and for every ε > 0 there exists a δ > 0 and a ρ′ ∈ G such
that ρ(x, y) < ε whenever ρ′(x.y) < δ, then ρ ∈ G. ♢

It can be shown (cf. [Kel75, Theorem 6.18]) that gage structures are in a one-to-one correspon-
dence with uniformities.

The term “gage” does not appear in Weil’s work in 1937 or in Doss’ article [Dos49] in 1949.
But it appears in the first edition of Kelley’s [Kel75] in 1955. I have not been able to find out
who first coined the term. In more recent publications about uniform spaces one can also find
the term “gauge” (see for example [HNV04]) which appears to be a copying error.

We have already seen, that every metric induces a uniform structure which in turn induces a
topology. We are now interested in conditions under which these implications can be reversed.
In other words we seek conditions for a topological space to be uniformizable and for uniform
spaces to be metrizable. We cite the following results from [Wil70] and omit the proofs.

Recall from Definition A.14 that a completely regular topological space is a topological space
where points can be separated by continuous functions. As it turns out, the uniformizable
topological spaces are exactly those that are completely regular.

Proposition 2.19 (Completely regular spaces are uniformizable). Let (S ,T ) be a topological
space. The topology T is uniformizable if and only if (S ,T ) is completely regular.

Proof. See [Wil70, Theorem 38.2]. □

Next, we turn to the question which uniformities can be derived from a metric.

Proposition 2.20 (Metrizable uniform spaces). Let (S ,U) be a uniform space. Then the
uniformity is pseudometrizable if and only if U has a countable base. Furthermore, U is
metrizable if and only ifU has a countable base and is Hausdorff.

Proof. See [Wil70, Theorem 38.3 & Corollary 38.4]. □

We will say that a uniform space (S ,U) is metrizable if the uniformity U is metrizable.
It is important to observe that metrizability of the topology induced by U does not imply
metrizability ofU itself. For a pathological counterexample refer to [Wil70, Example 38.5].
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2.4 Covering uniformities

Next we give a brief introduction to covering uniformities. This is another, and equivalent, way
to define a uniform structure and we will need this construction in the proof of Theorem 3.16.
Some authors, notably John W. Tukey [Tuk40] and John R. Isbell [Isb64] advocate this
approach. Isbell summarizes his opinion

However, Weil’s original axiomatization [via pseudometrics] is not at all con-
venient, and was soon succeeded by two other versions: the orthodox (Bourbaki)
[via diagonal uniformities] and the heretical (Tukey) [via uniform coverings].
The present author is a notorious heretic, and here advances the claim that in this
book each system is used where it is most convenient, with the result that Tukey’s
system of uniform coverings is used nine-tenths of the time.1

Let S , Ø be a non empty set. Recall that a cover of S is a family A = {A ⊂ S } such that
S =

⋃
A∈A A. Given a coverA of S and some C ⊂ S , the star of C with respect toA is the

family
St(C,A) =

⋃
A∈A: A∩C,Ø

A. (2.21)

Before we can define what a uniform covers or a covering uniformity is, we need a bit of
vocabulary.

Definition 2.21 (Refinements). LetA,B be two covers of S . We say that

(i) A refines B,A < B, if for each A ∈ A there exists a B ∈ B such that A ⊂ B.

(ii) A star-refines B, A <∗ B, if for each A ∈ A there exists some B ∈ B such that
St(A,A) ⊂ B.

(iii) A is a barycentric refinements of B, A ⊏ B, if the family of sets of the form
{ St({x},A) | x ∈ S } refines B. ♢

Lemma 2.22 (Barycentric refinements of barycentric refinements are star refinements). Let
A,B,C be covers of S and assume thatA ⊏ B ⊏ C. ThenA <∗ C.

Proof. Let A ∈ A. SinceA ⊏ B, there exists for each x ∈ A a Bx ∈ B such that St({x},A) ⊂
Bx. By construction, we have St(A,A) ⊂

⋃
x∈A Bx and A ⊂

⋂
x∈A Bx which implies St(A,A) ⊂

St({x},B) for each x ∈ A. By assumption B ⊏ C and consequently there exists a x ∈ A and
C ∈ C such that St(A,A) ⊂ St({x},B) ⊂ C and henceA <∗ C. □

In uniform spaces certain coverings play a special role.

1[Isb64, p. v]
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Definition 2.23 (Uniform covers). Let (S ,U) be a uniform space. A coveringA of S is called
a uniform cover if it is refined by a cover of the form

AU = { U[x] | x ∈ S } (2.22)

for some U ∈ U. ♢

Proposition 2.24 (Properties of the family of uniform covers). Let (S ,U) be a uniform space
and denote by µ the family of all uniform covers of S . Then the following hold

(C1) IfA1,A2 ∈ µ are uniform coverings then there exists another uniform coveringA3 ∈ µ

such thatA3 <∗ A1 andA3 <∗ A2.

(C2) IfA ∈ µ andA < A′ for some coveringA′ of S , thenA′ ∈ µ.

Proof. LetA ∈ µ be a uniform cover of S . Then there exists a U ∈ U such thatA is refined by
AU := { U[x] | x ∈ S }. Choose V ∈ U such that V ◦ V ⊂ U and let B = { V[x] | x ∈ S }. For
each x ∈ S we have St({x},B) ⊂ U[x] because each V[y] for which x ∈ V[y] is contained in
(V◦V)[x] ⊂ U[x]. HenceB ⊏ A and by Lemma 2.22 there exists another uniform cover C such
that C<∗A. What is left to show is thatA1,A2 ∈ µ possess a common barycentric refinement.
Without loss of generality, assume that let U1,U2 ∈ U are entourages that induceA1 andA2,
respectively. Now choose an open symmetric entourage U ∈ U such that U ◦ U ⊂ U1 ∩ U2

and denote the uniform cover induced by U byA, then St({x},A) ⊂ U1[x] ∩ U2[x] and thus
A is a barycentric refinement of bothA1 andA2, which proves (C1).

The second assertion follows immediately from the definition of uniform covers. □

The converse of Proposition 2.24 holds true, too.

Theorem 2.25 (Uniform covers induce uniformity). Let µ be a family of covers of the set S
satisfying (C1) and (C2) of Proposition 2.24. Then the family

V :=

 ⋃
A∈A

A × A

∣∣∣∣∣∣∣ A ∈ µ
 (2.23)

forms a base of a diagonal uniformityU and the collection of all uniform covers induced by
U is µ.

Proof. Let U ∈ V, i.e. there exists a coverA ∈ µ such that U =
⋃

A∈A A × A. We check the
axioms (U1) to (U4) of Definition 2.1 one by one. Since A is a cover of S we readily get
∆ ⊂ U and thus (U1). By construction, the elements ofV are symmetric, implying (U4). Now
assume V ∈ V is another element and B ∈ µ is such that V =

⋃
B∈B B × B. Then,

U ∩ V =
⋃
A∈A

A × A ∩
⋃
B∈B

B × B =
⋃
A∈A

⋃
B∈B

(A ∩ B) × (A ∩ B) (2.24)
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and the family C := { A ∩ B | A ∈ A, B ∈ B } is a cover of S . By (C1) there exists a star-
refinement C′ ∈ µ of bothA and B. By construction, C′ refines the cover C and thus C ∈ µ
by virtue of (C2), which in turn implies U ∩ V ∈ V and hence (U2). Finally, (U3) follows
immediately when we choose B to be a star-refinement ofA and U,V defined as before.

Next we need to show that the uniform covers with respect to the uniformityU generated by
V is just µ. It suffices to show that eachA ∈ µ is a uniform cover with respect toU.

LetA ∈ µ and U ∈ U, as before, the entourage generated byA. Choose an entourage V ∈ U
such that V ◦ V ⊂ U then the cover { V[x] | x ∈ S } refinesA and by definitionA is a uniform
cover with respect toU. □

We call a family µ of covers of S satisfying (C1) and (C2) a covering uniformity. If µ satisfies
only (C1), we say that µ is a base for a uniform covering.

The connection between covering uniformities and families of pseudometrics on S is straight
forward.

Lemma 2.26 (Pseudometrics and covering uniformities). Let I be a non empty index set and
(ρi)i∈I a family of pseudometrics on S satisfying (i) of Proposition 2.16. Then the family µ
consisting of all covers of S of the form

Ai,ε := { Bi(x, ε) = { y ∈ S | ρ(x, y) < ε } | x ∈ S } i ∈ I, ε > 0 (2.25)

is a base for a covering uniformity of S .

Proof. We only need to show that µ satisfies condition (C1). Let ε, δ > 0 and i, j ∈ I. We need
to find a star-refinement of bothAi,ε andA j,δ. It follows from condition (i) of Proposition 2.16
that there exists an index k ∈ I such that ρk ≥ max{ρi, ρ j} which means Bk(x, ε) ⊂ Bi(x, ε)
and Bk(x, δ) ⊂ B j(x, δ) for all x ∈ S . That implies that Ak,(ε∧δ)/4 star-refines both Ai,ε and
A j,δ. □

Remark 2.27. Let D ⊂ S be a dense subset of S . Then the conclusion of the last lemma still
holds if we replace µ by the family of covers consisting of the sets

A′i,ε := { Bi(x, ε) = { y ∈ S | ρ(x, y) < ε } | x ∈ D } i ∈ I, ε > 0, (2.26)

as these are clearly covers of S and the same proof as before applies. ♢

It comes as no surprise, that uniform continuity can be defined in terms of covering uniformities
equally well.
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Proposition 2.28 (Uniform continuity [Wil70, Theorem 36.8]). Let (S ,U) and (T,V) be
uniform Hausdorff spaces and denote by µ and ν the families of uniform covers of S and T ,
respectively. A function f : S → T is uniformly continuous if and only if any of the following
two equivalent conditions is satisfied.

(i) For each uniform cover B ∈ ν of T there exists a uniform coverA ∈ µ of S such that
f (A) < B, where f (A) = { f (A) | A ∈ A }.

(ii) For each uniform cover B ∈ ν of T , the family f −1B :=
{

f −1B
∣∣∣ B ∈ B

}
is a uniform

cover of S .

Proof. First observe that the equivalence of the two conditions is an immediate consequence
of Proposition 2.24. Now assume that f : S → T is uniformly continuous and let B ∈ ν be a
uniform cover of T . Then there exists an entourage V ∈ V such that BV := { V[y] | y ∈ T } is
a refinement of B. By uniform continuity, there exists a U ∈ U such that ( f (x), f (x′)) ∈ V
whenever (x, x′) ∈ U and hence, f (AU) < BV < B.

Conversely, suppose that conditions (i) and (ii) hold and fix V ∈ V. For B ∈ ν, write

VB :=
⋃
B∈B

B × B, (2.27)

and compare this to (2.23) to deduce that VB ∈ V for all B ∈ ν. Then there exists a uniform
cover B ∈ ν such that VB ⊂ V and by assumption a uniform cover A ∈ µ of S such that
f (A) < B. Hence, (x, x′) ∈ UA implies that ( f (x), f (x′)) ∈ VB ⊂ V . And since V ∈ V was
arbitrary this proves uniform continuity of f , as claimed. □

The next result is well known for metric metric spaces from any introductory calculus course.
We nevertheless prove it here for uniform spaces as the proof is rather instructive.

Lemma 2.29 (Continuous functions on compacta are uniformly continuous). Let (S ,U) and
(T,V) be uniform Hausdorff spaces and assume that S is compact. Then, every continuous
function f : S → T is already uniformly continuous.

Proof. Let V ∈ V and choose V ′ ∈ V open and symmetric such that V ′ ◦ V ′ ⊂ V . Consider
the open (uniform) cover B f

V′ { V
′[ f (x)] | x ∈ S } of f (S ). By continuity of f , the family

A =
{

f −1V ′[ f (x)]
∣∣∣ x ∈ S

}
(2.28)

is an open cover of S . By definition of the uniform topology, there exist open entourages Ux

such that
(Ux ◦ Ux)[x] ⊂ f −1V ′[ f (x)] (2.29)
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for all x ∈ S . By compactness, there exist finitely many x1, . . . , xN ∈ S such that the family{
Ux j[x j]

∣∣∣ j = 1, . . . ,N
}

is an open cover of S . By definition of a uniformity, we obtain

U :=
N⋂

j=1

Ux j ∈ U (2.30)

and furthermore, U is open.

Assume that (y, z) ∈ U. By construction, there exists a j ∈ {1, . . . ,N} such that (x j, y) ∈ Ux j

and hence
{y, z} ⊂ (Ux j ◦ U)[x j] ⊂ f −1V ′[ f (x j)]. (2.31)

As a consequence, { f (y), f (z)} ∈ V ′[ f (x j)] and by a similar argument as before we finally
obtain ( f (x), f (y)) ∈ V for all (x, y) ∈ U. □

Much more can be said about covering uniformities and we refer the interested reader to
Isbell’s book [Isb64] for an in depth treatment of covering uniformities. The take away from
this section is that covering uniformities offer a different view on the uniform structure of a
space.

2.5 Further properties of uniform spaces

We described in the first section of this chapter how uniform spaces are halfway between
topological spaces and metric spaces with respect to their structure. Many structural properties
that are known from metric spaces can be generalized to uniform spaces by exchanging
quantitative statements for qualitative statements.

In this section we explain how the notion of metric measure spaces can be extended to uniform
measure spaces which will serve as the state spaces for the processes that are the focus of this
research.

Definition 2.30 (totally bounded sets). Let (S ,U) be a uniform space. A subset A ⊂ S is
totally bounded if for every open entourage U ∈ U there exists a finite collection of points
{ xi ∈ A | 1 ≤ i ≤ n } in A such that

A ⊂
n⋃

i=1

U[xi]. ♢

Lemma 2.31 (A condition for totally boundedness). Let (S ,U) be a uniform space and D ⊂ S
a subset. Assume that for each U ∈ U there exists a totally bounded set A ⊂ S such that

D ⊂
⋃
x∈A

U[x]. (2.32)
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Then D is totally bounded.

Proof. Fix U ∈ U open and choose V,W ∈ U open such that that W ◦W ⊂ V and V ◦ V ⊂
U. By assumption there exists a totally bounded A ⊂ S such that D ⊂

⋃
x∈A W[x]. Let

x1, . . . , xn ∈ A be such that

A ⊂
n⋃

k=1

W[xk]. (2.33)

Since
⋃

x∈W[xk] W[x] ⊂ V[xk] for all k = 1, . . . , n it follows that

D ⊂
n⋃

k=1

V[xk]. (2.34)

Without loss of generality assume that for some N ≦ n the points x1, . . . , xN are exactly those
xk for which V[xk] ∩ D , Ø. Now let yk ∈ V[xk] ∩ D for k = 1, . . . ,N. Then, V[xk] ⊂ U[yk]
and consequently

D ⊂
N⋃

k=1

U[yk]. (2.35)

□

Naturally, any uniform spaces (S ,U) induces a measurable space (S ,B(S )), where B(S )
denotes the Borel σ-algebra generated by the open sets of (S ,U).

Recall from Definition A.35 the definition of a Radon measure.

Definition 2.32 (Boundedly finite measures). Let (S ,U) be a locally compact uniform Haus-
dorff space. A Radon measure ν on (S ,B(S )) is boundedly finite, if ν(A) < ∞ for every totally
bounded set A ⊂ S . ♢

Recall the definition of a net from Definition A.42: A net is a generalization of a sequence in
the sense that we allow arbitrary directed sets (I,⪰) as index sets.

The uniform structure allows us to define Cauchy sequences and nets as follows.

Definition 2.33 (Cauchy nets). Let (S ,U) be a uniform space. A net (xα)α∈I is called a Cauchy
net if for every open entourage U ∈ U there exists a α0 ∈ I such that

(xβ, xγ) ∈ U (2.36)

whenever β, γ ⪰ α0. ♢

With the definition of Cauchy nets at hand we can introduce the notion of completeness for
uniform spaces and define uniform measure spaces.
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Definition 2.34 (Complete uniform spaces). A uniform space (S ,U) is called complete if
every Cauchy net converges. ♢

Next we make two useful observations about compact sets.

Lemma 2.35 (Heine-Borel). Let (S ,U) be a complete uniform space. Then A ⊂ S is compact
if and only if A is closed and totally bounded.

Proof. Assume A ⊂ S is compact. Then A is closed and furthermore for every open entourage
U ∈ U, the covering { U[x] | x ∈ A } of A has a finite subcover, i.e. there exists a collection
of points {x1, . . . , xn} ⊂ A such that A ⊂

⋃n
i=1 U[xi]. The converse implication follows from

[Wil70, Theorem 39.13]. □

Lemma 2.36 (Totally bounded uniform neighborhoods). Let (S ,U) be a locally compact
uniform Hausdorff space. Then there exists for every x ∈ S an open entourage U ∈ U such
that U[x] is compact.

Proof. Fix x ∈ S . By local compactness, there exists a compact set Kx ⊂ S and an open
entourage U ∈ U such that U[x] ⊂ K. Suppose { Bn | n ∈ N } is an open cover of the closure
U[x]. Then,

{ Bn | n ∈ N } ∪
{
∁U[x]

}
(2.37)

is an open cover of Kx. By compactness of Kx, there exists a finite open subcover,

{ B1, . . . , Bn | n ∈ N } ∪
{
∁U[x]

}
(2.38)

of Kx. Since ∁U[x] ∩ U[x] = Ø, we have found with { B1, . . . , Bn | n ∈ N } an open subcover
of U[x] which is therefore compact. □

A similar result holds true for compact subsets of S .

Lemma 2.37. Let (S ,U) be a locally compact uniform Hausdorff space. For each K ⊂ S
compact there exists an open set A ⊂ S such that K ⊂ A ⊂ S and the closure A is compact.

Proof. For each x ∈ K choose by Lemma 2.36 an open entourage U x ∈ U such that U x[x] is
relatively compact. Take a finite subcover consisting of x1, . . . , xn ∈ K and U1, . . . ,Un ∈ U

open such that

K ⊂
n⋃

i=1

Un[xn] =: A. (2.39)

2.5 Further properties of uniform spaces 27



Then A is open and contained in the compact set

A ⊂
n⋃

i=1

Un[xn] ⊂ S , (2.40)

as claimed. □

In order to use the classical results from probability theory, we need to make sure that our
spaces are separable and complete. We adapt the terminology that is known from the theory of
metric spaces and call such spaces Polish.

These assumptions can certainly be weakened to some degree, but it is not within the scope of
this thesis to do so.

Definition 2.38 (Polish uniform space). A metrizable uniform space (S ,U) is called Polish
uniform space if is separable and complete. ♢

Some remarks about this definition are in order. First, observe that by Proposition 2.20 Polish
uniform spaces are Hausdorff and possess a countable base for the uniformityU. Furthermore,
we note the following result for further reference.

Lemma 2.39 (Completely metrizable uniform spaces). [Wil70, Theorem 39.4]] Let (S ,U) be
a uniform Hausdorff space with a countable base (sc. U is metrizable). Assume further that
U is complete. Then every metric on S that inducesU is complete.

This gives rise to the question why to consider Polish uniform spaces at all instead of relying
on the well developed theory of metric measure spaces. The main reason is that we want to
emphasize that the structural properties of the spaces that are important are those expressed by
the uniformity and do not depend on the concrete metric that generates the uniform structure.

Lemma 2.40 (Lindelöf property). Let (S ,U) be a Polish uniform space. Then (S ,U) is
Lindelöf.

Proof. Metrizability and separability together imply the existence of a countable base of the
uniform topology. Hence, every Polish uniform space is second countable and therefore, by
Lemma A.19, Lindelöf. □

For further reference we introduce the analog of metric measure spaces for our uniform setup.
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Definition 2.41 (Uniform measure spaces). A uniform measure space is a triple (S ,U, ν),
where (S ,U) is a Polish uniform space and ν is a σ-finite Radon measure on (S ,B(S )), where
B(S ) is the Borel σ-algebra, as usual. We write Bν(S ) for the completion of B(S ) with respect
to ν, i.e.

Bν(S ) := σ (B(S ) ∪ { A ⊂ N ∈ B(S ) | ν(N) = 0 }) . (2.41)

♢

Remark 2.42 (Properties of Radon measures on Polish spaces). Let A ⊂ S be totally bounded.
By Lemma 2.35, A is compact and therefore, by Definition A.35,

µ(A) ≤ µ(A) < ∞. (2.42)

Hence, every Radon measure on a Polish uniform space is boundedly finite. ♢

In the next chapter we will develop the theory of the Skorokhod space of càdlàg functions on
a uniform space. We will be as general as the scope of this thesis permits in order to show that
the assumptions on uniform measure spaces can be relaxed while still retaining a meaningful
theory.

2.5.1 Uniform equicontinuity

In this section we introduce the notion of equicontinuity of a family of real valued functions
on a uniform Hausdorff space and present a version of the celebrated Arzelà-Ascoli theorem
that will be central to the proof of Theorem 6.2. The proof presented here is based on the
proof of [DS58, Theorem IV.6.5.7].

Let S ,T be two non empty sets, we denote by F (S ; T ) = { f : S → T } the family of all maps
f from S to T .

Lemma 2.43 (Uniformity of uniform convergence). Let S , Ø be a set and (T,V) a uniform
Hausdorff space. Assume thatV′ ⊂ V is a base ofV. Then the family of subsets of F (S ; T )2

of the form {
( f , g) ∈ F (S ; T )2

∣∣∣ ( f (x), g(x)
)
∈ V, ∀x ∈ S

}
, V ∈ V′ (2.43)

is a base of a uniformity on F (S ; T ) which does not depend on the choice of the baseV′.

Proof. LetV′ ⊂ V be a base ofV and assume thatW′ is the system of subsets of F (S ; T )2

induced byV′ as described in (2.43). We first show thatW′ is indeed a base for a uniformity
on F (S ; T ). Clearly, ∆ ⊂ W for all W ∈ W′. The remaining properties of a base (U2) to (U4)
follow readily from the analogous properties ofV′. Now LetV′,V′′ ⊂ V be two bases of
the uniformityV andW′,W′′ the families of entourages defined as in (2.43). Let W′ ∈ W′,
then there exists a V ′ ∈ V′ such that ( f (x), g(x)) ∈ V ′ for all ( f , g) ∈ W′ and x ∈ S . SinceV′
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andV′′ were assumed to be bases of the same uniformity, there exits a V ′′ ∈ V′′ such that
V ′′ ⊂ V ′. Let W′′ =

{
( f , g) ∈ F (S ; T )2

∣∣∣ ( f (x), g(x)) ∈ V ′′, ∀x ∈ S
}
, then W′′ ⊂ W′ and we

can deduce thatW′ is contained in the uniformity generated byW′′. By symmetry we obtain
the converse inclusion and ultimately the identity of the uniformities generated byW′ and
W′′, respectively. □

Let (T,V) be a uniform Hausdorff space and recall that a sequence ( fn)n∈N ⊂ F (S ; T )
converges uniformly to a limit f ∈ F (S ; T ) if and only if for all V ∈ V there exists a n0 ∈ N

such that
{ ( fn(x), f (x)) | x ∈ S } ⊂ V (2.44)

for all n ≥ n0.

We call the uniformityW on C(S ; T ) as described in Lemma 2.43 the uniformity of uniform
convergence for it induces the usual topology of uniform convergence .

Observe that both the uniformity of uniform convergences and the topology of uniform
convergence fundamentally depend on the uniform structure of T .

More details on the uniformity of uniform convergence can be found in [Bou66a, Chapter
X.1]. We collect some of the results in the following remarks.

Remarks 2.44. Let S be some set and (T,V) a uniform Hausdorff space. We equip the space
F (S ; T ) with the uniformity of uniform convergence which we denote byW.

(i) Let A be some family of subsets of S . We can equip F (S ; T ) with the coarsest
uniformity that makes the restrictions maps f 7→ f |A, A ∈ A uniformly continuous with
respect to the uniformity of uniform convergence on F (A; T ). This uniformity is called
uniformity of uniform convergence on the sets ofA. One example is the uniformity of
uniform convergence on compacta which is obtained by taking S to be a topological
space andA to be the family of compact sets (cf. [Bou66a, Definition 2 X.1.2]).

(ii) The space C(S ; T ) is a closed subset of the space F (S ; T ) equipped with the topology
of uniform convergence (cf. [Bou66a, Theorem 2 X.1.6]). In particular, uniform limits
of continuous functions are again continuous.

(iii) If T is complete, then so is F (S ; T ) equipped with the uniformity of uniform conver-
gence (cf. [Bou66a, Theorem 1 X.1.5]). ♢

Next we introduce the notion of uniform equicontinuity for a family of continuous functions
and extend this definition to continuous functions that are defined on (possibly different)
subsets of a common uniform space (S ,U).
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Definition 2.45 (Uniform equicontinuity). Let (S ,U) and (T,V) be uniform Hausdorff spaces
and F ⊂ C(S ; T ) a family of continuous functions. We say that F is uniformly equicontinuous
if for all V ∈ V open there exists a U ∈ U open such that⋃

f∈F

{ (
f (x), f (y)

) ∣∣∣ (x, y) ∈ U
}
⊂ V. (2.45)

Let ( fn)n∈N be a sequence of continuous functions with each fn defined on a subset Sn ⊂ S .
Then the sequence ( fn)n∈N is uniformly equicontinuous if for all open V ∈ V there exists an
open U ∈ U such that ⋃

n∈N

{ (
fn(x), fn(y)

) ∣∣∣ (x, y) ∈ U ∩ Sn × Sn
}
⊂ V. (2.46)

♢

We can now state and proof a version of the Arzelà-Ascoli theorem for uniform spaces.

Theorem 2.46 (Arzelà-Ascoli). Let (S ,U) and (T,V) be uniform Hausdorff spaces and
assume that (S ,U) is compact and (T,V) is complete. A family K ⊂ C(S ; T ) is relatively
compact if and only if K is uniformly equicontinuous and the set⋃

f∈K

f (S ) ⊂ T (2.47)

is relatively compact.

Proof. First assume that K ⊂ C(S ; T ) is relatively compact and recall the definition of the
uniformityW from Lemma 2.43. Let V ∈ V and choose V ′ ∈ V open and symmetric such
that V ′ ◦ V ′ ⊂ V , as usual. Fix f ∈ K, by compactness of S and continuity of f , we deduce
that f (S ) ⊂ T is compact and hence there exist x1, . . . , xM ∈ S for some M ∈ N such that

f (S ) ⊂
M⋃

i=1

V ′[ f (xi)]. (2.48)

Now choose W ∈ W open such that

W ⊂
{

( f , g) ∈ F (S ; T )2
∣∣∣ ( f (x), g(x)

)
∈ V, ∀x ∈ S

}
, (2.49)

whereW denotes the uniformity on F (S ; T ) as defined in Lemma 2.43. By relative compact-
ness and Lemma 2.35, K is totally bounded and we can find f1, . . . , fN ∈ K for some N ∈ N
such that

K ⊂
N⋃

j=1

W[ f j]. (2.50)
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For each j = 1, . . . ,N let x( j)
1 , . . . , s( j)

M j
∈ S , M j ∈ N be a finite family of points such that (2.48)

is satisfied for f j. By construction we have

⋃
f∈K

f (S ) ⊂
N⋃

j=1

M j⋃
i=1

(V ′ ◦ V ′)[ f j(x( j)
i )] ⊂

N⋃
j=1

M j⋃
i=1

V[ f j(x( j)
i )] (2.51)

and since V ∈ V open was arbitrary, we have that
⋃

f∈K f (S ) is totally bounded and hence
relatively compact by Lemma 2.35.

Observe that by Lemma 2.29 each f ∈ K is uniformly continuous. We continue to show
that K is actually uniformly equicontinuous. Fix V ∈ V and choose V ′ ∈ V,W ∈ W and
f1, . . . , fN ∈ K as before with the only difference that we assume that V ′ ◦ V ′ ◦ V ′ ◦ V ′ ⊂ V .
By uniform continuity, there exist open entourages U1, . . . ,UN ∈ U such that

( f j(x), f j(y)) ∈ V ′ (2.52)

for all (x, y) ∈ U j and j = 1, . . . ,N. We can take the intersection U :=
⋂N

j=1 U j of these
entourages to obtain another open entourage U ∈ U. By construction we find for each f ∈ K a
j ∈ {1, . . . ,N} such that ( f (x), f j(x)) ∈ V ′ for all x ∈ S . In combination with (2.52) we obtain

( f (x), f (y)) ∈ V ′ ◦ V ′ ◦ V ′ ⊂ V (2.53)

for all (x, y) ∈ U and f ∈ K.

For the converse implication recall that by completeness of T , C(S ; T ) is complete, too. It
therefore suffices by Lemma 2.35 to show that K is totally bounded. To that end fix some
W ∈ W open. By definition ofW there exists a V ∈ V open such that

W′ := { ( f , g) ∈ F (S ; T ) | ( f (x), g(x)) ∈ V, ∀x ∈ S } ⊂ W. (2.54)

As before, we choose V ′ ∈ V open with the property that V ′ ◦ V ′ ◦ V ′ ◦ V ′ ⊂ V . By uniform
equicontinuity, there exists an open U ∈ U such that ( f (x), f (y)) ∈ V ′ for all (x, y) ∈ U and
f ∈ K. Since S and

⋃
f∈K f (S ) are totally bounded by assumption, we find finitely many

x1, . . . , xN ∈ S and f1, . . . , fM ∈ K such that
{

U[x j]
∣∣∣ j = 1, . . . ,N

}
is an open cover of S and{

V ′[ fi(x j)]
∣∣∣ i = 1, . . .M, j = 1, . . . ,N

}
is an open cover of

⋃
f∈K f (S ), i.e.

⋃
f∈K

f (S ) ⊂
M⋃

i=1

N⋃
j=1

V ′[ fi(x j)]. (2.55)

We claim that the family {W[ fi] | i = 1, . . . ,M } is a finite open cover of K. Suppose this was
not the case, then there exists a f ∈ K such that f < W[ fi] for all i = 1, . . . ,M. This means,
for each i ∈ {1, . . . ,M} there exists some x ∈ S such that ( f (x), fi(x)) < V ′. By (2.55) we can
choose i ∈ {1, . . . ,M} such that ( f (y), fi(y)) ∈ V for some y ∈ S . For convenience write g := fi.
By compactness of S we can find (x, y) ∈ U such that ( f (x), g(x)) < V ′ but ( f (y), g(y)) ∈ V ′.
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By construction of U and uniform equicontinuity we obtain ( f (x), f (y)), (g(x), g(y)) ∈ V ′ and
hence

( f (x), g(x)) ∈ V ′ ◦ V ′ ◦ V ′ ⊂ V, (2.56)

in contradiction to the assumption. □

We present another formulation of the Arzelà-Ascoli theorem that is specifically tailored
to our needs in Chapter 6. This formulation is due to [ALW17, Lemma 5.4] and a similar
version can be found in [Cro18, Lemma 5.3]. Although the proof is very similar to the proof
of Theorem 2.46, we give a detailed proof as both papers omit a proof and there are a few
subtleties that require careful treatment.

Lemma 2.47 (Arzelà-Ascoli). Let (S ,U) and (T,V) be uniform Hausdorff spaces with count-
able bases and assume that (S ,U) is compact and that (T,V) is complete. Assume further
that there are non empty closed subsets Sn ⊂ S for each n ∈ N ∪ {∞} and a sequence ( fn)n∈N

of continuous functions such that fn ∈ C(Sn; T ) and the sequence ( fn)n∈N is uniformly equicon-
tinuous. Suppose for each x ∈ S∞ there exists a sequence (xn)n∈N ⊂ S with xn ∈ Sn for all
n ∈ N and limn→∞ xn = x with the property that { fn(xn) | n ∈ N } is relatively compact in T .

Then there exists a continuous function f ∈ C(S∞; T ) and a subsequence ( fnk )k∈N such that for
all V ∈ V there exists a U ∈ U with the property{

( f (x), fnk (y))
∣∣∣ (x, y) ∈ U ∩ S∞ × Snk

}
⊂ V, ∀k ∈ N. (2.57)

Proof. Let V ∈ V be open. By uniform equicontinuity there exists an open entourage U ∈ U
such that for all n ∈ N

fn(U) :=
{

( fn(x), fn(y))
∣∣∣ (x, y) ∈ U ∩ S 2

n

}
⊂ V. (2.58)

Choose U′ ∈ U open such that U′ ◦ U′ ⊂ U. As S∞ is a closed subset of a compact space, it
is itself totally bounded and we can find finitely many x1, . . . , xN ∈ S∞ such that

S∞ ⊂
N⋃

j=1

U′[x j]. (2.59)

Furthermore, the x j can be chosen in a way that

xk ∈ U′[x j] ⇔ k = j. (2.60)

For each j ∈ {1, . . . ,N} let
(
x j

n

)
n∈N
⊂ S be a sequence with x j

n ∈ Sn for all n ∈ N and

limn→∞ x j
n = x j. By assumption such sequences exist and furthermore we can choose a

subsequence
(
fnk

)
k∈N such that

lim
k→∞

fnk (x j
nk ) = z j ∈ T, ∀ j ∈ {1, . . . ,N}. (2.61)
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For x ∈ S∞ set α(x) := min
{

j = 1, . . . ,N
∣∣∣ x ∈ U′[x j]

}
and define hV : S∞ → T by setting

hV (x) := zα(x). (2.62)

Observe that hV (x j) = z j for all j ∈ {1, . . . ,N}. It is worth noting that if T is path connected,
hV can be chosen to be continuous.

Let (Vl)l∈N ⊂ V be a sequence of open entourages such that

Vl+1 ◦ Vl+1 ⊂ Vl. (2.63)

For each l ∈ N define hl = hVl : S∞ → T as above but choose the sequence ( fn)n∈N in the
definition of hl+1 as a subsequence of that in the definition of hl. We claim that the sequence
(hl)l∈N is Cauchy with respect to the uniformity of uniform convergence W on F (S∞; T ).
To see this, take any W ∈ W open. By definition, there exists a l0 ∈ N such that for
f , g ∈ F (S∞; T ),

{ ( f (x), g(x)) | x ∈ S∞ } ⊂ Vl0 (2.64)

implies that ( f , g) ∈ W. Now take l0 ≤ k < l and fix x ∈ S∞. Choose Uk,Ul ∈ U open such
that fn(Uk) ⊂ Vk and fn(Ul) ⊂ Vl. As before take U′k,U

′
l ∈ U open such that U′k ◦ U′k ⊂ Uk

and U′l ◦ U′l ⊂ Ul, respectively. Denote by yk := xα(x) the x j from the definition of hk which
determines the value of hk at x, i.e. hk(x) = hk(yk) and in the same manner define yl ∈ S∞ for hl.
By construction, we have x ∈ U′k[yk] ∩ U′l [y

l] and thus (yk, yl) ∈ Uk, as Ul ⊂ Uk. Furthermore
denote the sequences from the definition of hk and hl converging to yk and yl by

(
yk

n

)
n∈N

and(
yl

n

)
n∈N

respectively. Observe that we can indeed take the same subsequences by construction.
As Uk is open, we deduce that (yk

n, y
l
n) ∈ Uk, eventually. Hence,(

fn
(
yk

n

)
, fn

(
yl

n

))
∈ Vk ⊂ Vl0 (2.65)

for all n ∈ N sufficiently large and consequently (hk(x), hl(x)) ∈ Vl0 . Since x ∈ S∞ was
arbitrary we conclude that (hl, hk) ∈ W which proves the claim that (hl)l∈N is Cauchy. By
completeness of T together with Remarks 2.44 (iii) we have convergence of the sequence
(hl)l∈N and we denote the limit by f .

It remains to show that f is continuous and satisfies (2.57). To that end take V ∈ V open and
choose V ′ ∈ V open with V ′ ◦ V ′ ⊂ V . Then there exists a l0 ∈ N such that ( f (x), hl(x)) ∈ V ′

for all l ≥ l0. By construction, there exists a l1 ∈ N and a U ∈ U open such that hl(U) ⊂ V ′ for
all l ≥ l1. Consequently, f (U) ⊂ V and we have that f is even uniformly continuous. Finally,
(2.57) holds by construction of f . □

2.6 Proximity spaces

For further reference we introduce the notion of proximities and show that proximity spaces
are in a one-to-one relation with uniform spaces. The main source for this section is [Wil70,
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Chapter 40] where further details can be found. Willard traces the notion of proximities back
to Frigyes Riesz (1908) [Rie08] and mentions works on proximity spaces by Alexander D.
Wallace [Wal41], Vadim A. Efremovič [Efr52] and YuriM. Smirnov [Smi52].

Definition 2.48 (Proximity spaces). Let S , Ø be a set. We call a binary relation ▷◁ on P(S ) a
proximity (relation) if for all subsets A, B,C ⊂ X it holds

(P1) Ø ▷◁/ A for all A ⊂ S

(P2) {x} ▷◁ {x} for all x ∈ S ,

(P3) A ▷◁ B implies B ▷◁ A,

(P4) A ▷◁ (B ∪C) if and only if A ▷◁ B or A ▷◁ C,

(P5) if A ▷◁/ B then there exist E, F ⊂ S such that E ∩ F = Ø and A ▷◁/ Ec and B ▷◁/ Fc.

If ▷◁ is a proximity relation on P(S ), we call the pair (S , ▷◁) a proximity space and we say that
A, B ⊂ S are close (or ▷◁-close) if A ▷◁ B. If in addition

(P6) {x} ▷◁ {y} implies x = y,

we say that the proximity space (S , ▷◁) is separated or that the proximity ▷◁ is separating. ♢

Examples 2.49 (Proximities). (i) For any set S and subsets A, B ⊂ S we can define a
proximity by A ▷◁ B if and only if A∩ B , Ø. It is easy to check, that this indeed defines
a proximity and this proximity is called the discrete proximity ant it is separating.

(ii) If (S , d) is a metric space we set A ▷◁ B if and only if

d(A, B) = inf { d(x, y) | x ∈ A, y ∈ B } = 0 (2.66)

for A, B ⊂ S . Again, it is straightforward to check that this defines a separating
proximity. □

In the sequel we omit the braces around singletons and simply write x ▷◁ y or x ▷◁ A.

First, lets observe some simple facts.

Lemma 2.50 (Properties of proximities). Let (S , ▷◁) be a proximity space and A, B,C ⊂ S .
Then the following hold.

(i) x ▷◁ A for all x ∈ A,

(ii) if A ∩ B , Ø then A ▷◁ B,
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(iii) if A ▷◁/ B and C ⊂ B then A ▷◁/ C.

Proof. By writing A = (A \ {x} ∪ {x}) we immediately obtain (i) from (P2) and (P4) of
Definition 2.48. Using (i), we obtain (ii) by writing A = (A \ {x} ∪ {x}) for some x ∈ A ∩ B.
Claim (iii) is another direct consequence of (P4). □

The reason for the introduction of proximities is that they provide a further way to define
uniformities on a set S . First, we observe that proximity spaces are topological spaces. To that
end we introduce the notion of proximity neighborhoods.

Definition 2.51 (Proximity neighborhood). Let (S , ▷◁) be a proximity space. For subsets
A, B ⊂ S , we write A ⋐ B if A▷◁/ (S \B). We call B a proximity neighborhood (p-neighborhood,
or ▷◁-neighborhood) of A, if A ⋐ B. ♢

Recall from Definition A.8 the definition of a closure operator and that we can associate a
topology to a closure operator by virtue of Proposition A.9.

Proposition 2.52 (Topology induced by proximity). Let (S , ▷◁) be proximity space. The
operator Γ : P(S )→ P(S ) given by

Γ(A) := A := { x ∈ S | {x} ▷◁ A } (2.67)

is a closure operator. Furthermore, the topology induced by Γ is Hausdorff if and only if (S , ▷◁)
is separated.

Proof. By Lemma 2.50 (i) we readily get A ⊂ Γ(A). We proceed to show that Γ(Γ(A)) = Γ(A).
If Γ(A) = S , there is nothing to show. Assume instead that there exists a x < Γ(A), i.e. x ▷◁/ A.
By property (P5), there exist sets E, F ⊂ S with E ∩ F = Ø such that x ▷◁/ Ec and A ▷◁/ Fc.
From A ▷◁/ Fc we can deduce that Γ(A) ⊂ F. Now, since sets E and F are disjoint, we also have
F ⊂ Ec and hence Γ(A) ⊂ Ec which implies x ▷◁/ Γ(A) by Lemma 2.50 (iii) because x ▷◁/ Ec.
From (P4) we can easily conclude that Γ(A ∪ B) = Γ(A) ∪ Γ(B). Finally, Γ(Ø) = Ø follows
from (P1).

Now assume that (S , ▷◁) is separated and take x, y ∈ S with x , y. By (P6) we have x ▷◁/ y and
by (P5) we can find E, F ⊂ S with E ∩ F = Ø such that x ▷◁/ Ec and y ▷◁/ Fc. Then, because
Γ(A) = Γ(Γ(A)), we have x ▷◁/ Γ(Ec) and y ▷◁/ Γ(Fc). Furthermore, Γ(Ec)c and Γ(Fc)c are disjoint
open neighborhoods of y and x, respectively.

Conversely, assume that the topology T induced by Γ is Hausdorff and let x, y ∈ S with x , y.
Let A, B ∈ T be disjoint open neighborhoods of x and y, respectively. Then, Ac, Bc are closed
and hence x ▷◁/ Ac and y ▷◁/ Bc which in turn yields x ▷◁/ y by (P5), thus concluding the proof. □
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2.7 Hausdorff and Hausdorff-weak convergence

We have observed throughout this chapter that known concepts from metric spaces can be
generalized to uniform spaces by replacing quantitative statements by qualitative ones. We
conclude this chapter with a generalization of the Hausdorff distance on the space of subsets
of a metric space.

Let A , Ø be some set. Recall (cf. Definition A.42) that a net in A, { xα ∈ A | α ∈ I } is a set
where the index set I is a directed set (see Definition A.41) that is not necessarily countable.

Definition 2.53 (Hausdorff convergence). Let (S ,U) be a uniform Hausdorff space. Assume
that (Aα)α∈I ⊂ P(S ) is a net in the family of subsets of S . We say that (Aα)α∈I converges to
some A ∈ P(S ) in the Hausdorff sense, if and only if for all U ∈ U open there exists a α0 ∈ I

such that
Aα ⊂ U[A] and A ⊂ U[Aα], (2.68)

for all α ⪰ α0. ♢

Proposition 2.54 (Hausdorff topology). Let (S ,U) be a uniform Hausdorff space. Then
Hausdorff convergence uniquely determines a topology on the space P(S ) of subsets of S and
we call this topology the Hausdorff topology. Furthermore, the Hausdorff topology restricted
to the family K(S ) ⊂ P(S ) of closed subsets of S is itself Hausdorff.

Proof. By Theorem A.44 it suffices to show that Hausdorff convergence determines a con-
vergence class in the sense of Definition A.43 in order to show that Hausdorff convergence
uniquely determines a topology on P(S ). But this is trivial.

On the other hand, it is clear that the Hausdorff topology on P(S ) cannot be Hausdorff as
A◦ ⊂ U[A] and A ⊂ U[A◦] for all open U ∈ U and A ⊂ S , where A◦ denotes the inner and A
denotes the closure of A.

Now assume A, B ∈ K(S ) are distinct closed subsets of S . Without loss of generality assume
that there exists a x ∈ A \ B. As x is contained in the open set ∁B, there exists an open
symmetric entourage U ∈ U such that U[x] ⊂ ∁B which implies that x < U[B]. Hence every
net (Aα)α∈I ⊂ K(S ) that converges to A cannot converge to B and vice versa. □

The next lemma shows that a Hausdorff convergent sequence of closed subsets of a uniform
Hausdorff space satisfies the conditions on the domains in Lemma 2.47.

Lemma 2.55 (Approximating points in the Hausdorff limit). Let (S ,U) be a uniform Hausdorff
space with a countable base and (S n)n∈N ⊂ K(S ) a sequence of closed subsets of S . Assume

2.7 Hausdorff and Hausdorff-weak convergence 37



that (S n)n∈N converges in the Hausdorff topology to some closed subset S∞ ∈ K(S ) of S . Then
there exists for each x ∈ S∞ a sequence (xn)n∈N ⊂ S such that xn ∈ Sn and

lim
n→∞

xn = x. (2.69)

Proof. Assume that limn→∞ Sn = S∞ ∈ K(S ) with respect to the Hausdorff topology and
let x ∈ S∞. Fix U ∈ U open. By Hausdorff convergence we have that U[x] ∩ Sn , Ø,
eventually. Now take a sequence (Um)m∈N ⊂ U of open entourages with Um+1 ⊂ Um and⋂

m∈NUm = ∆. By a diagonal argument we can find a sequence (xn)n∈N with xn ∈ Sn for all
n ∈ N and xn ∈ Umn[x] for all n ≥ n0 ∈ N and a (not necessarily strictly) increasing sequence
(mn)n∈N ⊂ N with limn→∞mn = ∞. Since x ∈ S∞ was arbitrary this concludes the proof. □

We now generalize the concept of a correspondence (cf. [BBI01, Definition 7.3.17]) to uniform
spaces.

Lemma 2.56. Let (S ,U) be a uniform Hausdorff space with a countable base and A, (An)n∈N

subsets of S . Then, An → A in the Hausdorff topology if and only if there exist sets (Tn)n∈N

and for each n ∈ N surjective maps φn : Tn → An, ψn : Tn → A with the property that for
every open entourage U ∈ U there exists a natural number N ∈ N such that

{ (φn(z), ψn(z)) | z ∈ Tn } ⊂ U (2.70)

for all n > N.

Proof. We start with the necessity. Suppose An → A in the Hausdorff sense. Take a sequence
(Um)m∈N ⊂ U of open entourages with Um+1 ⊂ Um and

⋂
m∈NUm = ∆. We can choose

(Um)m∈N so that for each n ∈ N there exists a minimal m(n) ∈ N such that Ak ⊂ Um(n)[A] and
A ⊂ Um(n)[Ak] for all k ≥ n. For each n ∈ N let Tn be defined as follows

Tn :=
{

(x, y) ∈ An × A
∣∣∣ (x, y) ∈ Um(n)

}
. (2.71)

Let and φn, ψn the projections on the first and second component, respectively. By construction,
φn and ψn are surjective for every n ∈ N. Moreover, there exists for each U ∈ U open a N ∈ N
such that Un ⊂ U for all n ≥ N and consequently, (2.70) holds.

Conversely, fix U ∈ U open. Then there exist sets Tn and surjective maps φn : Tn → An,
ψn : Tn → A satisfying (2.70) for all n ≥ N for some N ∈ N. Hence,

A ⊂
⋃
x∈An

U[x] = U[An] and An ⊂
⋃
x∈A

U[x] = U[A] (2.72)

proving sufficiency. □
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Recall the notion of uniform measure spaces from Definition 2.41 and the definition of the
support supp(ν) of a Radon measure ν from Definition A.36. Observe that the support of a
Radon measure is always closed by definition.

Definition 2.57 (Hausdorff-weak convergence). Let (S ,U) be a uniform Hausdorff space. For
each n ∈ N ∪ {∞} let ν(n) be a Radon measure on S with support Sn ⊂ S . We say that (ν(n))n∈N

converges Hausdorff-weakly (Hausdorff-vaguely) to ν(∞) if and only if ν(n) =⇒
n→∞

ν(∞) weakly
(vaguely) and Sn −→

n→∞
S∞ in the Hausdorff topology. ♢

Hausdorff-weak convergence is indeed stronger than weak convergence alone, as the following
simple example demonstrates.

Example 2.58 (Hausdorff-weak vs. weak convergence). Let S = R be equipped with the
uniformity generated by the Euclidean metric. Assume that for each n ∈ N,

ν(n) :=
n − 1

n
δ0 +

1
n
δ1, (2.73)

where δx denotes the Dirac measure at x ∈ S . Then ν(n) =⇒
n→∞

δ0 but supp ν(n) = {0, 1} for all
n ∈ N whereas supp δ0 = {0}. □

Morally, the Hausdorff convergence of the supports ensures that no points disappear from
supports of the approximating sequence. This becomes crucial when we consider ν(n) to be the
speed measure of random processes. If points vanish from the support of the speed measure,
the limiting process would be essentially tunneling through these points without visiting them.
This breaks the pathwise convergence that we will introduce in the next chapter.
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The path space 3
„Not all those who wander are lost.

— J.R.R. Tolkien
Lord of the Rings

It is well known that when (S , d) is a metric space, there exists a metric on the space DS ([0,∞))
or right continuous functions with left limits ω : [0,∞) → S that metrizes the Skorokhod
topology on DS ([0,∞)).

We begin this chapter with a couple of observations about the space DS ([0,∞)) when (S ,U)
is a uniform Hausdorff space. Most importantly, we show that the knowledge of a large
class of hitting times already determines a path (i.e. an element ω ∈ DS ([0,∞))) uniquely.
We then proceed to show that in the situation where (S ,U) is a uniform Hausdorff space,
there exists a uniformity on DS ([0,∞)) that is compatible with the Skorokhod topology. We
call this uniformity the Skorokhod uniformity. This idea goes back Itaru Mitoma [Mit83]
and Adam Jakubowski [Jak86] who considered completely regular topological spaces which
are just uniform spaces by Proposition 2.19. We then translate some known results for the
Skorokhod topology in terms of the Skorokhod metric to the language of uniform spaces.
Often this involves restating quantitative convergence statements (i.e. some distance goes to
0), as qualitative statements (i.e. for all U ∈ U open, there exists...).

The main result of this chapter is Theorem 3.27, which was proven in a joint effort with
Gerónimo Rojas, characterizes the Skorokhod convergence in terms of the convergence of
hitting times.

In the last section we discuss random paths and give a criterion for the tightness of a family
of probability measures on DS ([0,∞)). This result will be crucial for the proof of our
tightness criterion in Theorem 4.75. Finally, we show that Theorem 3.27 can be lifted to
probability measures to obtain a characterization of weak convergence of probability measures
on DS ([0,∞)) in terms of the weak convergence of hitting times.

3.1 The space of càdlàg paths

Let (S ,U) be a uniform Hausdorff space. We denote by DS ([0,∞)) the space of functions
ω : [0,∞)→ S that are continuous from the right and possess left limits at each t > 0. As is
customary, we refer to such functions with the adjective càdlàg.
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We introduce a family of homomorphisms { θt | t ≥ 0 } on DS ([0,∞)) by

θt(ω)( · ) = ω ◦ θt( · ) = ω( · + t), t ≥ 0. (3.1)

For obvious reasons we call the family { θt | t ≥ 0 } the family of (time) shift operators.

Denote by ω(t−) = lims↑t ω(s) the left limit point of ω at t > 0. The points of discontinuity of
ω are called jumps and we write

J(ω) := { t > 0 | ω(t−) , ω(t) } (3.2)

for the set of jump points of ω.

When S is a metric or metrizable space, càdlàg functions can only have countably many jumps
(see e.g. [EK86, Lemma 4.5.1]). This is not true for general uniform spaces. This is illustrated
by the following example which is due to Adam Jakubowski [Jak86, Example 1.2].

Example 3.1. Consider the space S = [0, 1][0,1] � { f : [0, 1] → [0, 1]} equipped with the
product topology, i.e. the topology of pointwise convergence. Analogously to the product
topology we can define the product uniformity on S as the weak uniformity generated by
the projections { πi | i ∈ [0, 1] } and observe that the product uniformity generates the product
topology on S . Furthermore, S is Hausdorff as a product of Hausdorff spaces but has no
countable base (compare [SS78, #105]).

Let ω : [0, 1] → S be defined as ω(t) = 1[0,t)(x). Then (ω(tn))n∈N converges pointwise
to 1[0,t)(x) for every sequence (tn)n∈N ⊂ [0, 1] with tn ↓ t ∈ [0, 1]. On the other hand,
(ω(tn))n∈N converges pointwise to 1[0,t](x) for every such sequence with tn ↑ t ∈ [0, 1]. Hence,
ω ∈ DS ([0, 1]) but ω is discontinuous at every t ∈ (0, 1]. □

Instead of countably many jumps we have for càdlàg functions on general uniform Hausdorff
spaces that there can only be countably many jumps exceeding a certain «size», in the following
sense.

Lemma 3.2 (Discontinuity points of càdlàg paths). Let (S ,U) be a uniform Hausdorff space
and ω ∈ DS ([0,∞)). Then the following hold

(i) For every U ∈ U and T > 0 the set

JT
U(ω) := { t ∈ [0,T ] | (ω(t), ω(t−)) < U } (3.3)

is finite.

(ii) for every U ∈ U the set

JU(ω) := { t > 0 | (ω(t−), ω(t)) < U } (3.4)
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is at most countable.

(iii) IfU has a countable base, then the set J(ω) = { t ≥ 0 | ω(t) , ω(t−) } of discontinuity
points of ω is at most countable.

Proof. The second claim follows readily from the first by taking the limit T → ∞ and the
third claim follows from the second with the observation that the points of discontinuity of ω
are

J(ω) =
⋃
V∈V

JV (ω) (3.5)

for some baseV ofU. By assumptionV can be chosen to be countable and the countable
union of countable sets is again countable.

To show the first claim, fix U ∈ U and T > 0 and assume that there exists a sequence
(tn)n∈N ⊂ JT

U(ω) with tn ↑ t ∈ JT
U(ω). Now choose V ∈ U open and symmetric such

that V ◦ V ⊂ U and observe that V[ω(t)] ∩ V[ω(t−)] = Ø. Because ω is càdlàg, we have
limn→∞ ω(tn) = ω(t−) and hence there exists some n0 ∈ N such that

ω(tn) ∈ V[ω(t−)] ∀n > n0. (3.6)

From the existence of left limits we deduce that there exists another entourage W ∈ U, open
and symmetric, with W ◦W ⊂ V and a sequence (sn)n∈N ⊂ [0,T ], not necessarily contained in
JT

U(ω), with sn ≤ tn and sn ↑ t such thatω(sn) ∈ W[ω(tn−)] for all n ∈ N. By assumption sn ↑ t,
there exists a n1 ∈ N such that ω(sn) ∈ W[ω(t−)] for all n > n1. Since (ω(sn), ω(tn−)) ∈ W
and (ω(sn), ω(t−)) ∈ W for all n > n1, it follows that

(ω(tn−), ω(t−)) ∈ W ◦W ⊂ V ∀n > n1. (3.7)

By (3.6) we have (ω(tn), ω(t−)) ∈ V for all n > n0 and together with (3.7) we deduce

(ω(tn), ω(tn−)) ∈ V ◦ V ⊂ U ∀n > n0 ∨ n1, (3.8)

in contradiction to the assumption (tn)n∈N ⊂ JT
U(ω).

By the same logic there can not exist a decreasing sequence (tn)n∈N ⊂ JT
U(ω) with tn ↓ t ∈

JTU(ω). Hence JT
U(ω) has no cluster points and is thus finite. □

Lemma 3.3 (càdlàg functions are measurable). Let S be a uniform Hausdorff space. Then
every ω ∈ DS ([0,∞)) is Borel measurable.

Proof. Fix ω ∈ DS ([0,∞)) and let A ⊂ S be open. Assume that there exists a t ≥ 0 such that
ω(t) ∈ A and let I ⊂ [0,∞) be the largest interval such that t ∈ I and ω(I) ⊂ A. Then I is
nonempty, open to the right by right continuity and either open or closed to the left depending
on whether ω enters A continuously or by a jump. Either way, I has positive length and is
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Borel measurable. Furthermore, ω−1A is at most a countable union of such intervals and hence
measurable. □

Recall that (cf. [EK86]), the modified modulus of continuity for càdlàg functions ω ∈
DE([0,∞)) where (E, d) is a (Polish) metric space is defined as

w′(ω, δ,T ) = inf
{ti}

max
i

sup
s,t∈[ti−1,ti)

d(ω(s), ω(t)), δ > 0 and T > 0, (3.9)

where the infimum is taken over all partitions of [0,T ] of the form 0 = t0 < t1 < · · · < tn−1 <

T ≤ tn with min1≤i≤n(ti − ti−1) > δ and n ≥ 1.

Càdlàg functions ω ∈ DE([0,∞)) have the property that they are “almost continuous” in the
sense that limδ→0 w′(ω, δ,T ) = 0 for all T > 0 (see [EK86, Lemma 3.6.2 (a)]). In the uniform
setting we cannot measure the modulus of continuity but we can substitute the quantitative
statement for a qualitative one.

We introduce the following notations for partitions of the time axis

Π :=
{
π = (πn)n∈N0

∣∣∣ 0 = π0 < π1 < π2 < . . .
}

ΠN
T :=

{
π = (π0, π1, π2, . . . , πN)

∣∣∣ π0 = 0 < π1 < · · · < πN−1 < T ≤ πN
}
, T > 0, N ∈ N.

(3.10)

Every π ∈ Π induces a unique partitions of [0,∞) via the map

ι : π 7→ ι(π) := { [πi−1, πi) | i ∈ N } , π ∈ Π. (3.11)

Since no confusion can arise, we use the same notation for the map that maps a π ∈ ΠN
T to a

partition of [0,T ], i.e.

ι : π 7→ ι(π) := { [πi−1, πi) | i = 1, . . . ,N } , π ∈ ΠN
T . (3.12)

It is often required to have some control over the length of the intervals of a partition. We
write

L(π) := sup
I∈ι(π)

λ(I) and l(π) := inf
I∈ι(π)

λ(I) (3.13)

for π ∈ Π or π ∈ ΠN
T , where λ denotes the Lebesgue measure on R.

In the following we suppress the dependence on N from the notation and write ΠT := ΠN
T if N

is not explicitly needed

Lemma 3.4 (Modulus of continuity). Let (S ,U) be a uniform Hausdorff space and ω ∈

DS ([0,∞)). For all U ∈ U and T > 0 there exist a δ > 0 and a partition π ∈ ΠT of [0,T ] with
l(π) > δ such that

{ (ω(s), ω(t)) | s, t ∈ I } ⊂ U ∀I ∈ ι(π). (3.14)
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Proof. Fix U ∈ U and T > 0. Let V ∈ U be open and symmetric such that V ◦ V ⊂ U.
Further, let σ0 := 0 and for k ∈ N set

σk := inf { t > σk−1 | (ω(t), ω(σk−1)) < V } , (3.15)

where we set inf Ø = ∞, as usual. If σk = ∞ for some k ∈ N we set σl = ∞ for all l ≥ k.
Observe that by existence of left limits the family { σk | k ∈ N } contains no finite limit points
and by right continuity we have σk+1−σk > 0 for all k ∈ N. Hence N := inf { n ∈ N | σN ≥ T }
is finite. Now, let

δ := min
k≥0
{ σk+1 − σk | σk ≤ T } . (3.16)

Then, { σk | k = 1, . . . ,N } gives rise to a partition π ∈ ΠT of [0,T ] with the desired properties.
□

3.1.1 Separation of paths by hitting times

In this section we show that a path is uniquely determined by its hitting times of uniform
neighborhoods. In the case where (S ,U) has a countable base we improve this result by
reducing the number of neighborhoods.

First recall the definition of a hitting time.

Definition 3.5 (Hitting times). For A ⊂ S we introduce the (first) hitting time operator
τA : DS ([0,∞))→ [0,∞] as

τA(ω) := inf { t > 0 | ω(t) ∈ A } , (3.17)

where we set inf Ø = ∞, as usual. ♢

First we show that the hitting times of a subset of all neighborhoods is separating on DS ([0,∞)).

Proposition 3.6 (Separation by hitting times I). Let (S ,U) be a uniform Hausdorff space and
ω1, ω2 ∈ DS ([0,∞)). Then the following are equivalent

(i) ω1 = ω2,

(ii) for all x ∈ S there exists a V ∈ U such that for all U ∈ U with U ⊂ V and all t ≥ 0

τU[x](ω1 ◦ θt) = τU[x](ω2 ◦ θt). (3.18)
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Proof. The implication (i) ⇒ (ii) is trivial. For the reverse implication we proceed by
contraposition. Assume ω1 , ω2. Then there exists a t > 0 such that ω1(t) , ω2(t). By virtue
of the Hausdorff property there exists a V ∈ U open such that V[ω1(t)] ∩ V[ω2(t)] = Ø. By
right continuity of the elements of DS ([0,∞)) there exists a ε > 0 with ωi(s) ∈ V[ωi(t)] for
i = 1, 2 and all s ∈ [t, t + ε). Hence

0 = τU[ω(t)](ω1 ◦ θt) , τU[ω(t)](ω2 ◦ θt) ≥ ε > 0, (3.19)

for all U ∈ U with U ⊂ V , concluding the proof. □

Next, we introduce the notion of first contact times.

Definition 3.7 (Contact times). Let ω ∈ DS ([0,∞)) and A ⊂ S . The first contact time of A by
ω is defined as

γA(ω) := inf
{

t > 0
∣∣∣ {ω(t), ω(t−)} ∩ A , Ø

}
. (3.20)

A set A ⊂ S is called regular (for ω), if γA(ω) = τA(ω). ♢

As an immediate consequence of the definition observe that γA(ω) ≤ τA(ω) for all A ⊂ S and
γA(ω) = τA(ω) if A is closed and ω is continuous.

Lemma 3.8 (Approximation of contact times by hitting times). Let (S ,U) be a uniform
Hausdorff space with a countable base, A ⊂ S and ω ∈ DS ([0,∞)). Assume further that
γA(ω) > 0.

(i) For any sequence (En)n∈N ⊂ U of open entourages with En+1 ⊂ En and
⋂

n≥1 En = ∆,

lim
n→∞

τEn[A](ω) = γA(ω). (3.21)

(ii) For each s < γA(ω) and D ∈ U there exists an open entourage E ∈ U with E ⊂ D such
that

γE[A](ω) ≥ s. (3.22)

Proof. We begin in the beginning and show (i) first. Observe that the Hausdorff property
guarantees the existence of such a sequence. Furthermore, if ∆ ∈ U, the topology generated by
U is discrete and the statement becomes trivial. Clearly, τEn[A](ω) is an increasing sequence
in n and by definition of γA(ω) and ω(t−), we find {ω(γA(ω)−), ω(γA(ω)} ∩ En[A] , Ø for all
n ≥ 1. Hence τEn[A](ω) ≤ γA(ω) and the limit limn→∞ τEn[A](ω) exists and

lim
n→∞

τEn[A](ω) ≤ γA(ω). (3.23)

Denote t0 := limn→∞ τEn[A](ω). Then there exists a sequence (εn)n∈N ⊂ (0,∞) with εn ↓ 0
as n → ∞ such that ω(τEn[A](ω) + εn) ∈ En[A] for each n ∈ N. We have by construction
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limn→∞ ω(τEn[A](ω) + εn) ∈ {ω(t0−), ω(t0)} and limn→∞ ω(τEn[A](ω) + εn) ∈
⋂

n≥1 En[A] = A
and hence

γA(ω) ≤ t0 = lim
n→∞

τEn[A](ω). (3.24)

For (ii) suppose the statement does not hold. Then there exist 0 < s < γA(ω), D ∈ U and a
sequence (En)n∈N ⊂ U of open entourages with En+1 ⊂ En ⊂ D and

⋂
n≥1 En = ∆ such that

for all n ∈ N,
γEn[A](ω) < s. (3.25)

Since γEn[A](ω) is an increasing sequence, the limit limn→∞ γEn[A](ω) =: t1 exists and t1 ≤ s.
Furthermore, {ω(t1−), ω(t1)} ∩ En[A] , Ø for all n ∈ N. Because En+1[A] ⊂ En[A], it follows
that

Ø ,
⋂
n≥1

({ω(t1−), ω(t1)} ∩ En[A]) = {ω(t1−), ω(t1)} ∩
⋂
n≥1

En[A]

= {ω(t1−), ω(t1)} ∩ A.
(3.26)

Hence γA(ω) ≤ s in contradiction to the assumption. □

In fact, γA(ω) , τA(ω) can only happen for exceptional sets and the regular sets are dense in
the following sense.

Lemma 3.9 (Most neighborhoods are regular). Let (S ,U) be a uniform Hausdorff space with
a countable base, A ⊂ S and ω ∈ DS ([0,∞)). Then there exists for each D ∈ U an open
entourage E ∈ U with E ⊂ D such that

γE[A](ω) = τE[A](ω). (3.27)

Proof. Fix D ∈ U and choose some U ∈ U open with U ◦ U ⊂ D. If U[A] is regular, we are
done. Thus assume that

τU[A](ω) > γU[A](ω) =: t1. (3.28)

We distinguish two cases of how ω behaves before time t1. First consider the case where ω
jumps to U[A] or, more precisely, to ∂U[A] at time t1. In that case we have ω(t1) ∈ U[A] and
ω(t1−) , ω(t1). Hence, we find for each E ∈ U with E ⊂ U and E[ω(t1−)] ∩ (E ◦ U)[A] = Ø
some ε = ε(E) > 0 such that ω([t1 − ε, t1)) ⊂ E[ω(t1−)]. Now take s ∈ [t1 − ε, t1). By
Lemma 3.8 there exists a E′ ∈ U open with E′ ⊂ E such that γ(E′◦U)[A](ω) > s. By
construction, we find γ(E′◦U)[A](ω) = τ(E′◦U)[A](ω) = γU[A](ω), as desired.

For the contrary case assume ω(t1−) ∈ U[A]. Let s1 = t1/2, by Lemma 3.8 there exists an
E1 ∈ U open such that E1 ⊂ U and γ(E1◦U)[A](ω) > s1. By definition of ω(t−), we find an
ε1 > 0 such that ω([t1 − ε1, t1)) ⊂ (E1 ◦ U)[A]. Hence,

s1 < γ(E1◦U)[A](ω) ≤ τ(E1◦U)[A](ω) ≤ t1 − ε1. (3.29)
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If we have equality of the contact time γ(E1◦U)[A](ω) and the hitting time τ(E1◦U)[A](ω), we are
done. If not set t2 := γ(E1◦U)[A](ω). If we find ω(t2−) , ω(t2) and ω(t2) ∈ (E1 ◦ U)[A], we can
use the same arguments as before to construct E ∈ U, E ⊂ U such that limn→∞ τ(U◦E)[A](ωn) =
τ(U◦E)[A](ω). In the case where ω(t2−) ∈ (E1 ◦ U)[A] we proceed as before and take s2 =

(s1+t2)/2 and E2 ∈ U open with E1 ⊂ E2 ⊂ U such that t3 := γ(E2◦U)[A](ω) > s2. Then we find
some ε2 > 0 such thatω([t2−ε2, t2)) ⊂ (E2◦U)[A]. We can repeat this construction inductively
until we find some En ∈ U open with En ⊂ U such that either γ(En◦U)[A](ω) = τ(En◦U)[A](ω)
or ω(tn+1−) , ω(tn+1) and ω(tn+1) ∈ (En ◦ U)[A]. In both cases we find an E ∈ U open with
E ⊂ U such that the hitting time of (U ◦ E)[A] and the contact time of (U ◦ E)[A] coincide.
If this procedure does not terminate we end up with a strictly increasing sequence (sn)n∈N,
a strictly decreasing sequence (tn)n∈N and a family of open entourages (En)n∈N ⊂ U with
En ⊂ En+1 ⊂ U such that

sn < γ(En◦U)[A](ω) ≤ τ(En◦U)[A](ω) < tn. (3.30)

Since E :=
⋃

n≥1 En ∈ U is open and E ◦U ⊂ D, by construction, we conclude γ(E◦U)[A](ω) =
τ(E◦U)[A](ω). □

The second condition in Proposition 3.6 can be sharpened significantly if we assume that ω
has only countably many points of discontinuity.

Theorem 3.10 (Separation by hitting times II). Let (S ,U) be a uniform Hausdorff space with
a countable base and ω1, ω2 ∈ DS ([0,∞)). Then the following are equivalent

(i) ω1 = ω2,

(ii) There exists dense subsets D ⊂ S and T ⊂ { t ≥ 0 | ωi(s) = ωi(s−), i = 1, 2 } ⊂ [0,∞)
such that for all x ∈ D and s ∈ T and all U ∈ U open with τU[x](ωi ◦θs) = γU[x](ωi ◦θs),
i = 1, 2,

τU[x](ω1 ◦ θs) = τU[x](ω2 ◦ θs). (3.31)

Proof. The first implication is again trivial. Conversly, assume there exists a t > 0 such that
ω1(t) , ω2(t). We argue along the same lines as in the proof of Proposition 3.6. There exist
W ∈ U such that W[ω1(t)] ∩W[ω2(t)] = Ø. By right continuity, there exists a V ∈ U open
with V ◦ V ⊂ W and ε > 0 such that ωi(s) ∈ V[ωi(t)] for all s ∈ [t, t + ε) and i = 1, 2. By
assumption,U has a countable base and we can apply Lemma 3.2 to deduce that there exists
a continuity point s ∈ [t, t + ε/2) ∩ T of both ω1 and ω2. Now let U ∈ U open be such that
U ◦ U ⊂ V . Then there exists a x ∈ D such that ω1(s) ∈ U[x]. We have constructed U[x]
and s in such a way that τE◦U[x](ω1 ◦ θs) = 0 and τE◦U[x](ω2 ◦ θs) > ε/2 for all E ∈ U open
with E ⊂ U. By Lemma 3.9 there exists an open entourage E ∈ U with E ⊂ U such that
τE◦U[x](ω2◦θs) = γE◦U[x](ω2◦θs). Furthermore we have γE◦U[x](ω1◦θs) ≤ τE◦U[x](ω1◦θs) = 0
and the proof is complete. □
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3.2 Path space

Next, we want to obtain conditions for the convergence of paths. To do so, we first need to
introduce a topology on DS ([0,∞)). One can consider various topologies on DS ([0,∞)). One
possible choice being the topology of uniform convergence where we set limn→∞ ωn = ω if
and only if for all open entourages U ∈ U there exists a n0 ∈ N such that

(ωn(t), ω(t)) ∈ U ∀t ∈ [0,T ] and ∀n ≥ n0. (3.32)

This topology is induced by the uniformity of uniform convergence (cf. Lemma 2.43), which
has as a base the family of sets{

(ω,ω′)
∣∣∣ (ω(t), ω′(t)) ∈ U ∀t ≥ 0

}
U ∈ U. (3.33)

Observe that the uniformity of uniform convergence has a countable base if the original
uniformityU on S has a countable base. Thus, the topology of uniform convergence is first
countable and hence determined by the converging sequences (cf. Proposition A.46) if U
possesses a countable base.

Anatoliy Skorokhod observed in his seminal paper [Sko56]

[T]he uniform topology in [DS ([0,T ])] requires that the convergence of [ωn]
to [ω] imply that there exists a number such that for all n greater than or equal
to this number the points of discontinuity of [ωn] coincide with the points of
discontinuity of [ω]. This means that if t is considered to be the time, we must
assume the existence of an instrument which will measure time exactly, and
physically this is an impossibility. It is much more natural to suppose that the
functions we can obtain from each other by small deformations of the times scale
lie close to each other.1

He introduced four topologies on DS ([0,T ]) that take this observation into account. The
strongest of the four, the J1 topology is now commonly called the Skorokhod topology.

Definition 3.11 ([Sko56]). Let (S , d) be a metric space. The sequence (ωn)n∈N ⊂ DS ([0,T ]) is
called Skorokhod convergent (J1-convergent) to ω ∈ DS [0,T ] if there exists a sequence of
continuous bijections λn : [0,T ]→ [0,T ] such that

lim
n→∞

sup
t∈[0,T ]

d (ωn(t), ω(λn(t))) = 0 and lim
n→∞

sup
t∈[0,T ]

|λn(t) − t| = 0. (3.34)
♢

It is important to note that this definition indeed well defines a topology on DS ([0,T ]): Clearly,
the topology described in Definition 3.11 is coarser than the topology of uniform convergence

1[Sko56, p. 264f] with notation adapted to our notation.
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and hence is first countable if the topology of uniform convergence is first countable but this is
the case because every metric uniformity possesses a countable base.

As indicated in the quote above, it is natural to think of [0,T ] or [0,∞) as a time interval and
ω(t) describing the position of a particle in the space S at time t. With this interpretation in
mind we call the elements of DS ([0,∞)) paths and DS ([0,∞)) itself the pathspace.

It is well known that the Skorokhod topology on DS ([0,∞)) is metrizable when (S , d) itself
is a metric space. For a detailed account of the Skorokhod metric we refer the reader to the
classical book [EK86] by Stewart N. Ethier and Thomas G. Kurtz.

We will show in the following that a similar approach can applied to show that in the case where
(S ,U) is a uniform Hausdorff space, the Skorokhod topology on DS ([0,∞)) is uniformizable.
Furthermore we will explicitly construct the Skorokhod uniformity using the approach via
families of pseudometrics. This Idea goes back to ItaruMitoma [Mit83] and Adam Jakubowski
[Jak86].

3.2.1 The Skorokhod uniformity

Let (S ,U) be a uniform space. Denote by DS := DS ([0,∞)) the space of càdlàg functions
ω : [0,∞)→ S .

We can define a uniformity on DS that generates the Skorokhod topology on DS using a similar
approach as in the metric case. More precisely, we use the family of pseudometrics associated
with the uniformityU to define a family of pseudometrics on DS . This Idea was introduced
by Mitoma in [Mit83] and further developed by Jakubowski in [Jak86]. For reference, we
present the construction suggested by Jakubowski.

We mimic the construction of the Skorokhod metric in the case of a metric space S (see e.g.
[EK86]). For s > 0 let Λs denote the family of continuous and strictly increasing functions
λ : [0, s]→ [0, s] such that λ(0) = 0 and λ(s) = s.

Given any pseudometric ρ on S we can define a pseudometric ρ̃s on DS ([0, s]) via

ρ̃s(ω,ω′) = inf
λ∈Λs

 sup
t∈[0,s]

|λ(t) − t| ∨ sup
t∈[0,s]

ρ
(
ω(t), ω′

(
λ(t)

)) . (3.35)

For s > 0 consider the maps qs : DS ([0,∞))→ DS ([0, s + 1]) given by

qs(ω)(t) =

ω(t), if t ∈ [0, s)

ω(s), if t ∈ [s, s + 1].
(3.36)

For two paths ω,ω′ ∈ DS ([0,∞)) let

ζ
ρ
s (ω,ω′) := ρ̃s+1(qs(ω), qs(ω′)). (3.37)
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As a function in s ∈ [0,∞) this is an element of DR+([0,∞)) and we can define

ζρ(ω,ω′) =
∫ ∞

0
e−s(1 ∧ ζρs (ω,ω′))ds. (3.38)

It is straight forward to show that this construction indeed yields a pseudometric on DS ([0,∞)).

Lemma 3.12 (Pseudometrics on the pathspace). Let ρ be a pseudometric on S . Then ζρ as
defined above is a pseudometric on DS ([0,∞)).

Proof. Clearly, ζρ(ω,ω) = 0 for all ω ∈ DS ([0,∞)) and ζρ is non-negative definite. The
triangle inequality for ζρ follows immediately if we can show that for every s > 0, the triangle
inequality holds for ρ̃s as defined in (3.35). To show this, fix s > 0 and let ωa, ωb, ωc ∈

DS ([0,∞)). Then, by the triangle inequality for ρ,

ρ̃s(ωa, ωc) = inf
λ∈Λs

 sup
t∈[0,s]

|λ(t) − t| ∨ sup
t∈[0,s]

ρ
(
ωa(t), ωc

(
λ(t)

))
≤ inf

λ∈Λs
inf
λ′∈Λs

 sup
t∈[0,s]

(
|λ(t) − λ′(t)| + |λ′(t) − t|

)
∨ sup

t∈[0,s]

(
ρ
(
ωa(t), ωb

(
λ′(t)

))
+ ρ

(
ωb

(
λ′(t)

)
, ωc

(
λ(t)

))
≤ inf

λ∈Λs
inf
λ′∈Λs

( sup
t∈[0,s]

|λ′(t) − t| ∨ sup
t∈[0,s]

ρ
(
ωa(t), ωb

(
λ′(t)

)))
+

(
sup

t∈[0,s]
|λ(t) − λ′(t)| ∨ sup

t∈[0,s]
ρ
(
ωb

(
λ′(t)

)
, ωc

(
λ(t)

))
= ρ̃s(ωa, ωb) + ρ̃s(ωb, ωc).

(3.39)

In the last equation we have used the fact that with λ ∈ Λs it follows that λ−1 ∈ Λs and
furthermore λ−1 ◦ λ′ ∈ Λs. □

Denote by Λ the family of increasing continuous functions λ : [0,∞) → [0,∞) such that
λ(0) = 0 and λ(t)→ ∞ as t → ∞. Jakubowski has shown the following.

Proposition 3.13 (Convergence in the Skorokhod topology [Jak86, Proposition 4.1]). Let
(ωn)n∈N be a sequence of elements of DS ([0,∞)) and ω ∈ DS ([0,∞)). Assume that ρ is a
pseudometric on S and let ζρ be defined as in (3.38). Then limn→∞ ζ

ρ(ωn, ω) = 0 if and only
if there exists a sequence (λn)n∈N ⊂ Λ such that for each T ≥ 0

lim
n→∞

sup
s∈[0,T ]

|λn(s) − s| = 0 (3.40)

lim
n→∞

sup
s∈[0,T ]

ρ(ωn(λn(s)), ω(s)) = 0. (3.41)
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Let I denote some index set and let (ρi)i∈I be a family of pseudometrics on S that generates
U with the properties described in Proposition 2.16. Analogously to the classical case where
(S , d) is a metric space, we aim to define a uniform structure on DS ([0,∞)) through the family
(ζρi)i∈I of pseudometrics on DS ([0,∞)).

Proposition 3.14 (Skorokhod uniformity generated by pseudometrics). Let (S ,U) be a uniform
Hausdorff space and (ρi)i∈I a family of pseudometrics that generates U and satisfies the
conditions of Proposition 2.16. Then the family of pseudometrics (ζρi)i∈I on DS ([0,∞)) as
defined above, satisfies the conditions in Proposition 2.16 and induces a uniformity D on
DS ([0,∞)) which is Hausdorff.

Proof. We first show that the family (ζi)i∈I satisfies condition (i) of Proposition 2.16. Assume
ω,ω′ ∈ DS ([0,∞)) and ω , ω′. Then there exists a t ≥ 0 such that ω(t) , ω′(t). By the
Hausdorff property there exists a basic entourage U ∈ U such that U[ω(t)] ∩ U[ω′(t)] = Ø.
By definition of uniformities and their bases, there exists another basic entourage V ∈ U such
that V ◦ V ⊂ U and by right continuity we find an ε > 0 such that V[ω(s)]∩ V[ω′(s′)] = Ø for
all s, s′ ∈ [t, t + ε). Since V is a basic entourage, there exists an i ∈ I and a δ > 0 such that
V =

{
(x, y) ∈ S 2

∣∣∣ ρi(x, y) < δ
}
. As a consequence we have for any s > t + ε that

ρ̃s(ω,ω′) ≥ min{ε/2, δ} > 0 (3.42)

and hence ζρi(ω,ω′) > 0. As an immediate consequence we obtain that the uniformity D
induced by (ζi)i∈I on DS ([0,∞)) is Hausdorff.

The second property of Proposition 2.16 follows directly from the corresponding property of
the family (ρi)i∈I. □

It is important to know whether this construction of D depends on the choice of the family
(ρi)i∈I – it does not. But before we can show this fact we need to show that we can approximate
elements of DS ([0,∞)) by piecewise constant functions with countably many jumps.

We denote the family of piecewise constant functions by

ES ([0,∞)) := { ω ∈ DS ([0,∞)) | ∃ (xn)n∈N ⊂ S , π ∈ Π : ω|I = xi,∀i ∈ N, I ∈ ι(π) } .
(3.43)

We refer to the elements of ES ([0,∞)) as simple paths.

Lemma 3.15 (Simple paths are dense in DS ([0,∞))). Let (S ,U) be a uniform Hausdorff
space and (ρi)i∈I a family of pseudometrics on S , as before. Denote byD the uniformity on
DS ([0,∞)) generated by the family (ζρi)i∈I. Then the family of piecewise constant functions
ES ([0,∞)) is sequentially dense in DS ([0,∞)). That is, for every ω ∈ DS ([0,∞)) there exists
a sequence (ωn)n∈N ⊂ ES ([0,∞)) such that limn→∞ ωn = ω.
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It is worth pointing out that in general topological spaces, a subset D ⊂ S is dense if and only
for each x ∈ S there exists a net (xα)α such that limα xα = x. Thus, sequential denseness is
stronger than denseness in general.

Proof. Let ω ∈ DS ([0,∞)). It is sufficient to show that for fixed T > 0 there exists a sequence
(ωn)n∈N ⊂ ES ([0,∞)) such that

lim
n→∞

ρ̃T
i (ω,ωn) = 0 ∀i ∈ I. (3.44)

To construct such a sequence, take a sequence of partitions
(
π(n)

)
n∈N

of the interval [0,T ] such

that π(n) ∈ Πn
T and limn→∞ L

(
π(n)

)
= 0 and define

ωn(t) :=

ω
(
π(n)

i−1

)
, if π(n)

i−1 ≤ t < π(n)
i ∧ T, i = 1, . . . , n

ω(T ), if t ≥ T.
(3.45)

Now fix ε > 0 and i ∈ I. By Lemma 3.4 there exists a partition π ∈ ΠT of [0,T ] such that

sup
s,t∈I

ρi(ω(s), ω(t)) < ε ∀I ∈ ι(π). (3.46)

Clearly, we can choose π such that L(π) < ε. Then there exists a λ ∈ ΛT and a n ∈ N such
that supt∈[0,T ] |λ(t) − t| < ε and the partition λ

(
π(n)

)
=

(
λ(π(n)

0 ), λ(π(n)
0 ), . . . , λ(π(n)

n )
)

refines π,

i.e. for all J ∈ ι
(
λ
(
π(n)

))
there exists an I ∈ ι(π) such that J ⊂ I. It follows that

sup
t∈[0,T ]

ρi(ω(t), ωn(λ(t)) < ε (3.47)

and consequently ρ̃T
i (ω,ωn) < ε, which concludes the proof. □

Theorem 3.16. Let (S ,U) be a uniform Hausdorff space and (ρi)i∈I and (σ j) j∈J two families
of pseudometrics that generate U and satisfy the conditions of Proposition 2.16. Then the
uniformities on DS ([0,∞)) generated by (ζρi)i∈I and (ζσ j) j∈J coincide.

Proof. We will make use of the covering uniformities introduced in Section 2.4 to prove this
theorem. Observe that by Lemma 2.26 the families of covers of S of the form

Ai,ε :=
{ {
ω ∈ DS ([0,∞))

∣∣∣ ζρi(ω,ω0) < ε
} ∣∣∣ ω0 ∈ DS ([0,∞))

}
i ∈ I, ε > 0 (3.48)

and

B j,ε :=
{ {
ω ∈ DS ([0,∞))

∣∣∣ ζσ j(ω,ω0) < δ
} ∣∣∣ ω0 ∈ DS ([0,∞))

}
j ∈ J, δ > 0 (3.49)

form bases of the covering uniformities µ and ν of DS ([0,∞)), respectively. Once we can
show that eachAi,ε is refined by some B j,δ we obtain µ ⊂ ν by the definition of a base and the
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conclusion follows by symmetry. As before, it suffices to show that for fixed T > 0 and every
pair (i, ε) ∈ I × (0,∞) there exist a pair ( j, δ) ∈ J × (0,∞) such that for every ω0 ∈ DS ([0,∞)){

ω ∈ DS ([0,∞))
∣∣∣ σ̃T

j (ω,ω0) < δ
}
⊂

{
ω ∈ DS ([0,∞))

∣∣∣ ρ̃T
i (ω,ω0) < ε

}
. (3.50)

Both (ρi)i∈I and (σ j) j∈J are bases for the same uniformity on S . By the definition of covering
uniformities this implies that for each pair (i, ε) ∈ I× (0,∞) there exists a pair ( j, δ) ∈ J× (0,∞)
such that the cover

{
Bρi(x, ε)

∣∣∣ x ∈ S
}

is refined by the cover
{

Bσ j(x, δ)
∣∣∣ x ∈ S

}
. Without

loss of generality we can assume that δ < ε. Now fix ω0 ∈ DS ([0,∞)). For every ω ∈{
ω ∈ DS ([0,∞))

∣∣∣∣ σ̃T
j (ω,ω0) < δ

}
there exists a λ ∈ ΛT such that

sup
t∈[0,T ]

|λ(t) − t| < δ and sup
t∈[0,T ]

σ j(ω(λ(t)), ω0(t)) < δ (3.51)

By choice of ( j, δ), this immediately implies supt∈[0,T ] ρi(ω(λ(t)), ω0(t)) < ε. Together with
supt∈[0,T ] |λ(t) − t| < δ < ε we readily obtain ρ̃T

i (ω,ω0) < ε, concluding the proof. □

There is a plethora of results on the Skorokhod topology for metric spaces and even more for
R. The next result is due to Jakubowki and gives a handy way to translate these results to the
uniform setting.

Proposition 3.17 ([Jak86, Theorem 4.3]). Let F ⊂ C(S ) be a family of continuous real
functions on S that is closed under addition and generates the topology on S . For f ∈ F
denote by f̂ : DS ([0,∞)) → DR([0,∞)) the map defined by f̂ (ω)( · ) := f (ω( · )). Then the
Skorokhod topology on DS ([0,∞)) is generated by the family F̂ :=

{
f̂
∣∣∣ f ∈ F

}
.

Using the fact that the topology induced by the weak uniformity generated by a family of
functions F coincides with the weak topology generated by these functions, we readily get
the following.

Corollary 3.18. Let F be a family of uniformly continuous functions mapping S to R that is
closed under addition and generates the uniformity on S . Then the Skorokhod topology on
DS ([0,∞)) is uniformizable and generated by the weak uniformity generated by the family
F̂ . Moreover, this uniformity does not depend on the choice of F . We call this uniformity
Skorokhod uniformity and denote it withD = D(S ).

We can use this definition of the Skorokhod topology together with [EK86, Proposition 3.6.5]
to obtain a useful characterization of Skorokhod convergence.

Proposition 3.19 (Characterization of Skorokhod convergence). Let S be a uniform Hausdorff
space. Assume (ωn)n≥1 ⊂ DS and ω ∈ DS . Then ωn → ω in the Skorokhod topology if and
only if for all t ≥ 0 and sequences (tn)n≥1 ⊂ (0,∞) with limn→∞ tn = t the following three
conditions are satisfied
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(i) For every U ∈ U open,

ωn(tn) ∈ U[ω(t)] ∪ U[ω(t−)] eventually. (3.52)

(ii) If there exists a subsequence (tk)k∈N of (tn)n∈N such that limk→∞ ωk(tk) = ω(t), then
for all sequences (sk)k≥1 with sk ≥ tk for each k ≥ 1 and limk→∞ sk = t it holds that
limk→∞ ωk(sk) = ω(t).

(iii) If there exists a subsequence (tk)k∈N of (tn)n∈N such that limk→∞ ωk(tk) = ω(t−), then
for all sequences (sk)k≥1 with 0 ≤ sk ≤ tk for each k ≥ 1 and limk→∞ sk = t it holds that
limk→∞ ωk(sk) = ω(t−).

Proof. In the case where S is a metric space the statement is just a reformulation of [EK86,
Proposition 3.6.5]. Without repeating the proof we assume that the statement holds for S = R.

Throughout this proof let F ⊆ { f : S → R | f unif. cont. } denote a family of uniformly
continuous functions that generatesU. Recall from Proposition 2.13 and Remarks 2.14 that
this means that for every U ∈ U there exists a m ∈ N, functions f1, . . . , fm ∈ F and δ > 0
such that

m⋂
j=1

F−1
j Bδ ⊂ U, (3.53)

where Bδ =
{

(u, v) ∈ R2
∥∥∥ u − v| < δ

}
and F j : S 2 → R2 is given by F j(x, y) = ( f j(x), f j(y)),

as usual.

As in Proposition 3.17 define f̂ : DS ([0,∞)) → DR([0,∞)) by f̂ (ω)(t) = f (ω(t)) for each
f ∈ F and denote F̂ =

{
f̂
∣∣∣ f ∈ F

}
.

We start with necessity. Let (ωn)n∈N ⊂ DS ([0,∞)) and assume that ωn → ω ∈ DS ([0,∞)) with
respect to the Skorokhod topology on DS ([0,∞)). Let (tn)n∈N ⊂ R≥0 be such that tn → t ≥ 0.
By continuity, f̂ (ωn)→ f̂ (ω) for each f̂ ∈ F̂ . Applying (i) to the DR([0,∞)) valued sequence(

f̂ (ωn)
)
n∈N

, we find for each ε > 0 and f̂ ∈ F̂ a n0 = n0( f ) ∈ N such that

| f̂ (ωn)(tn) − f̂ (ω)(t)| ∧ | f̂ (ωn)(tn) − f̂ (ω)(t−)|

= | f (ωn(tn)) − f (ω(t))| ∧ | f (ωn(tn)) − f (ω(t−))| < ε
(3.54)

for all n ≥ n0.

Now let U ∈ U be open and m ∈ N, f1, . . . , fm ∈ F and δ > 0 be such that (3.53) is satisfied.
Taking the maximum over all n0( f j) as above we find a N0 ∈ N such that

f j(ωn(tn)) ∈ Bδ[ f j(ω(t))] ∪ Bδ[ f j(ω(t−))] (3.55)

for all n > N0 and all j = 1, . . . ,m. By continuity of the f j and after choosing a smaller
δ > 0 or a bigger N0 ∈ N, if necessary, we can assume that if f j(ωn(tn)) ∈ Bδ[ f j(ω(t))]

3.2 Path space 55



( f j(ωn(tn)) ∈ Bδ[ f j(ω(t−))]) for some j = 1, . . . ,m then the same holds for all j = 1, . . . ,m.
Thus, for every n > N0 we obtain

ωn(tn) ∈ (F−1
j Bδ)[ω(t)] for all j = 1, . . . , n (3.56)

or
ωn(tn) ∈ (F−1

j Bδ)[ω(t−)] for all j = 1, . . . , n (3.57)

and hence, by construction,

ωn(tn) ∈ U[ω(t)] ∪ U[ω(t−)] (3.58)

for all n > N0. The same argument can be applied to show (ii) and (iii).

We now show sufficiency. Assume (ωn)n∈N ⊂ DS ([0,∞)) and ω ∈ DS ([0,∞)) are such that for
all (tn)n∈N ⊂ [0,∞) with limn→∞ tn = t ≥ 0 (i)–(iii) hold. If we can show that f̂ (ωn)→ f̂ (ω) in
DR([0,∞)), we are done by Lemma A.34. Let f ∈ F , by continuity we can deduce that (i)–(iii)
hold for the sequence

(
f̂ (ωn)

)
n∈N

and hence, by assumption, f̂ (ωn)→ f̂ (ω), concluding the
proof. □

Next, observe that the space of càdlàg paths over a Polish uniform space is itself again a Polish
uniform space. We phrase this result as a corollary to the known result for Polish metric spaces
but it is possible to prove this fact directly.

Lemma 3.20 (Completeness and separability of the Skorokhod uniformity). Let (S ,U) be a
uniform Hausdorff space with a countable base. Then the Skorokhod uniformity on DS ([0,∞))
is separable if (S ,U) is separable and complete if (S ,U) is complete.

Proof. By assumption, (S ,U) is metrizable and by Lemma 2.39 every metric that inducesU
is complete and the claim follows directly from the corresponding theorem for metric spaces
(cf. [EK86, Theorem 3.5.6]). □

Observe that we can drop the assumption that U has a countable base in Lemma 3.20 and
still show that separability of S implies separability of DS ([0,∞)) by the same proof as in the
metric case. Furthermore, we strongly believe that also completeness can be shown without
the assumption of first countability. But as we will only use the statement only for metrizable
spaces, we do not intend to prove it here.

3.3 Relative compactness in DS ([0,∞))

Recall the notation we introduced for partitions in (3.11) and (3.12) and (3.13).

We seek to proof the following theorem which is a qualitative restatement of the quantitative
statement of [EK86, Theorem 3.6.3].
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Theorem 3.21 (Relative compactness in DS ([0,∞))). Let (S ,U) be a complete uniform
Hausdorff space with a countable base and A ⊂ DS ([0,∞)). Then A is relatively compact if
and only if the following conditions are satisfied for every T > 0.

(i) There exists a compact ΓT ⊂ S such that for all ω ∈ A and t ∈ [0,T ], ω(t) ∈ ΓT .

(ii) For all U ∈ U and ω ∈ A there exists a δ = δ(U) > 0 depending only on U and a
partition πω ∈ ΠT of [0,T ] with l(πω) > δ such that

{ (ω(s), ω(t)) | s, t ∈ I } ⊂ U ∀I ∈ ι(πω). (3.59)

As before, this theorem can be regarded as a corollary to the corresponding statement for
metric spaces. We will nevertheless include a proof that relies on the uniform structure to
highlight its significance.

The proof relies on a Lemma from [EK86] which holds verbatim for uniform Hausdorff spaces.
We present it here together with a proof for sake of completeness. First, we introduce the
following notation for an ω ∈ DS ([0,∞)) with countably many jumps. Given such an ω we
define the jumptimes s j(ω) of ω as follows. Let s0(ω) := 0 and for k = 1, 2, . . . let

sk(ω) := inf { t > sk−1(ω) | ω(t) , ω(t−) } , (3.60)

if sk−1(ω) < ∞ and sk(ω) = ∞ if sk−1(ω) = ∞. Here we use the convention that inf Ø = ∞.

Lemma 3.22. [EK86, Lemma 3.6.1] Let (S ,U) be a uniform Hausdorff space and Γ ⊂ S
a compact subset. Fix δ > 0 and define A(Γ, δ) to be the set of piecewise constant paths
ω ∈ ES ([0,∞)) such that ω(t) ∈ Γ for all t ≥ 0 and sk(ω) − sk−1(ω) > δ for all k ∈ N with
sk(ω) < ∞. Then A(Γ, δ) is relatively compact (in DS ([0,∞))).

Proof. Let (ωn)n∈N ⊂ A(Γ, δ). We need to show that there exists a convergent subsequence(
ωnm

)
m∈N of (ωn)n∈N. For k ∈ N denote by Mk := { n ∈ N | sk(ωn) < ∞ } the set of indices for

which (ωn)n∈N has at least k jumps and observe that Mk+1 ⊂ Mk. In the case where |M1| < ∞

there exists a subsequence
(
ωnm

)
m∈N such that ωnm(t) = xm ∈ Γ for all t ≥ 0. Because Γ is

compact there exists another subsequence that converges.

Now assume M := sup { k ∈ N | |Mk| = ∞ } ≥ 1. Observe that M may be infinite. Then
there exists a subsequence

(
ωnm

)
m∈N such that sk(ωnm) < ∞ for all k ≤ M and all m ∈ N.

Choosing an adequate subsequence if necessary, we can assume without loss of generality that
limm→∞ sk(ωnm) = tk exists (tM = ∞ is possible) and limm→∞ ωnm(sk(ωnm)) = xk ∈ Γ for all
k ≤ M. By assumption we have tk − tk−1 ≥ δ > 0 for all k ≤ M and hence limm→∞ ωnm = ω,
where

ω(t) =

xk, t ∈ [tk−1, tk), k = 1, . . . ,M

xM, t ≥ tM.
(3.61)

□
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Proof of Theorem 3.21. Let A ⊂ DS ([0,∞)) and assume that the conditions (i) and (ii) of the
theorem hold. By Lemma 3.20, DS ([0,∞)) is complete and by Lemma 2.35 it suffices to show
that A is totally bounded.

Let (ρi)i∈I be a family of pseudometrics on S that generatesU and write (ζi)i∈I for the family
of pseudometrics on DS ([0,∞)) induced by (ρi)i∈I, as before. Fix a pair (i, ε) ∈ I × (0,∞) and
choose T > 0 large enough such that

∫ ∞
T e−t dt < ε/2. By (ii) there exists a δ > 0 and for each

ω ∈ A a partition πω ∈ ΠT with l(πω) > δ such that

sup
s,t∈I

ρi(ω(s), ω(t)) < ε/2 ∀I ∈ ι(πω). (3.62)

For ω ∈ A define ω as

ω(t) :=

ω
(
πωk−1

)
, t ∈ [πωk−1, π

ω
k ), k = 1, . . . ,Nω

ω
(
πωNω

)
t ≥ πωNω

.
(3.63)

Then ω ∈ A(ΓT , δ) and ζi(ω,ω) < ε.

As (ζi)i∈I generates the uniformityD on DS ([0,∞)), we have shown that for every entourage
D ∈ D there exists a compact set ΓD and a δD > 0 such that

A ⊂
⋃

ω∈A(ΓD,δD)

D[ω]. (3.64)

Since A(ΓD, δD) is totally bounded by Lemma 3.22 it follows from Lemma 2.31 that A itself is
totally bounded.

Now assume that A is relatively compact. Then every sequence (ωn)n∈N ⊂ A contains a
converging subsequence. Furthermore, every sequence (tn)n∈N ⊂ [0,T ] contains a converging
subsequence and thus, by Proposition 3.19, every sequence (ωn(tn))n∈N contains a converging
subsequence. Therefore the set { ω(t) | ω ∈ A, t ∈ [0,T ] } is contained in a compact set ΓT ⊂

S .

Now assume that (ii) does not hold. Then there exist T > 0, U ∈ U open and a sequence
(ωn)n∈N ⊂ A such that for all partitions π(n) ∈ ΠT of [0,T ] with l(πn) ≥ 1/n there exists an
interval In ∈ ι(π(n)) and s, t ∈ In such that

(ωn(s), ωn(t)) < U. (3.65)

Choosing an adequate subsequence if necessary, we can assume without loss of generality that
there exists a ω ∈ DS ([0,∞)), not necessarily in A, such that limn→∞ ωn = ω. By Lemma 3.4
there exists a δ > 0 and a partition π ∈ ΠT with l(π) > δ such that

{ (ω(s), ω(t)) | s, t ∈ I } ⊂ U ∀I ∈ ι(π). (3.66)

For large enough n ∈ Nwe can choose the partitions π(n) such that π(n) refines π and L(π) < 2/n.
Now let (sn)n∈N ⊂ [0,T ] and (tn)n∈N ⊂ [0,T ] be such that sn < tn and sn, tn ∈ In for some
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In ∈ ι(π(n)). By compactness, there exist converging subsequences (snk )k∈N and (tnk )k∈N such
that limk→∞ snk = s and limk→∞ tnk = t. By construction we have tnk − snk → 0 and hence
s = t. On the other hand we have (ωnk (snk ), ωnk (tnk )) < U for all k ∈ N. Using the fact that the
sequence (ωnk )k∈N converges and Proposition 3.19 we deduce that limk→∞ ωnk (snk ) = ω(t−)
and limk→∞ ωnk (tnk ) = ω(t) and (ω(t−), ω(t)) < U. But this contradicts (3.66) thus concluding
the proof. □

Observe that in the proof we have used the existence of a countable base only in the first
paragraph to justify that DS ([0,∞)) is complete. If we can show the Conjecture 7.1 the
assumption of first countability and hence also the implicit assumption of metrizability can be
dropped from the statement of the theorem.

Lemma 3.23 (Skorokhod convergence). Let (S ,U) be a uniform Hausdorff space with a
countable base. Assume that (ωn)n∈N ⊂ DS ([0,∞)) and ω ∈ DS ([0,∞)). Then limn→∞ ωn = ω

in the Skorokhod topology if and only if the following two conditions are satisfied.

(i) For all sequences (tn)n∈N ⊂ [0,∞) with limn→∞ tn = t < ∞ and all open entourages
U ∈ U there exists a n0 ∈ N such that

ωn(tn) ∈ U[ω(t−)] ∪ U[ω(t)] ∀n > n0. (3.67)

(ii) The sequence (ωn)n∈N is relatively compact.

Proof. We have shown necessity of (i) already in the proof of Proposition 3.19 and (ii) follows
directly from the convergence of the sequence (ωn)n∈N.

For sufficiency we show that together with (i), relative compactness implies that (ii) and (iii)
of Proposition 3.19 hold. To that end assume that Proposition 3.19 (ii) fails. We want to show
that the sequence (ωn)n∈N cannot be relatively compact. Assume that there exists a sequence
(tn)n∈N ⊂ [0,∞) such that limn→∞ tn = t < ∞ and limn→∞(ωn(tn)) = ω(t). Assume further that
there exists another sequence (sn)n∈N ⊂ [0,∞) with limn→∞ sn = t, limn→∞ ωn(sn) = ω(t−)
and sn ≥ tn for all n ∈ N, where ω(t−) , ω(t). By the Hausdorff property there exists an
open entourage U ⊂ U such that U[ω(t)] ∩ U[ω(t−)] = Ø and we can choose another open
entourage V ∈ U with the property V ◦ V ◦ V ◦ V ⊂ U. By right continuity and definition of
the left limit point there exists ε > 0 such that

ω(r) ∈ V[ω(t−)], ∀r ∈ [t − ε, t) and ω(r) ∈ V[ω(t)], ∀r ∈ [t, t + ε). (3.68)

Choose δ ∈ (0, ε) fixed but arbitrary. By Lemma 3.2 there exist continuity points u ∈ [t−δ/2, t)
and v ∈ [t, t + δ/2) of ω. By (i) we have

lim
n→∞

ωn(u) = ω(u) ∈ V[ω(t−)] and lim
n→∞

ωn(v) = ω(v) ∈ V[ω(t)]. (3.69)
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Observe that there exists an open entourage W ∈ U such that W[ω(u)] ⊂ V[ω(t−)] and
W[ω(v)] ⊂ V[ω(t)]. After choosing an adequate subsequences we can assume without loss of
generality that

ωn(u) ∈ V[ω(t−)], ωn(v) ∈ V[ω(t)], (3.70)

sn, tn ∈ (u, v) and
ωn(sn) ∈ V[ω(t−)], ωn(tn) ∈ V[ω(t)], (3.71)

for all n ∈ N. If we now collect all the pieces, observe that we constructed for each n ∈ N

t − δ/2 < u < tn ≤ sn < v < t + δ/2 (3.72)

with the property

V[ωn(u)] ∩ V[ωn(tn)] = Ø, V[ωn(tn)] ∩ V[ωn(sn)] = Ø

and V[ωn(sn)] ∩ V[ωn(v)] = Ø.
(3.73)

Since v − u ≤ δ and δ ∈ (0, ε) was arbitrary this is a contradiction to the relative compactness
condition in Theorem 3.21 and hence (ωn)n∈N is not relatively compact.

If instead condition (iii) fails, we can exchange the roles of sn and tn in the previous argument
to deduce that (ωn)n∈N is not relatively compact. □

3.4 Convergence of paths via hitting times

In this section we show that the convergence of a sequence (ωn)n∈N ⊂ DS ([0,∞)) of paths is
equivalent to the convergence of hitting times.

Throughout this section let (S ,U) denote a uniform Hausdorff space and equip DS ([0,∞))
with the Skorokhod uniformity. The first important observation is that the hitting time operator
is upper semi-continuous for open sets.

Lemma 3.24 (Semi-continuity of hitting times). For A ⊂ S be consider the hitting time
operator

τA : DS ([0,∞))→ [0,∞], τA(ω) := inf { t ≥ 0 | ω(t) ∈ A } . (3.74)

If A is open, the hitting time operator τA is upper semi-continuous, i.e. for all (ωn)n∈N ⊂

DS ([0,∞)) such that limn→∞ ωn = ω ∈ DS ([0,∞)),

lim sup
n→∞

τA(ωn) ≤ τA(ω). (3.75)

Proof. We proceed by contradiction. Let A ⊂ S be open and assume there exists a sequence
(ωn)n∈N ⊂ DS ([0,∞)) such that ωn → ω ∈ DS ([0,∞)) and lim supn→∞ τA(ωn) > τA(ω).
Passing over to subsequences we can assume without loss of generality that tn := τA(ωn) >
τA(ω) and limn→∞ tn = t > τA(ω). By definition of the hitting time and Lemma 3.2 there
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exists a continuity point s ∈ (τA, t) of ω such that ω(s) ∈ A. Hence, there exists an open
entourage U ∈ U such that U[ω(s)] ⊂ A and. By construction, ωn(s) < U[ω(s)] for all n ∈ N
in contradiction to Proposition 3.19 (i). □

The convergence of all hitting times of neighborhoods is certainly sufficient for the convergence
of a sequence of paths (ωn)n∈N ⊂ DS ([0,∞)) but it is not a necessary condition.

Example 3.25. Let S = R and consider the sequence of constant paths ωn ≡ 1/n and ω ≡ 0.
Clearly, ωn → ω, as n→ ∞. But for the hitting times of B = B(1, 1) = { x ∈ R ∥ x − 1| < 1 }
we have τB(ωn) = 0 and τB(ω) = ∞. □

The example shows that we have to allow the convergence of hitting times to fail for a few
exceptional sets. We will show that the Skorokhod convergence implies the convergence of
the hitting times of all slightly enlarged neighborhoods. A similar result in the metric case
was proved by Rojas [Roj20].

Lemma 3.26. Let (S ,U) be a uniform Hausdorff space, ω ∈ DS ([0,∞)) and (ωn)n∈N ⊂

DS ([0,∞)) such that ωn → ω in the Skorokhod topology as n → ∞. Assume A ⊂ S is such
that γA(ω) = τA(ω). Then limn→∞ τA(ωn) = τA(ω).

Proof. Let A ⊂ S be such that the first contact time is the first hitting time, i.e. γA(ω) = τA(ω).

Fix t ∈ [0, τA(ω)) ∩ Q. By assumption, ω(t) and ω(t−) are contained in the open set ∁A hence
there exists a V ∈ U open such that V[ω(t)]∩A = Ø and V[ω(t−)]∩A = Ø. By Proposition 3.19
we have that ωn(t) ∈ V[ω(t−)] ∪ V[ω(t)] for all n ∈ N large enough. By right continuity we
even find for every n ∈ N large enough some εn > 0 such that ωn(s) ∈ V[ω(t−)] ∪ V[ω(t)] for
all s ∈ [t, t+εn). Hence there cannot exist a subsequence

(
ωnk

)
k∈N such that limk→∞ τA(ωnk ) = t

and consequently lim supn→∞ τA(ωn) ≥ t for all t < τA(ω). On the other hand we have by
semicontinuity of the hitting times that lim supn→∞ τA(ωn) ≤ τA(ω). □

Theorem 3.27 (Convergence via hitting times). Let (S ,U) be a uniform Hausdorff space,
ω ∈ DS ([0,∞)) and (ωn)n∈N ⊂ DS ([0,∞)) be relatively compact. Then the following are
equivalent.

(i) limn→∞ ωn = ω in the Skorokhod topology.

(ii) For all x ∈ S , U ∈ U, all continuity points s ≥ 0 of ω, and all D ∈ U, there exists a
E ∈ U with E ⊂ D open, such that

τ(U◦E)[x](ωn ◦ θs)→ τ(U◦E)[x](ω ◦ θs), as n→ ∞. (3.76)
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(iii) For all x ∈ S , all continuity points s ≥ 0 of ω and all U ∈ U open such that τU[x](ω ◦
θs) = γU[x](ω ◦ θs) it holds that

τU[x](ωn ◦ θs)→ τU[x](ω ◦ θs), as n→ ∞. (3.77)

Proof. We start with the implication (i) ⇒ (iii). Assume that ωn → ω in the Skorokhod
topology. Then also ωn ◦ θs → ω ◦ θs for every continuity point s ≥ 0 of ω. We can thus
assume without loss of generality s = 0. Now assume that (iii) does not hold, i.e. there exists
an x ∈ S and a U ∈ U open such that τU[x](ω) = γU[x](ω) fails. By upper semi continuity
Lemma 3.24 this implies

t := lim sup
n→∞

τU[x](ωn) < τU[x](ω) = γU[x](ω) (3.78)

and furthermore {ω(t), ω(t−)} ⊂ ∁U[x]. We can thus find a V ∈ U open such that V[ω(t)] ∪
V[ω(t−)] ⊂ ∁U[x]. We can then choose a subsequence (ωk)k∈N such that tk := τU[x](ωk)→ t.
By Proposition 3.19 we have ωk(tk) ∈ V[ω(t)] ∪ V[ω(t−)] for all k ∈ N large enough and
by right continuity there exists a sequence (εk)k∈N ⊂ (0,∞) such that ωk([tk, tk + εk)) ⊂
V[ω(t)] ∪ V[ω(t−)] for all k ∈ N large enough. In contradiction to the definition of tk.

The implication (iii) ⇒ (ii) is a direct consequence of Lemma 3.9.

Finally, we turn to the implication (ii) ⇒ (i). Assume (ωn)n∈N does not converge to ω ∈

DS ([0,∞)). We want to apply Lemma 3.23 and Lemma 3.2 to find a continuity point s ≥ 0
of ω and a subsequence (ωm)m∈N such that limm→∞ ωm(s) = x exists and ω(s) , x. Then
the claim follows because the hitting times of either U[x] or U[ω(t)] do not converge for all
U ∈ U open and sufficiently small.

Since (ωn)n∈N is relatively compact by assumption, assume that (i) fails. Namely, there exists
a sequence (tn)n∈N ⊂ [0,∞) such that limn→∞ tn = t ≥ 0 and a U ∈ U open such that

ωn(tn) < U[ω(t−)] ∪ U[ω(t)] for infinitely many n ∈ N. (3.79)

Passing over to a subsequence (tk)k∈N we can assume that (3.79) holds for all k ∈ N. Further-
more, supk∈N tk =: T < ∞ and by assumption, (ωk(tk))k∈N ⊂ ΓT for some ΓT ⊂ S compact.
Hence, there exists a further subsequence (tl)l∈N such that liml→∞ ωl(tl) = x ∈ ΓT . Let V ∈ U
be open with V ◦ V ⊂ U. We can choose yet another subsequence (tm)m∈N such that

ωm(tm) ∈ V[x] for all m ∈ N (3.80)

and observe that
V[x] ∩ (V[ω(t−)] ∪ V[ω(t)]) = Ø. (3.81)

Furthermore, by right continuity of ω and by definition of ω(t−) there exists a ε > 0 such that
ω([t − ε, t + ε]) ⊂ V[ω(t−)] ∪ V[ω(t)]. Observe that (tm)m∈N contains either an increasing or a
decreasing subsequence – or both. Without loss of generality we assume that (tm)m∈N is either
increasing or decreasing itself and treat both cases separately.
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Assume that (tm)m∈N is increasing. By Lemma 3.2 there exists a continuity point s ∈ (t − ε, t)
of ω. By construction we have tm ≥ s eventually and thus

lim
m→∞

τV[x](ωm ◦ θs) = 0. (3.82)

on the other hand, τV[x](ω ◦ θs) ≥ ε. Observe that this holds for all open entourages W ∈ U
with W ⊂ V .

Now assume that (tm)m∈N is decreasing. Again by Lemma 3.2 there exists a continuity point
s ∈ (t − ε/4, t) of ω and we have

lim sup
m→∞

τV[x](ωm ◦ θs) ≤ ε/2, (3.83)

while τV[x](ω ◦ θs) ≥ ε. □

We conclude this section with a few simple examples to highlight the importance of the
assumptions in Theorem 3.27.

Example 3.28 (shifts to discontinuity points). The restriction of the shifts in the statement of
Theorem 3.27 (ii) is necessary because the starting point plays a special role in the Skorokhod
topology and shifting the starting point to a point of discontinuity may break convergence in
the Skorokhod topology. To illustrate this, consider the path

ω(t) = 1[1,∞)(t) ∈ DR([0,∞)) (3.84)

and the sequence (ωn)n∈N ⊂ DR([0,∞)) given by

ωn(t) = 1[1+1/n,∞)(t), (3.85)

for every n ∈ N. □

Example 3.29 (relative compactness is necessary). Let ω ∈ DR([0,∞)) be defined as

ω(t) := 1[1,∞)(t). (3.86)

For each n ∈ N let ωn ∈ DR([0,∞)) be defined as

ωn(t) := 1[1−1/n,1)(t) + 1[1+1/n,∞)(t). (3.87)

Clearly, ω is discontinuous at t = 1 and continuous on [0,∞) \ {1}. For every sequence
(tn)n∈N ⊂ [0,∞) with limn→∞ tn = t ∈ [0,∞) \ {1} we have ωn(tn)→ ω(t). For every sequence
(tn)n∈N ⊂ [0,∞) with limn→∞ tn = 1 we have ωn(tn) ∈ {ω(1), ω(1−)} = {1, 0}. Hence, the
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condition (i) of Proposition 3.19 is satisfied. On the other hand, (ii) of Proposition 3.19 fails.
To see that, consider the sequences (tn)n∈N and (sn)n∈N defined as

tn := 1 −
1
2n

and sn := 1 +
1
2n
. (3.88)

Then, limn→∞ tn = 1 = limn→∞ sn and tn ≤ sn for every n ∈ N. Furthermore, it holds for every
n ∈ N

ωn(tn) = 1 = ω(1) and ωn(sn) = 0 = ω(1−). (3.89)

1 − 1
n

tn 1 sn 1 + 1
n

1

Fig. 3.1.: The process ωn

Hence, we have found a sequence (tn)n∈N such that limn→∞ ωn(tn) = ω(t) and a sequence
(sn)n∈N with the same limit, that dominates (tn)n∈N such that limn→∞ ωn(sn) = ω(t−) , ω(t).
Thus, ωn does not converge to ω in the Skorokhod topology by Proposition 3.19.

On the other hand, we have

τB(x,δ)(ωn ◦ θs)→ τB(x,δ)(ω ◦ θs) (3.90)

for every x ∈ R, δ > 0 and every continuity point s ≥ 0 of ω. □

The following example was brought to our attention by Wolfgang Löhr [Löh21] and illustrates
that the convergence of the hitting times can fail for infinitely many balls although the processes
converge.

Example 3.30. Let S = R and ω ∈ DS ([0,∞)) be the path that starts in 1, waits for one unit of
time and jumps by 1/2; waits again 1/2 unit of time and jumps by 1/4 and so on in a geometric
fashion. In other words

ω(t) =
∞∑

k=0

2−k
1[0,

∑k
j=0 2− j)(t) =

∞∑
k=0

(2 − 2−k)1[2−2−k+1,2−2−k)](t). (3.91)
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For n ∈ N and t ≥ 0 let ωn(t) := ω(t) + 1/n. Then ωn → ω in the Skorokhod topology.
Consider for example the ball B(3, 1) around 3 with radius 1. Then τB(3,1)(ωn) = 2 and
τB(3,1)(ω) = ∞. Furthermore, let δ > 0 then there exists a k ∈ N such that ε := (2 − 2k) > 2 − δ
and for every n ∈ N, we have

τB(3,1+ε)(ωn) = 2 − 2−k+1 (3.92)

but
τB(3,1+ε)(ω) = 2 − 2−k. (3.93)

hence, τB(3,1+ε)(ω) − τB(3,1+ε)(ωn) = 2−k, independently of n. □

3.5 Random càdlàg paths

In this section we introduce probability measures on the space of càdlàg functions DS ([0,∞))
equipped with the Skorokhod uniformity. We will lift some of the statements we have proved
in the last sections to the random elements. Namely, we will shortly introduce tightness for
a family of probability measures and give criteria when a family of probability measures on
DS ([0,∞)) is tight. Finally, we will give a criterion for the convergence of a sequence of
probability measures based on the hitting times of certain (uniform) neighborhoods.

We will consider mainly polish uniform spaces. Recall from the discussion in Section 2.5 that
if (S ,U) is a uniform Polish space, DS ([0,∞)) also becomes a uniform Polish space when
equipped with the Skorokhod uniformityD. By Definition 2.38 and Lemma 2.39, (S ,U) and
(DS ([0,∞)),D) are then completely metrizable. Instead of choosing one specific metric we
continue as before and use the uniform structure thereby showing that many classical results
can be translated by using uniformities instead of metrics.

We begin with some general remarks about probability measures on uniform spaces.

3.5.1 Probability measures on uniform spaces

Let (S ,U) be a uniform Hausdorff space. We equip S with the Borel-σ-field B and denote
byM1 = M1(S ) the family of probability measures on (S ,B). In a similar fashion as we
generalized the Skorokhod metric we can generalize the Prokhorov metric on the space of
probability measures over a uniform space. Recall that there exists a family of pseudometrics
(ρi)i∈I for some I , Ø on S that generatesU and satisfies (i) and (ii) of Proposition 2.16. For
every i ∈ I we introduce the maps ζi :M1 ×M1 → [0, 1] as

ζi(µ, ν) := inf { ε > 0 | µ(A) ≤ ν(Bi(A, ε)) + ε and ν(A) ≤ µ(Bi(A, ε)) + ε, ∀A ∈ B } , (3.94)

where Bi(A, ε) = { x ∈ S | ∃x ∈ A : ρi(x, y) < ε } denotes the (open) ε-blowup of A with
respect to ρi.
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Proposition 3.31. Let (S ,U) be a uniform space and (ζi)i∈I defined as above. Then the family
(ζi)i∈I satisfies the conditions of Proposition 2.16 and the uniformity generated by (ζi)i∈I does
not depend on the choice of the family (ρi)i∈I.

Proof. First, let µ, ν ∈ M1(S ) with µ , ν. Without loss of generality there exists an A ∈ B
such that µ(A) < ν(A). Suppose

inf { ε > 0 | ν(A) ≤ µ(Bi(A, ε)) + ε } = 0 (3.95)

for all i ∈ I. Then,
ν(A) ≤ inf

{
ν(U)

∣∣∣ U ∈ B open, A ⊂ U
}
+ c, (3.96)

where c = ν(A) − µ(A) > 0, in contradiction to the fact that ν is a probability measure and
therefore (outer) regular. Hence we have verified (i) of Proposition 2.16.

Now let i, j ∈ I. By (ii) of Proposition 2.16 there exists a k ∈ I such that ρi ∨ ρ j ≤ ρk. Suppose
again that µ, ν ∈ M1(S ) and A ∈ B such that µ(A) < ν(A). Then, Bi(A, ε)∪ B j(A, ε) ⊂ Bk(A, ε)
for all ε > 0. Consequently, µ(Bi(A, ε)) ∨ µ(B j(A, ε)) ≤ µ(Bk(A, ε)) and hence,

inf { ε > 0 | ν(A) ≤ µ(Bα(A, ε)) + ε } ≥ inf { ε > 0 | ν(A) ≤ µ(Bk(A, ε)) + ε } (3.97)

for α = i, j. Since A ∈ Bwas arbitrary we obtain ζi∨ζ j ≤ ζk, and this confirms Proposition 2.16
(ii).

The final part of the statement will follow from the next result, Proposition 3.32. (□)

We call the uniformity generated by (ζi)i∈I the Prokhorov uniformity and denote it by DM.
A different construction of the Prokhorov uniformity can be given in terms of the diagonal
uniformity on S .

Proposition 3.32. Let (S ,U) be a uniform Hausdorff space. Then the sets of the form

DU,ε :=
{

(µ, ν) ∈ M2
1

∣∣∣ µ(A) ≤ ν(U[A]) + ε and ν(A) ≤ µ(U[A]) + ε, ∀A ∈ B
}
, (3.98)

where ε ∈ (0, 1) and U ∈ U form a base of the Prokhorov uniformity onM1(S ). The same
holds true if we let ε range over a dense subset of (0, 1) and U over some baseV ofU.

Proof. We only show the second part of the statement. Let D ∈ DM without loss of generality
we can assume that D is a basic entourage with respect to a family of pseudometric (ζi)i∈I as
in Proposition 3.31. In other words, there exists a i ∈ I and a 0 < δ < 1 such that

D =
{

(µ, ν) ∈ M2
1

∣∣∣ ζi(µ, ν) < δ
}
. (3.99)

By definition of ζi we can immediately conclude that D is of the form (3.98) with U ={
(x, y) ∈ S 2

∣∣∣ ρi(x, y) < δ
}

and U an element of the basis V generated by the family of
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pseudometrics (ρi)i∈I. In every dense subset of (0, 1) there exists an ε > 0 such that ε < δ and
we find that

DU,ε ⊂ D, (3.100)

which yields the claim. Note that the uniformity DM does not depend on the choice of the
baseV or of the family (ρi)i∈I. □

The following results are completely analogous of the results for the Prokhorov metric, as are
their proofs. We leave the proofs to the reader as an exercise in handling uniformities.

Proposition 3.33. Let (S ,U) be a uniform Hausdorff space andDM the Prokhorov uniformity
onM1(S ). Then

• (M1(S ),DM) is separable if and only if (S ,U) is separable.

• (M1(S ),DM) has a countable base if and only if (S ,U) has a countable base.

• (M1(S ),DM) is complete if and only if (S ,U) is complete.

The main feature of the Prokhorov metric is that it metricizes the weak convergence of
(probability) measures. The analogue holds true for the Prokhorov uniformity.

Proposition 3.34. Let (S ,U) be a uniform Hausdorff space andDM the Prokhorov uniformity
onM1(S ). A sequence of probability measures (µn)n∈N ⊂ M1(S ) converges weakly if and
only if it converges with respect to the Prokhorov uniformity.

As usual, we want to know more about the (relatively) compact subsets ofM1(S ). Recall the
following definition.

Definition 3.35 (Tightness). Let (S ,U) be a uniform Hausdorff space. A family A ⊂ M1(S )
of probability measures is called tight if for all ε > 0 there exists a compact set Kε ⊂ S such
that

sup
µ∈A

µ
(
∁Kε

)
< ε. (3.101)

If (Ω,A,P) is a probability space and Ξ ⊂ {X : Ω → S } is a family of S -valued random
variables, we say that Ξ is tight if the family

{
PX = P ◦ X−1

∣∣∣ X ∈ Ξ
}
⊂ M1(S ) is tight. ♢

The next result is a simple extension of the well-known result for metric spaces.

Lemma 3.36. Let (S ,U) be a uniform Polish space. Then every probability measure µ ∈
M1(S ) is tight.
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For uniform spaces we have the following version of Prokhorov’s Theorem.

Proposition 3.37 (Prokhorov). Let (S ,U) be a uniform Hausdorff space and A ⊂ M1(S ) a
family of probability measures on S .

(i) If A is tight then A is relatively compact.

(ii) If in addition (S ,U) is separable, complete and possesses a countable base, then relative
compactness of A implies tightness of A.

Proof. See [Kle14, Theorem 13.29]. The proof is easily adapted to the uniform setting. □

3.5.2 Random paths

Let (S ,U) be a uniform Hausdorff space and (Ω,A,P) a probability space. We equip the
space (DS ([0,∞)),D) with the Borel σ-field BD generated by the open sets and denote by
πt : DS ([0,∞)) → S the projections ω 7→ πt(ω) := ω(t). The next result can be found in
[EK86, Proposition 3.7.1] and the same proof can be applied almost verbatim for uniform
spaces and we will omit it here.

Proposition 3.38. Let D ⊂ [0,∞) be a dense subset. Then,

BD ⊃ B
′
D

:= σ ({ πt | t ∈ [0,∞) }) = σ ({ πt | t ∈ D }) . (3.102)

If S is separable, we have BD = B′D.

For further reference, we cite the following result from Dudley’s book [Dud02].

Lemma 3.39 ([Dud02, Proposition 4.1.7]). Let S ,T be two topological spaces. Then B(S ) ⊗
B(T ) ⊂ B(S × T ). If both S and T are second countable, we have equality of the σ-fields.

We continue with a simple observation.

Lemma 3.40. Let (S ,U) be a separable uniform Hausdorff space with a countable base.
Assume that U ∈ U is open. Then the sets{

ω ∈ DS ([0,∞))
∣∣∣ (ω(s), ω(t)

)
∈ U

}
(3.103)

and {
ω ∈ DS ([0,∞))

∣∣∣ (ω(s−), ω(t)
)
∈ U

}
(3.104)

are BD-measurable for each 0 ≤ s < t.
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Proof. Let 0 ≤ s < t and write πs,t : DS ([0,∞)) → S × S for the map defined as πs,t(ω) :=
(πs(ω), πt(ω)) = (ω(s), ω(t)). By Proposition 3.38, the map πs,t is BD −B2-measurable, where
B2 denotes the product σ-field on S × S . By assumption S is second countable and hence the
product σ-field B2 and the Borel σ-field B(S × S ) on S × S generated by the product topology
coincide by Lemma 3.39. Consequently, U ∈ B2 and the set in (3.103) is BD-measurable as
the preimage of a measurable set under a measurable map.

The measurability of the set in (3.104) follows by the same arguments if we can show that the
map πs− : DS ([0,∞)) → S with πs−(ω) := ω(s−) is measurable. By definition of left limits,
πs− is the pointwise limit of

(
πsn

)
n∈N for every increasing sequence (sn)n∈N with sn ↑ s. Under

the assumptions of the lemma S is metrizable and we can apply [Dud02, Theorem 4.2.2] to
conclude that πs− is, indeed, measurable. □

Assume that X : Ω → DS ([0,∞)) is a DS ([0,∞))-valued random variable that is a A-BD-
measurable map. As before, we denote the Borel-σ-field on S by B. By virtue of Proposi-
tion 3.38, the concatenations Xt := πt ◦ X : Ω→ DS ([0,∞))→ S areA− B-measurable for
each t ≥ 0 and hence S -valued random variables.

Proposition 3.41 (fdd’s determine distribution of càdlàg random variables). Let (S ,U) be
a separable uniform Hausdorff space and X,Y two DS ([0,∞))-valued random variables.
Assume that X and Y agree in their finite dimensional distributions. Then, X and Y have the
same distribution, PX = PY .

Proof. We use a classic Dynkin system argument. Consider the family

D := { A ∈ BD | P(X ∈ A) = P(Y ∈ A) } . (3.105)

Naturally,D is a Dynkin system. Let T ⊂ [0,∞) be a countable dense subset and define the
family

E :=

 n⋂
i=1

π−1
ti Bi

∣∣∣∣∣∣∣ n ∈ N; ti ∈ T ; Bi ∈ B(S ), ∀i = 1, . . . , n

 . (3.106)

By measurability of the projections πt we have E ⊂ BD and as a direct consequence of the
definition of E, the family is a π-system, i.e. E is closed under intersections. Furthermore, by
Proposition 3.38, E generates BD.

By assumption, we have for all A ∈ E,

P(X ∈ A) = P
(
(Xt1 , . . . , Xtn) ∈ B1 × · · · × Bn

)
= P

(
(Yt1 , . . . ,Ytn) ∈ B1 × · · · × Bn

)
= P(Y ∈ A)

(3.107)

and hence E ⊂ D. By the Dynkin system argument (or Dynkin’s π-λ-Theorem cf. e.g. [Kle14,
Theorem 1.19]) we conclude thatD = BD and hence P(X ∈ A) = P(Y ∈ A) for all A ∈ BD. □
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Definition 3.42 (One-dimensional and finite dimensional distributions). Let (S ,U) be a uni-
form Hausdorff space and X a DS ([0,∞))-valued random variable. The family of probability
measures on S , PXt = P ◦ X−1

t for t > 0 are called the one dimensional distributions of X. For
any finite set 0 ≤ t1 < t2 < · · · < tn of points we refer to the probability measure

P(Xt1 ,...,Xtn ) = P ◦ (Xt1 , . . . , Xtn)−1 ∈ M1(S n) (3.108)

as a finite dimensional distribution of X. ♢

It is useful to introduce the canonical version of X by identifying the probability space
(Ω,A,P) with (DS ([0,∞)),BD,PX) where PX := P ◦ X−1 denotes the push-forward of P under
X. In this case, X is just the identity map and we can define the shift operator θt for t > 0 as

X ◦ θt = ω( · + t). (3.109)

From now on we always implicitly assume that we are working with the canonical versions of
the involved processes.

3.5.3 Tightness of random càdlàg paths

Let (S ,U) be a uniform Hausdorff space and X a DS ([0,∞))-valued random variable. Recall
the notations for partitions of the time axis we introduced in (3.10) to (3.13) of Section 3.1.
For T > 0, U ∈ U and δ > 0 we consider the event

WT
U,δ(X) := {∃π ∈ ΠT with l(π) > δ : (Xs, Xt) ∈ U ∀s, t ∈ I, I ∈ ι(π)} ⊂ Ω. (3.110)

For a family Ξ ⊂ {X : Ω→ DS ([0,∞))} of DS ([0,∞))-valued random variables defined on a
common probability space (Ω,A,P) and T > 0, U ∈ U, δ > 0 we set

WT
U,δ(Ξ) :=

⋂
X∈Ξ

WT
U,δ(X). (3.111)

Theorem 3.43 (Tightness). Let (S ,U) be a uniform Hausdorff space and Ξ a family of
DS ([0,∞))-valued random variables on a common probability space (Ω,A,P). Then Ξ is
tight if and only if the following two conditions are satisfied.

(i) For every ε > 0 and T > 0 there exists a compact set Γ ⊂ S such that

inf
X∈Ξ
P ({ Xt | 0 ≤ t ≤ T } ⊂ Γ) ≥ 1 − ε. (3.112)
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(ii) For every ε > 0, U ∈ U and T > 0 there exists a δ > 0 such that

P
(
WT

U,δ(Ξ)
)
≥ 1 − ε. (3.113)

Proof. Fix ε > 0. By tightness of Ξ there exists a K ⊂ DS ([0,∞)) compact such that
infX∈Ξ P(X ∈ K) ≥ 1 − ε. As K is in particular relatively compact, we obtain (i) and (ii) from
Theorem 3.21.

Now assume (i) and (ii) hold and fix ε > 0. We will construct a compact set K ⊂ DS ([0,∞))
such that infX∈Ξ P(X ∈ K) ≥ 1 − ε establishing tightness of Ξ. Let Γ ⊂ S be such that (3.112)
holds for ε/2. Furthermore, let U ∈ U be open and choose δ > 0 such that (3.113) holds for
U and ε/2. Define A = A(Γ, δ) as in Lemma 3.22. Now let ω ∈ DS ([0,∞)) be such that there
exists a partition π ∈ ΠT of [0,T ] with l(π) > δ and

{ (ω(s), ω(t)) | s, t ∈ I } ⊂ U ∀I ∈ ι(π). (3.114)

Furthermore, assume thatω([0,T ]) ⊂ Γ. By the same argument as in the proof of Theorem 3.21
we can find some ω ∈ A and D = D(U, δ) ∈ D open depending only on U and δ such that
(ω,ω) ∈ D. Since A is relatively compact by Lemma 3.22 we obtain from Lemma 2.31 that
D[A] is totally bounded and hence relatively compact by completeness. Taking K = D[A] we
have found the desired compact set. □

Next we want to derive equivalent conditions for the two conditions for tightness in Theo-
rem 3.43. We start with condition (ii) and construct a partition explicitly.

Fix ω ∈ DS ([0,∞)), U ∈ U open and let V ∈ U open be such that V ◦ V ⊂ U. For each
k ∈ N0 we define τk, σk as follows. Let τ0 = σ0 ≡ 0 and inductively define

τk := inf { t > τk−1 | (ω(t), ω(τk−1)) < V } (3.115)

if τk−1 < ∞ and τk = ∞ if τk−1 = ∞. And

σk := sup { t ≤ τk | (ω(t), ω(τk)) < V or (ω(t−), ω(τk)) < V } , (3.116)

if τk < ∞ and σk = ∞, if τk = ∞.

Furthermore, we write
ξk :=

σk + τk

2
, k ∈ N0 (3.117)

and observe that, by definition, limk→∞ ξk = ∞. If τk+1 < ∞, we have (ω(τk), ω(τk+1)) < V
and hence σk+1 ≥ τk. Thus,

σk ≤ ξk ≤ τk ≤ σk+1 ≤ ξk+1 ≤ τk+1, (3.118)
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for all k ∈ N0. If ξk < ∞ we obtain the following lower bound for the difference ξk+1 − ξk

from (3.118)

ξk+1 − ξk =
σk+1 + τk+1

2
−
σk + τk

2
≥
τk + τk+1

2
−
σk + τk

2
=
τk+1 − σk

2
. (3.119)

For sake of readability we do not indicate the dependence of σk, τk and ξk on V ∈ U by
notation at this point but note that the definitions very much depend on V (and U).

Now take T > 0 and δ > 0. Assume that there exists a partition π ∈ ΠT of [0,T ] with l(π) > δ
such that { (ω(s), ω(t)) | s, t ∈ I } ⊂ V for all I ∈ ι(π). From (3.118) we deduce that

min { τk+1 − σk | τk < T } > δ, (3.120)

as τk+1 −σk ≤ δ for some k ≥ 0 would imply that any interval I of length at least δ with τk ∈ I
also contains either σk or τk+1 or both in its interior. That means there exist s, t ∈ I such that
(ω(s), ω(t)) < V , in contradiction to the assumption. Consequently, (3.119) implies that

min { ξk+1 − ξk | ξk < T } >
δ

2
. (3.121)

On the other hand, if we have (3.121) we can take

π′ := (ξ0, ξ1, . . . , ξk+1) ∈ ΠT (3.122)

as a partition of [0,T ] with the properties l(π′) > δ/2 and { (ω(s), ω(t)) | s, t ∈ I } ⊂ V ◦V ⊂ U
for all I ∈ ι(π′).

It is now straight forward to extend our definitions of σk, τk and ξk to maps DS ([0,∞)) →
[0,∞] for k ∈ N0. In fact, these maps are measurable.

Lemma 3.44 (Measurability of σk, τk, ξk). Let (S ,U) be a separable uniform Hausdorff space
with a countable base. Then the maps σk, τk, ξk : DS ([0,∞)) → [0,∞], k ∈ N0 as defined
above are Borel measurable.

Proof. By Lemma 3.20 and the subsequent remarks, DS ([0,∞)) equipped with the Skorokhod
uniformity is a separable uniform Hausdorff space. We proceed by induction. Clearly σ0 and
τ0 are measurable as constant functions. Let k ≥ 1 and consider the preimage τ−1

k [0, s) of [0, s)
under τk for some s > 0. We use the event notation and write

{τk < s} = { ω ∈ DS ([0,∞)) | τk(ω) < s } = τ−1
k [0, s). (3.123)

We can decompose the set {τk < s} as

{τk < s} = {τk−1 < ∞} ∩
⋃

t∈[0,s)∩Q

({(
ω(τk−1), ω(t)

)
< V

}
∩ {τk−1 < t}

)
. (3.124)

72 Chapter 3 The path space



By induction hypothesis, the sets {τk−1 < ∞} and {τk−1 > t} are measurable and it remains to
show that the sets

{(
ω(τk−1), ω(t)

)
< V

}
are measurable. Again, by hypothesis τk−1 is measur-

able and so is the map φk : DS ([0,∞))→ S , defined as φk(ω) = ω(τk−1(ω)), as composition
of measurable maps by Lemma 3.3.We can thus follow the lines of the proof of Lemma 3.40
to conclude that

{(
ω(τk−1), ω(t)

)
∈ V

}
is measurable, which implies the measurability of τk.

Then, measurability of σk follows from the definition and the measurability of τk together
with Lemma 3.40 and Lemma 3.3. Finally, measurability of ξk is a direct consequence of the
measurability of σk and τk. □

Given a random variable X : Ω→ DS ([0,∞)), the preceding lemma shows that the concate-
nations σX

k := σk ◦ X, τX
k := τk ◦ X and ξX

k := ξk ◦ X are [0,∞]-valued random variables. In
order to make the dependence on the entourage V in the definition explicit, we add it to the
superscript.

Lemma 3.45. Let (S ,U) be a separable uniform Hausdorff space with a countable base and
Ξ a family of DS ([0,∞))-valued random variables on a common probability space (Ω,A,P).
Then condition (ii) of Theorem 3.43 is equivalent to each of the following.

(i) For all U ∈ U open and T > 0 it holds that

lim
δ→0

inf
X∈Ξ
P
(
WT

U,δ(Ξ)
)
= 1. (3.125)

(ii) For all U ∈ U open and T > 0 it holds that

lim
δ→0

inf
X∈Ξ
P
(
min

{
τX,U

k+1 − σ
X,U
k

∣∣∣ k ∈ N : τX,U
k < T

}
≥ δ

)
= 1. (3.126)

(iii) For all U ∈ U open and T > 0 it holds that

lim
δ→0

inf
X∈Ξ
P
(
min

{
ξX,U

k+1 − ξ
X,U
k

∣∣∣ k ∈ N : ξX,U
k < T

}
≥ δ

)
= 1. (3.127)

Proof. Clearly, (i) is equivalent to (ii) of Theorem 3.43. In the discussion above we have
shown that (i) implies (ii) as well as (iii). Furthermore, we have shown that (iii) implies (i)
hence the claim is established. □

3.5.4 Convergence of random càdlàg paths

For A ⊂ S open recall the first hitting time operator τA : DS ([0,∞))→ R+ from Definition 3.5
and the first contact time operator γA : DS ([0,∞))→ R+ from Definition 3.7, respectively.

Lemma 3.46 (Measurability of hitting times and contact times). Let (S ,U) be a separable
uniform Hausdorff space with a countable base and A ∈ B a Borel subset of S . Then the maps
τA, γA : DS ([0,∞))→ [0,∞] are Borel measurable.
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Proof. Fix s ≥ 0 and assume for now that A ⊂ S is open. By right continuity of ω, the set
τ−1

A [0, s) can be written as

{τA < s} =
⋃

t∈[0,s]∩Q

{ ω ∈ DS ([0,∞)) | ω(t) ∈ A } =
⋃

t∈[0,s]∩Q

π−1
t A. (3.128)

And the measurability of τA follows from the measurability of πt for all t ≥ 0. On the other
hand, if A ⊂ S is closed, we have by the same argument

{τA > s} =
⋂

t∈[0,s]∩Q

π−1
t (A \ S ) ∈ B(R≥0). (3.129)

Now let A ∈ B(S ) be arbitrary. Then A is the countable union of open or closed sets (An)n∈N,
hence

{τA < s} =
⋃
n∈N

{τAn < s} ∈ B(R≥0). (3.130)

For the first contact time of an arbitrary Borel set A ⊂ S we obtain

{γA < s} =
⋃

t∈[0,s]∩Q

{
ω ∈ DS ([0,∞))

∣∣∣ ω(t) ∈ A
}
∪

{
ω ∈ DS ([0,∞))

∣∣∣ ω(t−) ∈ A
}

=
⋃

t∈[0,s]∩Q

π−1
t A ∪ π−1

t− A,
(3.131)

which readily implies measurability of γA as πt− is measurable for all t ≥ 0 (see the proof of
Lemma 3.40) □

In metric spaces and in metrizable uniform spaces we have the following probabilistic version
of Lemma 3.2.

Lemma 3.47 (cf. [EK86, Lemma 3.7.7]). Let (S ,U) be a separable uniform Hausdorff space
with a countable base. Assume that X is a DS ([0,∞))-valued random variable. Then the set

J(X) := { t > 0 | P(Xt , Xt−) > 0 } (3.132)

is at most countable.

Proof. Let δ > 0 and U ∈ U open. For T > 0 fixed but arbitrary consider the set

JT
U,δ(X) := { t ∈ [0,T ] | P((Xt, Xt−) < U) ≥ δ } . (3.133)

Assume JT
U,δ(X) contains a sequence (tn)n∈N of distinct points. Write An := {(Xtn , Xtn−) < U},

by Fatou’s lemma we obtain

P
({

(Xtn , Xtn−) < U infinitely often
})
= P(lim inf

n→∞
An) ≥ lim sup

n→∞
P(An) ≥ δ > 0, (3.134)
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in contradiction to Lemma 3.2 and hence JT
U,δ(X) is finite. Letting T → ∞ and δ→ 0 we find

that the set
JU(X) := { t > 0 | P((Xt, Xt−) < U) > 0 } (3.135)

is at most countable. Finally, taking a sequence of open entourages Un ∈ U with Un ⊃ Un+1

and
⋂

n≥1 Un = ∆, we conclude that

J(X) =
⋃
n≥1

JUn(X) (3.136)

is at most countable. □

Theorem 3.48 (Weak convergence of paths by weak convergence of hitting times). Let (S ,U)
be a separable uniform Hausdorff space with a countable base. Assume that X,

(
X(n)

)
n∈N

are DS ([0,∞))-valued random variables with distribution PX(n)
and PX respectively. Then,

PX(n)
=⇒
n→∞
PX if and only if the following conditions are satisfied.

(i) The sequence
{
PX(n)

∣∣∣∣ n ∈ N
}

is tight.

(ii) There exists a countable dense set T ⊂ { t > 0 | Xt = Xt− a.s. }, a countable dense subset
D ⊂ S and a countable baseV ⊂ U ofU consisting of open entourages such that for
all x ∈ D, all V ∈ V open with τV[x](X) = γV[x](X) a.s. and all s ∈ T it holds that

τV[x]
(
X(n) ◦ θs

) d
−→ τV[x](X ◦ θs). (3.137)

Proof. To keep the proof more readable we set Pn := PX(n)
for n ∈ N. We begin with the

implication “⇒”. Assume Pn converges weakly to PX . Then (i) is obvious (cf. [Kal21,
Theorem 23.2]) and it remains to show that (ii) holds. By Skorokhod’s coupling theorem
Theorem C.6 there exist DS ([0,∞))-valued random variables ξ,

(
ξ(n)

)
n∈N

on some probability

space (Ω′,A′,P′) such that Pξ = PX and Pξ
(n)
= Pn for all n ∈ N and ξ(n) → ξ P′-a.s. Using

Theorem 3.27 we conclude that there exists a P′-nullset N′ ⊂ Ω′ such that for all x ∈ S , all
U ∈ U open with τU[x](ξ(ω′)) = γU[x](ξ(ω′)) and all s > 0 with ξs(ω′) = ξs−(ω′) it holds that

lim
n→∞

τU[x]
(
ξ(n)(ω′) ◦ θs

)
= τU[x]

(
ξ(ω′) ◦ θs

)
(3.138)

for all ω′ ∈ Ω′ \ N′. That implies (ii), as Lemma 3.47 ensures the existence of a countable
dense set T ⊂ { t > 0 | Xt = Xt− a.s. }. Observe that we have actually shown the stronger
conclusion that (3.137) holds for all x ∈ S and V ∈ U open with τV[x](X) = γV[x](X).

For the reverse implication “⇐” assume that (Pn)n∈N is tight. In order to show that X(n) =⇒
n→∞

X

we need to show that all subsequential limits of
(
X(n)

)
n∈N

have the same distribution. To that
end assume there exists a random variable Y : Ω→ DS ([0,∞)) with distribution PY such that

Pnk =⇒k→∞
PY (3.139)
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along a subsequence. Assume furthermore that (ii) holds, i.e. there exist countable dense
subsets D ⊂ S and T ⊂ { t > 0 | Xt = Xt− a.s. } as well as a countable baseV ⊂ U ofU such
that (3.137) holds for all x ∈ D, s ∈ T and all V ∈ V with τV[x](X) = γV[x](X). By (3.139) we
have Xnk =⇒k→∞

Y and we can use what we have shown in the first part of the proof to deduce

that for all x ∈ D and s ∈ T ′, where

T ′ ⊂ { t ≥ 0 | Xt = Xt− and Yt = Yt− a.s. } (3.140)

is a countable dense subset by Lemma 3.47 and all V ∈ V with

τV[x](X) = γV[x](X) and τV[x](Y) = γV[x](Y) (3.141)

it holds that
τV[x]

(
Y (k) ◦ θs

) d
−→ τV[x](Y ◦ θs)

d
= τV[x](X ◦ θs). (3.142)

Again, we can conclude from Skorokhod’s coupling theorem, Theorem C.6 that there exists a
probability space (Ω′,A′,P′) and random variables ζ,

(
ξ(n)

)
n∈N

with Pζ = PY and Pξ
(k)
= Pk on

Ω′ such that ξ(k) → ζ almost surely. Furthermore there exist a random variable ξ on Ω′ with
Pξ = PX such that for all x ∈ D, s ∈ T ′ and V ∈ V satisfying (3.141) there exists a nullset
N′(x, s,V) ⊂ Ω′ such that

lim
k→∞

τV[x]
(
Y (k)(ω′) ◦ θs

)
= τV[x](Y(ω′) ◦ θs) = τV[x](X(ω′) ◦ θs) (3.143)

for all ω′ ∈ Ω′ \ N′(x, s,V). As D, T ′ andV were assumed to be countable, the set

N′ :=
⋃
x∈D

⋃
s∈T ′

⋃
V∈V

N′(x, s,V) (3.144)

is still a nullset and (3.143) holds for all x ∈ D, s ∈ T ′ and all V ∈ V satisfying (3.141)
outside the common nullset N′. From Theorem 3.10 we conclude that ζ(ω′) = ξ(ω′) for all
ω′ ∈ Ω \ N′, which implies that the laws of X and Y agree. Hence every subsequential limit of(
X(n)

)
n∈N

has the same distribution as X and thus Pn =⇒
n→∞
PX , as claimed. □
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Symmetric Feller processes 4
„At a purely formal level, one could call probability

theory the study of measure spaces with total
measure one, but that would be like calling number
theory the study of strings of digits which terminate.

— Terence Tao
Topics in random matrix theory

In this chapter we introduce the main objects of this thesis, namely symmetric Feller processes.
In this chapter we achieve two main results. First we state with Theorem 4.72 that a Feller
process X is uniquely determined by a family of Green operators associated with X. Finally,
we give in Theorem 4.75 a tightness criterion for Feller processes.

The chapter is structured as follows: We first introduce time homogeneous Markov processes
and their semigroups. We then define Borel right processes and the associated resolvent
or potential operators and Green operators. We further introduce the notions of symmetry
and strong symmetry of Borel right processes. Next we introduce the Feller property for
semigroups. This leads to the notion of a Feller process and we will show that each Feller
process possesses a modification with càdlàg sample paths. Furthermore, we will show that to
each Feller semigroup, there exists a unique Feller process with càdlàg paths. This leads to
the observation that a Feller process with càdlàg paths is uniquely determined by its family of
resolvent operators. In preparation of the next chapter we introduce Hunt processes, that is
Feller processes with quasi left continuous paths.

Up to this point everything is standard and can be found in most textbooks on stochastic
processes. Our main references are the books [Kal21] by Olav Kallenberg, [Kle14] by Achim
Klenke and [CW05] by Kai Lai Chung and John B. Walsh. Although we state all our results
in the framework of Polish uniform spaces, the classical results for Polish metric spaces apply
as every Polish uniform space is completely metrizable by Definition 2.38 and Lemma 2.39.
Nevertheless we repeat the proofs of the most important results in order to remain as self
contained as possible and to highlight the fact that the actual choice of a metric does not matter
and that all important properties are already captured by the uniform structure.

We then proceed to show that a Feller process is not only uniquely determined by its resolvent
family but also by its family of Green operators. This result will play an important role in the
proof of our convergence theorem Theorem 6.1.
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Finally we proof a tightness criterion for Feller processes that is closely related to Aldous’s
tightness criterion (cf. [Ald78, Theorem 1]) and conclude the chapter with a couple of
examples.

Throughout this chapter let (S ,U, ν) denote a locally compact uniform measure space. As
usual, we denote by B(S ) the Borel σ-field on S . Furthermore, we write B(S ;R) for the Borel
measurable function f : S → R. When no confusion can occur, we drop the braces and write
for both sets simply B. We denote the set of bounded and Borel measurable functions by

Bb = Bb(S ;R) := { f ∈ B(S ;R) | ∥ f ∥∞ < a ∈ R } (4.1)

and the family of non negative Borel measurable functions by B+ = B+(S ,R) ⊂ B(S ;R) with
the obvious meaning of the combination B+b = Bb ∩ B

+.

Finally we write C = C(S ;R) for the continuous real valued functions and introduce the
following notations

Cb = Cb(S ;R) := { f ∈ C | ∥ f ∥∞ < a ∈ R } (4.2)

C+ = C+(S ;R) := { f ∈ C | f (x) ≥ 0∀x ∈ S } (4.3)

C∞ = C∞(S ;R) :=
{

f ∈ Cb
∣∣∣ ∀ε > 0∃K ⊂ S compact s.t. | f (x)| < ε, ∀x ∈ Kc }

(4.4)

C0 = C0(S ;R) :=
{

f ∈ C∞
∣∣∣ ∃K ⊂ S compact s.t. f (x) = 0∀x ∈ Kc }

(4.5)

for the bounded, the non negative, the vanishing at infinity and the compactly supported
continuous functions, respectively.

4.1 Markov processes

We begin with a fairly general introduction into stochastic processes. This section is kept as
short as possible while trying to make this thesis as self contained as possible. All the concepts
put forward here are mathematical folklore and can be found in any textbook on Markov
processes, for example [EK86], [MR06], [Lig10], [RY99, Chapter 3], [FOT11, Appendix 2],
[Kal21], [Kle14], [KS98] or [CW05].

4.1.1 Stochastic processes

Definition 4.1 (Stochastic process). Let (Ω,A,P) be a probability space and T , Ø some set
of indices. A stochastic process on (Ω,A,P) with index set T and values in the measurable
space (S ,B) is a collection of mappings X = { Xt : Ω→ S | t ∈ T } such that for each t ∈ T
the mapping Xt : Ω→ S isA/B-measurable and as such a S -valued random variable. ♢

Throughout this chapter we assume that (Ω,A,P) is a probability space and that (S ,U) is a
Polish uniform space, that is, a separable uniform Hausdorff space with a countable base that
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is completely metrizable. It is useful to recall that in this situation the Borel σ-fields B(S × S )
and B(S ) ⊗ B(S ) coincide by Lemma 3.39.

Evaluating the process X at k ∈ N many points in T yields a probability measure on the
product space S k. This leads us to the following Definition (cf. Definition 3.42).

Definition 4.2 (Finite dimensional distributions & versions). Let X be a stochastic process
with values in (S ,B). For k ∈ N and {t1, . . . , tk} ⊂ T define the finite dimensional distribution
PX

t1,...,tk of X as the push forward of the probability measure P on the product space (S k,B(S k))
under the map (Xt1 , . . . , Xtk ) : Ω→ S k, i.e.

PX
t1,...,tk (A) := P

({
(Xt1 , . . . , Xtk ) ∈ A

})
, A ∈ B(S k). (4.6)

Furthermore, we say that two stochastic processes X and Y with values in (S ,B) are versions
of each other, if they have the same finite dimensional distributions, i.e. for all k ∈ N and
{t1, . . . , tk} ⊂ T it holds that PX

t1,...,tk = P
Y
t1,...,tk . ♢

Note that in the above definition the processes X and Y are not necessarily defined on the same
probability space. In the case when X and Y are defined on the same probability space and
their finite dimensional distributions coincide, we say that X and Y are modifications of each
other. In that case we have Xt = Yt a.s. for all t ∈ T .

For the remainder of this chapter let X be a stochastic process indexed by time, i.e. we choose
T = [0,∞) or, occasionally, T = N when we consider processes at discrete points in time.

For fixed ω ∈ Ω we call the mapping t 7→ Xt(ω) a sample path, or simply a path, of the
process X. We say that the paths of X have a certain property (almost surely) if the mappings
t 7→ Xt(ω) have this property for (P-almost) all ω ∈ Ω. By a slight abuse of terminology we
sometimes say that the process X has a property when the paths of X have that property.

We will only consider such processes which have almost surely right continuous paths with
left limits. That is, we consider stochastic processes as random variables X : Ω→ DS ([0,∞)).
This restriction will be justified later in this chapter, when we show in Proposition 4.44 that
Feller processes always admit a modification which has almost surely càdlàg sample paths.

If the state space S is not compact and X has càdlàg paths, the process X might leave the
state space S in finite time with positive probability. We provide the following (non rigorous)
example as an illustration.

Example 4.3. Consider the process X = (Xt)t≥0 with Xt = (1 −Wt)−1, where W = (Wt)t≥0 is a
standard Brownian motion on R started in 0. Then the process X explodes when the Brownian
motion hits {1} which happens with positive probability (even a.s.) in finite time as W has
continuous paths. □

4.1 Markov processes 79



Compactification

If the state space (S ,U) is locally compact, we can avoid the pitfalls that come with explosion
by adjoining a point ϑ to S and consider the one-point compactification (Sϑ,Bϑ) of (S ,B)
(see Definition A.22). Observe that every f ∈ C∞ can be canonically extended to a function
f̂ ∈ Ĉ = C(S ϑ;R) by setting f̂ (ϑ) = 0. Under this extension, every f ∈ C∞ is extended
to a function f̂ ∈ Ĉ∞ = C∞(S ϑ;R) and every f ∈ C0 is extended to a function f̂ ∈ Ĉ0 =

C0(S ϑ;R)

The point ϑ serves as a cemetery point for the process, meaning that

P(Xt+s ∈ {ϑ} | Xt = ϑ) = 1 for all s, t ≥ 0. (4.7)

Extending this metaphor we define the lifetime ζ of X as

ζ := inf { t ≥ 0 | Xt = ϑ } , (4.8)

where we define inf Ø = ∞, as usual, and hence P(X∞ = ϑ) = 1.

Generally, we call any state x ∈ S that satisfies (4.7) absorbing.

Filtrations

Next we introduce filtrations. Heuristically, filtrations capture the (incomplete) information
available up to time t ≥ 0.

Set F 0
∞ := σ ({ Xs | s ∈ [0,∞) }) and F 0

t := σ ({ Xs | s ≤ t }) for all t ∈ [0,∞), where σ( · )
denotes the smallest σ-field that makes the content of the braces measurable.

For our purposes it is necessary to go a bit further into detail. We therefore collect some
measure theoretic notions in this paragraph for further reference.

Definition 4.4 (Admissible filtrations). Let (Ω,A,P) be a probability space. A family (At)t≥0

of sub σ-fields ofA is called a filtration (of the probability space (Ω,A,P)), if it is increasing,
i.e.As ⊂ At for all s < t. In that case say that (Ω,A, (At)t≥0 ,P) is a filtered probability space.

Suppose X = (Xt)t≥0 is a stochastic process defined on (Ω,A,P) with values in a measurable
space (S ,B). A filtration (At)t≥0 of (Ω,A,P) is called admissible (for X) if Xt is At/B-
measurable for each t ≥ 0. The process X is said to be adapted to (At)t≥0 if (At)t≥0 is
admissible for X. ♢

Coming back to the heuristics for filtrations above, let X be adapted to the filtration (At)t≥0,
and A ∈ At for some t > 0. Then we can decide whether the event A has occurred if we know
the process X up to time t.
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It is clear that
(
F 0

t

)
t≥0

, where F 0
t = σ ({ Xs | s ≤ t }) is an admissible filtration and we refer to

it as the minimal admissible filtration or the canonical filtration.

A filtration (At)t≥0 is said to be right continuous if

At = At+ :=
⋂
s>t

As (4.9)

for all t ≥ 0.

Remark 4.5 (Right continuous filtrations). Every filtration (At)t≥0 can be turned into a right
continuous filtration simply by settingA+t := At+ for every t ≥ 0. Clearly,

(
A+t

)
t≥0 is coarser

that A in the sense that At ⊂ A
+
t for every t ≥ 0. If

(
F 0

t

)
t≥0

is the minimal admissible
filtration then the right continuous filtration

(
F +t

)
t≥0 is an admissible filtration for X. ♢

Let (S ,B) be a measurable space and µ ∈ M1(S ) a probability measure. We write Nµ :=
{ A ∈ B | µ(A) = 0 } for the family of µ-nullsets or µ-negligible sets. For any sub σ-fieldA of
B define the family of µ-negligibleA-sets as

Nµ(A) { A ∈ A | µ(A) = 0 } . (4.10)

Recall that the powerset of a set A is the family of all subsets of A and denote the powerset of
A by P(A). For any family of setsA we define

P(A) :=
⋃
A∈A

P(A), (4.11)

the union of all powersets of sets in A. Now recall that the completion of a σ-field A ⊂ B
with respect to a measure µ ∈ M1(S ) is defined as

Aµ := σ
(
A∪ P(Nµ(A))

)
. (4.12)

We define the universal completion ofA with respect to a family M ⊂ M1(S ) of probability
measures as the intersection of the completion ofAµ over all probability measures µ ∈ M:

AM :=
⋂
µ∈M

Aµ. (4.13)

Definition 4.6 (Complete and augmented filtrations). Let (At)t≥0 be a filtration of the proba-
bility space (Ω,A,P).

(i) The completion of the filtration (At)t≥0 with respect to P is the filtration
(
At

)
t≥0

defined
by

At := σ (At ∪ P(NP(A)) . (4.14)
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(ii) The augmentation of (At)t≥0 with respect to P is the filtration
(
A∗t

)
t≥0 defined by

A∗t := σ (At ∪ P(NP(At)) . (4.15)
♢

Some authors say that a filtered probability space (Ω,A, (At)t≥0 ,P) satisfies the usual condi-
tions if (At)t≥0 is right continuous and augmented with respect to P (cf. [Kle14, Definition
21.22]).

Again, it is an immediate consequence from the definition that if (Ft)t≥0 is admissible for X,
then its completion

(
F t

)
t≥0

and augmentation
(
F ∗t

)
t≥0 are admissible for X as well.

Stopping times

Let (Ω,A, (At)t≥0 ,P) be a probability space and τ : Ω → [0,∞] a random variable. We
continue to interpret the positive real axis as time, in the same spirit we call such a random
variable τ a random time. If X is a stochastic process on the same probability space, we write
Xτ as a shorthand for the random variable ω 7→ Xτ(ω) = Xτ(ω)(ω). Using the established
terminology, we refer to the process (Xt∧τ)t≥0 as the process killed at time τ or, simply, the
killed process. If the state space is locally compact, it is sometimes convenient to introduce a
process X̂ where we set X̂τ = ϑ for the cemetery point of the one point compactification Sϑ of
S , that is, we move the process to the cemetery right when it is killed.1

We are mostly interested in random times τ that are related to a stochastic process X in a way
that we can determine whether τ ≤ t if we know the process X up to time t. That leads to the
following definition.

Definition 4.7 (Optional times and stopping times). Let (Ω,A, (At)t≥0 ,P) be a filtered proba-
bility space and τ : Ω→ [0,∞] a random time.

(i) τ is called a (At)t≥0-optional time if

{τ < t} ∈ At ∀t ≥ 0. (4.16)

(ii) τ is called a (At)t≥0-stopping time if

{τ ≤ t} ∈ At ∀t ≥ 0. (4.17)
♢

It is worth pointing out that many authors do not distinguish between stopping times and
optional times. In [Kle14], AchimKlenke uses stopping times in the sense of our Definition 4.7.
On the other hand, Kallenberg in [Kal21] or Chung and Walsh in [CW05] use the terms

1Kallenberg [Kal21, p. 378] calls this terminology morbid but concedes that it is well established.
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synonymously and use the term optional time for stopping times in the sense of Definition 4.7.
The disambiguation we use here is due to Ioannis Karatzas and Steven E. Shreve as found in
[KS98, Defintion 1.2.1]. The two definitions are quite similar. Indeed they coincide for right
continuous filtrations.

Lemma 4.8 (Stopping and optional times). Let (Ω,A, (At)t≥0 ,P) be a filtered probability
space. Then, every stopping time is optional. If, in addition, the filtration (At)t≥0 is right
continuous, then every optional time is a stopping time.

Proof. Assume τ is a stopping time. Observe that{
τ ≤ t −

1
n

}
∈ At− 1

n
⊂ At, (4.18)

for every t ≥ 0 and n ∈ N with t ≥ 1
n . Hence,

{τ < t} =
⋃
n∈N

{
τ ≤ t −

1
n

}
∈ At, (4.19)

and we have shown the first assertion. Now let (At)t≥0 be right continuous and assume that τ
is an optional time. Analogously to (4.19) we can write

{τ ≤ t} =
⋂
n∈N

{
τ < t +

1
n

}
. (4.20)

Now, {τ < t + 1/n} ∈ At+ 1
n

for each n ∈ N and thus,

{τ ≤ t} ∈
⋂
n∈N

At+ 1
n
= At+ = At, (4.21)

which is what we wanted to show. □

The simplest yet important example of stopping times are constant times. Let s > 0 as s ≤ t is
either the empty set or the whole of Ω and thus contained inAt for every t ≥ 0.

From now on we will always implicitly assume that (Ω,A, (At)t≥0 ,P) is a filtered probability
space and omit the reference to the filtration when no confusion can occur. For a stopping
time τ we introduce the σ-field of the τ-past,

Aτ := { A ∈ A | A ∩ {τ ≤ t} ∈ At ∀t ≥ 0 } . (4.22)

It is straight forward to check thatAτ is indeed a σ-field.

Lemma 4.9. Let τ, σ be stopping times with σ(ω) ≤ τ(ω) for all ω ∈ Ω. Then,Aσ ⊂ Aτ.
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Proof. Let A ∈ Aσ and t ≥ 0. By definition of Aσ, we have A ∩ {σ ≤ t} ∈ At. Since τ is a
stopping time we also have {τ ≤ t} ∈ At. By assumption, σ ≤ τ and thus {τ ≤ t} ⊂ {σ ≤ t}.
Hence

A ∩ {τ ≤ t} = (A ∩ {σ ≤ t}) ∩ {τ ≤ t} ∈ At (4.23)

and therefore A ∈ Aτ. □

We present a well known lemma that shows that certain operations on optional times yield
new optional times.

Lemma 4.10 (optional times). Let (S ,A, (At)t≥0 ,P) be a filtered probability space. Assume
(τn)n∈N, τ and σ are optional times. Then the following random times are also optional:

(i) σ ∨ τ and σ ∧ τ,

(ii) τ + σ,

(iii) supn∈N τn and infn∈N τn,

(iv) lim supn→∞ τn and lim infn→∞ τn.

Proof. We obtain (i) from the simple observation

{σ ∨ τ < t} = {σ < t} ∩ {τ < t} and {σ ∧ τ ≥ t} = {σ ≥ t} ∩ {τ ≥ t}. (4.24)

Now fix t0 > 0. By (i) we have that σ ∧ t0 and τ ∧ t0 are optional times. We first show that
both random times areAt0-measurable. Suppose t ≤ t0, then

{σ ∧ t0 < t}, {τ ∧ t0 < t} ∈ At ⊂ At0 . (4.25)

Now suppose t > t0, then (σ ∧ t0) and (τ ∧ t0) are both bounded by t and hence {σ ∧ t0 < t} =
{τ∧ t0 < t} = Ω ∈ At0 . Now define σ̂ := (σ∧ t0) + 1σ≥t0 and τ̂ := (τ∧ t0) + 1τ≥t0 and observe
that both σ̂ and τ̂ as well as the sum σ̂ + τ̂ are At0-measurable, by construction. It is now
straight forward to check the equality

{σ + τ < t0} = {σ̂ + τ̂ < t0} ∈ Ft0 . (4.26)

Since t0 > 0 was arbitrary, this proves (ii).

For (iii) we set σ̂ := infn∈N τn and τ̂ := supn∈N τn. Then, for all t ≥ 0,

{σ̂ < t} =
⋃
n∈N

{τn < t} ∈ At. (4.27)

On the other hand, by Lemma 4.8, every optional time is a stopping time of the right continuous
filtration

(
A+t

)
t≥0. Hence,

{τ̂ ≤ t} =
⋂
n∈N

{τn ≤ t} ∈ A+t . (4.28)
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Thus, τ̂ is again a stopping time with respect to the right continuous filtration
(
A+t

)
t≥0. Apply-

ing again Lemma 4.8, shows that τ̂ is indeed optional with respect to (At)t≥0.

Finally, (iv) follows from (iii) by the fact that

lim sup
n→∞

τn = inf
m∈N

sup
n≥m

τn (4.29)

and
lim inf

n→∞
τn = sup

m∈N
inf
n≥m

τn, (4.30)

thus completing the proof. □

Remark 4.11. Observe that (i), (ii) and the first part of (iii) of Lemma 4.10 hold also for
stopping times. But in general infn∈N τn is not again a stopping time for any sequence (τn)n∈N

of stopping times. ♢

4.1.2 Markov processes

We now introduce the Markov property and define Markov processes. Loosely speaking, the
Markov property means that the past and the future of a stochastic process are independent
of each other given the present. Despite the general definition we will restrict ourselves to
time homogeneous Markov processes, as they come with useful analytic features like the
transition semigroups and resolvent families. Furthermore, we will define stopping times and
introduce the Green operators. Finally we introduce a further subclass of Markov processes
namely Borel right processes and we define what it means for such processes to be symmetric
or strongly symmetric.

Definition 4.12 (Markov kernel). Let (Ω,A) and (S ,B) be two measurable spaces. A Markov
kernel (or stochastic kernel) is a map κ : Ω × B → [0, 1] with the following properties

(i) for each B ∈ B, the map κ( · , B) : Ω→ [0, 1] is measurable,

(ii) κ(ω, · ) is a probability measure on (S ,B) for each ω ∈ Ω.

If instead of (ii), for all ω ∈ Ω, κ(ω, · ) is a finite Borel measure on (S ,B) with κ(ω, S ) ≤ 1 for
all ω ∈ Ω then κ is called a sub Markov (or substochastic) kernel. ♢

Definition 4.13 (Markov process). Let X = { Xt | t ∈ [0,∞] } be a stochastic process on the
filtered probability space

(
Ω,A, (At)t≥0 ,P

)
. We say that X hast the Markov property if for

each t > 0
E [Y | At] = E [Y | Xt] (4.31)

almost surely for all σ({ Xs | s ≥ t } measurable Y .
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The stochastic process X with state space S is called a Markov process if it possesses the
Markov property and if there exists a family of probability measures { Px | x ∈ Sϑ } on (Ω,A)
such that

(i) the map x 7→ Px(Xt ∈ B) ∈ [0, 1] is Borel measurable for each t ≥ 0 and B ∈ B and

(ii) for all x ∈ Sϑ it holds that Px(X0 = x) = 1. ♢

Denote byM1(S ) ⊂ M f (S ) ⊂ M(S ) the set of probability measures on S , the set of finite
measures on S and the set of all measures on (S ,B(S )), respectively. For a measure µ ∈ M(S )
we define

Pµ( · ) :=
∫

S
Px( · )µ( dx). (4.32)

Taking Pµ(Ω) it is easy to see that Pµ ∈ M1 (∈ M f ) if and only if µ ∈ M1 (∈ M f ). We denote
the expectations with respect to Px and Pµ by Ex and Eµ, respectively.

For x ∈ S , A ∈ B and t > s ≥ 0 define

ps,t(x, A) := P(Xt ∈ A | Xs = x). (4.33)

Then
{

ps,t
∣∣∣ t > s ≥ 0

}
is a family of (sub) Markovian transition functions in the sense that

ps,t : S × B → [0, 1] is a is a (sub) Markov kernel for each t > s ≥ 0 and that for all
u > s > t ≥ 0, x ∈ S and A ∈ B it holds that

ps,u(x, A) =
∫

S
ps,t(x, dy)pt,u(y, A). (4.34)

The equation (4.34) is called Chapman-Kolmogorov equation and it is a consequence of the
Markov property of X.

We call a Markov process (time) homogeneous when the associated transitions functions
depend only on the difference |t − s|. In that case ps,t(x, A) = pt−s(x, A) = Px(Xt−s ∈ A) and
the Chapman-Kolmogorov equation (4.34) reads as

pt(x, A) =
∫

S
pt−s(y, A)ps(x, dy) (4.35)

for t > s ≥ 0.

Definition 4.14 (transition functions). Let (S ,B) be a measurable space. A family (pt)t≥0 of
(sub) Markov kernels pt : S × B → [0, 1] is called a family of (sub) Markovian transition
functions if it satisfies the Chapman-Kolmogorov equation(4.35) for all 0 ≤ s < t < ∞ and
p0(x, A) = 1A(x). ♢

It is worth noting that the transition functions pt are Markov kernels if and only if the associated
process is non-explosive.
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Suppose X is a Markov process, then for each ω ∈ Ω the map X(ω) : [0,∞)→ S is called a
path. It is often useful to impose further regularity assumptions on these paths. For example,
one can consider only Markov processes with continuous paths. This turns out to be rather
restrictive as we want to allow the processes to have jumps. One possible choice is to
consider processes that have càdlàg paths (more precisely, processes for which there exists
a modification with càdlàg paths). As a first observation, homogeneous Markov processes
cannot jump at fixed timepoints, since that would break the homogeneity. As an illustration
consider the following example.

Example 4.15 (Processes with fixed jump times are non homogeneous). Let S = {a, b, c} and
consider the process X that jumps at integer times from one point to one of the others with
equal probability. It is easy to check that X is a Markov process. However the transition
probabilities are not homogeneous:

0 = P
(
X3/4 ∈ {b, c} | X1/4 = a

)
, P

(
X5/4 ∈ {b, c} | X3/4 = a

)
= 1. (4.36)

□

It turns out that the holding times of a homogeneous Markov process X, i.e. the times that the
process X spends in a point x ∈ S before it jumps are exponentially distributed.

Lemma 4.16 (Holding times are exponentially distributed). Let X be a homogeneous Markov
process with state space (S ,U). Assume that there exists a x ∈ S such that

T := inf { t ≥ 0 | Xt , x } = inf { t ≥ 0 | Xt , Xt− } Px-a.s. (4.37)

Then T is exponentially distributed under Px.

Proof. Observe that by (ii) of Definition 4.13 we have Px(T > 0) = 1. By time homogeneity
and the Markov property we have for all s, t > 0,

Px(T > s + t |T > s) = Px(T > s + t | Xs = x) = Px(T > t). (4.38)

This is the so-called loss of memory property that characterizes the exponential distribution. □

4.1.3 The transition semigroup

For the remainder of this thesis we will only be concerned with time homogeneous Markov
processes.

4.1 Markov processes 87



Let (S ,B) be a measurable space and X a Markov process with values in S . Using the transition
functions (pt)t≥0 of X, we can define for each t ≥ 0 a linear operator on Bb(S ) by

Pt f = Pt f ( · ) :=
∫

S
f (y)pt( · , dy) = E ·

[
f (Xt)

]
, t ≥ 0. (4.39)

The family P = (Pt)t≥0 has some nice properties.

Proposition 4.17. Let (S ,B) be a measurable space and X be a Markov process with values
in S . Then the family (Pt)t≥0 of operators on Bb(S ) defined above has the following properties
for all f , g ∈ Bb(S ):

(i) P0 f = f ,

(ii) PtPs f = Ps+t f for all s, t ≥ 0,

(iii) Pt(α f + βg) = αPt f + βPtg for all t ≥ 0,

(iv) if f ≥ 0, then Pt f ≥ 0 for all t ≥ 0,

(v) ∥Pt f ∥∞ ≤ ∥ f ∥∞.

Proposition 4.17 (i) and (ii) together imply that P = (Pt)t≥0 is a semigroup on Bb(S ). i.e. P is
equipped with a (commutative) binary operation ◦, there exists a neutral element but in general
Pt has no inverse in P. Furthermore, (v) means that the semigroup P is contractive and (iv)
says that P is positive. We say that P is the semigroup determined by the process X.

Definition 4.18 (positive contraction semigroups). A family T = (Tt)t≥0 of operators on a linear
subspace of F ⊂ B(S ) containing constant functions that satisfies (i) to (v) of Proposition 4.17
is called a semigroup of positive contraction operators on F . If, in addition, Tt1 = 1 for all
t ≥ 0, then T is said to be conservative. ♢

We continue with the proof of the proposition.

Proof of Proposition 4.17. The property (i) follows from the definition of P0 and (ii) is a
consequence of the Chapman-Kolmogorov equation (4.39):

PtPs f (x) =
∫

S

∫
S

f (z)ps(y, dz)pt(x, dy) =
∫

S
f (z)ps+t(x, dz) = Ps+t. (4.40)

The positivity (iv) and linearity (iii) of Pt follow immediately from the definition (4.39) of Pt.

By (4.39) we have for all x ∈ S and t ≥ 0

Pt f (x) =
∫

S
f (y)pt(x, dy) ≤ ∥ f ∥∞pt(x, S ) ≤ ∥ f ∥∞ (4.41)
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and thus supx∈S Pt f (x) ≤ ∥ f ∥∞, proving (v). □

Now assume that ν is a finite Borel measure on (S ,B). For p ∈ [1,∞) we obtain by application
of Jensen’s inequality

∥Pt f ∥pp =
∫

S
|Pt f (x)|pν( dx) =

∫
S
|Ex

[
f (Xt)

]
|pν( dx) ≤

∫
S
Ex

[
| f (x)|p

]
ν( dx)

=

∫
S

Pt| f (x)|pν( dx) =
∫

S
| f (x)|pPt1(x)ν( dx) ≤

∫
S
| f (x)|pν( dx)

= ∥ f ∥pp.

(4.42)

Hence, (v) of Proposition 4.17 can be strengthened to

(iii)* ∥Pt f ∥p ≤ ∥ f ∥p for all t ≥ 0 and p ∈ [1,∞].

We have shown that every Markov process is associated with a family (pt)t≥0 of (sub) Markov
kernels satisfying the Chapman-Kolmogorov equation (4.35). Kolmogorov’s celebrated
extension theorem shows that the converse also holds. We present the theorem for further
reference without proof as the proof can be found in any standard textbook on probability
theory e.g. [Kal21, Theorem 11.4] or [Kle14, Theorem 14.36].

Theorem 4.19 (Kolmogorov’s extension theorem). Let (S ,B) be a measurable space, (pt)t≥0

a family of (sub) Markovian transition functions on S . Assume that µ ∈ M1(S ). Then there
exists a Markov process with state space S , initial distribution µ and transition functions
(pt)t≥0.

Proof. See[Kal21, Theorem 11.4]. □

Assume that (Pt)t≥0 is a contraction semigroup on Bb(S ). For x ∈ S , A ∈ B and t ≥ 0 let

Pt1A(x) =: pt(x, A). (4.43)

Then the map x 7→ pt(x, A) is Borel measurable because Pt is a linear operator on Bb(S ).
Furthermore, we have p0(x, A) = 1A(x) and (pt)t≥0 satisfies the Chapman-Kolmogorov equa-
tion:

pt(x, A) = Pt1A(x) = PsPt−s1A(x) = Ps pt−s(x, A) =
∫

S
pt−s(y, A)ps(x, dy), (4.44)

for 0 ≤ s < t < ∞, where we used (4.39) in the last equality. Furthermore, we deduce from
the contraction property, Proposition 4.17 (v) that

sup
x∈S

pt(x, S ) = ∥Pt1S ∥∞ ≤ ∥1S ∥∞ = 1, (4.45)
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thereby showing that P induces a family of Markovian transition function (pt)t≥0 via (4.43).
Approximating measurable functions by simple functions, it is straight forward to show that P
is the semigroup induced by (pt)t≥0. We have thus proved the following.

Corollary 4.20. Let (S ,B) be a measurable space and P = (Pt)t≥0 a contraction semigroup on
Bb(S ). Assume that µ ∈ M1(S ), then there exists a Markov process with state space S , initial
distribution µ and transition semigroup P.

While there always exists a Markov process with a given transition function (or semigroup),
this process is generally not unique. Instead we have that all processes with the same transition
function are versions of each other.

Lemma 4.21 (Semigroup determines the finite dimensional distributions). Let X,Y be two
Markov processes on the measurable space (S ,B) with the same initial distribution µ ∈ M1(S ).
Assume that both processes have the same semigroup P = (Pt)t≥0. Then, the finite dimensional
distributions of X and Y coincide.

Proof. It is evident from the discussion above that both X and Y have the same transition
functions (pt)t≥0. Let A1, . . . , An ∈ B and 0 ≤ t1 < · · · < tn, then it follows by the Chapman-
Kolmogorov equation,

P(Xt1 ∈ A1, . . . , Xtn ∈ An)

=

∫
S
µ( dx0)

∫
A1

pt1(x0, dx1)· · ·
∫

An

ptn−tn−1(xn−1, dxn)

= P(Yt1 ∈ A1, . . . ,Ytn ∈ An),

(4.46)

completing the proof. □

Remark 4.22. By definition, the semigroup and hence the finite dimensional distributions of a
Markov process are already determined by their one dimensional distributions. ♢

Now let ν ∈ M(S ) be a Radon measure on (S ,B). This measure will later serve as the speed
measure for our processes in the sense that the time the process spends in a set A ∈ B will
be roughly proportional to its measure ν(A).But first we explain what it means for a Markov
process to be symmetric with respect to ν.

Definition 4.23 ((strong) symmetry). Let X be a Markov process with values in the measure
space (S ,B, ν). Then X is said to be ν-symmetric if the semigroup P = (Pt)t≥0 determined by
X satisfies ∫

S
f (x)Ptg(x) ν(dx) =

∫
S

Pt f (x)g(x) ν(dx) (4.47)
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for all non-negative f , g ∈ Bb(S ) and t ≥ 0. In that case we also refer to the family P as
symmetric (with respect to ν).

If, in addition, the (sub) probability measures pt(x, dy) are absolutely continuous with respect
to ν for all t ≥ 0 and x ∈ S , we say that the process X is strongly symmetric (with respect to ν).
In that case we denote the density of pt(x, dy), with a slight abuse of notation, by pt(x, y). In
that case, Pt f (x) can be written as

Pt f (x) =
∫

S
f (y)pt(x, y) ν(dy). (4.48)

♢

Let (S ,B, ν) be a compact measure space. Suppose that X is a ν-symmetric Markov process
with values in S . Then ν is a reversible measure for X in the sense that for all A, B ∈ B with
ν(A), ν(B) > 0 and t ≥ 0,

ν(A)PνA(Xt ∈ B) =
∫

A
Px(Xt ∈ B) ν(dx) =

∫
S

Pt1B(x)1A(x) ν(dx)

=

∫
B
Px(Xt ∈ A) ν(dx) = ν(B)PνB(Xt ∈ A),

(4.49)

where νA =
(
ν(A)−1ν

)∣∣∣
A and νB =

(
ν(B)−1ν

)∣∣∣
B denote the renormalized restrictions of ν to A

and B, respectively.

We take note of the following useful property of ν-symmetric Markov processes.

Lemma 4.24. Let X be a ν-symmetric Markov process with values in S . Suppose that for
n ∈ N, f0, f1, . . . , fn ∈ B+b and 0 = t0 < t1 < . . . tn < ∞. Then,

Eν
[
f0(X0) f1(Xt1) · · · fn(Xtn)

]
= Eν

[
f0(Xtn) f1(Xtn−t1) · · · fn−1(Xtn−tn−1) fn(X0)

]
. (4.50)

Proof. We proceed by induction and start with the case n = 1. For f , g ∈ B+b (S ) and 0 < t < ∞,
we have by symmetry

Eν
[
f (X0)g(Xt)

]
=

∫
S
Ex

[
f (X0)g(Xt)

]
ν(dx) =

∫
S

f (x)Ptg(x) ν(dx)

=

∫
S
Ex

[
f (Xt)g(X0)

]
ν(dx) = Eν

[
f (Xt)g(X0)

]
.

(4.51)
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Now suppose that the statement holds for some n ∈ N and let f0, . . . , fn+1 ∈ B
+
b and 0 = t0 <

· · · < tn+1 < ∞. Then,

Eν
[
f0(X0) · · · fn+1(Xtn+1)

]
= Eν

[
f0(X0) · · · ( fn · Ptn+1−tn fn+1)(Xtn)

]
= Eν

[
f0(Xtn) · · · ( fn · Ptn+1−tn fn+1)(X0)

]
=

∫
S

Ptn+1−tn fn+1(x)Ex
[
f0(Xtn) · · · fn(X0)

]
ν(dx)

=

∫
S

fn+1(x)Ptn+1−tnEx
[
f0(Xtn) · · · fn(X0)

]
ν(dx)

=

∫
S

fn+1(x)Ex
[
EXtn+1−tn

[
f0(Xtn) · · · fn(X0)

]]
ν(dx)

=

∫
S
Ex

[
f0(Xtn+1) f1(Xtn+1−t1) · · · fn+1(X0)

]
ν(dx)

= Eν
[
f0(Xtn+1) f1(Xtn+1−t1) · · · fn(Xtn+1−tn) fn+1(X0)

]
,

(4.52)

completing the proof. □

Next we introduce the resolvent or potential operator (cf. [MR06]) of a Markov process as the
Laplace transform of the semigroup.

Definition 4.25. Let X be a Markov process with values in S and f ∈ Bb(S ). Then, for each
α > 0 we set

Rα f (x) := Ex

[∫ ∞

0
f (Xt)e−αt dt

]
. (4.53)

The family (Rα)α>0 of operators is called the resolvent associated with the process X. For
α > 0, the operator Rα is called the α-resolvent of X. ♢

Clearly, Rα is a linear operator mapping Bb(S ) to Bb(S ). By Fubini’s Theorem, we can write

Rα f (x) =
∫ ∞

0
e−αtPt f (x) dt. (4.54)

Applying Fubini’s Theorem again and using the ν-symmetry of (Pt)t≥0, we find that Rα is
ν-symmetric as well. Observe that for α, β > 0

(
Rα − Rβ

)
f =

∫ ∞

0
e−αtPt f dt −

∫ ∞

0
e−βtPt f dt

=

∫ ∞

0
e−βt

(
e−(α−β)t − 1

)
Pt f dt

= −(α − β)
∫ ∞

0

∫ t

0
e−β(t−s)−αsP(t−s)+s f ds dt

= −(α − β)
∫ ∞

0

∫ ∞

0
e−αse−βtPsPt f dt ds = −(α − β)RαRβ f .

(4.55)
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We have thus shown that the resolvent satisfies the resolvent equation

Rα − Rβ + (α − β)RαRβ = 0 ∀α, β > 0. (R1)

Remark 4.26. The resolvent has another, probabilistic, interpretation. Let α > 0 and consider
an exponential random variable ζ with expectation 1/α, independent of the process X. Let

X̂t =:

Xt, t < ζ

ϑ, t ≥ ζ
(4.56)

be the exponentially killed process. Denote by Ê and P̂ the expectation and the semigroup of
X̂, respectively. Then

P̂t f (x) = Ê
[
f (Xt); ζ > t

]
= P(ζ > t)Pt f (x) = e−αtPt f (x). (4.57)

Thus, the α-resolvent can be regarded as the integrated semigroup of the process that is killed
at an independent Exp(α)-time. When we consider f = 1A for some set A ∈ B, the quantity
Rα1A(x) is the expected time the process X̂ spends in A, or occupation time, before it is killed
at time ζ. ♢

Definition 4.27 (α-excessive functions). Let (Pt)t≥0 be the transition semigroup of a Markov
process with values in (S ,B). Furthermore, let α > 0. A non-negative measurable function
h ∈ B+(S ) is called α-excessive with respect to (Pt)t≥0 if

e−αtPth(x) ≤ h(x) (4.58)

and
lim
t→0

e−αtPth(x) = h(x), (4.59)

for each x ∈ S . ♢

As an immediate consequence of Definition 4.27 we find that for every α-excessive function
h ∈ B+(S ) and s, t > 0,

e−α(s+t)Ps+th(x) = e−αsPse−αtPth(x) ≤ e−αtPth(x), (4.60)

and consequently the function t 7→ e−αtPth(x) is increasing as t → 0. Furthermore, constant
functions are α-excessive for every α > 0 and h ∧ g is α-excessive whenever f and g are
α-excessive.

Lemma 4.28. (i) Let α > 0 and (hn)n∈N ⊂ B
+(S ) be an increasing sequence of α-excessive

functions such that limn→∞ hn = h ∈ B+(S ). Then, h is α-excessive, too.
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(ii) Let f ∈ B+b (S ) be non-negative, bounded and measurable. Then the function h := Rα f
is α-excessive for all α > 0.

(iii) Let h ∈ B+(S ) be α-excessive for α > 0. Then there exists a sequence ( fn)n∈N ⊂ B(S )
such that Rα fn(x) is increasing as n→ ∞ and

lim
n→∞

Rα fn(x) = h(x), (4.61)

for all x ∈ S .

Proof. Fix α > 0 and let (⊂n)n∈NB
+(S ) be an increasing sequence of α-excessive functions

with limn→∞ hn = h. Then,

e−αtPth(x) = lim
n→∞

e−αtPthn(x) ≤ lim
n→∞

hn = h. (4.62)

Taking the limit t → 0 we can interchange limits because of monotonicity and obtain

lim
t→0

e−αtPth(x) = lim
n→∞

lim
t→0

e−αtPthn(x) = h(x) (4.63)

and the first assertion (i) is established.

For the second claim (ii) assume that f ∈ B+b (S ) is non-negative and bounded and let α > 0.
We start by showing that h = Rα f satisfies (4.58):

e−αtPth = e−αtPtRα f = e−αtPt

∫ ∞

0
e−αsPs f ds =

∫ ∞

0
e−α(t+s)Pt+s f ds

=

∫ ∞

t
e−αsPs f ds ≤ Rα f = h.

(4.64)

When we apply the limit for t → 0 at (4.64) we obtain the equality (4.59), thus proving the
claim.

For the last claim (iii) we construct the approximating sequence explicitly. Let h ∈ B+(S ) be
α-excessive for some α > 0. For n ∈ N set hn := h ∧ n. By definition of the resolvent and
substituting t = ns, we obtain

nRα+nhn =

∫ ∞

0
ne−(α+n)sPshn ds =

∫ ∞

0
e−te−αt/nPt/nhn dt. (4.65)

Now, hn is α-excessive since it is the minimum of two α-excessive functions. Therefore, the
function

gn := e−αt/nPt/nhn (4.66)

is increasing for fixed α, t > 0 as n→ ∞ and limn→∞ gn = h. Hence, nRα+nhn is increasing in
n and converges to h. Now observe that by the resolvent equation we have

nRα+nhn = nRα (hn − nRα+nhn) , (4.67)
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and therefore, the functions
fn := n (hn − nRα+nhn) (4.68)

are the desired sequence with Rα fn ↑ h as n→ ∞. □

The importance of α-excessive functions stems from the following fact.

Proposition 4.29. Let h ∈ B+(S ) be α-excessive for some α > 0. Then, the real valued
stochastic process (Yt)t≥0 :=

(
e−αth(Xt)

)
t≥0 is a supermartingale with respect to the canonical

filtration (At)t≥0 for every initial distribution µ ∈ M1(S ).

Proof. The proof is straight forward. Fix t > 0, by α-excessivity of h we have Pµ-almost
surely

E [Yt+h | At] = e−α(t+h)E [h(Xt+h) | At] = e−α(t+h)E [Phh(Xt) | At]

= e−αte−αhPhh(Xt) ≤ e−αth(Xt).
(4.69)

□

4.2 Feller processes

In the previous chapter Chapter 3 we have examined the space of càdlàg functions on a
uniform space (S ,U) with great care and in the previous section we have seen that the finite
dimensional distributions of a Markov process are determined by its semigroup. We are
interested in a stronger statement. Namely,we want to consider a class of Markov processes
that are already uniquely determined by their semigroups. This is where the càdlàg paths come
into play.

Proposition 4.30. Let (S ,U) be a separable uniform Hausdorff space and X,Y two Markov
processes with càdlàg paths, i.e. X,Y : Ω → DS ([0,∞)). Assume further that X and Y have
the same transition semigroup P = (Pt)t≥0 and the same initial distribution µ ∈ M1(S ). Then,
X and Y have the same law.

Proof. By Lemma 4.21, X and Y have the same finite dimensional distributions and the result
follows from Proposition 3.41. □

As a consequence, in the case of Markov processes with càdlàg paths, the semigroup is a very
powerful tool in the analysis of the process. Yet, this result is not satisfying as it is a priori not
clear that a given Markov process even has a modification with càdlàg paths. To make sure
that this is the case we need stronger assumptions on the semigroups.
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For the remainder of this chapter assume that (S ,U) is a Polish uniform space, i.e. a separable
and complete locally compact uniform Hausdorff space. Recall that under this assumption,
(S ,U) is completely metrizable, yet we want to avoid fixing a specific metric. While some of
the concepts can be further generalized, we refrain from doing so as this would go beyond the
scope of this thesis.

Definition 4.31 (Feller semigroups). A semigroup (Tt)t≥0 of positive contraction operators is
called a Feller semigroup if it has the following properties

(F1) Tt f ∈ C∞(S ) for all f ∈ C∞(S ) and t ≥ 0,

(F2) limt→0 ∥Pt f − f ∥∞ = 0 for all f ∈ C∞(S ). ♢

Lemma 4.32. Let (Tt)t≥0 be a Feller semigroup on C∞(S ). Then,

(t, f , x) 7→ Tt f (x) (4.70)

is continuous as a function [0,∞) × C∞(S ) × S → R.

Proof. Let (t, f , x), (s, g, y) ∈ [0,∞) × C∞(S ) × S , then

|Tt f (x) − Tsg(y)| = |Tt f (x) − Tt f (y) + Tt f (y) − Ts f (y) + Ts f (y) − Tsg(y)|

≤ |Tt f (x) − Tt f (y)| + |Tt f (y) − Ts f (y)| + |Ts f (y) − Tsg(y)| .
(4.71)

By (F1), the first term vanishes as y→ x. For every t > 0, Tt is a contraction by assumption
and the second term can be bounded by

∥Tt(T|s−t| f − f )∥∞ ≤ ∥T|s−t| f − f ∥∞. (4.72)

By (F2) this bound converges to 0 as s→ t. Similarly, the last term is bounded by ∥ f − g∥∞
which also tends to 0 as g→ f . □

Definition 4.33 (Feller processes). Let X be a Markov process with values in S . We call
X a Feller process, if the semigroup (Pt)t≥0 associated with X satisfies (F1) and (F2) of
Definition 4.31. ♢

Some remarks about the above definition are in order. As the name indicates, the definition
goes back to a series of papers that William Feller wrote in the 1950s, e.g. [Fel52; Fel54].
Feller introduced the conditions above in the context of his analysis of diffusion processes
2. However, Feller’s original work is rarely cited today3. Instead, classical textbooks like
[Mey66], [Dyn65] or [BG68] give a thorough account of the theory of Feller processes.

2[Fel54, Theorem 1]
3[CW05, Notes on Chapter §2.2, p. 73]
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Some authors use slightly different definitions of the Feller property and require (F1) to hold
for all bounded f ∈ Cb, instead.4

Assume that X is a Markov process with values in a compact space S and assume that it’s
associated semigroup (Pt)t≥0 has the Feller property. Then, (F1) implies that for all t ≥ 0 and
f ∈ C the maps Pt f are continuous and thus∫

S
f (z)pt(x, dz) = Ex

[
f (Xt)

]
= Pt f (x) −→

x→y
Pt f (y) =

∫
S

f (z)pt(x, dy). (4.73)

Hence, laws Lx and Ly of X started in x and y, respectively, converge as x→ y. In fact, the
reverse implication is also true. We say that (F1) means that X depends continuously on the
starting point. On the other hand, (F2) means that in probability (under Px),

lim
t→0

Xt = x. (4.74)

Moreover, observe that under (F1) condition (F2) is equivalent to the seemingly weaker
condition

lim
t→0
|Pt f (x) − f (x)| = 0, (4.75)

for all f ∈ C∞(S ) and x ∈ S .5

We want to proof a slightly stronger result than (4.74).

Proposition 4.34 ([CW05, Proposition 2.2.2]). Let X be a Feller process with values in S .
Then X is stochastically continuous, i.e. for all t > 0, every initial distribution µ ∈ M1(S ) and
every open entourage U ∈ U,

lim
s→t
Pµ ((Xt, Xs) ∈ U) = 1. (4.76)

Proof. It suffices to show the claim for µ = δx for some x ∈ S . Let U ∈ U be open and
V ∈ U such that V ◦ V ⊂ U. Now choose a continuous function h : S × S → [0, 1] such that
h(x, y) = 0 if (x, y) < U and h(x, y) = 1 if (x, y) ∈ V . Then h ≤ 1U and we obtain

Px ((Xt, Xs) ∈ U) ≥ Ex [h(Xt, Xs)] , (4.77)

for all s, t > 0. Consider the functions of the form

p(x, y) =
k∑

j=1

f j(x)g j(y), (4.78)

4See Martin Hairer’s comment in [Hai]
5See [RY99, Proposition III.2.4]
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where f j, g j ∈ C0(S ) for j ∈ {1, . . . , k}. These functions form a subalgebra of C∞(S × S ) and
separate points. We can therefore apply the Stone-Weierstrass Theorem (cf. [Con07, Corollary
V.8.3]) to obtain a sequence

hn(x, y) =
kn∑
j=1

f (n)
j (x)g(n)

j (4.79)

of functions the form (4.78) that converges uniformly to h.

Now observe that for all f , g ∈ C∞(S ) and t > 0 we have by (F2),

Ex
[
f (Xt)g(Xt+δ)

]
= Ex

[
f (Xt)EXt

[
g(Xδ)

]]
= Ex

[
f (Xt)Pδg(Xt)

]
−→
δ→0
Ex

[
f (Xt)g(Xt)

]
.

(4.80)

Consequently,

lim
δ→0
Px((Xt, Xt+δ) ∈ U) ≥ lim

δ→0
Ex [h(Xt, Xt+δ)] = Ex [h(Xt, Xt)] = 1. (4.81)

Next we have to consider the left limit s ↑ t. To that end fix t > 0 and 0 < δ < t. Then,

Ex
[
f (Xt−δ)g(Xt)

]
= Ex

[
f (Xt−δ)EXt−δ

[
g(Xδ

]]
= Ex

[
f (Xt−δ)Pδg(Xt−δ)

]
= Pt−δ ( f Pδg) (x).

(4.82)

As δ→ 0, the right hand side converges to

Pt( f g)(x) = Ex
[
f (Xt)g(Xt)

]
, (4.83)

by Lemma 4.32. By the same argument as before we conclude that

lim
δ→0
Px((Xt, Xt−δ) ∈ U) ≥ lim

δ→0
Ex [h(Xt, Xt−δ)] = Ex [h(Xt, Xt)] = 1. (4.84)

□

Condition (F1) in Definition 4.31 can be exchanged for another condition, sometimes called
the strong Feller property.

Definition 4.35 (Strong Feller property). Let (Tt)t≥0 be as in Definition 4.31 but assume that
instead of (F1), (Tt)t≥0 satisfies the strong Feller property

(F3) Tt f ∈ Cb for all f ∈ Bb(S ) and t > 0.

Analogously to Definition 4.33 we call a Markov process X whose transition semigroup
satisfies (F2) and (F3) a strong Feller process or simply strongly Feller. ♢

While the Feller property makes sure that the distribution of X at time t depends on the
initial conditions continuously, the strong Feller property ensures that the process X behave
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diffusively in the sense that point masses in the initial distribution are smoothed out by the
semigroup.

As an example of a Markov process that is Feller but not strongly Feller consider the following
simple process.

Example 4.36. Let X be the process on R that remains in its initial distribution forever, i.e. we
have Px(Xt = x) = 1. Thus, the semigroup (Pt)t≥0 of X is given by

Pt f (x) = Ex
[
f (Xt)

]
= Ex

[
f (x)

]
= f (x) (4.85)

and Pt is the identity operator for all t > 0. Hence, (F1) and (F2) from Definition 4.31 hold
but (F3) does not. □

Note that, despite the name, the strong Feller property does not imply the normal Feller
property. Instead we have the following definition.

Definition 4.37 (Doubly Feller). Let (Tt)t≥0 be a semigroup of strongly continuous contraction
operators. If (Tt)t≥0 is both Feller and strongly Feller, i.e. (Tt)t≥0 satisfies (F1) to (F3), we say
that (Tt)t≥0 is doubly Feller. ♢

4.2.1 Resolvents and generators

Given a Feller semigroup (Tt)t≥0 we can define the family of resolvent operators (Rα)α>0

associated with (Tt)t≥0 using (4.54), i.e.

Rα f :=
∫

e−αtTt f dt, f ∈ C∞. (4.86)

Observe that this definition of the resolvent coincides for Feller processes with the definition of
resolvents given before, apart from the domain. This justifies using the same letter to designate
both.

The resolvent has further remarkable properties. We write C+∞ := C∞∩C+ for the non-negative
continuous functions that vanish at infinity.

Lemma 4.38 (Resolvents and supermartingales). Let X be a Markov process with values in
a uniform Hausdorff space (S ,U). Assume that f ∈ C+∞, then for each α > 0, the process
Y = (Yt)t≥0 with

Yt := e−αtRα f (Xt), t ≥ 0, (4.87)

is a supermartingale under Pµ for every initial distribution µ ∈ M1(S ).

Proof. The claim is a direct consequence of Lemma 4.28 and Proposition 4.29. □
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Next, we introduce the generator of a Feller semigroup and present briefly the interrelationship
between semigroups, resolvents and generators. We will keep this exposition as short as
possible as we will go more into detail when discussing Dirichlet forms associated with Feller
groups in the next chapter. Again, all of the following can be found in most standard textbooks
covering Feller processes and we will refer to Kallenberg’s book [Kal21] for most of the
proofs.

LetD ⊂ C∞ be the family of functions for which the limits

∆ f := lim
t↓0

Tt f − f
t

(4.88)

exist in C∞. By [Kal21, Theorem 17.6], ∆ is a linear operator on C∞ with domain D such
that

d
dt

(Tt f ) = Tt∆ f = ∆Tt f , t ≥ 0. (4.89)

We say that (∆,D) is the generator of the Feller semigroup (Tt)t≥0. The term generator stems
from the fact that (∆,D) determines the semigroup (Tt)t≥0 uniquely (cf. [Kal21, Lemma
17.5]).

Furthermore, ∆ satisfies

Tt f − f =
∫ t

0
Ts∆ f ds, (4.90)

for all f ∈ D and t ≥ 0, by [Kal21, Theorem 17.6].

On the other hand, the following relationship exists between the generator and the resolvent of
a Feller semigroup.

Proposition 4.39. Let (Tt)t≥0 be a Feller semigroup on C∞ with resolvents (Rα)α>0 and
generator (∆,D). Then

(i) for each α > 0, αRα is an injective contraction operator on C∞ and limα→∞ αRα = id
in the strong operator topology,

(ii) D = RαC∞ independently of α > 0 andD is dense in C∞,

(iii) for all f ∈ D and α > 0, the relation

R−1
α f = (α − ∆) f (4.91)

holds.

Proof. See [Kal21, Theorem 17.4]. □

Here, (4.91) might be more familiar to the reader who knows the resolvent from a functional
analytic context.
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Recall that a linear operator ∆ with domainD ⊂ B, where B is some Banach space, is called
closed if the graph of ∆, G(∆) := { (∆ f , f ) | f ∈ D } ⊂ B2 is closed (cf. [Yos78, Definition
II.6.2]). A linear operator (∆,D) is called closable, if for every sequence ( fn)n∈N ⊂ D with
limn→∞ fn = 0 it holds that limn→∞ ∆ fn = 0 (cf. [Yos78, Proposition II.6.2]). In that case, ∆
can be uniquely extended to an operator ∆ onD by taking G(∆) := G(∆).

Finally, assume that (∆,D) is a closed operator. We call a linear subspace D ⊂ D a core for ∆
if and only if the operator (∆|D,D) is closable and its closure is (∆,D). It can be shown (cf.
[Kal21, Lemma 17.8]) that the generator (∆,D) of a Feller semigroup (Tt)t≥0 is closed and
that a linear subspace D ⊂ D is a core for (∆,D) if and only if the range (α − ∆)D is a dense
subset of C∞ for one and hence for every α > 0.

The celebrated Hille-Yosida Theorem was proven independently by Einar Hille and Kōsaku
Yosida in the middle of the last century. It characterizes those operators that uniquely de-
termine a strongly continuous contraction semigroup. In the formulation we present here it
characterizes the generators of Feller semigroups.

Proposition 4.40 (Hille-Yosida). Let ∆ be a linear operator on C∞ with domainD. Then ∆ is
closable and its closure ∆ is the generator of a Feller semigroup (Tt)t≥0 on C∞ if and only if
the following conditions hold

(i) D is dense in C∞,

(ii) the range of α − ∆ is dense in C∞ for some α > 0,

(iii) ∆ f (x) ≤ 0, for any f ∈ D and x ∈ S such that ∥ f ∨ 0∥∞ ≤ f (x).

Proof. See [Kal21, Theorem 17.11]. □

We conclude this brief discussion of the generator of a Feller process with the following useful
result.

Proposition 4.41 (Dynkin’s formula [Kal21, Lemma 17.21]). Let X be a Feller process with
values in S . Denote by (Pt)t≥0 and (∆,D) the semigroup and the generator associated with X,
respectively. For f ∈ D define the process

(
M f

t

)
t≥0

by

M f
t := f (Xt) − f (X0) −

∫ t

0
∆ f (Xs) ds. (4.92)

Then

(i) M f is a martingale with respect to (Ft)t≥0 under every initial distribution µ ∈ M1(S ).
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(ii) For every bounded optional time τ,

Ex
[
f (Xτ)

]
= f (x) + Ex

[∫ τ

0
∆ f (Xs) ds

]
. (4.93)

Proof. We only show (i). The second assertion then follows by the optional sampling theorem.
Fix µ ∈ M1 and let t, δ > 0 and f ∈ D. Then,

M f
t+δ − M f

t = f (Xt+δ) − f (Xt) −
∫ t+δ

t
∆ f (Xs) ds = M f

δ ◦ θt. (4.94)

We can therefore apply the Markov property to obtain

Eµ
[
M f

t+δ

∣∣∣∣Ft
]
− M f

t = Eµ
[
M f
δ ◦ θt

∣∣∣∣Ft
]
= EXt

[
M f
δ

]
. (4.95)

Now,

EXt

[∫ δ

0
∆ f (Xs) ds

]
=

∫ δ

0
Ps∆ f (Xt) ds (4.96)

and we can apply (4.90) to deduce that EXt

[
M f
δ

]
= 0, Pµ-a.s. It then follows readily from

(4.95) that M f is a martingale.

□

4.2.2 Existence of Feller processes with càdlàg paths

Recall the one-point compactification (Sϑ,Uϑ) of the locally compact space (S ,U) and that
every f ∈ C∞(S ) can be extended to function f̂ ∈ C(S ϑ) by setting f̂ (ϑ) = 0.

The following results are mathematical folklore but of fundamental importance for our treat-
ment of Feller processes. For that reason we choose to present them here along with their
proofs. We follow again very closely Kallenberg’s exposition in [Kal21, Chapter 17], where
further background material on Feller processes can be found.

Lemma 4.42 (Extension of Feller semigroups [Kal21, Lemma 17.13]). Every Feller semigroup
(Tt)t≥0 on C∞(S ) can be extended to a conservative Feller semigroup

(
T̂t

)
t≥0

on the space
C(Sϑ) by setting

T̂t f := f (ϑ) + Tt ( f − f (ϑ)) , t ≥ 0, f ∈ C(Sϑ). (4.97)

Proof. First observe that for f ∈ C(Sϑ), we have ( f − f (ϑ)) ∈ C0(S ) and hence, T̂t f ∈ C(Sϑ)
for all f ∈ C(Sϑ) and t ≥ 0. The strong continuity and semigroup property then carry over
from (Tt)t≥0 to (T̂ )t≥0 by linearity.

Now let f ∈ C(Sϑ) be non-negative and set g := f (ϑ) − f ∈ C0(S ). Then, g ≤ f (ϑ) and we
obtain

Ttg ≤ Ttg+ ≤ ∥Ttg+∥∞ ≤ ∥g+∥∞ ≤ f (ϑ), (4.98)

102 Chapter 4 Symmetric Feller processes



where g+ := g ∨ 0 denotes the positive part of g, as usual. Thus,

T̂t f = f (ϑ) − Ttg ≥ 0. (4.99)

Finally, we have T̂t1 = 1+Tt0 = 1 and we can deduce the conservativeness and the contraction
property of (T̂t)t≥0. □

Recall that a state x ∈ Sϑ is called absorbing for a Markov process X if pt(x, {x}) = Px(Xt ∈

{x}) = 1 for all t ≥ 0.

First we show, that there is a Markov process associated with every Feller semigroup.

Proposition 4.43 (Existence [Kal21, Proposition 17.14]). For every Feller semigroup (Tt)t≥0

on C0 there exists a unique family of Markovian transition functions (pt)t≥0 on Sϑ satisfying

Tt f (x) =
∫

f (y)pt(x, dy), (4.100)

for each f ∈ C0 and t ≥ 0 such that ϑ is absorbing for (pt)t≥0.

Proof. By Lemma 4.42 the maps f 7→ T̂t f are positive linear functionals on C(Sϑ) with norm
1 for each t ≥ 0. Applying Riesz’ representation Theorem (cf. [Rud87, Theorem 6.19]) we
deduce that for each x ∈ Sϑ and t ≥ 0 there exists a unique probability measure pt(x, · ) on Sϑ
such that

T̂t f (x) =
∫

f (y)pt(x, dy) (4.101)

for all f ∈ C(Sϑ). By continuity, the right hand side is a measurable function of x. Measurabil-
ity of the maps x 7→ pt(x, A) for all A ∈ B(Sϑ) and t ≥ 0 is then obtained by an approximation
argument and an application of the monotone class theorem. In the same fashion we can show
that p0(x, A) = 1A(x). From the semigroup property of (T̂t)t≥0 we have

T̂t f (x) = T̂sT̂t−s f (x) =
∫ ∫

f (y)pt−s(z, dy)ps(x, dz) (4.102)

for all 0 ≤ s < t and by the same argument as before, we conclude that (pt)t≥0 satisfies the
Chapman-Kolmogorov equation (4.35). Finally, (4.100) follows from (4.101) as well as∫

f (y)pt(ϑ, dy) = T̂t f (ϑ) = f (ϑ) = 0, (4.103)

for all f ∈ C0. Hence, ϑ is indeed absorbing for (pt)t≥0. □

We say that ϑ is absorbing for X± if P(Xt ∈ {ϑ}) = 1 for all t ≥ ζ, where

ζ := inf { t ≥ 0 | ϑ ∈ {Xt, Xt−} } . (4.104)
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Proposition 4.44 (Feller processes admit càdlàg modifications [Kal21, Theorem 17.15]). Let
X be a Feller process with semigroup (Tt)t≥0 and values in S . For every initial distribution
µ ∈ M1(S ), there exists a modification X̂ of X with values in Sϑ such that X̂ has càdlàg paths
and ϑ is absorbing for X̂±. If, in addition, (Tt)t≥0 is conservative, then there exists a càdlàg
modification X̂ with values in S .

From now on we will always assume that a Feller process has càdlàg paths and we will include
this in our definition of a Feller process.

Definition 4.45 (Feller processes II). A Markov process X with values in a Polish uniform
space (S ,U) is a Feller process if it satisfies the following conditions

(i) for each ω ∈ Ω, X(ω) is càdlàg,

(ii) the semigroup (Pt)t≥0 associated with X has the Feller property. ♢

Remark 4.46. Combining Propositions 4.30, 4.43 and 4.44 we can deduce that every Feller
semigroup uniquely determines a Feller process. Consequently, every Feller process is
uniquely determined by its family of resolvent operators. This is an immediate consequence
of the definition (4.86), since the resolvent is the Laplace transform of the semigroup. ♢

Proposition 4.44 allows us to view a Feller process as a random variable X : Ω→ DS ([0,∞)),
thus building the bridge to Section 3.5. As before, we introduce the canonical version of X
by identifying Ω with DS ([0,∞)) and setting Xt(ω) = ω(t), where ω ∈ DS ([0,∞)). Recall
further the translation operators (θt)t≥0, where θt : DS ([0,∞)) → DS ([0,∞)) is defined as
θt(ω) := ω(t + · ) for each t ≥ 0.

4.2.3 Feller processes and stopping times

Let X be a canonical Feller process on (Ω,A,P) with values in the Polish uniform space
(S ,U). Denote by (Ft)t≥0 the augmented filtration generated by X.

Recall that a random variable τ on (Ω,A, P) with values in [0,∞) is called a (Ft)-stopping
time if for each t ≥ 0 the event {τ ≤ t} is Ft-measurable. Whenever it is clear from the context
which filtration we are using, we just say that τ is a stopping time. Further, recall the definition
of the σ-field Fτ from (4.22).

It is worth noting that the augmented filtration (Ft)t≥0 generated by a Feller process is always
right continuous (cf. [CW05, Theorem 2.3.4]). From Lemma 4.8 we then deduce that for a
Feller process every optional time is a stopping time (and vice versa).

Feller processes exhibit nice properties with respect to stopping times. First and foremost,
Feller processes are strongly Markovian.
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Proposition 4.47 (Feller processes have the strong Markov property). Let X be a Feller process
with initial distribution µ ∈ M1(S ). For every stopping time τ with Px(τ < ∞) = 1 for all
x ∈ S and non-negative random variable Y : Ω→ R, we have

Eµ [Y ◦ θτ | Fτ] = EXτ [Y] , Pµ-a.s. (4.105)

Proof. See [Kal21, Theorem 17.17]. □

On the other hand, Feller processes are quasi left-continuous.

Proposition 4.48 (Quasi left-continuity). Every Feller process X is quasi left-continuous. That
is, for every stopping time τ and every sequence of stopping times (τn)n∈N with τn ≤ τn+1 and
limn→∞ τn = τ almost surely,

lim
n→∞

Xτn = Xτ a.s. on {τ < ∞}. (4.106)

Proof. See [CW05, Theorem 2.4.4]. □

While Feller’s approach is more analytic, another approach to the same objects was developed
by the mathematician (and tennis ace [Hol08]) Gilbert A. Hunt. Hunt’s definition starts with
Markov processes and their path properties. The following definition coincides roughly with
Hunt’s hypothesis A in [Hun56]6.

Definition 4.49 (Hunt processes). Let X be a Markov process with values in Sϑ. We call X a
Hunt process if it satisfies the following conditions

(i) X is right continuous,

(ii) X has the strong Markov property,

(iii) X is quasi left-continuous. ♢

Basically, Hunt processes are Feller processes but the approach is somewhat reversed.7

For some applications it is useful to extend the Borel σ-algebra Bϑ on Sϑ to include those sets
that are “not seen” by a given Feller process X. This leads to the following

6Compare Chung’s remarks in [Chu82, p. 135].
7See [CW05, §3].
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Definition 4.50 (nearly Borel measurable sets). Let X be a Feller process with values in Sϑ.
A set A ⊂ Sϑ is said to be nearly Borel measurable if there exist Borel measurable sets
A1, A2 ∈ Bϑ such that A1 ⊂ A ⊂ A2 with

Pµ(Xt ∈ A2 \ A1 for some t ≥ 0) = 0 (4.107)

for all initial distributions µ ∈ M1(S ). We write Bn = Bn(Sϑ) for the totality of all nearly
Borel measurable sets. ♢

4.2.4 Hitting times

We have observed in Remark 4.46 that the family of resolvent operators (Rα)α>0 of a Feller
process X uniquely determines said process. On the other hand, we have seen in Remark 4.26
that for α > 0 the resolvent Rα applied to 1A for some A ∈ B can be interpreted as the
(expected) occupation time of the set A by the process X up to an Exp(α) distributed random
time ζ. Using the usual approximations by simple functions and the linearity of the resolvent
operator, we can deduce that the resolvent operators (Rα)α>0 and a fortiori the Feller process
X is uniquely determined by the occupation times of all Borel sets A ∈ B of the killed process
X̂, killed at an Exp(α) random time for all α > 0.

Following up on this idea, one might suspect that the same holds true for another class of
random times. Indeed, we will show that we can use hitting times of open sets instead of
independent exponentially distributed random variables.

To that end we start with a brief treatment of hitting times and stopping times in general.

Let X be a Feller process with values in (S ,U) and denote by (Ft)t≥0 the augmented filtration
generated by X. Recall that (Ft)t≥0 is right continuous (cf. [CW05, Theorem 2.3.4]).

Clearly, constant times a ≥ 0 are stopping times since the events {a ≤ t} are either the empty
set or the whole space Ω and thus Ft-measurable for every t ≥ 0. We write

τA = τA(X) := inf { t > 0 | Xt ∈ A } (4.108)

for the first hitting time of the set A ∈ B. Note that we use the same notation for the random
hitting times as we did in Chapter 3 for the deterministic hitting times. This ambiguity should
lead to no confusion as it is always clear from the context if the involved hitting times are
random or not.

Recall the definition of the first contact time γA from Section 3.4 (3.20):

γA(ω) := inf
{

t > 0
∣∣∣ {ω(t), ω(t−)} ∩ A , Ø

}
. (4.109)

Analogously we define the first contact time of the set A ∈ B by the process X as

γA = γA(X) := inf
{

t ≥ 0
∣∣∣ {Xt, Xt−} ∩ A , Ø

}
. (4.110)
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Proposition 4.51 (Hitting times of open and closed sets are stopping times). Let X be a Feller
process with values in (S ,U). For each A ∈ B, open or closed, the random times τA and γA

are (Ft)t≥0-stopping times.

Proof. Let A ∈ B be open. In the case where P({τA < ∞}) = 0, the first hitting time τA is
clearly a stopping time as {τA < t} is a P-nullset for each t > 0 and (Ft)t≥0 was assumed
to be augmented. Fix t > 0 and choose ω ∈ {τA < t}. Then there exists a s > 0 such that
τA ≤ s < t with Xs(ω) ∈ A. Now, since A is open, there exists an open entourage U ∈ U such
that U[Xs(ω)] ⊂ A. By right continuity of the map t 7→ Xt(ω), there exists a ε > 0 such that
Xr(ω) ∈ U[Xs(ω)] ⊂ A for all r ∈ [s, s + ε). That means there exists a q ∈ Q ∩ [0, t) such that
Xq(ω) ∈ A and hence,

{τ < t} =
⋃

q∈[0,t)∩Q

{Xq ∈ A} ∈ Ft, (4.111)

proving that τA is a (Ft)t≥0 stopping time.

Now suppose A ∈ B is closed. Let (Bn)n∈N ⊂ B be a sequence of open sets such that
Bn+1 ⊂ Bn and A ⊂ Bn for each n ∈ N. Since U has a countable base, we can choose
for example (Un)n∈N ⊂ U to be a sequence of open entourages with Un+1 ◦ Un+1 ⊂ Un,⋂

n∈NUn = ∆ and set Bn := Un[A]. Then the sequence
(
τBn

)
n∈N is increasing and bounded by

τA. By right continuity we have for each B ∈ B

XτB ∈ B on {τB < ∞}. (4.112)

By construction, we find that A =
⋂

n∈N Bn =
⋂

n∈N Bn and

T := lim
n→∞

τBn ≤ τA. (4.113)

Consequently, by quasi left continuity of X (Proposition 4.48),

XT = lim
n→∞

XτBn
∈

⋂
n∈N

Bn = A on {T < ∞}. (4.114)

Hence, τA ≤ T and consequently τA = T almost surely on {T < ∞}. On the other hand, on
{T = ∞}, we have τA ≥ T = ∞, by construction. It follows that

τA = lim
n→∞

τBn , (4.115)

and we conclude from Lemma 4.10, that τA is indeed a stopping time. It remains to show that
γA is a stopping time. Let A ∈ B be open or closed and let (Bn)n∈N ⊂ B denote a sequence of
open sets, as before. From the definition of γA we obtain for each t ≥ 0,

{γA ≤ t} =
⋂
n∈N

{τBn ≤ t} ∈ Ft, (4.116)

proving that γA is indeed a stopping time. □
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Remark 4.52. In the proof of Proposition 4.51 we have actually shown the stronger statement
that γA is a stopping time for every Borel set A ∈ B. In fact, one can show that every hitting
time of a Borel set is a stopping time. This is sometimes called the Debut Theorem. Usually
the proof involves Choquet’s capacibility theorem (cf. Proposition 5.52). A proof using only
elementary methods was given by Richard F. Bass in [Bas10]. ♢

Definition 4.53. A random time τ is called a terminal time if

τ ◦ θt + t = τ (4.117)

Px-almost surely on {t ≤ τ} for any starting point x ∈ S . ♢

Lemma 4.54. For all A ∈ B open or closed, the first hitting time τA is a terminal time.

Proof. Let ω ∈ {t ≤ τ}. Then, τA ◦ θt = τA − t, almost surely. □

Clearly, the event {τA = 0} is F0-measurable for every A ∈ B open or closed. With our remark
above, the same holds for every Borel measurable set A ∈ B and by definition even for every
nearly Borel measurable set A ∈ Bn. By Blumenthal’s 0 − 1-law (cf. [Kal21, Corollary 17.18])
we therefore conclude

Px(τA = 0) ∈ {0, 1} (4.118)

for all x ∈ S and A ∈ Bn.

This leads to the following definition.

Definition 4.55 (regular points). Let X be a Feller process with values in Sϑ and A ∈ Bn a
nearly Borel measurable set. We say that a point x ∈ S is regular for A if

Px(τA = 0) = 1. (4.119)

We denote by Ar ⊂ S the set of regular points for A, i.e.

Ar := { x ∈ S | Px(τA = 0) = 1 } . (4.120)

Conversely, a point x ∈ S is said to be irregular for A if it is not regular for A. In that case,
Px(τA = 0) = 0. We say that a set A ∈ Bn is thin if Ar = Ø. ♢

By right continuity of X we immediately obtain the relation,

A◦ ⊂ Ar ⊂ A. (4.121)
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Lemma 4.56. Let X be a (strong) Feller process with values in Sϑ and A ⊂ S closed. Then,

lim
t→0

sup
x∈K
Px(τA ≤ t) = 0 (4.122)

for all compact subsets K ⊂ D = S \ A.

Proof. Let K ⊂ D be a compact subset of D := S \ A. Let φ ∈ C∞(S ) non negative be such
that φ(x) = 1 for all x ∈ K and φ(x) = 0 for all x ∈ A. By either the Feller property (F1) or the
strong Feller property (F3) we have that Ptφ ∈ Cb(S ) for all t > 0. Furthermore, we have by
(F2) that limt→0∥Ptφ − φ∥ = 0. For every ε > 0 we can thus find a T > 0 such that

sup
x∈A

Ptφ(x) < ε/2 and inf
x∈K

Ptφ(x) > 1 − ε/2, (4.123)

for all t ≤ T . Hence, for all x ∈ K,

1 − ε/2 < Ex
[
φ(XT )

]
= Ex

[
φ(XT ); T < τA

]
+ Ex

[
φ(XT ); T ≥ τA

]
≤ Px(T < τA) + Ex

[
φ(XT ); T ≥ τA

]
.

(4.124)

On the other hand, by the strong Markov property,

Ex
[
φ(XT ); T ≥ τA

]
= Ex

[
EXτA

[
φ(XT−τA)

]
; T ≥ τA

]
. (4.125)

Because XτA ∈ A, the inner expectation on the right can be bounded by ε/2, by virtue of
(4.123). Consequently,

Px(T < τA) > 1 − ε (4.126)

for all x ∈ K. We conclude the proof by letting ε→ 0. □

We go even further and show that the probability Px(τA ≤ t) decays at least linearly in t. This
result seems to have escaped notice in the literature in the general form we present it here. A
similar result for Feller processes on Rd was given in [BSW13, Theorem 5.1] and our proof is
inspired by their proof.

Theorem 4.57. Let X be a Feller process with values in Sϑ and A ⊂ S closed. For all compact
subsets K ⊂ D = S \ A there exists a constant C > 0 such that

Px(τA ≤ t) ≤ Ct (4.127)

for all x ∈ K and t > 0.

Proof. Let K ⊂ D. By Lemma 2.37 we can choose φ ∈ C∞(S ) such that 0 ≤ φ ≤ 1, φ(x) = 1
for all x ∈ K and φ(x) = 0 for all x ∈ A. Denote by (∆,D) the generator of the Feller
semigroup (Pt)t≥0 associated with X. SinceD ⊂ C∞(S ) is dense, we can assume without loss
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of generality that φ ∈ D. Fix t > 0 and note that t ∧ τA is a bounded stopping time. We can
therefore apply the Dynkin formula Proposition 4.41 (ii) to obtain

Ex
[
1 − φ

(
Xt∧τA

)]
= Ex

[∫ t∧τA

0
−∆φ(Xs) ds

]
. (4.128)

Observe that φ
(
Xt∧τA

)
= 0 on {τA ≤ t} and therefore 1 − φ

(
Xt∧τA

)
≥ 1{τA≤t}. Consequently,

Px(τA ≤ t) ≤ Ex

[∫ t∧τA

0
−∆φ(Xs) ds

]
≤ Ex [t ∧ τA] ∥∆φ∥∞ ≤ Ct, (4.129)

where C = ∥∆φ∥∞. □

Corollary 4.58 (exit times). Let X be a Feller process with values in Sϑ. For each x ∈ S and
U ∈ U open, there exists a constant C > 0 such that for all t > 0,

Px(σU[x] ≤ t) ≤ Ct. (4.130)

Here, σA = τ∁A denotes the first exit time from A.

Recall from Definition 4.27 that for α > 0 we call a measurable function f ∈ B(S ) α-excessive
with respect to the semigroup (Pt)t≥0 if

Pte−αt f (x) ≤ f (x) (4.131)

for all t > 0 and limt→0 Pte−αt f (x) = f (x) for all x ∈ S . For later reference we note the
following fact.

Proposition 4.59. Let A ∈ Bn be a nearly Borel measurable set and τA the first hitting time of
A. For each α > 0 the function

x 7→ Ex
[
e−ατA

]
, x ∈ S (4.132)

is α-excessive.

Proof. Let α, t > 0. Then,

e−αtPtEx
[
e−ατA

]
= PtEx

[
e−αtα−1

∫ ∞

τA

e−αs ds
]

= Ex

[
EXt

[
e−αtα−1

∫ ∞

τA

e−αs ds
]]

= Ex

[∫ ∞

τA◦θt

α−1e−α(s+t) ds
]
= Ex

[∫ ∞

t+τA◦θt

α−1e−αs ds
]
.

(4.133)
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Since τA is a terminal time, we have τA = t+τA◦θt for all t ≤ τA. Hence, limt→0 t+τA◦θt = τA

and therefore,
lim
t→0

e−αtPtEx
[
e−ατA

]
= Ex

[
e−ατA

]
. (4.134)

On the other hand we have t + τA ◦ θt ≥ τA if t > τA, hence

e−αtPtEx
[
e−ατA

]
≤ Ex

[
e−ατA

]
. (4.135)

□

When we consider hitting times of a ν-symmetric Feller process X, the question where the
process first hits a set A ∈ Bn, naturally arises. This leads to the following definition of the
α-hitting distribution. For each α > 0 and nearly Borel set A ∈ Bn we set

Hα
A(x, B) := Ex

[
e−ατA ; XτA ∈ B

]
, (4.136)

if α = 0 we write
H0

A(x, B) := Px(τA < ∞; XτA ∈ B), (4.137)

where x ∈ S and B ∈ B. Using Definition 4.12 one easily verifies the following.

Lemma 4.60. For each α ≥ 0 and every nearly Borel set A ∈ Bn, the α-hitting distribution

Hα
A : S × B → [0, 1] (4.138)

is a sub Markov kernel.

As usual, we write Hα
A f (x) for the integral of a bounded Borel measurable function f ∈ Bb(S )

with respect to the measure Hα
A(x, dy). In other words,

Hα
A f (x) = Ex

[
f
(
XτA

)
e−ατA

]
for α > 0 and H0

A f (x) = Ex
[
f (XτA); τA < ∞

]
. (4.139)

In particular, we have

Hα
A1(x) = Ex

[
e−ατA

]
for α > 0 and H0

A1(x) = Px(τA < ∞). (4.140)

4.3 Symmetric Feller processes

As before let (S ,U) be a locally compact uniform Polish space and ν ∈ M(S ) a boundedly
finite Radon measure on (S ,B). Recall the definition of a (strongly) ν-symmetric Markov
process from Definition 4.23. Naturally, we say that a Feller process X with values in S is
(strongly) ν-symmetric if it is (strongly) ν-symmetric in the sense of Definition 4.23. Observe
that the same definition holds true when we consider the extension of X to the one point
compactification Sϑ.
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Suppose that X is a strongly ν-symmetric Feller process with semigroup (Pt)t≥0 and resolvent
(Rα)α>0. Then for all f ∈ C∞(S ),

Rα f (x) =
∫ ∞

0
e−αtPt f (x) dt =

∫ ∞

0
e−αt

∫
S

pt(x, y) f (y) ν(dy) dt

=

∫ ∞

0

∫
S

e−αt pt(x, y) dt f (y) ν(dy) =:
∫

S
uα(x, y) f (y) ν(dy).

(4.141)

The functions uα(x, y) are called α-resolvent kernels or α-potential densities for their potential
theoretic origin and the fact that the α-resolvent is sometimes referred to as the α-potential.

Furthermore, it follows from the ν-symmetry that pt and uα are symmetric for every t ≥ 0 and
α > 0 (cf. [MR06, Chapter 3.3]). Observe that in the book [MR06] by Michael B. Marcus and
Jay Rosen, the authors start with (4.141) as the definition of strong ν-symmetry and deduce the
existence of a symmetric family pt. Both definitions are equivalent as was shown by Rainer
Wittmann in [Wit86] (cf. [MR06, Remark 3.3.5]).

By virtue of the Feller property and the strong continuity of the semigroup, we can choose the
functions pt such that the map (t, x, y) 7→ pt(x, y) is continuous as a function on [0,∞)× S × S .
As a consequence, every strongly symmetric Feller process is regular in the sense of [Kal21,
Chapter 26].

4.3.1 The killed process

Let (S ,U, ν) be a locally compact uniform measure space. Suppose that A ∈ B is closed.
Given a ν-symmetric Feller process X with values in Sϑ. Recall the definition of the lifetime
ξ = inf { t > 0 | Xt ∈ {ϑ} } of X. We introduce the process XA which is the same as the process
X but killed upon hitting the set A, i.e. for each t ≥ 0 and ω ∈ Ω we set

XA
t (ω) :=

Xt(ω), t < min{τA(ω), ξ}

ϑA, t ≥ min{τA(ω), ξ}
(4.142)

and
D := S \ A. (4.143)

Note that D is again locally compact by Lemma A.18 and denote by DϑA = D ∪ {ϑA} its
one-point compactification. Observe that the cemetery point ϑA does not necessarily coincide
with the cemetery point ϑ of the original process X. Keeping this in mind, we just write ϑ for
the cemetery point of XA with an abuse of notation. As usual, we extend functions in B(D) to
Dϑ by setting f (ϑ) = 0.

Further observe that every f ∈ Bb(D) and f ∈ C∞(D) can be extended to Bb(S ) and C∞(S ),
respectively, by setting f = 0 on A. Moreover, we can identify

C∞(D) = { f ∈ C∞(S ) | f (x) = 0 ∀x ∈ A } . (4.144)
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We can therefore consider the killed process as a stochastic process with state space DϑA . The
question remains which properties of X the killed process XA inherits. As a first property
observe that since A ⊂ S was assumed to be closed, every point x ∈ D is regular for D, i.e.

Px(XA
0 = x) = 1 ∀x ∈ D. (4.145)

In the following we will restrict ourselves to the case where we kill in a closed set A ∈ B.
Most of the results can be significantly generalized (see for example [CF11, Sections 3.2 ff.]
or [FOT11, Sections 4.1 ff.]) to sufficiently regular sets.

Despite being of natural interest, the killed process has gotten little attention in the literature,
as far as we can tell. Some results about the properties of the killed process were obtained by
Kai Lai Chung in [Chu86] and more recently in [BLM18].

We start with the observation that the killed process is again Markov.

Lemma 4.61. Let X be a Markov process with respect to the filtration (Ft)t≥0 and values in
S ϑ. Suppose A ∈ B is closed, then the killed process XA is also a Markov process with respect
to (Ft)t≥0 with values in Dϑ.

Proof. The proof is straight forward. Let s, t > 0 and B ∈ BD a Borel subset of D = S \ A.
Then, for each x ∈ D,

Px
(
XA

t+s ∈ B | Ft
)
= Px (Xs ◦ θt ∈ B, t < τA, s < τA ◦ θt | Ft)

= 1{t<τA}PXt (Xs ∈ B, s < τA) = PXA
t

(
XA

s ∈ B
)
, P-a.s.

(4.146)

□

Now, the semigroup associated with XA, denoted by
(
PA

t

)
t≥0

, is given by

PA
t f (x) := Ex

[
f
(
XA

t

)]
= Ex

[
f (Xt); t < τA

]
, (4.147)

for t ≥ 0, f ∈ Bb(D) and x ∈ D. Similarly, the resolvent
(
RA
α

)
α>0

associated with XA can be
written as

RA
α f (x) =

∫ ∞

0
PA

t f (x) dt = Ex

[∫ τA

0
e−αt f (Xt) dt

]
. (4.148)
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Suppose X is strong Markov process, then we have for all α > 0 and f ∈ B+b (S ) non negative,

Hα
A (Rα f (x)) =

∫
S

Rα f (y)Ex
[
e−ατA ; XτA ∈ dy

]
=

∫
S
Ey

[∫ ∞

0
e−αt f (Xt) dt

]
Ex

[
e−ατA ; XτA ∈ dy

]
= Ex

[∫ ∞

0
e−α(t+τA)EXτA

[
f (Xt)

]
dt

]
= Ex

[∫ ∞

τA

e−αt f (Xt) dt
]
.

(4.149)

By combining (4.148) and (4.149) we obtain for all α > 0, f ∈ B+b (S ) and x ∈ S ,

RA
α f (x) = Rα f (x) − Hα

ARα f (x), (4.150)

which is a special case of Dynkin’s formula8 (cf. [Dyn65, §1 Theorem 5.1]) due to the prolific
Eugene B. Dynkin.

Lemma 4.62. Let X be a strong Markov process with respect to the filtration (Ft)t≥0 and
values in S ϑ. Suppose A ∈ B is closed, then the killed process XA is also a strong Markov
process with respect to (Ft)t≥0 with values in Dϑ.

Proof. Let τ be a (Ft)t≥0 stopping time and Θ ∈ Fτ. Then,

Ex
[
PA

t f
(
XA
τ

)
; τ < ∞; Θ

]
= Ex

[
EXτ

[
f (Xt); t < τA

]
; τ < τA; Θ

]
= Ex

[
f (Xτ+t) ; τ + t < τA; Θ

]
= Ex

[
f
(
XA
τ+t

)
; τ < ∞; Θ

]
.

(4.151)

Because Θ ∈ Fτ was arbitrary, we conclude that for all f ∈ B(Dϑ) and x ∈ Dϑ,

Ex
[
f
(
XA
τ+t

) ∣∣∣∣Fτ] = EXτ

[
f
(
XA

t

)]
Px − a.s. (4.152)

Therefore, XA is again strong Markov. □

Clearly, XA has càdlàg paths if X has càdlàg paths. We now show that the ν-symmetry of X is
preserved under killing.

Lemma 4.63. Let X be a ν-symmetric Feller process with values in Sϑ. Suppose that A ∈ Bϑ
is closed and denote D := S \ A. Then the killed process XA is a ν-symmetric Markov process
with values in Dϑ.

8see [FOT11, p. 154]. Compare also with the Dynkin Formula from Proposition 4.41.
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Proof. Let t > 0. Suppose f , g ∈ C+∞ and fix n ∈ N. Then, by Lemma 4.24,∫
S

g(x)Ex
[
f (Xt); Xtk/2n ∈ D, k = 1, . . . , 2n] ν(dx)

=

∫
S
Ex

g(X0)
2n∏

k=1

1D(Xtk/2n) f (Xt)

 ν(dx)

=

∫
S

f (x)Ex
[
g(Xt); Xtk/2n ∈ D, k = 1, . . . , 2n] ν(dx)

(4.153)

By right continuity of X and because D ⊂ S is open, we obtain∫
S

g(x)PA
t f (x) ν(dx) =

∫
S

g(x)Ex
[
f (Xt); t ≤ τA

]
ν(dx)

=

∫
S

f (x)Ex
[
g(Xt); t ≤ τA

]
ν(dx) =

∫
S

f (x)PA
t g(x) ν(dx)

(4.154)

as n → ∞. Splitting f and g into positive and negative part and using the linearity of the
integral completes the proof. □

Next, we want to identify the generator of the killed process XA.

Proposition 4.64. Let X be a Feller process with values in Sϑ and denote by (∆,D) its
generator. Let A ∈ Bϑ be closed and D = S \ A. Then the generator of the killed process XA

is given by (∆A,DA), where

DA = { f ∈ D | f |A = 0 } = D∩ C∞(D), (4.155)

and ∆A f = ∆ f for all f ∈ DA.

Proof. We first show that for all f ∈ DA and x ∈ D,

lim
t→0

∣∣∣∣∣∣PA
t f (x) − f (x)

t
−

Pt f (x) − f (x)
t

∣∣∣∣∣∣ = lim
t→0

∣∣∣PA
t f (x) − Pt f (x)

∣∣∣
t

= 0. (4.156)

It suffices to show (4.156) for non negative f ∈ C+∞(D) ∩D. Furthermore, we can extend PA
t f

to C∞(S ) by setting PA
t f (x) = 0 on A. Fix f ∈ C+∞(D) ∩ D, we want to show (4.156) for all

x ∈ S . By application of the strong Markov property, we obtain

Pt f (x) − PA
t f (x) = Ex

[
f (Xt); t ≥ τA

]
= Ex

[
Pt−τA f (XτA); t ≥ τA

]
. (4.157)

Now, by strong continuity (F2), there exists a δ > 0 such that

∥Pt f − f ∥∞ < ε, (4.158)
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for all t ∈ [0, δ). Suppose t ∈ [0, δ), note that this immediately implies 0 ≤ t − τA < δ on
{t ≥ τA} and hence,

Ex
[
Pt−τA f (XτA); t ≥ τA

]
≤ Ex

[
f (XτA) + ε; t ≥ τA

]
≤ εPx(t ≥ τA), (4.159)

because XτA ∈ A by closedness of A and right continuity of the paths of X. Consequently,
f (XτA) = 0. Clearly, the right hand side is equal to 0 for all x ∈ S . By Theorem 4.57 we find
for every K ⊂ D compact a constant C > 0 such that

sup
x∈K
Px(t ≥ τA) ≤ Ct. (4.160)

Cleaning up now leads to

lim
t→0

sup
x∈K

∣∣∣∣∣∣PA
t f (x) − f (x)

t
−

Pt f (x) − f (x)
t

∣∣∣∣∣∣ ≤ εC. (4.161)

Since ε > 0 was arbitrary and C > 0 depends on K but not on ε, we find that

PA
t f − f

t
−→ ∆ f ∈ C∞(S ) (4.162)

uniformly on compacta as t → 0 and therefore uniformly on D. Furthermore, because the left
hand side of (4.162) is equal to 0 for all x ∈ A, the right hand side is actually in C∞(D). We
have therefore shown that ∆A f = ∆ f for all f ∈ C∞(D) ∩D and therefore C∞(D) ∩D ⊂ DA.
The converse relation “⊃” follows from the fact that C∞(D) ⊂ C∞(S ). □

A similar argument can be found in [BLM18, Theorem 2.3].

We are now in a position to show the main result about killed Feller processes.

Theorem 4.65. Let X be a ν-symmetric Feller process with values in Sϑ and A ∈ Bϑ closed.
Then the killed process XA is again a ν|D-symmetric Feller process with values in Dϑ, where
D = S \ A.

Proof. We have already shown the symmetry of XA in Lemma 4.63. It only remains to show
that XA is a Feller process. In Proposition 4.64 we have identified the generator (∆A,DA)
of PA

t and we want to apply the Hille-Yosida Theorem, Proposition 4.40, to conclude that
PA

t is Feller. Since D is dense in C∞(S ), it follows immediately that DA = D ∩ C∞(D) is
dense in C∞(D) and (i) of Proposition 4.40 holds. Similarly, property (iii) follows from the
corresponding property of ∆. In order to verify (ii), we need to show that the range of (α−∆A)
is dense in C∞(D). By Proposition 4.39 (ii) we know that D = RαC∞(S ) for all α > 0. Fix
some α > 0, it suffices to show that

Rα f (x) > 0 (4.163)
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for all f ∈ C∞(S ) with f (x) > 0. Because then we can argue that

Rα (C∞(S ) \ C∞(D)) ⊂ C∞(S ) \ C∞(D) (4.164)

and therefore the preimage of f ∈ DA = D∩ C∞(D) under Rα must be an element of C∞(D).
Consequently, because (∆,D) itself satisfies property (ii) of Proposition 4.40 i.e. (α − ∆)D is
dense in C∞(S ), we can conclude that

(α − ∆A)DA = (α − ∆)DA = R−1
α D

A (4.165)

is dense in C∞(D).

We show (4.163). Suppose f ∈ C∞(S ) and x0 ∈ S such that f (x0) = c > 0. By continuity,
there exists for each ε > 0 an open entourage U ∈ U such that f (x) ≥ c − ε for all x ∈ U[x0].
Denote by σ = τ∁U[x0] the first exit time from U[x0]. Then,

Rα f (x0) =
∫ ∞

0
e−αtPt f (x0) dt ≥ Ex0

[
e−ασ

∫ σ

0
f (Xt) dt

]
≥ Ex0

[
σe−ασ

]
(c − ε). (4.166)

By Corollary 4.58 there exists a t > 0 such that Px0(σ > t) ≥ ε. That allows us to bound the
expectation on the right of (4.166) from below by e−αttε > 0. Consequently, (4.163) is verified
and the proof is finished. □

The final result of this section is basically due to [Chu86]. In the Theorem on p. 68 of [Chu86],
Kai Lai Chung shows that XA is doubly Feller whenever X is doubly Feller. We have decoupled
the Feller property from the strong Feller property in Theorem 4.65. The proof that the strong
Feller property is retained under killing is now rather simple.

Theorem 4.66 (the killed process is again strongly Feller). Let X be a strong Feller process
with values in S and A ∈ Bϑ closed. Then the killed process is a strong Feller process with
values in Dϑ.

Proof. First assume that (Pt)t≥0 has the property (F3). Fix f ∈ Bb(D). For x ∈ D and t > s > 0
let

ψs(x) := Ex
[
f (Xt−s; t − s < τA

]
. (4.167)

Clearly, ψs ∈ Bb(D). Hence,

Psψs(x) = Ex
[
EXs

[
f (Xt−s); t − s < τA

]]
= Ex

[
EXs

[
f (Xt−s); t − s < τA

]
; s < τA

]
+ Ex

[
EXs

[
f (Xt−s); t − s < τA

]
; s ≥ τA

]
= Ex

[
f (Xt); t < τA

]
+ Ex

[
EXs

[
f (Xt−s); t − s < τA

]
; s ≥ τA

] (4.168)

is continuous and bounded by (F3). Bounding the last summand on the right, we obtain∣∣∣PA
t f (x) − Psψs(x)

∣∣∣ ≤ ∥ψs∥Px(τA ≤ s). (4.169)
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By virtue of Lemma 4.56 the right hand side converges to 0 uniformly on compact sets
as s → 0. Hence, PA

t f ∈ Cb(S ) (see for example [Fol99, Proposition 4.38]). Moreover,
PA

t f (x) = 0 for all x ∈ A, by definition, and therefore PA
t f ∈ Cb(D). In conclusion,

(
PA

t

)
t≥0

satisfies the strong Feller property (F3).

It remains to show the strong continuity of PA
t . Fix f ∈ C∞(D), then∣∣∣PA

t f (x) − Pt f (x)
∣∣∣ = ∣∣∣Ex

[
f (Xt); t ≥ τA

]∣∣∣ ≤ ∥ f ∥∞Px(t ≥ τA). (4.170)

By Lemma 4.56, the upper bound goes to 0 uniformly on compacta as t → 0. Because
Pt f → f uniformly as t → 0 and f ∈ C∞(D), we can conclude from (4.170) that PA

t f → f
uniformly as t → 0.

□

4.3.2 Recurrence and transience

In this section we introduce the notions of recurrence and transience for strongly symmetric
Feller processes.

Definition 4.67 (Recurrence and transience). A ν-symmetric Feller process X with values in
(Sϑ,Uϑ) is recurrent, if ∫ ∞

0
1A(Xt) dt = ∞, Px-a.s. (4.171)

for all x ∈ S and A ∈ B with ν(A) > 0.

The process X is called (uniformly) transient if

sup
x∈S
Ex

[∫ ∞

0
1K(Xt) dt

]
< ∞, (4.172)

for all K ∈ B, compact. ♢

Again, there are various definitions of recurrence of a stochastic process. The definition we
use here is sometimes called Harris recurrence (cf. [Kal21, Chapter 26]). Clearly, (4.171)
implies that the first hitting time τA of every A ∈ B with ν(A) > 0 is Px-a.s. finite for every
starting point x ∈ S . Observe that in Definition 4.67 we consider the extension of X to the
one-point compactification (Sϑ,Uϑ). Yet the equations (4.171) and (4.172) take only x ∈ S
and B,K ∈ B into account.

The next result is important but we refer for a proof to the literature as the proof requires some
potential theoretic tools that we have not developed yet.

Proposition 4.68 (Recurrence dichotomy). Let X be a ν-symmetric Feller process. Then X is
either recurrent or transient.
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Proof. See [Kal21, Theorem 26.17]. □

As a consequence we get the following result.

Lemma 4.69 (The killed process is transient). Let X be a ν-symmetric Feller process and
A ∈ B closed with ν(A) > 0. Then the killed process XA, where XA

t = Xt on {t < τA} and
XA

t = ϑ on {t ≥ τA} is transient.

Proof. By Theorem 4.65, the process XA is again a ν-symmetric (at least up to time t = τA = ζ)
Feller process. If X was already transient, there is nothing to show. If X is recurrent, then
τA < ∞ Px-a.s. for every x ∈ S . Hence, (4.172) holds because ϑ < K for all K ∈ B
compact. □

4.3.3 Uniqueness by hitting times

For the remainder of this section we assume that (S ,U) is a compact uniform space and that
ν is a Radon measure on S with full support. As before, let X denote a ν-symmetric Feller
process with values in Sϑ.

Note that in the situation of compact state spaces, transience of X is equivalent to the lifetime
ζ of X being almost surely finite for every starting point x ∈ S .

We will apply the next lemma for killed processes but the result is in itself interesting. It shows
that the whole resolvent family is already determined by the 0-resolvent if X is transient.

Lemma 4.70. Let (S ,U) be compact and X a ν-symmetric and transient Feller process with
values in Sϑ. Define the 0-resolvent of X as

R f (x) := Ex

[∫ ∞

0
f (Xs) ds

]
= Ex

[∫ ζ

0
f (Xs) ds

]
(4.173)

for f ∈ C∞(S ) and x ∈ S . Then, R f ∈ C∞(S ) and X is uniquely determined by the 0-resolvent
R.

Proof. Let f ∈ C∞(S ). By definition of transience we have

∥R f ∥∞ ≤ sup
x∈S

∫ ∞

0
|Pt f (x)| dt ≤ ∥ f ∥∞ sup

x∈S
Ex

[∫ ∞

0
1S (Xt) dt

]
< ∞. (4.174)

Moreover, for every n ∈ N the function Gn f defined by

Gn f (x) := Ex

[∫ n

0
f (Xt) dt

]
(4.175)
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is in C∞(S ) and Gn f → R f uniformly and consequently, R f ∈ C∞. We have therefore shown
that R : C∞(S )→ C∞(S ) is a linear operator.

Now suppose that f ∈ C+∞(S ) is non negative and choose M < ∞ such that ∥ f ∥∞ ≤ M.
Assume further that X̂ is another Feller process with the same 0-resolvent R. Write (Rα)α>0

and
(
R̂α

)
α>0

for the resolvents of X and X̂, respectively. By the resolvent equation (R1) we
obtain for all α > 0

Rα f (x) = R f (x) − αRRα f (x). (4.176)

Iterating this argument we get for all 0 < α < M−1,

Rα f (x) =
∞∑

k=1

(−α)k−1Rk f (x). (4.177)

An application of the same argument to R̂α yields Rα f = R̂α f for all α ∈ (0,M−1) and hence
for all α > 0 by uniqueness of the Laplace transform. The extension of this equality to all
f ∈ C∞(S ) is easily obtained by splitting f into positive and negative part and applying
monotone convergence to f ±n = f ±1 f ±≤n. Finally, the claim follows from the fact that X is
uniquely determined by its family of resolvent operators (see Remark 4.46). □

For every A ∈ B with ν(A) > 0 and f ∈ Bb(S ) we introduce the Green operator GA as
follows

GA f (x) := Ex

[∫ τA

0
f (Xs) ds

]
, x ∈ S . (4.178)

Lemma 4.71 (Green operators are bounded). Let (S ,U) be compact and X a ν-symmetric
Feller process with values in Sϑ. For each A ∈ B closed with ν(A) > 0, the map GA : Bb(S )→
Bb(S ) is a bounded linear operator.

Proof. By Theorem 4.65 the killed process XA is again Feller. Moreover, by Lemma 4.69, XA

is transient. Recall that PA
t f (x) := Ex

[
f (Xt); t < τA

]
. Although the domain of PA

t contains
by definition only functions in Bb(D), where D = S \ A, PA

t can easily extended to Bb(S ).
Suppose f ∈ Bb(S ), then

∥GA f ∥∞ ≤ sup
x∈S

∫ ∞

0

∣∣∣PA
t f (x)

∣∣∣ dt < ∞, (4.179)

as before. □

Theorem 4.72. Let (S ,U) be compact and X be a ν-symmetric doubly Feller process with
values in Sϑ. Then X is uniquely determined by the family of Green operators

{GA : Bb → Bb | A ∈ B closed } . (4.180)
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Proof. Consider the process killed upon hitting the closure A = U of some open set U ∈ B,
i.e. XA = (Xt∧τA)t≥0. By assumption, ν has full support, hence every open A ∈ B has positive
measure ν(A) > 0. Consequently, by Lemma 4.69, we have that the killed process XA is
transient. Then the resolvent associated to XA can be written as

RA
α f (x) := Ex

[∫ τA

0
e−αs f (Xs) ds

]
, x ∈ S , (4.181)

which we can extend toBb(S ), as before. The 0-resolvent RA associated with XA then coincides
with the Green operator GA associated with X. By Lemma 4.70, the killed process XA is
then uniquely determined by GA. It therefore suffices to show that the resolvent (Rα)α>0 of
X is determined by the resolvents of XA for a suitable collection of A ∈ B. To that end let
a, b ∈ S and choose U ∈ U open such that U[a],U[b] are compact and U[a] ∩ U[b] = Ø.
Such a U ∈ U exists because of the Hausdorff property and the compactness of S , as shown
in Lemma 2.36. In order to save some ink we write A = U[a] and B = U[b]. Now, define
τ0 := τA and for n ≥ 0 set

τn+1 := inf { t > τn | Xt ∈ A,∃s ∈ [τn, t] : Xs ∈ B } . (4.182)

Suppose that X is transient, then we have limn→∞ τn = ∞, Px-almost surely for all x ∈ S . If,
on the other hand, X is recurrent, we get τn < ∞, Px-almost surely for all x ∈ S . By right
continuity of X and the strong Markov property we conclude that

inf
n∈N

inf
x∈S
Ex [τn − τn−1] := T > 0. (4.183)

Hence,

τn = τ0 +

n∑
j=1

τ j − τ j−1. (4.184)

Consequently, we have by the strong law of large numbers limn→∞ τn = ∞, Px-almost surely
for all x ∈ S . Hence,

Rα f (x) = Ex

[∫ τ0

0
e−αs f (Xs) ds

]
+

∞∑
n=0

Ex

[∫ τn+1

τn

e−αs f (Xs) ds
]

= RA
α f (x) +

∞∑
n=0

Ex

[∫ τn+1

τn

e−αs f (Xs) ds
] (4.185)

Since A = U[a] is compact there exist (not necessarily unique) minimizers x, x0 ∈ A of the
variational problems

Ex
[
e−ατ1

]
= inf

{
Ex

[
e−ατ1

] ∣∣∣ x ∈ A
}

(4.186)

and

Ex0

[∫ τ1

0
e−αs f (Xs) ds

]
= inf

{
Ex

[∫ τ1

0
e−αs f (Xs) ds

] ∣∣∣∣∣∣ x ∈ A
}
. (4.187)
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Applying the strong Markov property at the stopping times τn we obtain

Ex

[∫ τn+1

τn

e−αs f (Xs) ds
]
= Ex

[
E

[∫ τn+1

τn

e−αs f (Xs) ds

∣∣∣∣∣∣Fτn

]]
= Ex

[
e−ατnEXτn

[∫ τ1

0
e−αs f (Xs) ds

]]
≥ Ex

[
e−ατn

]
Ex0

[∫ τ1

0
e−αs f (Xs) ds

]
≥ Ex

[
e−ατ0

]
Ex

[
e−ατn

]
Ex0

[∫ τ1

0
e−αs f (Xs) ds

]
.

(4.188)

Using the fact that

RA
α1S (x) = Ex

[∫ τ0

0
e−αs ds

]
= α−1 (

Ex
[
e−ατ0

]
− 1

)
(4.189)

we can write
Ex

[
e−ατ0

]
= 1 − αRA

α1S (x). (4.190)

Now let y, y
0
∈ B be minimizers of

Ey
[
e−ατ0

]
= inf

{
Ey

[
e−ατ0

] ∣∣∣ y ∈ B
}

(4.191)

and

Ey
0

[∫ τ0

0
e−αs f (Xs) ds

]
= inf

{
Ey

[∫ τ0

0
e−αs f (Xs) ds

] ∣∣∣∣∣∣ y ∈ B
}
, (4.192)

respectively. Using these minimizers and (4.189), we can estimate

Ex
[
e−ατ1

]
= Ex

[
e−ατBe−α(τ1−τB)

]
= Ex

[
E

[
e−ατBe−α(τ1−τB)

∣∣∣FτB

]]
≥ Ex

[
e−ατB

]
Ey

[
e−ατ1

]
=

(
1 − αRB

α1S
(
x
)) (

1 − αRA
α1S

(
y
)) (4.193)

and inductively

Ex
[
e−ατn

]
≥

((
1 − αRB

α1S
(
x
)) (

1 − αRA
α1S

(
y
)))n

. (4.194)

Similarly, we obtain

Ex0

[∫ τ1

0
e−αs f (Xs) ds

]
= Ex0

[
E

[∫ τB

0
e−αs f (Xs) ds +

∫ τA

τB

e−αs f (Xs) ds

∣∣∣∣∣∣FτB

]]
≥ RB

α f
(
x0

)
+ Ex0

[
e−ατB

]
Ey

0

[∫ τA

0
e−αs f (Xs) ds

]
= RB

α f
(
x0

)
+

(
1 − αRB

α1S
(
x0

))
RA
α f

(
y

0

)
(4.195)
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Plugging these estimates into (4.185), we obtain

Rα f (x) ≥ RA
α f (x) +

(
1 − αRA

α1S (x)
) (

RB
α f

(
x0

)
+

(
1 − αRB

α1S
(
x0

)))
RA
α f

(
y

0

)
×

∞∑
n=0

((
1 − αRB

α1S
(
x
)) (

1 − αRA
α1S

(
y
)))n

=: RA
α f (x) +

(
1 − αRA

α1S (x)
)

Hα(A, B, f )

(4.196)

By replacing the infima in (4.186), (4.187), (4.191) and (4.192) with suprema and writing
x, x0, y, y0 for their respective maximizers, we obtain a similar upper bound

Rα f (x) ≤ qRA
α f (x) +

(
1 − αRA

α1S (x)
) (

RB
α f (x0) +

(
1 − αRB

α1S (x0)
))

RA
α f

(
y0

)
×

∞∑
n=0

((
1 − αRB

α1S (x)
) (

1 − αRA
α1S (y)

))n

=: RA
α f (x) +

(
1 − αRA

α1S (x)
)

Hα(A, B, f )

(4.197)

Now let (Un)n∈N ⊂ U be a family of open entourages such that U ⊃ U1 ⊃ U2 ⊃ . . . and⋂
n≥1 Un = ∆. Observe that the killed processes are again strongly Feller by Theorem 4.66.

Therefore, Hα(A, B, f ) and Hα(A, B, f ) are continuous functions of x, x0, y, y0
and x, x0, y, y0,

respectively. Therefore,

lim sup
n→∞

∣∣∣∣Hα(Un[a],Un[b], f ) − Hα(Un[a],Un[b], f )
∣∣∣∣ = 0, (4.198)

and hence the upper and lower bounds in (4.196) and (4.197) converge to the same limit as we
let U → ∆. Finally we can write

Rα f (x) = RA
α f (x) + (1 − αRA

α1S (x)) lim
n→∞

Hα(Un[a],Un[b], f ), (4.199)

which concludes the proof. □

By assumption, (S ,U) is a Polish uniform space. In particular that means that there exists
a sequence of open entourages (Un)n∈N ⊂ U such that Un+1 ⊂ Un and

⋂
n∈NUn = ∆. Upon

closer inspection of the proof of Theorem 4.72 it turns out that the assumptions can be relaxed
and we obtain the following.

Corollary 4.73. Let X be a ν-symmetric Feller process with values in Sϑ. Suppose (Un)n∈N ⊂

U is a decreasing sequence of open entourages with
⋂

n∈NUn = ∆. Then X is uniquely
determined by the family of Green operators{

GUn[x] : Bb → Bb

∣∣∣∣ n ∈ N, x ∈ {a, b} ⊂ S
}
. (4.200)
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4.4 Tightness

Ultimately we are interested in the convergence of a sequence of Feller processes which may
live on different subsets of a common state space. We have already developed some conditions
for the convergence of random paths in Chapter 3. In order to apply Theorem 3.48 we need a
good criterion for the tightness of a sequence (Xn)n∈N of processes. In the case of metric state
spaces and strong Markov processes one has Aldous’ tightness criterion that was developed by
David Aldous in his dissertation and can be found for example in [Ald78], [Bil99, Theorem
16.10] or [Kal21, Theorem 23.11], to name a few. Aldous’ criterion can be formulated as
follows.

Proposition 4.74 (Aldous’ tightness criterion). Let
(
X(n)

)
n∈N

be a sequence of stochastic

processes with càdlàg paths with values in a metric space (S , d). Suppose that
(
X(n)

)
n∈N

is
compactly contained, i.e. for every T, ε > 0 there exists a compact set K ⊂ S such that

lim inf
n→∞

P
({

X(n)
t

∣∣∣∣ t ≤ T
}
⊂ K

)
≥ 1 − −ε. (4.201)

If, in addition, for every family (τn)n∈N of bounded optional times (with respect to σ(X(n))) and
every sequence (δn)n∈N with δn > 0 and limn→∞ δn = 0,

lim
n→∞
P
(
d
(
X(n)
τn , X

(n)
τn+δn

)
> ε

)
= 0, ∀ε > 0, (4.202)

then the family
(
X(n)

)
n∈N

is tight.

Siva Athreya, Wolfgang Löhr and AnitaWinter showed in [ALW17, Corollary 4.3] that a
family of Feller processes satisfies Aldous’ tightness criterion when the probability that the
processes reach a given distance from the starting point before time t goes to zero uniformly
in the starting point as t tends to zero.

We show that a similar result holds for uniform state spaces. But instead of applying Aldous’
criterion we show the statement directly as we have the luxury of working with Feller processes
which possess the strong Markov property and we don’t need the full power of Aldous’ theorem.
The proof is inspired by the proof of [EK86, Lemma 3.8.1].

Theorem 4.75 (Tightness for Feller processes on uniform state spaces). For each n ∈ N let
X(n) be a Feller process with values in a subset S n of a locally compact Polish uniform space
(S ,U). Assume that for every open entourage U ∈ U it holds that

lim
t→0

lim
n→∞

inf
x∈S n
Px((x, X(n)

t ) ∈ U) = 1. (4.203)

Then for every sequence of initial distributions µn ∈ M1(S n) the family
{

X(n)
∣∣∣ n ∈ N

}
is tight

in the one-point compactification (S ϑ,Uϑ).
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Proof. Write Ξ :=
{

X(n)
∣∣∣ n ∈ N

}
. We want to apply Theorem 3.43 to proof the claim. That

means that we have to show that the family Ξ is compactly contained (Theorem 3.43 (i)) and
that jumps above a fixed threshold do not accumulate (Theorem 3.43 (ii)). As processes in
the compact space (Sϑ,Uϑ), the family clearly satisfies (i) of Theorem 3.43, i.e. the family is
compactly contained. It remains to show that Ξ also satisfies (ii) of Theorem 3.43. We want to
apply one of the equivalent conditions from Lemma 3.45.

To that end fix U ∈ U open. For each n ∈ N define the random time τ(n) as

τ(n) := inf
{

t > 0
∣∣∣∣ X(n)

t < U
[
X(n)

0

] }
. (4.204)

Observe that τ(n) is the first hitting time of the closed set ∁U
[
X(n)

0

]
and therefore a stopping

time by Proposition 4.51.

From the assumption, in particular (4.203), it follows that for every ε > 0 there exists a δ > 0
such that

inf
n∈N
Pµn

(
τ(n) ≥ δ

)
≥ 1 − ε (4.205)

for all sequences of initial distributions µn ∈ M1(S n). Now set τ(n)
0 = 0 and inductively define

τ(n)
k := inf

{
t > τ(n)

k−1

∣∣∣∣∣∣
(
X(n)
τ(n)

k−1

, X(n)
t

)
< U

}
(4.206)

for each k ∈ N if τ(n)
k−1 < ∞ and τ(n)

k = ∞, otherwise. By the strong Markov property, we have
for all n ∈ N and k ∈ N with τ(n)

k < ∞,

Pµn

(
τ(n)

k+1 − τ
(n)
k ≥ δ

)
= Pµ̂n,k

(
τ(n) ≥ δ

)
, (4.207)

where µ̂n,k denotes the distribution of X(n) at time τ(n)
k when started in the initial distribution

µn, i.e.

µ̂n,k(A) = Pµn

(
X(n)
τ(n)

k

∈ A
)
, A ∈ B(S n). (4.208)

As µ̂n,k ∈ M1(S n) for each (n, k) ∈ N2 with τ(n)
k < ∞, we can apply (4.205) to deduce that for

each ε > 0 there exists a δ > 0 such that

inf
{
Pµn

(
τ(n)

k+1 − τ
(n)
k ≥ δ

) ∣∣∣∣ n, k ∈ N : τ(n)
k < ∞

}
≥ 1 − ε (4.209)

for all sequences (µn)n∈N of initial distributions with µn ∈ M1(S n). For convenience, we write
for k, n ∈ N

ξ(n)
k := τ(n)

k+1 − τ
(n)
k , (4.210)

if τ(n)
k−1 < ∞ and ξ(n)

k = ∞, otherwise. For a fixed sequence (µn)n∈N of initial distributions an
application of the strong Markov property at times τ(n)

k together with (4.209) guarantees the
existence of a sequence

(
ζ(n)

k

)
k,n∈N

of independent random variables satisfying the following
conditions,

ξ(n)
k ≥ ζ

(n)
k Pµn-a.s. (4.211)

4.4 Tightness 125



and for each ε > 0 there exists a δ > 0 such that

Pµn

(
ζ(n)

k < δ
)
< ε, (4.212)

for all k, n ∈ N. Taking ζ(n)
k ∧ 1, if necessary, we can ensure that Var(ζ(n)

k ) ≤ 1 for all n, k ∈ N
while maintaining (4.211). By construction we have

τ(n)
k ≥

k∑
j=1

ζ(n)
j Pµn-a.s. (4.213)

We can therefore apply Kolmogorov’s law of large numbers (cf. [Fel68, Section X.7]) to
deduce that for each T > 0 and n ∈ N the number of k ∈ N with τ(n)

k ≤ T is Moreover, by
(4.212), there exists a K > 0 such that

Eµn

[
ζ(n)

k

]
≥ K (4.214)

for all k, n ∈ N. Consequently, there exists for each ε > 0 and T > 0 a number Mε(T ) ∈ N
independent of n ∈ N such that

Pµn

(
τ(n)

Mε(T ) < T
)
< ε, ∀n ∈ N. (4.215)

Now fix T, ε > 0 and choose δ > 0 such that

inf
{
Pµn

(
τ(n)

k+1 − τ
(n)
k ≥ δ

) ∣∣∣∣ k, n ∈ N : τ(n)
k < T

}
≥

(
1 −

ε

2

)Mε/2(T )−1

. (4.216)

To save some ink, we write Mε/2 = Mε/2(T ) and obtain

sup
n∈N
Pµn

(
inf

{
ξ(n)

k

∣∣∣∣ k ∈ N : τ(n)
k < T

}
< δ

)
≤ sup

n∈N

[
Pµn

(
inf

{
ξ(n)

k

∣∣∣∣ k ≤ Mε/2
}
< δ

)
+ Pµn

(
inf

{
ξ(n)

k

∣∣∣∣ k ∈ N : τ(n)
k < T

}
< δ, T > Mε/2

)]
≤ sup

n∈N
Pµn

(
inf

{
ξ(n)

k

∣∣∣∣ k ≤ Mε/2
}
< δ

)
+
ε

2

= 1 − inf
n∈N
Pµn

Mε/2⋂
k=1

{
ξ(n)

k ≥ δ
} + ε2 ≤ 1 − inf

n∈N

(
inf

k≤Mε/20
Pµn

(
ξ(n)

k ≥ δ
))Mε/2

+
ε

2

≤ 1 −
(
1 −

ε

2

)
+
ε

2
= ε.

(4.217)

We can conclude that for each T > 0,

lim
δ→0

inf
n∈N
Pµn

(
inf

{
τ(n)

k+1 − τ
(n)
k

∣∣∣∣ k ∈ N : τ(n)
k < T

}
≥ δ

)
= 1. (4.218)
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Now recall the definition of the random times σk from (3.116). Analogously, set σ(n)
0 = 0 and

inductively define for k ∈ N,

σ(n)
k := sup

{
t ≤ τ(n)

k

∣∣∣∣∣∣ {X(n)
t , X(n)

t−

}
1 U

[
X(n)
τ(n)

k

] }
, (4.219)

if τ(n)
k < ∞ and σ(n)

k = ∞, otherwise.

Applying again the strong Feller property together with the strong continuity of the semigroups,
we can deduce that σ(n)

k = τ(n)
k almost surely under Pµn for every initial distribution µn ∈

M1(S n). We have thus shown (3.126) and therefore established tightness of the family Ξ. □

4.5 Examples

We conclude this chapter with two examples of strongly symmetric (doubly) Feller processes.
These examples can be considered as our base examples. While both are strongly symmetric
Feller processes, they differ in a fundamental way. Furthermore, both examples can be
extended into different directions. The first example are random walks on graphs. This is a
discrete example in the sense that the state space is countable and carries the discrete topology.
The second example is Brownian motion where the state space is Rd. While our first example
can be extended to non-discrete examples (speed-ν motion on the R trees [AEW13] and more
generally to resistance forms [Cro18]), those examples remain basically low dimensional in the
sense that these processes always hit points with a positive probability. Brownian motion has
this property only in the case of d = 1 and can be further extended to other (high dimensional)
state spaces like Riemannian manifolds (cf. [Suz19a]).

4.5.1 Random walks on graphs

We first introduce weighted graphs and collect some basic facts about them.

Weighted graphs

Definition 4.76 (Graphs). Let V , Ø be at most countable and E ⊂ { e ⊂ V | #e = 2 }, a subset
of the family of two-element subsets of V . The pair (V, E) is called a (undirected) graph and
the set V is the set of vertices whereas E is the set of edges of the graph. ♢

A directed graph is a generalization of an undirected graph that is obtained by taking E ⊂ V×V .
We will only be considering undirected graphs in this thesis and therefore drop the attribute
undirected.

We say that two vertices x, y ∈ V are connected by an edge if {x, y} ∈ E. In that case we write
x ∼ y. All vertices y ∈ V with x ∼ y are called neighbors of x. A path (of length n ∈ N) is a
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n+ 1-tuple (x0, x1, . . . , xn) ⊂ Vn+1 with the property that xk−1 ∼ xk for all k = 1, . . . , n. We say
that a path (x0, . . . , xn) is simple if x j , xk for all j, k = 0, . . . , n with j , k. For two vertices
x, y ∈ V we denote the set of simple paths of length n connecting x and y by

Γn
xy :=

{
(x0, x1, . . . , xn) ∈ Vn+1

∣∣∣ x = x0 ∼ x1 ∼ · · · ∼ xn = y, x j , xk if j , k
}
, (4.220)

and we write
Γxy :=

⋃
n∈N

Γn
xy (4.221)

for the set of simple paths from x to y. Given a simple path γxy = (x0, x1, . . . , xn) ∈ Γxy from x
to y, we write

l(γxy) = n (4.222)

for its length. A graph (V, E) is said to be connected if Γxy , Ø for all pairs of vertices
(x, y) ∈ V2. We will assume from now on that the graphs under consideration are connected if
not explicitly stated otherwise.

Furthermore, we introduce the degree of a vertex x ∈ V , as the number of neighbors of x,
i.e.

deg(x) := # { y ∈ V | x ∼ y } . (4.223)

The graph distance d between two vertices x, y ∈ V is defined as the length of the shortest
path connecting x and y:

d(x, y) := inf
{

l(γxy)
∣∣∣ γxy ∈ Γxy

}
. (4.224)

It is straight forward to check that d is indeed a metric.

We introduce an important generalization of graphs by assigning weights to the edges. One
common interpretation of these weights are conductances in a electrical network. Here the
conductance is the reciprocal of the resistance which can be seen as proportional to the length
of an edge.

Definition 4.77 (Weighted graphs). A weighted graph is a triple (V, E, µ), where (V, E) is a
graph and µ : V × V → [0,∞) is a symmetric map with µ(x, y) = µ(y, x) > 0 if and only if
{x, y} ∈ E. ♢

We usually write µxy := µ(x, y) and with a slight abuse of notation we write for an edge
e = {x, y} ∈ E,

µe = µ(e) = µ(x, y) = µ(y, x) = µxy = µyx. (4.225)

For a weighted graph we can introduce weighted versions of the degree and the graph distance
by

degµ(x) = µx :=
∑
y:x∼y

µxy (4.226)
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and
dµ(x, y) := inf

{
lµ(γxy)

∣∣∣ γxy ∈ Γxy
}
, (4.227)

where

lµ(γxy) :=
l(γxy)∑
k=1

µ(xk−1, xk)−1. (4.228)

It is again a standard calculation to show that dµ defines a metric on V .

Observe that the edges E of a weighted graph is determined by the weights
{
µxy

∣∣∣ x, y ∈ V
}

because {x, y} ∈ E ⇔ µxy > 0. For that reason we often write (V, µ) for the weighted graph
(V, E, µ).

Definition 4.78 (Degree conditions). Let G = (V, µ) be a weighted graph.

(i) We say that G is of finite local degree if

µx < ∞, ∀x ∈ V. (4.229)

(ii) The graph G satisfies the controlled weights condition if there exists a δ > 0 such that

µxy

µx
> δ, ∀x ∈ V and y ∈ V with x ∼ y. (4.230)

♢

Effective resistance

Let (V, µ) be a weighted graph. We introduce a bilinear form E on the space of real valued
maps V → R by

E( f , g) :=
1
2

∑
x,y∈V

µxy ( f (x) − f (y)) (g(x) − g(y)) (4.231)

for f , g ∈ D(E), where
D(E) := { f : V → R | E( f , f ) < ∞ } . (4.232)

We refer to the quantity E( f , f ) as the energy of f and to E as the energy form associated
with (V, µ). We will examine such bilinear forms in more depth in Chapter 5 where we also
explore the deep connection between Dirichlet forms and symmetric Feller processes. Using
the energy functional E we can define another metric on V by

R(x, y) := inf { E( f , f ) | f ∈ D(E), f (x) = 0, f (y) = 1 }−1 . (4.233)

We introduce the following shorthand notation

F
y
x := { f ∈ D(E) | f (x) = 0, f (y) = 1 } . (4.234)
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First, we check that R indeed defines a metric.

Lemma 4.79. Let (V, µ) be a weighted graph of finite local degree and E the associated energy
functional. Then R as defined in (4.233) is a metric on V.

Proof. By definition of E, we have R(x, y) ≥ 0 and R(x, x) = 0 for all x, y ∈ V . On the other
hand, if x , y we can set f (y) = 1 and f (z) = 0 for all z ∈ V \ {y} and obtain

E( f , f ) =
1
2

∑
u,v∈V

µuv( f (u) − f (v))2 =
1
2

∑
u∈V : u∼y

µuy = µy < ∞. (4.235)

Hence, R(x, y) ≥ E( f , f )−1 = µ−1
y > 0. The symmetry of R follows from the fact that

E(1 − f , 1 − f ) = E(1, 1) − 2E(1, f ) + E( f , f ) = E( f , f ) (4.236)

together with the fact that (1 − f ) ∈ F x
y for all f ∈ F y

x .

It remains to show that R satisfies the triangle inequality. To that end fix x, z ∈ V and observe
that for all f ∈ D(E) with f (x) , f (z) we have

h :=
f − f (x)

f (z) − f (x)
∈ F z

x , (4.237)

and we can write the energy of h as

E(h, h) =
E( f , f )

( f (z) − f (x))2 . (4.238)

Consequently, we can rewrite (4.233) as

R(x, z) = sup
{

( f (z) − f (x))2

E( f , f )

∣∣∣∣∣∣ f ∈ D(E), E( f , f ) > 0
}
. (4.239)

Now let y ∈ V \ {x, z} be arbitrary. Applying (4.239), we arrive at

R(x, z) ≤ sup
{

( f (z) − f (y))2

E( f , f )
+

( f (y) − f (x))2

E( f , f )

∣∣∣∣∣∣ f ∈ D(E), E( f , f ) > 0
}

≤ sup
{

( f (z) − f (y))2

E( f , f )

∣∣∣∣∣∣ f ∈ D(E), E( f , f ) > 0
}

+ sup
{

( f (y) − f (x))2

E( f , f )

∣∣∣∣∣∣ f ∈ D(E), E( f , f ) > 0
}

= R(y, z) + R(x, y).

(4.240)

□
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We call the metric R the effective resistance metric or simply resistance metric. The name
stems from the interpretation of (V, µ) as an electrical network and it can be shown that R
satisfies the usual rules for parallel resistors and resistors in series.

A good survey of the resistance metric on (finite) graphs can be found in the article [Wei18]
by TobiasWeihrauch. Another rich source is the book [AF02] by David Aldous and James
Allen Fill.

Remark 4.80. Clearly, the graph metric induces the discrete topology on V since

d(x, y) < 1 ⇔ x = y. (4.241)

Let (V, µ) be of finite local degree. Fix x ∈ V and suppose c > 0 is such that µx < c. Then,{
y ∈ V

∣∣∣ dµ(x, y) < 1/c
}
= {x} (4.242)

and hence dµ induces the discrete topology, too. The same holds for the resistance metric as is
easy to check. For each x, y ∈ V , the function 1V\{x} ∈ F

y
x . Hence,

R(x, y) ≥ E(1V\{x},1V\{x})−1 = µ−1
x , (4.243)

and therefore R introduces the discrete topology on V by the same argument as before.

Now denote byUd,Uµ andUR the uniformities generated by d, dµ and R, respectively. Recall
from Example 2.3 that the sets of the form

Ur
ε :=

{
(x, y) ∈ V2

∣∣∣ r(x, y) < ε
}
, ε > 0 (4.244)

form a base of the uniformity Ur, where r is one of the metrics d, dµ and R. Now, Ur
1 = ∆

and therefore d induces the discrete uniformity. This is not necessarily the case for the other
metrics dµ and R. ♢

To illustrate the last remark consider the following two examples.

Example 4.81 (Line graph). Let G = (V, µ) be the graph with V = N and

µxy = min{x, y}, (4.245)

if |x − y| = 1 and µxy = 0 otherwise. Then, µn = 2n − 1 hence (V, µ) is of finite local degree.
For every ε > 0 we have that (

⌈ε−1⌉ + 1, ⌈ε−1⌉ + 2
)
∈ Uµ

ε . (4.246)

ThereforeUd , Uµ. In this example, the metrics µ and R coincide because (V, µ) is a tree. □
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Fig. 4.1.: The graph G = (V, µ) from Example 4.82

Example 4.82 (Line with attachements). Now, let G = (V, µ) be the graph depicted in Fig-
ure 4.1. That is, G is the graph with vertices

V = N ∪
{

v j
i

∣∣∣∣ 1 ≤ i ≤ j, j ≥ 3
}
∪

{
x j

∣∣∣ j ≥ 3
}

(4.247)

and conductances 
µ(n, n + 1) = µ(n + 1, n) = 1, n ∈ N,

µ(n, vn
i ) = µ(vn

i , n) = 1, n ≥ 3, 1 ≤ i ≤ n,

µ(xn, vn
i ) = µ(vn

i , xn) = 1, n ≥ 3, 1 ≤ i ≤ n,

µ(x, y) = 0, otherwise.

(4.248)

First observe that µn = n for all n ∈ N, µv j
i
= 2 and µxn = n − 2. Therefore, G is of finite local

degree. Furthermore, the metrics d and dµ coincide and generate the discrete uniformity. We
also have R(x, y) = d(x, y) = dµ(x, y) = |x − y| for all x, y ∈ N. Whereas

R(n, xn) =
2

(n − 2)
, (4.249)

as can be easily checked using the series and parallel laws for resistors (cf. Appendix B.2). As
a consequence, R does not generate the discrete uniformity since for each ε > 0 there exists a
n ∈ N such that (n, xn) ∈ URn . Recall that by Remark 4.80 all three metrics on V induce the
discrete topology. So this is a further example for the case where different uniformities may
induce the same topology (c.f. Example 2.10). □

The speed-ν random walk

Let (V, µ) be a weighted graph and ν be a boundedly finite measure on V with full support, in
other words a map ν : V → (0,∞). Again, we use νx := ν(x) as a shorthand. We refer to the
triple (V, µ, ν) as a weighted measure graph.
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Consider a continuous time Markov chain X with values in V , that is a Markov process with the
countable and discrete state space V . Assume further that X jumps from x ∈ V to a neighbor
y ∼ x at rate

ηxy :=
µxy

2νx
. (4.250)

To put it differently, X is a random walk9 on the graph (V, µ) that stays in a vertex x ∈ V for
an exponentially distributed random time ξ := inf { t > 0 | Xt , X0 } with expectation

Ex
[
ξ
]
=
νx

µx
(4.251)

and then jumps to one of the neighboring vertices y ∈ { y ∈ V | y ∼ x } with probability

Px(Xξ = y) =
µxy

µx
. (4.252)

In the case where νx = cµx for all x ∈ V and some c > 0, we call X the fixed speed random
walk and otherwise the variable speed random walk on V .

We will assume from now on that (V, µ) has finite local degree so that the holding times ξ are
non-degenerate (i.e. 0 < Ex

[
ξ
]
< ∞ for all x ∈ V).

For a (continuous time) random walk X we introduce its (discrete time) skeleton10 of X, usually
denoted by Z = (Zn)n≥0, defined as

Zn := Xτn , (4.253)

where (τn)n≥0 are defined inductively via τ0 = 0 and

τn+1 := inf
{

t ≥ τn
∣∣∣ Xt , Xτn

}
n ∈ N. (4.254)

Definition 4.83 (Speed-ν random walk). Let (V, µ, ν) be a weighted measure graph with finite
local degree. The Markov process X described above is called the speed-ν random walk (or
speed-ν motion) on the graph (V, µ). We refer to the measure ν as the speed measure (of X). ♢

It is straight forward to check that the speed-ν random walk is both Feller and strongly Feller.

Conditions (F1) and (F3) follow trivially from the fact that every real valued function f : V →
R on the discrete space V is continuous. On the other hand, we obtain (F2) from the fact that
the holding time at x before the next jump is exponentially distributed with a finite parameter
for all x ∈ V .

In order to show the symmetry of the speed-ν random walk we need to examine the semigroup
further.

9We use the term random walk generally for a Markov process or a Markov chain on a discrete state space.
10It may be more common to call this object the embedded discrete time Markov chain, but we prefer the term

skeleton as it is much shorter. It is also not unprecedented (cf. [Szn11]).
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Proposition 4.84. Let (V, µ, ν) be a weighted measure graph and X the speed-ν random walk
on (V, µ). Then for each f ∈ Bb(V), the generator of X is given by

L f (x) :=
1

2νx

∑
y∈V

µx,y ( f (y) − f (x)) . (4.255)

Thus, the semigroup (Pt)t≥0 associated with X can be written as

Pt f (x) = Ex
[
f (Xt)

]
=

∑
n≥0

tn

n!
Ln f (x) = etL f (x), t ≥ 0, f ∈ Bb(V). (4.256)

Proof. Let f ∈ Bb(V) and fix x ∈ V and consider the difference quotient

Pt f (x) − f (x)
t

= t−1Ex
[
f (Xt) − f (X0)

]
. (4.257)

Write J(t) for the number of jumps of X in the interval [0, t]. We can split the expectation on
the right and obtain

Pt f (x) − f (x)
t

= t−1Ex
[
( f (Xt) − f (X0))1{J(t)=1}

]
+ t−1Ex

[
( f (Xt) − f (X0))1{J(t)≥2}

]
.

(4.258)

For z ∈ V denote by λz := µz/νz the jump rate at z. Further, let

λ := max { λz | z ∼ x } . (4.259)

Then we can bound the probability that X has two or more jumps in [0, t] by an Erlang(2, λ)-
distribution, i.e.

Px(J(t) ≥ 2) ≤ 1 − e−λt − λte−λt. (4.260)

Observe that the right hand side is in o(t) as t → 0. Denote by ξ the holding time of X before
the first jump and recall that ξ ∼ Exp(λx) under Px. Furthermore, let Z denote the discrete
skeleton of X as defined in (4.253). Conditioning on the event J(t) = 1, we obtain

Ex
[
( f (Xt) − f (X0))1{J(t)=1}

]
= Ex

[
f (Z1) − f (Z0)

]
Px(J(t) = 1)

= Ex
[
f (Z1) − f (Z0)

]
(Px(J(t) ≥ 1) − Px(J(t) ≥ 2))

= Ex
[
f (Z1) − f (Z0)

]
Px(ξ < t) + o(t),

(4.261)

as t → 0. A similar argument applied to the second summand in (4.258) yields

Pt f (x) − f (x)
t

= t−1Ex
[
f (Z1) − f (Z0)

]
Px(ξ < t) + o(1)

=
1 − e−λxt

t

∑
y∈V

µxy

µx
( f (y) − f (x)) + o(1)

−→
t→0

λx/µx

∑
y∈V

µxy( f (y) − f (x)) = L f (x).

(4.262)
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Thus, L is indeed the generator of the Feller process X and (4.256) follows with standard
arguments. □

The operator L is sometimes referred to as the (discrete) Laplacian or the (discrete) Laplace
operator.

The next result gives a hint at the intrinsic relationship between the resistance metric and the
speed-ν random walk on (V, µ).

Lemma 4.85. Let X be the speed-ν random walk on the weighted measure graph (V, µ, ν).
Recall the energy form E from (4.231). Then, for all f , g ∈ D(E),∫

V
−L f g dν = E( f , g). (4.263)

Proof. A straight forward calculation yields∫
V
−L f g dν =

∑
x∈V

−L f (x)g(x)νx =
∑

x,y∈V

µxy( f (x) − f (y))g(x)

=
1
2

∑
x,y∈V

µxy ( f (x)g(x) − f (y)g(x)) +
1
2

∑
y,x∈V

µyx ( f (y)g(y) − f (x)g(y))

=
1
2

∑
x,y∈V

µxy( f (y) − f (x))(g(y) − g(x)) = E( f , g). (4.264)
□

Proposition 4.86. Let (V, µ, ν) be a weighted measure graph with locally finite degree. Then
the speed-ν random walk on (V, µ) is both doubly Feller and strongly ν-symmetric.

Proof. Let X be the speed-ν random walk on (V, µ). We have already shown that X is doubly
Feller. By Lemma 4.85, the generator L is ν-symmetric, as∫

V
L f g dν = −E( f , g) = −E(g, f ) =

∫
V

fLg dν. (4.265)

This symmetry carries over to the semigroup (Pt)t≥0 and the resolvent (Rα)α>0 by Proposi-
tion 4.84.

Now define for α > 0 and x, y ∈ V ,

uα(x, y) := ν−1
y Rα1y(x) = ν−1

y

∫ ∞

0
Pt1y(x)eαt dt. (4.266)

Again, checking the symmetry of uα is a straight forward calculation

uα(x, y) = ν−1
y Rα1y(x) = (νyνx)−1

∫
V

Rα1y(z)1x(z) dν

= (νyνx)−1
∫

V
1y(z)Rα1x(z) dν = ν−1

x Rα1x(y) = uα(y, x).
(4.267)
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Finally, we have∫
V

uα(x, y) f (y) ν(dy) =
∫

V

∫ ∞

0
ν−1

y Pt1y(x) f (y)e−αt dt ν(dy)

=

∫ ∞

0

∫
V
ν−1

y 1y(x)Pt f (y)e−αt ν(dy) dt

=

∫ ∞

0
Pt f (x)e−αt dt = Rα f (x).

(4.268)

Thus, the strong ν-symmetry of X is established (see the discussion at the beginning of
Section 4.3). □

4.5.2 Brownian motion

Unsurprisingly, one of our base examples is Brownian motion which Kallenberg called
“arguably the single most important object of modern probability”11. We assume that the
reader is familiar with the basic properties of Brownian motion.

Let d ∈ N and consider the metric measure space (Rd, r, λ), where r(x, y) = ∥x − y∥ is the
Euclidean metric on Rd and λ denotes the Lebesgue measure.

Let B = (Bt)t≥0 be the Brownian motion with values in Rd. Recall (cf. [Sch21, Lemma 7.1])
that the semigroup (Pt)t≥0 of B is given by

Pt f (x) :=
∫

Rd
pt(x, y) f (y) λ(dy), f ∈ Bb(Rd), x ∈ Rd, t > 0, (4.269)

where
pt(x, y) :=

1
(2πt)d/2 e−

∥y−x∥2
2t , x, y ∈ Rd, t > 0. (4.270)

Proposition 4.87. The semigroup (Pt)t≥0 of the Brownian motion is both Feller and strongly
Feller.

Proof. We first show that Pt is strongly continuous, i.e. satisfies (F2). Let f ∈ C∞(Rd), then
∥ f ∥∞ < ∞ and f is uniformly continuous. Let ε > 0 and choose δ > 0 such that

| f (x) − f (y)| < ε, ∀x, y ∈ Rd : ∥x − y∥ < δ. (4.271)

11[Kal21, p.297]
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Then,

∥Pt f − f ∥∞ = sup
x∈Rd

∣∣∣∣∣∫
Rd

pt(x, y) f (y) λ(dy) − f (x)
∣∣∣∣∣

≤ sup
x∈Rd

∫
Rd

pt(x, y)| f (y) − f (x)| λ(dy)

= sup
x∈Rd

(∫
∥x−y∥<δ

pt(x, y)| f (y) − f (x)| λ(dy) +
∫
∥x−y∥≥δ

pt(x, y)| f (y) − f (x)| λ(dy)
)

≤ ε + sup
x∈Rd

2∥ f ∥∞
(2πt)d/2

∫
∥x−y∥≥δ

e−∥x−y∥2/(2t) λ(dy)

= ε + 2∥ f ∥∞P0 (∥Bt∥ ≥ δ) −→
t→0

ε.

(4.272)
The claim then follows since ε > 0 was arbitrary.

The Feller property (F1) follows from the translation invariance of Brownian motion. Let
again f ∈ C∞(Rd). Since ∥ f ∥∞ < ∞ we can apply dominated convergence to obtain

lim
x→y

Pt f (x) = lim
x→y
Ex

[
f (Bt)

]
= lim

x→y
E0

[
f (Bt + x)

]
= E0

[
f (Bt + y)

]
= Pt f (y). (4.273)

Analogously, we obtain limx→∞ Pt f (x) = 0 and hence Pt f ∈ C∞(Rd).

In order to show the strong Feller property, (F3), fix f ∈ Bb(Rd). Clearly, Pt f is again bounded.
We want to show that Pt f is continuous at x ∈ Rd. To that end let R := 2∥x∥ and write UR[0]
for the ball around the origin with radius R. It suffices to show that limn→∞ Pt f (xn) = Pt f (x)
for all sequences (xn)n∈N ⊂ UR[0]. Recall that

Pt f (xn) =
1

(2πt)d/2

∫
Rd

f (y)e−
∥xn−y∥

2t λ(dy). (4.274)

Thus, the claim follows by dominated convergence once we can show that the integrand is
bounded by an integrable function. Suppose ∥y∥ ≥ 2R, then

∥xn − y∥2 ≥ (∥y∥ − ∥xn∥)2 ≥
1
4
∥y∥2. (4.275)

Consequently,

f (y)e−
∥xn−y∥

2t ≤ ∥ f ∥∞
(
1U2R[0] + 1∁U2R[0]e

−
∥y∥
8t

)
, (4.276)

which is the integrable bound we were seeking. Hence, Pt f ∈ Cb(Rd), as x ∈ Rd was
arbitrary. □

By definition, pt is a symmetric function for all t > 0. Hence,∫
Rd

Pt f g dλ =
∫
Rd

∫
Rd

pt(x, y) f (y) λ(dy)g(x) λ(dx)

=

∫
Rd

∫
Rd

pt(y, x)g(x) λ(dx)g(y) λ(dy) =
∫
Rd

f Ptg dλ.
(4.277)
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In other words, Brownian motion is λ-symmetric. From (4.269) it is immediate that pt(x, · )
is the density of the probability measure Px(Bt ∈ A) = Pt1A(x) with respect to λ. We have
therefore shown the following.

Proposition 4.88. For every d ∈ N, d-dimensional Brownian motion is strongly λ-symmetric.
□

In fact, it can be shown (cf. [Sch21, Example 7.14]) that the resolvent kernel of Brownian
motion is given by

ud
α(x, y) =

1
πd/2

 √2α
2|x − y|

 d
2−1

K d
2−1

(√
2α|x − y|

)
, (4.278)

where

Kν(z) =
1
2

( z
2

)ν ∫ ∞

0
exp

(
−t −

z2

4t

)
t−(ν+1) dt, z > 0 (4.279)

denotes a modified Bessel function of the second12 kind (see [Olv+10, §10.25] and [Olv+10,
eq. 10.32.10]).

12In [Sch21], Kν is identified as a Bessel function of the third kind, which seems to be a mistake.
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Dirichlet Forms and symmetric
Feller Processes

5
„He stared at his feet. “I’m still very ignorant”, he

said, “but at least I’m ignorant about really
important things.”

— Terry Pratchett
Diggers: The Second Book of the Nomes

5.1 Dirichlet Forms

Dirichlet forms are a rich analytical tool for the study of symmetric Feller processes. Informally
speaking there is a one to one correspondence between a class of bilinear forms on L2(S , ν)
and a class of ν-symmetric Feller processes on the uniform measure space (S ,U, ν). In
Section 4.5.1 we have already encountered an example of a Dirichlet form when we introduced
the energy functional in (4.231). We give an introduction to Dirichlet forms and shine a light
into the “black box” that is the theory of Dirichlet forms. We show in some detail how a
symmetric Feller process gives rise to a Dirichlet form. Subsequently we introduce some
important potential theoretic notions and show how they relate to the Dirichlet form on the
one hand and to the process on the other hand. Finally, we use Dirichlet forms to extend the
examples of the previous section.

In order to keep this work reasonably bounded we refer the reader to the literature for deeper
results. An extensive treatment of the theory of Dirichlet forms can be found in the monographs
[FOT11] by Masatoshi Fukushima, Yoichi Oshima and Masayoshi Takeda and [CF11] by
Zhen-Qing Chen and Masatoshi Fukushima. We focus exclusively on symmetric Dirichlet
forms and include the symmetry in the definition of Dirichlet forms. A thorough treatment of
the theory of not necessarily symmetric Dirichlet forms can be found in the book [MR92] by
Zhi-MingMa and Michael Röckner. An extension of the hereinafter developed concepts to
the not necessarily symmetric case is interesting but beyond the scope of this thesis and must
remain a subject for further research. We begin with a brief discussion of symmetric forms on
real Hilbert spaces.

Definition 5.1. LetH be a real Hilbert space andD ⊂ H a linear subspace. A quadratic form
is a map q : D → R≥0 satisfying q(α f ) = α2q( f ) for all α ∈ R. A map E : D ×D → R is a
symmetric bilinear form, if the following hold

139



(i) E is symmetric, i.e.
E( f , g) = E(g, f ) (5.1)

for all f , g ∈ D.

(ii) E is linear in each component, i.e.

E(α( f + g), h) = α(E( f , h) + E(g, h)) (5.2)

for all f , g, h ∈ D and α ∈ R.

D is called the domain of E. To emphasize this, we sometimes writeD(E). ♢

A quadratic form q uniquely determines a symmetric bilinear form E via polarization:
E( f , g) := 1

2 (q( f + g) − q( f ) − q(g)) and vice versa every symmetric bilinear form uniquely
determines a quadratic form via q( f ) := E( f , f ). To save some ink, we sometimes write
E( f ) := E( f , f ) for the quadratic form determined by the bilinear form E. Furthermore, we
drop the adjective bilinear from the notation for convenience.

A quadratic form q is called positive (semi-) definite1 if q( f ) (≥) > 0 for all f ∈ D(E) \ {0}. A
symmetric form E is called positive (semi-) definite, if the associated quadratic form is positive
(semi-) definite.

We begin with some important observations.

Lemma 5.2 (Cauchy Schwarz). Let E be a positive semidefinite symmetric form with domain
D ⊂ H . Let f , g ∈ D such that at least one of quantities E( f , f ),E(g, g) is non-zero. Then,

E( f , g)2 ≤ E( f , f )E(g, g). (5.3)

Proof. Let f , g ∈ D. Without loss of generality suppose that E( f , f ) > 0. For every λ ∈ R we
have

Then, 0 ≤ E(g − λ f , g − λ f ) = E(g, g) − 2λE( f , g) + λ2E( f , f ). (5.4)

Now choose λ = E( f , g)/E( f , f ). Then,

0 ≤ E(g, g) − E( f , g)2/E( f , f ). (5.5)

Rearranging (5.5) yields the desired inequality. □

This is the classical Cauchy-Schwarz inequality with the only exception that we have to be
mindful of the case where E( f , f ) + E(g, g) = 0 while f , g , 0.

1Some authors (e.g. [FOT11]) use the term non-negative definite instead of positive semi-definite.
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Lemma 5.3 (Triangle inequality). Let E be a positive semidefinite symmetric form with domain
D ⊂ H . Suppose f , g ∈ D with E( f , f ) + E(g, g) > 0. Then,

E( f + g, f + g)1/2 ≤ E( f , f )1/2 + E(g, g)1/2. (5.6)

Proof. Let f , g ∈ D(E). Applying the Cauchy-Schwarz inequality from Lemma 5.2 we obtain

E( f + g, f + g) = E( f , f ) + 2E( f , g) + E(g, g)

≤ E( f , f ) + 2E( f , f )1/2E(g, g)1/2 + E(g, g)

≤
(
E( f , f )1/2 + E(g, g)1/2

)2
,

(5.7)

completing the proof. □

Lemma 5.4. Let E be a positive semidefinite symmetric form and denote by ⟨ · , · ⟩ the inner
product ofH . Then, for each α > 0, the form

Eα( f , g) := E( f , g) + α ⟨ f , g⟩ (5.8)

is a positive definite symmetric bilinear form with domainD(E).

Proof. Symmetry and bilinearity are immediate consequences of the fact that Eα is the sum of
two symmetric bilinear forms. Similarly, positive definiteness follows from the fact that Eα is
the sum of a positive definite and a positive semidefinite form. □

Recall that a pre-Hilbert space is a vector space equipped with a scalar product that is not
necessarily complete.

Lemma 5.5. The form Eα is a scalar product onD(E) and (D(E),Eα) is a pre-Hilbert space
for each α > 0. Moreover, Eα and Eβ determine equivalent metrics onD(E) for all α, β > 0.

Proof. By Lemma 5.4 it is clear that (D(E),Eα) is a real pre-Hilbert space. We need to show
that

rα( f , g) :=
√
Eα( f − g, f − g) (5.9)

are equivalent metrics onD(E) for all α > 0. Assume 0 < α < β, then

α

β
Eβ ≤ Eα( f − g) ≤

β

α
Eβ( f − g) (5.10)

and rα and rβ are even bi-Lipschitz equivalent. □
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We call a symmetric form (E,D(E)) closed if D(E) is complete with respect to E1 (or,
equivalently, with respect to Eα for all α > 0), i.e. every E1-Cauchy sequence is E1-convergent
to an element ofD(E). We say that the symmetric form (E,D(E)) is closable if for every E-
Cauchy sequence ( fn)n∈N ⊂ D(E) with limn→∞ ⟨ fn, fn⟩ = 0 it holds that limn→∞ E( fn, fn) = 0.
As implied by the terminology, a closable symmetric form can be extended to a closed
symmetric form in the following sense. We say that a symmetric form (E,D(E)) is an
extension of the symmetric form (E′,D(E′)) ifD(E′) ⊂ D(E) and E|D(E′)×D(E′) = E

′.

Proposition 5.6. Let (E,D(E)) be a closable symmetric form. Suppose ( fn)n∈N ⊂ D(E) is
an E1-Cauchy sequence. Then there exists a f ∈ H such that limn→∞ fn = f (in H) and
limn→∞ E( fn) < ∞ exists. Furthermore, letD(E) denote the set of all f ∈ H such that there
exists an E1-Cauchy sequence ( fn)n∈N ⊂ D(E) with limn→∞ fn = f (inH) and set

E( f ) := lim
n→∞
E( fn) (5.11)

Then the value of E( f ) does not depend on the choice of ( fn)n∈N and (E,D(E)) is the smallest
closed extension of (E,D(E)) in the sense that every closed extension of (E,D(E)) also extends
(E,D(E)).

Proof. See [Kat95, Theorem VI.1.17]. □

Let again denote (S ,U, ν) denote a uniform measure space. We will turn our focus to
symmetric forms on the particular Hilbert space L2(S , ν) equipped with the scalar product

⟨ f , g⟩ :=
∫

S
f g dν. (5.12)

We introduce the Markov property for symmetric forms.

Definition 5.7. Let (E,D(E)) be a symmetric form on L2(S , ν). We say that (E,D(E)) is
Markovian (has the Markov property) if for each ε > 0 there exists a function φε : R→ R with
the following properties

(i) φε(t) = t for all t ∈ [0, 1]

(ii) −ε ≤ φε(t) ≤ 1 + ε for all t ∈ R

(iii) 0 ≤ φε(t) − φε(s) ≤ t − s for all s < t

such that for all f ∈ D(E) we have φε ◦ f ∈ D(E) and E(φε ◦ f ) ≤ E( f ). ♢

Next, we introduce the central object of this chapter.
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Definition 5.8 (Dirichlet form). Let E be a positive semi-definite symmetric bilinear form on
L2(S , ν) with domainD(E) ⊂ L2(S , ν). Then, (E,D(E)) is a Dirichlet form if

(D1) D(E) is a dense linear subspace of L2(S , ν),

(D2) (E,D(E)) is closed and

(D3) (E,D(E)) is Markovian. ♢

Recall from (4.5) that we use C0 = C0(S ,R) to denote the compactly supported continuous
real valued functions on S . With a slight abuse of notation we write C0∩D(E) for the elements
of C0 that are representatives of an element in D(E) as well as for those elements of D(E)
that have a representative in C0, depending on the context. For a f ∈ D(E) we denote by
supp( f ) = supp( f · ν) the support of the measure f · dν. For the domainD(E) of E we simply
writeD when no confusion can arise.

Definition 5.9. A Dirichlet form (E,D) is called regular, if

(D4) C0(S ) ∩D is both dense inD with respect to E1 and dense in C0(S ) with respect to the
uniform norm.

Furthermore, the Dirichlet form is called local if

(D5) for all f , g ∈ D such that supp( f ) and supp(g) are disjoint compact sets it holds that
E( f , g) = 0. ♢

We conclude this section with two examples of Dirichlet forms

Example 5.10 (Random walks on graphs). Let G = (V, µ) be a finite weighted graph as defined
in Definition 4.77 and ν : V → R+ a measure on V with νx = ν(x) > 0 for all x ∈ V . Clearly,
L2(V, ν) is just the space of all real functions f : V → R. Recall from Section 4.5.1 the
definition of the energy form

E( f , g) :=
1
2

∑
x,y∈V : x∼y

µxy( f (y) − f (x))(g(y) − g(x)), (5.13)

with D = { f : V → R} = L2(V, ν). By definition, E is a symmetric bilinear form. We show
that (E,D) is, indeed, a Dirichlet form. Because the weights µxy are all non-negative, the
form E is positive semi definite. Properties (D1) and (D2) are satisfied, becauseD = L2(V, ν).
In order to verify (D3), observe that it is enough to show that for f ∈ L2(V, ν) it holds that
g := ( f ∧ 1) ∨ 0 ∈ L2(V, ν) and E(g, g) ≤ E( f , f ). The first part is obvious and since(

(( f ∧ 1) ∨ 0)(y) − (( f ∧ 1) ∨ 0)(x)
)2
≤

(
( f ∨ 0)(y) − ( f ∧ 1)(x)

)2

=
(
( f ∧ 1)(x) − ( f ∨ 0)(y)

)2

≤ ( f (x) − f (y))2

(5.14)
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it follows that E(g, g) ≤ E( f , f ) and thus we have shown that (E,D) has the Markov property
(D3) and hence is a Dirichlet form.

Furthermore, because G is a finite graph, we have C0(V) = L2(V, ν) = D and thus, (E,D) is a
regular Dirichlet form.

On the other hand, observe that E(1{x},1{y}) = µxy whenever x , y and thus (E,D) is not
local. □

Example 5.11 (Brownian motion on Rd). Let d ≥ 1 and set (S , ν) = (R, dx) the d-dimensional
Euclidean space equipped with the Lebesgue measure. Denote by

H1(Rd) :=
{

f ∈ L2(Rd)
∣∣∣∣∣ ∂ f
∂xi
∈ L2(Rd), 1 ≤ i ≤ d

}
(5.15)

the real Sobolev space of order 1. Here the derivative ∂
∂xi

are taken in the weak sense. Then a
symmetric, positive semidefinite bilinear form is given by

E( f , g) =
d∑

i=1

1
2

∫
Rd

∂ f
∂xi

∂g
∂xi

dx. (5.16)

We show that (E,H1(Rd)) is a Dirichlet form.

For sake of readability we drop the space Rd from the notation of the various function spaces.
To show (D1) observe that H1 is a Banach space and that C∞0 , the set of compactly supported,
infinitely often continuously differentiable functions is a subset of H1. Furthermore, C∞0 is
a dense subset of L2, which proves that H1 is a dense linear subset of L2. To check property
(D2) consider a E1-Cauchy sequence ( fn)n≥1. Then ( fn) and

(
∂ fn
∂xi

)
are L2-Cauchy sequences for

all 1 ≤ i ≤ d and since L2 is complete, the closedness of (E,H1) follows. To show the Markov
property, consider the following function (compare [FOT11, Exercise 1.2.1]). For ε > 0 let
ψε(t) := (−ε ∨ t) ∧ (1 + ε) and denote by j(x) := γ−1e−1/(1−x2) for |x| < 1 and j(x) := 0 for
|x| ≥ 1 a mollifier, where γ =

∫
R

j(x) dx. For 0 < δ < ε set jδ = δ−1 j(x/δ) and define

φε(t) := ( jδ ∗ ψε)(t) =
∫
R

jδ(t − s)ψε(s) ds. (5.17)

Then, φε satisfies the properties (i)-(iii) of Definition 5.7 and additionally φε ∈ C∞0 and
|φ′ε(t)| ≤ 1 for all t ∈ R and ε > 0. Thus

E(φε( f ), φε( f )) =
d∑

i=1

∫
Rd

∂ f
∂xi

φ′ε( f )2 dx ≤ E( f , f ), (5.18)

for all f ∈ H1 and ε > 0, which proves (D3).

Next, we show that (E,H1) is a regular Dirichlet form. Because C∞0 can be considered a
subset of both H1 and C0 and because C∞0 is a dense subset of C0, it is clear that C0 ∩ H1

is uniformly dense in C0. It remains to show that C∞0 is also E1-dense in H1. To this end
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consider f ∈ C∞ ∩ H1 and let δ ∈ C∞0 with 0 ≤ f ≤ 1 and δB(1,0) ≡ 1 be a smooth version of
the indicator function on the unit ball at the origin. For R > 0 set fR(x) := f (x)δ(x/R), then
fR ∈ C∞0 for all R > 0 and by dominated convergence, fR → f in L2 as R→ ∞. Furthermore,
we have

∂ fR
∂xi
=
∂ f
∂xi

δ(x/R) +
1
R

f (x)
∂δ

∂xi
(x/R) (5.19)

and with the same reasoning, ∂ f
∂xi
δ(x/R) converges in L2 to ∂ f

∂xi
whereas the second summand

goes to 0 for all 1 ≤ i ≤ d as R→ ∞. We have shown that C∞0 is dense in C∞ ∩ H1. Next, we
show that C∞ ∩ H1 is dense in H1. Let (φn)n≥1 ⊂ C∞0 be a sequence of compactly supported
smooth approximations of the identity and let f ∈ H1. Then the convolutions fn := f ∗ φn are
in C∞ ∩ H1 for each n ∈ N. Because f ∈ L2, it holds that fn converges in L2 to f as n→ ∞.
Furthermore, ∂ fn

∂xi
=

∂ f
∂xi
∗ φn is in L2 and hence ∂ fn

∂xi
→

∂ f
∂xi

as n→ ∞ which proves the claim.

Finally, we show that the Dirichlet form (E,H1) is even local. Let f , g ∈ H1 be compactly
supported with disjoint supports. Then f g = 0 almost everywhere. Moreover,

supp
(
∂ f
∂xi

)
⊂ supp( f ) and supp

(
∂g
∂xi

)
⊂ supp(g), (5.20)

for all 1 ≤ i ≤ d which implies ∂ f
∂xi

∂g
∂xi
= 0 almost everywhere which yields (D5). □

5.2 Feller processes and Dirichlet forms

We have already seen in the previous chapter that there is a fundamental connection between
semigroups of operators on B(S ) and Markov processes. A similar connection exists between
Dirichlet forms and semigroups of operators. With the subtle but important difference that the
latter correspondence holds for operators on the L2-space. Therefore the Dirichlet form theory
is a weak theory whereas the theory presented in the last chapter is a strong theory.

5.2.1 Operators on Hilbert spaces and closed forms

Following the lines of [FOT11] we first describe how strongly continuous contraction semi-
groups, strongly continuous resolvents, non-positive definite self adjoint operators and closed
forms on Hilbert spaces are related to each other. Thereby establishing a one to one relation
between these objects.

We then introduce the Markovian property of operators on L2(S , ν) and show that the corre-
spondence from the previous section can be extended to Markovian semigroups and resolvents
and Dirichlet forms.

It then is just a small step to show that a symmetric Feller process induces a Markovian
semigroup and therefore a Dirichlet form.
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We begin with some basic functional analytic definitions to fix some notation. Henceforth, let
H denote a non empty, real or complex Hilbert space with inner product ⟨ · , · ⟩.

Definition 5.12 (Linear operators). A linear map T : D(T )→ H is called a linear operator
onH with domainD(T ), ifD(T ) ⊂ H . We say that a linear operator T is densely defined if
D(T ) is a dense subset ofH .

For a linear operator T onH we introduce the graph G(T ) of T as the subspace

G(T ) := { ( f ,T f ) | f ∈ D(T ) } ⊂ H2. (5.21)

We call an operator T on H closed if G(T ) is a closed subspace of H2. Given two linear
operators T,V onH we write T ⊂ V as a shorthand for G(T ) ⊂ G(V).

Finally, we define the operator norm of a linear operator T onH as

∥T∥op := sup { ∥T f ∥ | f ∈ D(T ), ∥ f ∥ ≤ 1 } , (5.22)

where ∥ ·∥ denotes the norm onH induced by the scalar product by ∥ f ∥ :=
√
⟨ f , f ⟩, f ∈ H . ♢

It is easy to check that the space of bounded linear operators on a real or complex Hilbert
spaceH with domainH form an algebra, denoted by B(H), where

(T + V) f := T f + V f , (TV) f := T (V f ), (αT ) f := α(T f ), (5.23)

for all T,V ∈ B(H), α ∈ C (∈ R) and f ∈ H . On the other hand, B(H) equipped with the
norm ∥ · ∥op becomes a Banach space or, more specifically, a Banach algebra. More details
can be found in [Rud91, Chapters 10 & 12].

To a densely defined linear operator T onH we associate the adjoint operator T ∗ via

⟨T f , g⟩ =
〈

f ,T ∗g
〉
, f ∈ D(T ). (5.24)

The domainD(T ∗) of T ∗ consists of all g ∈ H such that the mapping

f 7→ (T f , g) ∈ H2 (5.25)

is continuous onD(T ). Since T is densely defined, the adjoint T ∗ is unique and linear.

Definition 5.13. A linear operator T onH is called symmetric if

⟨T f , g⟩ = ⟨ f ,Tg⟩ , (5.26)

for all f , g ∈ D(T ).
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A densely defined linear operator T onH satisfying

G(T ) = G
(
T ∗

)
(5.27)

is called self adjoint. ♢

It is worth noting that the densely defined symmetric operators are those for which T ⊂ T ∗.
Hence, self adjoint operators are symmetric and the two concepts coincide on B(H).

Definition 5.14. A linear operator T on H is called non-negative definite or simply non-
negative if

⟨T f , f ⟩ ≥ 0, ∀ f ∈ D(T ). (5.28)

Analogously, T is non-positive (definite) if −T is non-negative. ♢

Definition 5.15 (Strongly continuous semigroup). Let (Tt)t≥0 be a semigroup of symmetric
linear operators onH with domainD(Tt) = H for each t ≥ 0 and T0 = id. We say that (Tt)t≥0

is

(i) contractive if ∥Tt f ∥2 ≤ ∥ f ∥2 for all f ∈ H or, equivalently, ∥Tt∥op ≤ 1 for all t ≥ 0.

(ii) strongly continuous if limt→0∥Tt f − f ∥ = 0 for all f ∈ H . ♢

In the same vein we define resolvents.

Definition 5.16 (Resolvent). A family (Gα)α>0 of linear symmetric operators on H with
domainD(Gα) = H for each α > 0 is called a resolvent onH if

(i) (Gα)α>0 satisfies the resolvent equation (R1)

Gα −Gβ + (α − β)GαGβ = 0, ∀α, β > 0, (R1)

(ii) αGα is contractive for each α > 0, i.e.

∥Gα∥op ≤ α
−1. (5.29)

If, in addition

(iii) limα→∞∥αGα f − f ∥ = 0 for all f ∈ L2(S , ν),

we say that (Gα)α>0 is a strongly continuous resolvent. ♢

Lemma 5.17. Let (Gα)α>0 be a strongly continuous resolvent on H . For each α > 0, Gα is
invertible.
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Proof. We need to show that

ker(Gα) = { f ∈ H | Gα f = 0 } (5.30)

is trivial. Suppose f ∈ H is such that Gα f = 0. Using the resolvent equation (R1) we obtain
Gβ f = 0 for all β > 0. By strong continuity this implies

0 = lim
α→∞
∥αGα f − f ∥ = ∥ f ∥ (5.31)

and therefore f = 0, completing the proof. □

For a strongly continuous resolvent (Gα)α>0 onH we introduce its generator as follows∆ f = α f −G−1
α f

D(∆) = Gα(H).
(5.32)

It is not clear a priori that this definition of ∆ does not depend on our choice of α > 0. To see
this, let α, β > 0. Then,

GαGβ

((
α f −G−1

α f
)
−

(
β f −G−1

β f
))
= (α − β)GαGβ f + (Gα −Gβ) f = 0. (5.33)

Because the kernels of Gα and Gβ are trivial, we can conclude that the definition of the
generator in (5.32) is independent of the choice of α > 0.

We have the following important property of the generator which we will state without proof.

Proposition 5.18 ([FOT11, Lemma 1.3.1 (i)]). The generator (∆,D(∆)) of a strongly continu-
ous resolvent (Gα)α>0 onH is a non-positive definite self adjoint operator.

We seek to explore the connection between closed symmetric forms, strongly continuous
contraction semigroups and strongly continuous resolvents. As a first observation we can easily
get from a strongly continuous contraction semigroup to a strongly continuous resolvent.

Lemma 5.19. Let (Tt)t≥0 be a strongly continuous contraction semigroup onH . For α > 0
and f ∈ H write

Gα f :=
∫ ∞

0
e−αtTt f dt, (5.34)

where the integral is a Bochner integral (see Appendix C.1). Then the family (Gα)α>0 is a
strongly continuous resolvent onH .
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Proof. Let (Gα)α>0 be defined as in (5.34) and fix α > 0. First observe that e−αtTt f is indeed
Bochner integrable as a function [0,∞)→ H . Then an application of Lemma C.5 shows that

⟨Gα f , g⟩ =
∫ t

0
e−αt ⟨Tt f , g⟩

=

∫ t

0
e−αt ⟨ f ,Ttg⟩ = ⟨ f ,Gαg⟩ ,

(5.35)

where we have used the symmetry of Tt. Now, linearity of Tt and linearity of the Bochner
integral imply that Gα is in fact a symmetric linear operator with domainD(Gα) = D(Tt) = H .

For α, β > 0 a straight forward calculation yields the resolvent equation (R1),

(
Gα −Gβ

)
f =

∫ ∞

0
e−αtTt f dt −

∫ ∞

0
e−βtTt f dt

=

∫ ∞

0
e−βt

(
e−(α−β)t − 1

)
Tt f dt

= −(α − β)
∫ ∞

0

∫ t

0
e−β(t−s)−αsT(t−s)+s f ds dt

= −(α − β)
∫ ∞

0

∫ ∞

0
e−αse−βtTsTt f dt ds = −(α − β)GαGβ f .

(5.36)

Finally we obtain (5.29) from another application of Lemma C.5. Let g ∈ H with ∥g∥ ≤ 1,
then

∥Gαg∥2 =
〈∫ ∞

0
e−αtTt dt,

∫ ∞

0
e−αtTt dt

〉
=

∫ ∞

0

∫ ∞

0
e−αte−αs ⟨Ttg,Tsg⟩ dt ds ≤ α−2.

(5.37)

□

The converse of the last result is the following.

Lemma 5.20. Let (Gα)α>0 be a strongly continuous resolvent onH . For each t ≥ 0 and f ∈ H
set

Tt f = lim
α→0

e−αt
∞∑

n=0

(αt)n

n!
(αGα)n f . (5.38)

Then (Tt)t≥0 is a strongly continuous contraction semigroup and the resolvent induced by
(Tt)t≥0 via (5.34) coincides with (Gα)α>0.

Proof. Fix t ≥ 0. We begin by showing that the limit in (5.38) exists. By strong continuity we
have that for each f ∈ H the map α 7→ αGα f is continuous. Therefore, for each t ≥ 0 and
f ∈ H the map

α 7→ e−αt
∞∑

n=0

(αt)n

n!
(αGα)n f (5.39)
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is continuous. Furthermore, because the strong limit limα→0 αGα f exists the limit in (5.38)
exists in the strong sense, too.

Applying the contractivity of αGα we find that

∥Tt f ∥ ≤ lim
α→0

e−αt
∞∑

n=0

(αt)n

n!
∥(αGα)n f ∥ ≤ ∥ f ∥ (5.40)

for all f ∈ H . Next, we show the semigroup property of (Tt)t≥0. A straight forward calculation
yields for all s, t ≥ 0 and f ∈ H ,

Tt+s f = lim
α→0

e−α(t+s)
∞∑

n=0

(α(s + t))n

n!
(αGα)n f

= lim
α→0

e−α(t+s)
∞∑

n=0

n∑
j=0

(
n
j

)
s j tn− j α

n

n!
(αGα)n f

= lim
α→0

∞∑
n=0

n∑
j=0

(αs) j

j!
(αt)n− j

(n − j)!
(αGα) j(αGα)n− j f

= lim
α→0

∞∑
m,n=0

(αs)m

m!
(αt)n

n!
(αGα)m(αGα)n f = TsTt f

(5.41)

Finally, the fact that the resolvent of (Tt)t≥0 coincides with (Gα)α>0 follows from the spectral
theorem [Rud91, Theorem 12.23] (cf. [BGL14, p. 127]). □

Note that a Hilbert space always comes with a weak and a strong notion of convergence. We
say that a sequence ( fn)n∈N ⊂ H converges weakly to a limit f ∈ H , if for all g ∈ H ,

lim
n→∞
⟨ fn, g⟩ = ⟨ f , g⟩ . (5.42)

In contrast, we say that ( fn)n∈N converges to f in the strong limit if

lim
n→∞
∥ fn − f ∥ = 0. (5.43)

Similar to our analysis of the Feller semigroup in the previous chapter we can introduce the
generator of a strongly continuous contraction semigroup (Tt)t≥0 onH asD(∆) =

{
f ∈ H

∣∣∣∣ limt→0
Tt f− f

t exists in the strong sense
}

∆ f = limt→0
Tt f− f

t , f ∈ D(∆).
(5.44)

Indeed, the generator of a strongly continuous contraction semigroup (Tt)t≥0 and the generator
of the strongly continuous resolvent (Gα)α>0 induced by (Tt)t≥0 via (5.34) coincide [FOT11,
Lemma 1.3.1 (ii)].
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(Tt)t≥0 (Gα)α>0

∆

(5.34)

(5.38)

(5.44)
et∆

(5.32)
(α − ∆)−1

Fig. 5.1.: The relation between (Tt)t≥0, (Gα)α>0 and the generator ∆ (cf. [FOT11, Diagram 1])

The next result shows how to obtain a strongly continuous resolvent and a strongly continuous
contraction semigroup from a non-positive self adjoint operator on H . Again, we refer the
reader to [FOT11] for a proof.

Proposition 5.21 ([FOT11, Lemma 1.3.2]). Let ∆ be a non-positive self-adjoint operator on
H .

(i)
{

Tt = exp(t∆)
∣∣∣ t ≥ 0

}
and

{
Gα = (α − ∆)−1

∣∣∣ α > 0
}

are a strongly continuous con-
traction semigroup and a strongly continuous resolvent onH respectively.

(ii) The generator of (Tt)t≥0 as in (i) coincides with ∆. Furthermore, the strongly continuous
contraction semigroup possessing ∆ as its generator is unique and the same holds for
the resolvent (Gα)α>0.

We have so far established a one to one correspondence between non-positive self adjoint
operators, strongly continuous contraction semigroups and strongly continuous resolvents. The
next step is to show that there is a further one to one correspondence with closed symmetric
forms. For a proof of this important fact we refer the reader to the book [FOT11].

Proposition 5.22 ([FOT11, Theorem 1.3.1]). There is a one to one correspondence between
the family of closed symmetric forms E on H and the family of non-positive self adjoint
operators ∆ onH . This correspondence is given byD(E) = D

(√
−∆

)
E( f , g) =

〈√
−∆ f ,

√
−∆g

〉
, f , g ∈ D(E).

(5.45)

Remark 5.23. The proof of Proposition 5.22 is fairly technical and will be omitted here as it
can be found in [FOT11]. We still make some remarks about the proof.
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(i) Another application of the spectral theorem shows that for the resolvent (Gα)α>0 gener-
ated by ∆ we have for all α > 0 that Gα(H) ⊂ D(E) and

Eα (Gα f , g) = ⟨ f , g⟩ , f ∈ H , g ∈ E(D). (5.46)

(ii) The correspondence (5.45) can be restated asD(∆) ⊂ D(E)

E( f , g) = ⟨−∆ f , g⟩ , f ∈ D(∆), g ∈ D(E).
(5.47)
♢

For completeness sake note that the symmetric form (E,D(E)) associated with ∆ can be
approximated using the semigroup (Tt)t≥0 and the resolvent (Gα)α>0 associated with ∆. To
that end define for f , g ∈ H ,

E(t)( f , g) := t−1 ⟨ f − Tt f , g⟩ , t > 0 (5.48)

E(α)( f , g) := α ⟨ f − αGα f , g⟩ , α > 0. (5.49)

Then, D(E) =
{

f ∈ H
∣∣∣ limt→0 E

(t)( f , f ) < ∞
}

E( f , g) = limt→0 E
(t)( f , f ), f , g ∈ D(E)

(5.50)

and D(E) =
{

f ∈ H
∣∣∣ limα→∞ E

(α)( f , f ) < ∞
}

E( f , g) = limα→∞ E
(α)( f , g), f , g ∈ D(E).

(5.51)

Furthermore, E(t) and E(α) are increasing as t → 0 and α → ∞, respectively. This handy
approximation result is proven in [FOT11, Lemma 1.3.4].

5.2.2 Markovian operators and Dirichlet forms

From now on we consider the particular Hilbert space L2(S , ν), where (S , ν) denotes a uniform
measure space. As usual, we write

∥ f ∥2 :=
√
⟨ f , f ⟩ =

(∫
S

f 2 dν
)1/2

(5.52)

for the L2-norm on L2(S , ν).

Recall the shorthand a ∨ b = max{a, b} and a ∧ b = min{a, b} for real numbers a, b ∈ R. For
real valued functions f , g : S → R we have set f ∨ g and f ∧ g pointwise. Furthermore, we
write

f + := f ∨ 0 and f − := −( f ∧ 0) (5.53)
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for the positive and the negative part of f , respectively. Clearly, these notations can be extended
to the elements of L2(S , ν) by applying them to a Borel-measurable representative.

The next result provides us with equivalent conditions to the Markov property of a closed
symmetric form.

Lemma 5.24. A closed symmetric form (E,D(E)) on L2(S , ν) has the Markov property if and
only if for all f ∈ D(E) it holds that g := 0 ∨ ( f ∧ 1) ∈ D(E) and

E(g, g) ≤ E( f , f ). (5.54)

Proof. Fix f ∈ D(E) and let g = f + ∧ 1, as above. The first implication is trivial, because
φ(t) := 0∨ (t∧ 1) satisfies (i) to (iii) of Definition 5.7 for all ε > 0 and g = φ ◦ f . The converse
implication follows readily from the observation that φ can be approximated by functions φε
satisfying (i) to (iii) of Definition 5.7. Letting ε → 0 we obtain g = limε→0 φε ◦ f ∈ D(E)
by closedness of (E,D(E)). Finally, (5.54) follows from the closedness of (E,D(E)) together
with the Markov property of E. □

We call a real valued function γ : R→ R a normal contraction if γ(0) = 0 and for all s, t ∈ R,

|γ(s) − γ(t)| ≤ |s − t|. (5.55)

Lemma 5.25. A closed symmetric form (E,D(E)) on L2(S , ν) has the Markov property if and
only if for all f ∈ D(E) and all normal contractions γ : R→ R it holds that γ ◦ f ∈ D(E) and

E(γ ◦ f , γ ◦ f ) ≤ E( f , f ). (5.56)

Proof. See [CF11, Theorem 1.1.3] □

The previous lemma has a very useful consequence.

Lemma 5.26. Let (E,D(E)) be a Dirichlet form. For every f ∈ D(E) it holds that

E( f +, f −) ≤ 0. (5.57)

Proof. For each ε ∈ (0, 1) let γε(t) := t+ − εt− and γ(t) := t+. Then it is easy to check that
γ, γε are normal contractions and γ ◦ γε = γ for each 0 < ε < 1. Hence, γ ◦ f , γε ◦ f ∈ D(E)
for any f ∈ D(E) and 0 < ε < 1. Moreover,

E( f +, f +) = E(γ ◦ (γε ◦ f ), γ ◦ (γε ◦ f ))

≤ E(γε ◦ f , γε ◦ f ) = E( f + − ε f −, f + − ε f −).
(5.58)
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Hence,
E( f +, f −) ≤

ε

2
E( f −, f −) (5.59)

and we conclude the proof by letting ε→ 0. □

Definition 5.27 (Markovian and Dirichlet operators). (i) A linear operator V on L2(S , ν) is
called positivity preserving if

V f ≥ 0 ν-a.e. (5.60)

for all f ∈ L2(S , ν) with f ≥ 0 ν-almost everywhere. We say that V is Markovian if V is
bounded and

0 ≤ V f ≤ 1 ν-a.e. (5.61)

for all f ∈ L2(S , ν) with 0 ≤ f ≤ 1 ν-almost everywhere. Furthermore, a semigroup
(Vt)t≥0 of operators is said to be Markovian if Vt is Markovian for every t ≥ 0. A strongly
continuous resolvent (Gα)α>0 is Markovian if for each α > 0, αGα is Markovian.

(ii) A closed and densely defined operator V on L2(S , ν) is called a Dirichlet operator if〈
V f , ( f − 1)+

〉
≤ 0 (5.62)

for all f ∈ D(V). ♢

Proposition 5.28. Let (Tt)t≥0 be a strongly continuous contraction semigroup, (Gα)α>0 a
strongly continuous resolvent, ∆ a non-positive definite densely defined self adjoint operator
and (E,D(E)) a closed symmetric form on L2(S , ν). Suppose that they are related to each
other as described in the last section. Then the following are equivalent.

(i) (Tt)t≥0 is Markovian,

(ii) (Gα)α>0 is Markovian,

(iii) ∆ is a Dirichlet operator.

(iv) (E,D(E)) is a Dirichlet form.

Proof. The equivalence of (i) to (iii) is [MR92, Proposition I.4.3] and the equivalence of (ii)
and (iv) is due to [MR92, Theorem I.4.4]. □

5.2.3 Symmetric Feller processes and Dirichlet forms

Dirichlet forms are a rich analytic tool for the analysis of symmetric Feller processes. To that
end we need to show that we can associate a Dirichlet form to a symmetric Feller process.
Indeed, we can show that every Feller semigroup (Pt)t≥0 of a ν-symmetric Feller process with
values in (S ,U, ν) can be extended to a Markovian semigroup (Tt)t≥0 on L2(S , ν).

154 Chapter 5 Dirichlet Forms and symmetric Feller Processes



The following Lemma is essentially [CF11, Lemma 1.1.14. (ii)]. We want to provide a proof
anyway because the result is central.

Proposition 5.29. Let X be a ν-symmetric Feller process with values in a uniform measure
space (S ,U, ν) with semigroup (Pt)t≥0. Then there exists a unique extension of (Pt)t≥0 to a
strongly continuous contraction semigroup (Tt)t≥0 on L2(S , ν). Moreover, (Tt)t≥0 is Markovian.

Proof. First we show that for any given t ≥ 0 the operator Pt on Bb(S ) can be uniquely
extended to a linear contractive and symmetric operator on L2(S , ν). Observe that each
f ∈ L∞(S , ν) has a representative that is in Bb(S ) and that for two such representatives
f , g ∈ Bb(S ) with ∥ f − g∥∞ = 0 we have that∫

|Pt f − Ptg| dν ≤
∫

Pt| f − g| dν ≤
∫
| f − g| dν = 0 (5.63)

and hence ∥Pt f − Ptg∥∞ = 0. Thus we can regard Pt as an operator on L∞(S , ν). By the
contraction property, Proposition 4.17 (v), Pt can also be regarded as a bounded operator
on L2(S , ν) ∩ L∞(S , ν). It is easy to see that L2(S , ν) ∩ L∞(S , ν) is dense in L2(S , ν). Now
let f ∈ L2(S , ν) and ( fn)n∈N ⊂ L2(S , ν) ∩ L∞(S , ν) such that limn→∞∥ f − fn∥2 = 0. By the
contraction property of Pt we have

lim
n→∞
∥Pt fn∥2 ≤ lim

n→∞
∥ fn∥2 < ∞ (5.64)

and we can define Tt f to be the L2(S , ν) limit of Pt fn.

To show uniqueness assume that (gn)n∈N ⊂ L2(S , ν) ∩ L∞(S , ν) is another sequence with
limn→∞∥ f − gn∥2 = 0. Then, by linearity of Pt and the contraction property we have

∥Pt fn − Ptgn∥2 = ∥Pt( fn − gn)∥2 ≤ ∥ fn − gn∥2 → 0 as n→ ∞. (5.65)

By assumption, Pt is positivity preserving and ν-symmetric and these properties as well as the
contraction property carry over to Tt by approximation arguments. The semigroup property of
(Tt)t≥0 follows immediately from the semigroup property of (Pt)t≥0. It remains to show that
(Tt)t≥0 is strongly continuous. We have that C∞(S ) ∩ L2(S , ν) is dense in L2(S , ν) (cf. [Rud87,
Theorem 3.14]). For ε > 0 and f ∈ L2(S , ν) let g ∈ C∞(S ) ∩ L2(S , ν) such that ∥ f − g∥2 ≤ ε.
Then, by the triangle inequality and the contraction property of Tt we have

∥Tt f − g∥2 ≤ ∥Ptg − g∥2 + ∥Tt f − Ttg∥2 + ∥ f − g∥2 ≤ ∥Ptg − g∥2 + 2ε. (5.66)

and
∥Ptg − g∥22 ≤ 2∥Ptg∥22 − 2 ⟨Ptg, g⟩ . (5.67)

Since P was assumed to be Feller, we have by property (F2) that limt→0 Ptg(x) = g(x) for all
x ∈ S and by dominated convergence it follows that the right hand side of (5.67) goes to 0 as
t → 0, which concludes the proof because ε was arbitrary. □
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In the same manner one can show that for each α > 0 there exists a unique extension of the
α-resolvent operator to a L2-pendant.

Lemma 5.30. Let (Rα)α>0 be the resolvent of a ν-symmetric Feller process X. Then there
exists for each α > 0 a unique extension of of Rα to a ν-symmetric operator Gα on L2(S , ν)
such that αGα is contractive and strongly continuous as α → ∞. Furthermore, the family
(Gα)α>0 satisfies the resolvent equation (R1).

Proof. We could copy the proof of Proposition 5.29. Instead we use the fact that (Pt)t≥0 can
be uniquely extended to a symmetric and strongly continuous contraction semigroup (Tt)t≥0

on L2(S , ν). For α > 0 define

Gα f :=
∫ ∞

0
e−αtTt f dt, (5.68)

where the integral is defined in the Bochner sense (see Appendix C.1). By contractivity of
(Tt)t≥0 it follows that Gα is well defined and that αGα is itself contractive and it agrees with
Rα on L2(S , ν) ∩ Bb(S ) by construction. To show that Gα is well-defined, we need to show
that Gα f ∈ L2(S , ν) for f ∈ L2(S , ν). Applying first Jensen’s inequality then Fubini’s Theorem
and finally using the contractivity of (Tt)t≥0 we get

∥Gα f ∥22 =
∫

S

(∫ ∞

0
e−αtTt f dt

)2

dν ≤
∫

S

∫ ∞

0
e−2αt(Tt f )2 dt dν

=

∫ ∞

0
e−2αt∥Tt f ∥22 dt ≤

1
2α
∥ f ∥22 < ∞ ∀α > 0.

(5.69)

Contractivity follows by the same arguments when we substitute r = αt in the inner integral:

∥αGα f ∥22 =
∫

S

(∫ ∞

0
αe−αtTt f dt

)2

dν =
∫

S

(∫ ∞

0
e−rTr/α dr

)2

dν

≤

∫
S

∫ ∞

0
e−2r(Tr/α f )2 dr dν =

∫ ∞

0
e−2r∥Tr/α f ∥22 dr ≤

1
2
∥ f ∥22

(5.70)

In the same way as in (5.36) it is shown that (Gα)α>0 satisfies the resolvent equation (R1). The
uniqueness of Gα follows by approximation as in the proof of Proposition 5.29.

Next, we show strong continuity of αGα as α→ ∞. By substituting r = αt, applying Jensen’s
inequality and Fubini’s Theorem – in that order – we obtain

∥αGα f − f ∥22 =
∫

S

(∫ ∞

0
αe−αtTt f dt − f

)2

dν =
∫

S

(∫ ∞

0
αe−αt(Tt f − f ) dt

)2

dν

=

∫
S

(∫ ∞

0
e−r(Tr/α f − f ) dr

)2

dν ≤
∫ ∞

0
e−2r∥Tr/α f − f ∥22 dr.

(5.71)

By contractivity of Tt, the integrand on the right hand is dominated by 2e−2r∥ f ∥22 and hence
limα→∞∥αGα f − f ∥22 = 0 by dominated convergence and the strong continuity of Tt. □
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5.3 Extension and transience of Dirichlet forms

Let E be a Dirichlet form with domain D := D(E) on L2(S , ν) where (S ,U, ν) denotes
a locally compact uniform measure space, as usual. We adopt the terminology from the
literature ([FOT11; CF11]) and refer to D as a Dirichlet space, where we implicitly equip
D with the form E. Recall that L∞(S , ν) is the family of ν-equivalence classes of ν-almost
everywhere bounded, measurable functions. We want to extend the Dirichlet form E to
functions in L∞(S , ν). We will show that this extension forms a Hilbert space if and only if the
Dirichlet form is transient.

5.3.1 The extended Dirichlet space

We begin with the following observations.

Lemma 5.31. Let V be a Markovian operator on L2(S , ν). Then V can be uniquely extended
to a Markovian operator on L∞(S , ν).

Proof. We give an explicit construction of the extension. By Definition 2.41 we have that ν
is σ-finite. Then there exists a strictly positive function φ ∈ L1(S , ν), take for example the
function

φ :=
∞∑

n=1

αnν(An)−1
1An , (5.72)

where (An)n∈N ⊂ B is countable family of Borel subsets of S with 0 < ν(An) < ∞ for all n ∈ N
and (αn)n∈N ⊂ R a summable sequence of strictly positive real numbers. Now define for each
n ∈ N,

φn := (nφ) ∧ 1. (5.73)

Then, 0 < φn ≤ 1 and the sequence (φn)n∈N is increasing with limn→∞ φn = 1, ν-a.e. Let
f ∈ L∞(S , ν) be non-negative, then the product φn f is in L2(S , ν) ∩ L∞(S , ν) and we can set

V f := lim
n→∞

V(φn f ), (5.74)

where the limit is taken in L∞(S , ν) and exists by the Markov property of V . We sometimes
refer to V as the potential operator. Furthermore, we set

V f := V f + − V f − (5.75)

for arbitrary f ∈ L∞(S , ν). □
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Lemma 5.32. Let (E,D) be a Dirichlet form on L2(S , ν). Further let f ∈ L∞(S , ν) and assume
that there exists an E-Cauchy sequence ( fn)n∈N ⊂ D such that limn→∞ fn = f in L∞(S , ν).
Then the limit

E( f , f ) := lim
n→∞
E( fn, fn) (5.76)

exists and is independent of the choice of ( fn)n∈N.

Proof. Let ( fn)n∈N ⊂ D be an E-Cauchy sequence and f ∈ L∞(S , ν) as above. The existence
of the limit follows from the fact that ( fn)n∈N is E-Cauchy. Lets proof this fact in detail. Fix
n, k ∈ N and suppose without loss of generality that E( fn, fn) + E( fk, fk) > 0. Then,

|E( fn, fn) − E( fk, fk)| = |E( fn − fk, fn + fk)|

≤ E( fn − fk, fn − fk)1/2E( fn + fk, fn + fk)1/2

≤ E( fn − fk, fn − fk)1/2
(
E( fn, fn)1/2 + E( fk, fk)1/2

)
,

(5.77)

where we used the Cauchy-Schwarz inequality from Lemma 5.2 in the first inequality and the
triangle inequality from Lemma 5.3 in the second inequality. Rearranging now yields∣∣∣E( fn, fn)1/2 − E( fk, fk)1/2

∣∣∣ ≤ E( fn − fk, fn − fk)1/2. (5.78)

Therefore,
√
E( fn, fn) is a real valued Cauchy sequence which converges. Therefore we

immediately obtain the existence of limn→∞ E( fn, fn).

Recall the definition of E(t) from (5.48). By Lemma 5.31 we can extend E(t) to L∞(S , ν). It
now suffices to show that

lim
t→0
E(t)( f , f ) = E( f , f ). (5.79)

For each k ∈ N we have that f − fk ∈ L∞(S , ν) and ( fn − fk)n∈N is an E-Cauchy sequence that
converges to f − fk ν-a.e. Therefore, by Fatou’s property [CF11, Lemma 1.1.7] and the fact
that E(t)( f , f ) is increasing as t → 0 for all f ∈ L2(S , ν), we obtain

E(t)( f − fk, f − fk) ≤ lim inf
n→∞

E(t)( fn − fk, fn − fk) ≤ lim
n→∞
E( fn − fk, fn − fk). (5.80)

Taking the limit for k → ∞ on both sides shows that limk→∞ E
(t)( f − fk, f − fk) = 0. Using a

similar argument as in (5.77) and (5.78), we obtain

lim
k→∞
E(t)( fk, fk) = E(t)( f , f ). (5.81)

Since E(t)( fk, fk) ↑ E( fk, fk) as t → 0 (see our remarks at the end of Section 5.2.1 or [FOT11,
Lemma 1.3.4]), we conclude∣∣∣∣∣limt→0

E(t)( f , f )1/2 − E( fk, fk)1/2
∣∣∣∣∣ ≤ lim

t→0
E(t)( f − fk, f − fk)1/2

≤ lim
n→∞
E( fn − fk, fn − fk)1/2,

(5.82)
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where we have applied the equivalent of (5.78) for E(t) in the first inequality and (5.80) in the
second inequality. Now, the right hand side of (5.82) goes to 0 as k → ∞. Which completes
the proof. □

We have now justified the following definition.

Definition 5.33 (Extended Dirichlet space). Let (E,D) be a Dirichlet form on L2(S , ν). LetDe

denote the collection of f ∈ L∞(S , ν) such that there exists a E-Cauchy sequence ( fn)n∈N ⊂ D

with limn→∞ fn = f in L∞(S , ν). We call De the extended Dirichlet space and (E,De) the
extended Dirichlet form . ♢

It is worth noting thatD = De ∩ L2(S , ν) (cf. [FOT11, Theorem 1.5.2 (iii)]).

5.3.2 Transient Dirichlet forms

Recall the definition of transience of a ν-symmetric Feller process from Definition 4.67. We
introduce a closely related notion of transience of a Dirichlet form and show that the extended
Dirichlet space becomes a Hilbert space whenever the Dirichlet form is transient.

We begin with the definition of a transient Dirichlet form. While quite abstract at first glance,
we will fill this definition with a bit of life in the remainder of this section.

Definition 5.34 (Transient Dirichlet forms). Let (E,D) be a Dirichlet form on L2(S , ν). We
say that (E,D) is transient if there exists a ψ ∈ L1(S , ν) with ψ > 0 ν-almost everywhere on S
such that ∫

S
| f |ψ dν ≤ E( f , f )1/2, (5.83)

for all f ∈ D. In that case we call ψ the reference function of (E,D). ♢

Let (Tt)t≥0 be a Markovian semigroup on L2(S , ν). For t ≥ 0 and f ∈ L2(S , ν) define

Vt f :=
∫ t

0
Ts f ds. (5.84)

By the contraction property of (Tt)t≥0 we can apply Fubini’s theorem and with Jensen’s
inequality, we get

∥Vt f ∥22 =
∫

S
(Vt f )2 dν ≤

∫
S

∫ t

0
(Ts f )2 ds dν =

∫ t

0

∫
S

(Ts f )2 dν ds

≤

∫ t

0
∥ f ∥22 ds = t∥ f ∥22.

(5.85)

Thus, Vt is a bounded symmetric operator on L2(S , ν) for every t > 0.
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Again, we want to extend (Tt)t≥0 and (Vt)t≥0 to a different domain.

Lemma 5.35. Each of the families of operators (Tt)t≥0, (Vt)t≥0 as above can be uniquely
extended to L1(S , ν) in a way such that for all f ∈ L1(S , ν) and s, t > 0,

TsTt f = Ts+t f , ∥Tt f ∥1 ≤ ∥ f ∥1, ∥Vt f ∥1 ≤ t∥ f ∥1. (5.86)

Moreover, Tt and 1
t Vt are Markovian for each t > 0.

Proof. First, let f ∈ L2(S , ν)∩ L1(S , ν). By σ-finiteness, we can choose a sequence (An)n∈N ⊂

B of Borel subsets with ν(An) < ∞, An ⊂ An+1 and S =
⋃

n≥1 An. Then for all t > 0 and
f ∈ L2(S , ν) ∩ L1(S , ν),∫

An

|Tt f | dν ≤
〈
Tt| f |,1An

〉
=

〈
| f |,Tt1An

〉
≤

∫
S
| f | dν, (5.87)

where we have used the contraction property of Tt in the second inequality. Letting n→ ∞, we
obtain ∥Tt f ∥1 ≤ ∥ f ∥1 and analogously ∥Vt f ∥1 ≤ t∥ f ∥1 for all t > 0 and f ∈ L2(S , ν) ∩ L1(S , ν).

Now set φn(t) := (−n ∨ t) ∧ n, t ∈ R. Then, φn ◦ f ∈ L2(S , ν) ∩ L1(S , ν) for all f ∈ L1(S , ν):∫
S

(Φn ◦ f ) dν = n2ν ({| f | > n}) + n2
∫
{| f |≤n}

n−2(φn ◦ f )2 dν

≤ n2 (ν ({| f | > n}) + ∥ f ∥1) < ∞.
(5.88)

By the contractivity property of Tt, we immediately obtain the existence of the limit Tt f :=
limn→∞ Tt(φn◦ f ) in L1(S , ν) for each f ∈ L1(S , ν) and t > 0. The operators Vt can be extended
in the same manner and the properties (5.86) as well as the Markov property of Tt and t−1Vt

are a immediate consequence of this definition. □

As an immediate consequence from the preceding lemma and the relation between (Tt)t≥0 and
the resolvent (Gα)α>0 given by (5.34) we obtain the existence of a unique extension of (Gα)α>0

to a Markovian resolvent on L1(S , ν). Moreover, we have for each 0 < s < t and 0 < α < β

and f ∈ L1
+(S , ν) :=

{
f ∈ L1(S , ν)

∣∣∣ f ≥ 0 ν-a.e.
}

that

0 ≤ Vs f ≤ Vt f and 0 ≤ Gβ f ≤ Gα f , (5.89)

ν-almost everywhere. Therefore, we can define for each f ∈ L1
+(S , ν) a function V f : S →

[0,∞] satisfying
lim
t→∞

Vt f = lim
n→∞

G1/n f = V f , (5.90)

ν-almost everywhere. By (5.90) the function V f is unique up to ν-equivalence. Observe that
V f can take the value +∞ on a set of positive measure.

This leads us to the following definition (cf. [CF11, Definition 2.1.1]). Recall that we denote
the completion of B with respect to ν by Bν (cf. Definition 2.41).
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Definition 5.36. Let (Tt)t≥0 be Markovian semigroup on L2(S , ν).

(i) (Tt)t≥0 is called transient if V f < ∞ ν-a.e. for some f ∈ L1
+(S , ν) with f > 0 ν-a.e.

(ii) (Tt)t≥0 is called recurrent if

ν ({ x ∈ S | V f (x) ∈ (0,∞) }) = 0 (5.91)

for all f ∈ L1
+(S , ν).

(iii) A set A ∈ Bν is called Tt-invariant if for every t > 0 and f ∈ L2(S , ν),

Tt
(
1∁A f

)
= 0 ν-a.e. on A. (5.92)

(iv) (Tt)t≥0 is called irreducible if any Tt-invariant set A ∈ Bν is ν-trivial, i.e. ν(A) = 0 or
ν(∁A) = 0. ♢

The next result gives some equivalent formulations for the transience and recurrence of (Tt)t≥0

and formulates a recurrence-transience dichotomy. We will not prove this result here but
instead refer the reader to the literature.

Proposition 5.37. Let (Tt)t≥0 be a Markovian semigroup and V as defined in (5.90).

(i) (Tt)t≥0 is transient if and only if for every f ∈ L1
+(S , ν),

V f < ∞ ν-a.e. (5.93)

(ii) The following three statements are equivalent

a) V f = ∞ ν-a.e. for every f ∈ L1
+(S , ν) with f > 0 ν-a.e.

b) There exists a f ∈ L1
+(S , ν) such that V f = ∞ ν-a.e.

c) (Tt)t≥0 is recurrent.

(iii) Suppose that (Tt)t≥0 is irreducible. Then (Tt)t≥0 is either transient or recurrent.

Proof. See [CF11, Proposition 2.1.3]. □

We can now show that there exists a one-to-one correspondence between transient semigroups
and transient Dirichlet forms and that in that case the extended Dirichlet space becomes a real
Hilbert space.

Theorem 5.38 ([CF11, Theorem 2.1.5]). Let (Tt)t≥0 be Markovian semigroup on L2(S , ν) and
(E,D) the Dirichlet form associated with (Tt)t≥0.

5.3 Extension and transience of Dirichlet forms 161



(i) (E,D) is transient if and only if (Tt)t≥0 is transient.

(ii) Suppose that (E,D) is transient with reference function ψ ∈ L1(S , ν). Then,∫
S
| f |ψ dν ≤ E( f , f )1/2 (5.94)

for all f ∈ De and the extended Dirichlet spaceDe is a real Hilbert space with inner
product E.

Proof. Fix f ∈ L2(S , ν). For each 0 < s < t we have

Vt f − TsVt f =
∫ t

0
Tr f dr −

∫ t

0
Tr+s f dr =

∫ s

0
Tr f dr −

∫ t+s

t
Tr f dr. (5.95)

Therefore, we obtain

lim
s→0

s−1 ⟨Vt f − TsVt f ,Vt f ⟩ = ⟨ f ,Vt f ⟩ − ⟨Tt f ,Vt f ⟩ < ∞. (5.96)

Hence, Vt f ∈ D and by the same argument as before, we arrive at

E(Vt f , g) = ⟨ f − Tt f , g⟩ ∀g ∈ D. (5.97)

Now let f ∈ L1
+(S , ν) ∩ L2(S , ν). We claim that

sup
g∈D

⟨|g|, f ⟩2

E(g, g)
=

∫
S

f V f dν. (5.98)

Denote the left hand side of (5.98) by c and suppose that c < ∞. Using (5.97) and the fact that
for all t > 0, f ,Tt f ,Vt f ≥ 0 ν-a.e. we obtain for each t > 0,

⟨Vt f , f ⟩2 ≤ cE(Vt f ,Vt f ) = c (⟨ f ,Vt f ⟩ − ⟨Tt f ,Vt f ⟩) ≤ c ⟨ f ,Vt f ⟩ (5.99)

and consequently ⟨Vt f , f ⟩ ≤ c. If we let t → ∞, the inequality remains true and we obtain

⟨V f , f ⟩ ≤ c. (5.100)

Now assume that the right hand side of (5.98) is finite. We can apply Fubini’s theorem and
obtain ∫

S
f V f dν =

∫ ∞

0
⟨Ts f , f ⟩ ds. (5.101)

By the contraction property of (Tt)t≥0 we conclude that

lim
s→∞
⟨Ts f , f ⟩ = lim

s→∞

〈
Ts/2 f ,Ts/2

〉
= 0. (5.102)
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Again, by (5.97) and the Cauchy-Schwarz inequalities for E and ∥ · ∥2 we now obtain for all
g ∈ D and t > 0,

⟨|g|, f ⟩ = E(Vt f , |g|) − ⟨Tt f , |g|⟩ ≤ E(Vt f ,Vt f )1/2E(g, g)1/2 + ∥Tt f ∥2∥u∥2

=
√
⟨ f ,Vt f ⟩ − ⟨Tt f ,Vt f ⟩E(g, g)1/2 + ⟨T2t f , f ⟩1/2 ∥u∥2

≤ ⟨ f ,Vt f ⟩1/2 E(g, g)1/2 + ⟨T2t f , f ⟩1/2 ∥u∥2.

(5.103)

By (5.102) the right hand side of (5.103) converges to ⟨ f ,V f ⟩ E(g, g)1/2 when we let t → ∞.
Therefore,

c ≤ ⟨V f , f ⟩ , (5.104)

proving our claim.

Now suppose that (E,D) is transient with reference function ψ ∈ L1(S , ν). Combining the
definition of transience (5.83) with (5.98), we can deduce that∫

S
ψVψ dν ≤ 1. (5.105)

Since ψ is strictly positive ν-a.e. we obtain that Vψ < ∞ ν-a.e. Hence, (Tt)t≥0 is transient by
Definition 5.36.

Now suppose that (Tt)t≥0 is transient. By Proposition 5.37 (i) we have that V f < ∞ ν − a.e.
for every f ∈ L1

+(S , ν). We can therefore choose φ ∈ L1
+(S , ν) such that φ > 0, Vφ < ∞ ν-a.e.

and
∫

S φ dν = 1. Let
ψ := φ(Vφ ∨ 1)−1, (5.106)

by definition we have 0 < ψ ≤ φ ν-a.e. Moreover,∫
S
ψVψ dν ≤

∫
S
φVψ dν =

∫
S
ψVφ dν ≤

∫
S

(φ/Vφ) Vφ dν =
∫

S
φ dν = 1. (5.107)

When we plug this estimate in (5.98), we get that (E,D) is transient with reference function ψ,
proving (i).

We turn to (ii). Suppose that (E,D) is transient. Fix f ∈ De, by definition of the extended
Dirichlet space, there exists a E-Cauchy sequence ( fn)n∈N ⊂ D such that limn→∞ fn = f in
L∞(S , ν). By transience, (5.94) holds for all fn, n ∈ N. By definition of the reference function
ψ we know that f , fn ∈ L∞(S , ψ · ν). Consequently, (5.94) also holds in the limit n → ∞.
Equation (5.94) also implies that E( f , f ) = 0 if and only if f = 0 ν-a.e. for all f ∈ De. It
therefore remains to show that De equipped with the scalar product E is complete. To that
end, let ( fn)n∈N ⊂ De be a E-Cauchy sequence. For each n ∈ N choose a E-Cauchy sequence(
fn,m

)
m∈N such that limm→∞ fn,m = fn ν-a.e. Note that

E( fn − fn,m, fn − fn,m) = lim
k→∞
E( fn,k − fn,m, fn,k − fn,m). (5.108)
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Therefore,
(
fn,m

)
m∈N converges to fn with respect to the scalar product E. By a diagonal

argument we can assume without loss of generality that ( fn,m)m∈N is chosen so that

lim
n→∞
E( fn − fn,n, fn − fn,n) = 0. (5.109)

It is clear that ( fn,n)n∈N ⊂ D is again a Cauchy sequence with respect to E. Moreover, by
virtue of (5.94) we can conclude that ( fn,n)n∈N is also Cauchy in L1(S , ψ · ν). Consequently,
there exists a f ∈ L1(S , ψ · ν) such that limn→∞ fn,n = f ν-a.e. By definition, f ∈ De and

E( fn − f , fn − f ) ≤ E( fn − fn,n, fn − fn,n) + E( fn,n − f , fn,n − f ). (5.110)

The first summand on the right hand side goes to 0 as n→ ∞ by (5.109). As for the second
summand, recall that ( fn,n)n∈N is a E-Cauchy sequence that converges ν-a.e. to f ∈ De. By
(5.108) we find that the second summand also tends to 0 as n→ ∞. We have therefore shown
that fn → f with respect to E as n→ ∞, thereby completing the proof. □

Using the recurrence-transience dichotomy from Proposition 5.37 (iii), Theorem 5.38 also
characterizes a recurrent Dirichlet form in terms of its extended Dirichlet space. Here we call
a Dirichlet form (E,D) recurrent if its associated Markovian semigroup (Tt)t≥0 is recurrent. A
more direct characterization with further useful implications is the following.

Theorem 5.39. Let (E,D) be a Dirichlet form on L2(S , ν). Then (E,D) is recurrent if and only
if 1 ∈ De and

E(1, 1) = 0. (5.111)

Proof. We only show necessity because we will only make use of this direction. For sufficiency
see the proof of [CF11, Theorem 2.1.8].

Before we start with the actual proof we make the following observation. Let η ∈ L1(S , ν) ∩
L∞(S , ν) with η > 0 ν-a.e. For each f , g ∈ D define,

Eη( f , g) := E( f , g) + ⟨ f , g⟩η·ν . (5.112)

Here, ⟨ · , · ⟩η·ν denotes the inner product on L2(S , η · ν), i.e.

⟨ f , g⟩η·ν =
∫

S
f (x)g(x)η(x) ν(dx). (5.113)

Then, (Eη,D) is again a Dirichlet form on L2(S , ν)2, because for all f ∈ D we have the
inequality,

E1( f , f ) ≤ Eη( f , f ) + ⟨ f , f ⟩ ≤ E( f , f ) + (1 + ∥η∥∞) ⟨ f , f ⟩ . (5.114)

2note that the sets L2(S , ν) and L2(S , η · ν) are equal.
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We denote by
(
T η

t

)
t≥0

and
(
Gη
α

)
α>0

the semigroup and the resolvent associated with the
perturbed Dirichlet form (Eη,D). Observe that for every f ∈ L2(S , ν), g ∈ D and α > 0 it
holds that

Eα(Gη
α f , g) = Eηα(Gη

α f , g) −
〈
Gη
α f , g

〉
η·ν
=

〈
f − ηGη

α f , g
〉
ν

(5.115)

and consequently,
Gη
α f = Gα( f − ηGη

α f ), (5.116)

by virtue of (5.46).

To show that 1 ∈ De we need to find a sequence ( fn)n∈N ⊂ D such that 0 ≤ f ≤ 1 and
limn→∞ fn = 1 ν-a.e. such that

lim
n→∞
E( fn, fn) = 0. (5.117)

We claim that for η as above with the additional assumption ∥η∥∞ ≤ 1, the sequence ( fn)n∈N ⊂

D where
fn = Gη

1/nη, (5.118)

is such a sequence.

To prove the claim fix ε > 0. Note that (E,D) can be considered to be a Dirichlet form on the
perturbed space L2(S , (ε + η) · ν). In view of this interpretation we obtain,

E1
(
Gη
ε(ε f + η f ), g

)
= E

(
Gη
ε(ε f + η f ), g

)
+

〈
Gη
ε(ε f + η f ), g

〉
(η+ε)·ν

= E
η
ε

(
Gη
ε(ε f + η f ), g

)
= ⟨ε f + η f , g⟩ν = ⟨ f , g⟩(ε+η)·ν .

(5.119)

Hence, Gη
ε(ε f + η f ) is the 1-order resolvent of f with respect to the Dirichlet form (E,D) on

L2(S , (ε + η) · ν). By the properties of the resolvent we immediately obtain

0 ≤ Gη
ε(ε f + η f ) ≤ 1 (5.120)

for all f ∈ D with 0 ≤ f ≤ 1. If we now let first ε→ 0 and then f → 1, we find that ν-a.e.,

0 ≤ Vηη ≤ 1, (5.121)

where Vηη = limε→0 Gη
εη, as in (5.89). Now take f = η in (5.116), then

Gη
εη = Gε(η(1 −Gη

εη)). (5.122)

If we now let ε→ 0, we obtain together with (5.121),

0 ≤ V(η(1 − Vηη)) ≤ lim
ε→0

Gε(η(1 −Gη
εη)) = Vηη ≤ 1. (5.123)

By definition of recurrence, Definition 5.36, we conclude that V(η(1 − Vηη)) = 0 ν-a.e. and
therefore,

Vηη = 1 ν-a.e. (5.124)
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We have shown fn ↑ 1 ν-a.e. as n→ ∞ and it remains to show (5.117). Applying (5.115), we
obtain

0 ≤ E( fn, fn) ≤ E1/n( fn, fn) = ⟨η − η fn, fn⟩ν

=

∫
S
η(1 − fn) fn dν→ 0,

(5.125)

as n→ ∞, which proves the claim. □

Corollary 5.40. Let (E,D) be a recurrent Dirichlet form on L2(S , ν). Then 1 ∈ De and

E(1, f ) = 0 (5.126)

for all f ∈ De.

Proof. Fix f ∈ De and let ( fn)n∈N ⊂ D be defined as in the proof of Theorem 5.39. Instead of
(5.125) we can write∣∣∣E1/n( fn, f )

∣∣∣ = ∣∣∣∣∣∫
S
η(1 − fn) f dν

∣∣∣∣∣ ≤ ∥ f ∥∞ ∫
S
|1 − fn| dν→ 0, (5.127)

as n→ ∞, which implies the assertion. □

Finally, we relate the transience of a ν-symmetric Feller process as defined in the previous
chapter to the transience of its associated Dirichlet form.

Proposition 5.41. Let (S ,U, ν) be a locally compact uniform measure space and suppose X is
a transient ν-symmetric Feller process with values in (Sϑ,Uϑ). Then the Dirichlet form (E,D)
on L2(S , ν) associated with X is transient.

Proof. Let (Pt)t≥0 denote the semigroup associated with X. Observe that by Lemma 2.40,
(S ,U) is Lindelöf and consequently, by Lemma A.20, σ-compact. Therefore, we can write S
as the union of countably many compact subsets (Kn)n∈N ⊂ S . By Definition 4.67, we have

cn := sup
x∈S
Ex

[∫ ∞

0
1Kn(Xt) dt

]
= sup

x∈S

∫ ∞

0
Pt1Kn(x) dt < ∞. (5.128)

Now choose a sequence (αn)n∈N ⊂ R with αn > 0 for all n ∈ N such that
∑

n∈N αn < ∞. Set

φ :=
∞∑

n=1

αn

(cn + ν(Kn)) ∨ 1
1Kn . (5.129)

Then, φ ∈ Bb(S ), φ ∈ L1(S , ν) ∩ L2(S , ν), φ > 0 ν-a.e. and

sup
x∈S

∫ ∞

0
Ptφ(x) dt < ∞. (5.130)
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By definition, Ttφ is a representative of Ptφ and we can conclude that

Vφ =
∫ ∞

0
Ttφ dt < ∞ ν-a.e. (5.131)

Consequently, by Definition 5.36 we have that (Tt)t≥0 is transient which implies the assertion
by Theorem 5.38. □

5.4 Potential theory

Potential theoretic concepts are an important tool in the analysis of Markov processes. In this
section we introduce some potential theoretic notions with the help of Dirichlet forms and
show how they relate to the dynamics of the processes they are associated with. For more
details see [FOT11], [CF11] and the classical books on potential theory [BG68] by Robert
M. Blumenthal and Ronald Getoor or [DM79] by Claude Dellacherie and Paul-André
Meyer.

5.4.1 Choquet capacities

The notion of capacity is at the very core of classical potential theory. We begin with the
definition of Choquet capacity named after the French mathematician Gustave Choquet (1915–
2006). We will use the following definition because it is tailored for our needs. For a more
general definition see [DM79, Definition III.27].

Definition 5.42 (Choquet capacity). Let (S ,U) be a uniform Hausdorff space. Denote by K
the class of all compact subsets of S . An extended real valued set function φ that is defined on
all the subsets of S is called a Choquet capacity on S if the following hold

(i) φ is increasing, i.e. A ⊂ B implies that φ(A) ≤ φ(B).

(ii) For every increasing sequence (An)n∈N of subsets of S it holds that

φ

⋃
n∈N

An

 = sup
n∈N

φ(An). (5.132)

(iii) For every decreasing sequence (Kn)n∈N of elements of K it holds that

φ

⋂
n∈N

Kn

 = inf
n∈N

φ(Kn). (5.133)
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Given a Choquet capacity φ on S we say an arbitrary set A ⊂ S is φ-capacitable or just
capacitable if

φ(A) = sup
K∈K ,K⊂A

φ(K). (5.134)

♢

The following result is a simplified version the celebrated result of Choquet. A proof can be
found for example in [DM79].

Proposition 5.43 (Choquet’s capacibility theorem). Every Borel set is capacitable.

Proof. See [DM79, Theorem III.28]. □

We have the following useful characterization of Choquet capacities.

Proposition 5.44 (Theorem A.1.2 in [FOT11]). Let (S ,U) be a uniform Hausdorff space and
denote by T the uniform topology. Suppose φ : T → R+ ∪ {∞} satisfies

(i) for all A, B ∈ T , A ⊂ B⇒ φ(A) ≤ φ(B),

(ii) for all A, B ∈ T , φ(A ∪ B) + φ(A ∩ B) ≤ φ(A) + φ(B),

(iii) for every increasing sequence (An)n∈N ⊂ T ,

φ

⋃
n∈N

An

 = sup
n∈N

φ(An). (5.135)

For an arbitrary A ⊂ S set
φ∗(A) := inf

B∈T , A⊂B
φ(B). (5.136)

Then φ∗ is a Choquet capacity. Moreover φ∗ extends φ and is σ-subadditive.

Proof. By definition, we immediately obtain that φ∗ is monotone and extends φ, i.e. φ∗|T = φ.
Furthermore, we have by (ii) that for A1, A2 ⊂ S ,

φ∗ (A1 ∪ A2) = inf { φ(B) | B ∈ T , A1 ∪ A2 ⊂ B }

= inf { φ(B1 ∪ B2) | Bi ∈ T , Ai ⊂ Bi, i = 1, 2 }

≤ inf
B1∈T , A1⊂B1

φ(B1) + inf
B2∈T , A2⊂B2

φ(B2) = φ∗(A1) + φ∗(A2).
(5.137)

Hence, φ∗ is subadditive. The claimed σ-subadditivity of φ∗ follows immediately if we can
show that φ∗ satisfy property (ii) of Definition 5.42. To see that, let (An)n∈N be an arbitrary
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sequence of subsets of S and write Bn :=
⋃n

i=1 Ai. Then (Bn)n∈N is an increasing sequence of
subsets of S and by combining (5.132) and (5.137) we obtain

φ∗
⋃

n∈N

An

 = φ∗ ⋃
n∈N

Bn

 = sup
n∈N

φ∗(Bn) ≤ sup
n∈N

n∑
i=1

φ∗(Ai) =
∑
n∈N

φ∗(An). (5.138)

Let’s show that φ∗ satisfies (ii) of Definition 5.42 first. Suppose A1, A2, B1, B2 ∈ T with
Ai ⊂ Bi and φ(Ai), φ(Bi) < ∞ for i = 1, 2. Using properties (i) and (ii) of φ, we have

φ(B1 ∪ B2) + φ(A1) ≤ φ(B1 ∪ (B2 ∪ A1)) + φ(B1 ∩ (B2 ∪ A1))

≤ φ(B1) + φ(B2 ∪ A1)
(5.139)

and similarly,

φ(B2 ∪ A1) + φ(A2) ≤ φ(B2 ∪ (A1 ∪ A2)) + φ(B2 ∩ (A1 ∪ A2))

≤ φ(B2) + φ(A1 ∪ A2).
(5.140)

Adding (5.139) and (5.140) and rearranging yields

φ(B1 ∪ B2) − φ(A1 ∪ A2) ≤ φ(B1) − φ(A1) + φ(B2) − φ(A2). (5.141)

Now let (An)n∈N , (Bn)n∈N ⊂ T with An ⊂ Bn and φ(An), φ(Bn) < ∞ for all n ∈ N. Suppose
that for some n ∈ N,

φ

 n⋃
i=1

Bi

 − φ  n⋃
i=1

Ai

 ≤ n∑
i=1

φ(Bi) − φ(Ai). (5.142)

Then, by (5.141),

φ

n+1⋃
i=1

Bi

 − φ
n+1⋃

i=1

Ai

 ≤ φ
 n⋃

i=1

Bi

 − φ  n⋃
i=1

Ai

 + φ(Bn+1) − φ(An+1)

≤

n+1∑
i=1

φ(Bi) − φ(Ai).

(5.143)

Therefore, by induction, (5.142) holds in fact for all n ∈ N.

Let (An)n∈N be an increasing sequence of arbitrary subsets of S and set A :=
⋃

n∈N An. Since
An ⊂ A for all n ∈ N we have φ∗(An) ≤ φ∗(A) and taking the supremum on the right hand side
we obtain φ∗(A) ≥ supn∈N φ

∗(An). It therefore remains to show that

φ∗(A) ≤ sup
n∈N

φ∗(An). (5.144)
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Without loss of generality we can assume that the right hand side of (5.144) is finite. By
definition of φ∗ we can find for each ε > 0 and n ∈ N a Bn ∈ T such that An ⊂ Bn and

φ∗(An) ≤ φ(Bn) ≤ φ∗(An) +
ε

2n . (5.145)

By assumption, the limit limn→∞ φ
∗(An) exists and by (5.145) we obtain

lim
n→∞

φ∗(An) = lim
n→∞

φ(Bn). (5.146)

Now choose k, n ∈ N with k < n. Then, Ak ⊂ Bk ∩ Bn and we can extend the inequality (5.145)
to

φ∗(Ak) ≤ φ(Bk ∩ Bn) ≤ φ(Bk) ≤ φ∗(Ak) +
ε

2k . (5.147)

Therefore, φ(Bk) − φ(Bk ∩ Bn) ≤ φ∗(Ak) + ε2−k − φ∗(Ak) = ε2−k and consequently

n∑
k=1

φ(Bk) − Φ(Bk ∩ Bn) ≤ ε
n∑

k=1

2−k < ε. (5.148)

We can now apply (5.142) to obtain

φ

 n⋃
k=1

Bk

 − φ(Bn) = φ

 n⋃
k=1

Bk

 − φ
 n⋃

k=1

Bn ∩ Bk


≤

n∑
k=1

φ(Bk) − φ(Bk ∩ Bn) < ε.

(5.149)

Now set B :=
⋃

n∈N Bn. Then B is open and A ⊂ B and we can conclude with (iii),

φ∗(A) ≤ φ(B) = lim
n→∞

φ

 n⋃
k=1

Bn

 . (5.150)

Taking the limit in (5.149) and applying (5.146) we find that

lim
n→∞

φ

 n⋃
k=1

Bk

 ≤ lim
n→∞

φ(Bn) + ε ≤ lim
n→∞

φ∗(An) + ε. (5.151)

Finally, plugging this estimate into (5.150), we arrive at the desired inequality as ε→ 0.

It remains to show that φ∗ satisfies property (iii) of Definition 5.42. Denote by (Kn)n∈N a
decreasing sequence of compact subsets of S . Since

⋂
n∈N Kn ⊂ Kn, we have φ∗

(⋂
n∈N Kn

)
≤

φ∗(Kn) for each n ∈ N and it remains to show that

inf
n∈N

φ∗(Kn) ≤ φ∗
⋂

n∈N

Kn

 . (5.152)
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Again, we assume without loss of generality that the right hand side is finite. By definition of
φ∗ we can find for each ε > 0 an open B ∈ T with φ(B) < ∞ such that

⋂
n∈N Kn ⊂ B and

φ(B) ≤ φ∗
⋂

n∈N

Kn

 + ε. (5.153)

That means that for some n ∈ N it must hold that
⋂n

k=1 Kn ⊂ B and therefore φ∗(Kl) ≤ φ(B)
for all l ≥ n. Now, since ε > 0 was arbitrary, this concludes the proof. □

5.4.2 α-capacities

We now aim to define a capacity that is related to the ν-symmetric Feller process X through its
Dirichlet form. We will also introduce a class of inverse capacities that we call resistances and
show how these objects relate to the dynamics of the underlying process.

As usual, let (S ,U, ν) be a uniform measure space and denote by T the uniform topology, i.e.
the open subsets of S with respect to the topology induced by the uniformityU.

Furthermore, let X be a ν-symmetric Feller process with values in (S ,U) and denote by
(E,D) the Dirichlet form associated with X. Recall the definition of the symmetric form
Eα( f , g) = E( f , g) + α ⟨ f , g⟩ for f , g ∈ D and α > 0 and recall that D equipped with Eα
becomes a Hilbert space. Sometimes we write

∥ f ∥Eα := Eα( f , f )1/2 and ∥ f ∥E := E( f , f )1/2 (5.154)

for the (pseudo-)norms onD induced by Eα and E, respectively.

As before, we denote by (Tt)t≥0 and (Gα)α>0 the Markovian semigroup and the Markovian
resolvent associated with (E,D). The following definition is an analogue to Definition 4.27
for elements of L2(S , ν).

Definition 5.45. Let α > 0. An element f ∈ L2(S , ν) is α-excessive (with respect to (Tt)t≥0) if
f ≥ 0 ν-a.e. and for all t > 0,

e−αtTt f ≤ f ν-a.e. (5.155)

We say that f ∈ L2(S , ν) is α-excessive when the respective semigroup is evident from the
context. ♢

Observe that α-excessive functions can be characterized via Eα, too.

Lemma 5.46 ([CF11, Lemma 1.2.4]). Let α > 0 and f ∈ D. Then, f is α-excessive if and only
if

Eα( f , g) ≥ 0 (5.156)

for every g ∈ D with g ≥ 0 ν-a.e.
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Proof. Suppose f ∈ D is α-excessive and g ≥ 0 ν-a.e. Then, f − e−αtTt f ≥ 0 ν-a.e. for all
t > 0, by definition. Hence,

0 ≤
1
t

〈
f − e−αtTt f , g

〉
=

1
t
⟨ f − Tt f , g⟩ +

1 − e−αt

t
⟨Tt f , g⟩ (5.157)

for all t > 0. Using the approximation of E by E(t) given in (5.50) and the strong continuity of
(Tt)t≥0 we get that the right hand side of (5.157) converges to Eα( f , g) as t → 0.

For the converse implication suppose f ∈ D such that (5.156) holds for all non-negative g ∈ D.
For each t > 0 and α > 0 we have

Gαg − e−αtTtGαg =
∫ ∞

0
e−αsTsg ds −

∫ ∞

0
e−α(s+t)Ts+tg ds

=

∫ t

0
e−αsTsg ds ≥ 0 ν-a.e.

(5.158)

Therefore, by symmetry of Tt,〈
f − e−αtTt f , g

〉
= ⟨ f , g⟩ −

〈
f , e−αtTtg

〉
=

〈
f , g − e−αtTtg

〉
. (5.159)

Recall that by Remark 5.23 (i) we have Eα( f ,Gαg) = ⟨ f , g⟩. Hence,〈
f − e−αtTt f , g

〉
= Eα

(
f ,Gαg − e−αtTtGαg

)
≥ 0, (5.160)

by (5.159) and assumption. Consequently, f − e−αtTt f ≥ 0 ν-a.e. and f is α-excessive. □

For each A ∈ T we introduce the family

LA := { f ∈ D | f ≥ 1 ν-a.e. on A } (5.161)

and note that LA is a convex and closed subset of the real Hilbert space (D,Eα) for each α > 0.

Definition 5.47 (α-capacity). For A ∈ T and α > 0 the α-capacity of A is given as

Capα(A) := inf
{
Eα( f , f )

∣∣∣ f ∈ LA
}
, (5.162)

where inf Ø := ∞, by convention. For arbitrary subsets B ⊂ S we define

Capα(B) := inf
{

Capα(A)
∣∣∣ A ∈ T , A ⊃ B

}
. (5.163)

For convenience, we write

Cα :=
{

A ⊂ S
∣∣∣ Capα(A) < ∞

}
(5.164)

for the family of subsets of S with finite α-capacity. ♢

172 Chapter 5 Dirichlet Forms and symmetric Feller Processes



Proposition 5.48. Let α > 0 and A ∈ Cα ∩ T be an open set with finite α-capacity. Then there
exits a unique element hαA ∈ L

A such that

Eα(hαA, h
α
A) = Capα(A). (5.165)

Furthermore, hαA has the following properties.

(i) 0 ≤ hαA ≤ 1 ν-almost everywhere on S and hαA = 1 ν-almost everywhere on A.

(ii) hαA is α-excessive.

(iii) For every f ∈ D with f = 0 ν-a.e. on A it holds that

Eα(hαA, f ) = 0. (5.166)

(iv) For each f ∈ D with f = 1 ν-a.e. on A it holds that

Eα(hαA, f ) = Capα(A). (5.167)

(v) If B ∈ Cα ∩ T is another open set with finite α-capacity such that A ⊂ B then, hαA ≤ hαB
ν-a.e. and

Capα(A) = Eα(hαA, h
α
A) ≤ Eα(hαB, h

α
B) = Capα(B). (5.168)

Proof. For each A ∈ Cα ∩ T , the set LA is a convex and closed subset of the Hilbert space
(D,Eα). Therefore, the variational problem in (5.162) has a unique solution.

The first assertion (i) follows directly from the Markov property of E, the fact that f +∧ 1 ∈ LA

for all f ∈ LA and ∥ f + ∧ 1∥2 ≤ ∥ f ∥2.

We use Lemma 5.46 to show (ii). Suppose f ∈ D is non-negative. Then for all ε > 0,
hαA + ε f ∈ LA. Without loss of generality we can assume that Eα( f , f ) > 0 or, equivalently,
f , 0. Hence,

0 ≤ Eα(hαA + ε f , hαA + ε f ) − Eα(hαA, h
α
A) = ε

(
2Eα(hαA, f ) + εEα( f , f )

)
(5.169)

and therefore
ε

2
Eα( f , f ) ≥ −Eα(hαA, f ) (5.170)

which yields the desired inequality E(hαA, f ) ≥ 0 since ε > 0 was arbitrary.

Let f ∈ D be such that f ≥ 0 ν-a.e. on S and f = 0 ν-a.e. on A. Then, for each ε > 0, we
have hαA − ε f ∈ LA. with the same argument as above we have

ε

2
Eα( f , f ) ≥ Eα(hαA, f ). (5.171)

Since ε > 0 was arbitrary and hαA is α-excessive by (ii) we obtain Eα(hαA, f ) = 0. The statement
(iii) then follows if we consider the positive and negative part of f separately.
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Property (iv) is a direct consequence of (iii) and the last property (v) follows from the fact that
LB ⊂ LA whenever A ⊂ B. □

The minimizer hαA is sometimes referred to as the α-order equilibrium potential of A (cf. [CF11,
p.78]).

Let A ⊂ S and note that Capβ(A) > 0 for some β > 0 implies Capα(A) > 0 for all α > 0. It
therefore suffices to consider only a particular α > 0 e.g. α = 1 when we talk about sets with
capacity 0. We introduce some potential theoretic notions.

Definition 5.49. Let X be a ν-symmetric Feller process with values in Sϑ and (E,D) the
Dirichlet form associated with X. A set A ⊂ S is said to be E-polar or polar for X, if
Cap1(A) = 0. A property that holds everywhere outside a polar set is said to hold E-quasi
everywhere and a increasing sequence {Fn}n≥1 of closed subsets of S is called a E-nest if
Fn ↑ S and Cap1(S \ Fk)→ 0 as n→ ∞. For the sake of readability, we drop the E from the
terminology when it is clear from the context which Dirichlet form we are referring to. ♢

A set A ⊂ S which is polar in the sense of the above definition can be considered small. There
are various other notions of smallness of sets which are intrinsically related. For example,
from a measure theoretic viewpoint we consider (Borel) sets as small if they have measure 0. It
is an immediate consequence of the definition of the α-capacity that every open set A ∈ B with
ν(A) has capacity zero. This follows simply from the fact that the function 0 ∈ L2(S , ν) can
take any value on the nullset A. Sometimes, a set A ⊂ S is also called X-polar (with respect to
a process X) if it is contained a nearly Borel measurable set B ∈ Bn (see Definition 4.50) with
Px(τB < ∞) = 0 for all x ∈ S (cf. [CF11, Definition A.2.6]). On the other hand, a set A ⊂ S
is called thin if it has no regular points (see Definition 4.55), i.e. if Px(τA = 0) = 0 for all
x ∈ A. A set that is contained in a countable union of thin sets is called semipolar (cf. [CF11,
Definition A.2.6]). Some relations between these and further notions of smallness of sets are
presented in the diagram in [FOT11, p. 158]. One important equivalence is the following.

Proposition 5.50. Let X be a ν-symmetric Feller process with values in Sϑ and (E,D) the
Dirichlet form associated with X. A set A ⊂ S is E-polar if and only if it is ν-polar, i.e. A is
contained in a nearly Borel measurable set B ⊂ Bn such that

Pν(τB < ∞) = 0. (5.172)

Proof. See [CF11, Theorem 3.1.3]. □

Before we can show that α-capacities are capacities in the sense of Choquet we need an
important characterization of the minimizer hαA of the variational problem in (5.162).

Theorem 5.51 (Characterization of minimizers). Let α > 0 and A ∈ Cα be an open set with
finite α-capacity and hαA ∈ L

A the α-equilibrium potential of A.
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(i) hA,α is the unique α-excessive element of LA such that hαA = 1 ν-almost everywhere on
A.

(ii) hαA is the unique element of LA with

Eα(hαA, h
α
A) ≤ Eα( f , hαA) (5.173)

for all f ∈ LA.

(iii) hαA is the minimal α-excessive element of LA in the sense that for all α-excessive g ∈ LA

it holds that hαA ≤ g ν-a.e.

Proof. By Proposition 5.48 we know that hαA is α-excessive and = 1 ν-a.e. on A. Let h ∈ LA be
another α-excessive function with h = 1 ν-a.e. on A. Then, hαA − h = 0 ν-a.e. on A. Inspecting
the proof of (iii) of Proposition 5.48 we realize that we have only used the α-excessivity of hαA.
Therefore, the same property holds for h. Hence,

Eα(hαA − h, hαA − h) = 0, (5.174)

which implies that h = hαA ν-a.e.

We turn to the proof of (iii). Suppose h ∈ LA is α-excessive. As an immediate consequence
of the definition of α-excessivity we obtain that hαA ∧ h is also α-excessive. Furthermore,
hαA ∧ h = 1 ν-a.e. on A and we can conclude from (i) that hαA ∧ h = hαA which means hαA ≤ h
ν-a.e.

It remains to proof the characterization (iii). Note that for every f ∈ LA and 0 < ε < 1 we
have that hαA + ε( f − hαA) ∈ LA. Hence,

0 ≤ Eα
(
hαA + ε( f − hαA), hαA + ε( f − hαA)

)
− Eα(hαA, h

α
A)

= ε
(
2Eα(hαA, f − hαA) + εEα( f − hαA, f − hαA)

)
.

(5.175)

And consequently
Eα(hαA, f − hαA) ≥ −

ε

2
Eα( f − hαA, f − hαA), (5.176)

letting ε→ 0 we have Eα(hαA, f − hαA) ≥ 0. In other words, hαA satisfies (5.173). Now assume
that h ∈ LA is another function that satisfies (5.173). Then we can plug hαA into the inequality
and obtain

Eα(h, hαA − h) ≥ 0. (5.177)

Finally, we can conclude

Eα(h − hαA, h − hαA) = −
(
Eα(h, hαA − h) + Eα(hαA, h − hαA)

)
≤ 0 (5.178)

and therefore h = hαA ν-a.e.

□
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Proposition 5.52. For each α ≥ 0 the α-capacity is a Choquet capacity.

Proof. Fix α > 0. It suffices to show that Capα satisfies the properties (i) to (iii) of Propo-
sition 5.44 for open sets. We have already shown that Capα satisfies (i) in Proposition 5.48
(v).

We start by showing (ii). To that end let A, B ∈ Cα ∩ T be open sets with finite α-capacity.
Recall that by Lemma 5.26, E( f +, f −) ≤ 0 for all f ∈ D. This directly implies that
Eα(| f |, | f |) ≤ Eα( f , f ) for all α > 0 and f ∈ D. Therefore,

Capα(A ∪ B) + Capα(A ∩ B) ≤ Eα(hαA ∨ hαB, h
α
A ∨ hαB) + Eα(hαA ∧ hαB, h

α
A ∧ hαB)

=
1
2

(
Eα(hαA + hαB, h

α
A + hαB) + Eα(|hαA − hαB|, |h

α
A − hαB|)

)
≤ Eα(hαA, h

α
A) + Eα(hαB, h

α
B) = Capα(A) + Capα(B)

(5.179)

Now let (An)n∈N ⊂ Cα ∩ T be an increasing sequence of open sets with finite α-capacity. In
order to show (iii) we can assume without loss of generality that supn∈N Capα(An) < ∞. Let
k, n ∈ N with k < n. Then,

Eα(hαAn
− hαAk

, hαAn
− hαAk

) = Capα(An) + Capα(Ak) − 2Eα(hαAn
, hαAk

). (5.180)

Note that hαAn
= 1 ν-a.e. on Ak ⊂ Ak. Therefore, by (iv) of Proposition 5.48,

Eα(hαAn
− hαAk

, hαAn
− hαAk

) = Capα(An) − Capα(Ak). (5.181)

Hence,
(
hαAn

)
n∈N

is a Eα-Cauchy sequence. By completeness of the Hilbert space (D,Eα),
there exists a h ∈ D such that limn→∞ hαAn

= α with respect to Eα. Evidently, h = 1 ν-a.e. on
A :=

⋃
n∈N An. Then we have for all f ∈ D with f ≥ 0 ν-a.e.,

Eα(h, f ) = lim
n→∞
Eα(hαAn

, f ) ≥ 0, (5.182)

by Proposition 5.48 (ii). Therefore, h is α-excessive by Lemma 5.46 and we can apply
Theorem 5.51 (i) to conclude that

sup
n∈N

Capα(An) = lim
n→∞
Eα(hαAn

, hαAn
) = Eα(h, h) = Capα(A). (5.183)

□

We make the following observation about continuous functions.

Lemma 5.53. Let α > 0 and f ∈ D ∩ C(S ) be a continuous representative of an element ofD.
Then,

Capα ({ x ∈ S | | f (x)| > λ }) ≤ λ−2Eα( f , f ), (5.184)

for all λ > 0.
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Proof. By continuity of f , the set A := ({ x ∈ S | | f (x)| > λ }) is open. Furthermore, λ−1| f | ∈
LA and hence

Capα(A) ≤ Eα(λ−1| f |, λ−1| f |) ≤ λ−2Eα( f , f ), (5.185)

where the last inequality is due to Lemma 5.26. □

Let X be a ν-symmetric Feller process with values in (S ,U) and Dirichlet form (E,D). Recall
(e.g. from (4.108)) that we write

τA := inf { t > 0 | Xt ∈ A } . (5.186)

for the first hitting time of a Borel set A ∈ B. As a first result that relates the potential theoretic
concepts we have developed so far to the process X we have the following.

Proposition 5.54 ([CF11, Lemma 3.1.1]). Let α > 0 and A ∈ Cα ∩T be an open set with finite
α-capacity. Define the function pαA : S → R+ by

pαA(x) = Ex
[
e−ατA

]
x ∈ S . (5.187)

Then, pαA = hαA ν-a.e.

Proof. As usual we denote the L2-semigroup associated with (E,D) by (Tt)t≥0 and the Feller
semigroup associated with the process X by (Pt)t≥0. By Proposition 5.29, we have that for all
f ∈ Bb(S ) ∩ L2(S , ν) and t > 0, Tt f = Pt f ν-a.e. Moreover we have that pαA is α-excessive
with respect to (Pt)t≥0 by Proposition 4.59 and, as discussed above in Proposition 5.48, hαA is
α-excessive with respect to (Tt)t≥0. By definition of pαA, we have pαA(x) = 1 for all x ∈ A. We
can therefore apply (i) of Theorem 5.51 to prove the claim once we have shown that pαA ∈ D
because then pαA ∈ L2(S , ν) and therefore, pαA is also α-excessive with respect to (Tt)t≥0.

By application of the Cauchy-Schwarz inequality to the scalar product E(t) we can show that
an α-excessive function f ∈ L2(S , ν) is an element of D if there exists a g ∈ D with f ≤ g
ν-a.e. (cf. [CF11, Lemma 1.2.3]). It therefore suffices to show that

pαA ≤ hαA, ν-a.e. (5.188)

because then pαA ∈ L2(S , ν) and consequently in the domain of E due to the aforementioned.

In order to show (5.188) fix a Borel measurable representative h̃ ∈ B+b (S ) of the equivalence
class hαA ∈ L2(S , ν) such that h̃(x) = 1 for all x ∈ A. Clearly, h̃ is α-excessive with respect to
(Pt)t≥0 and by Proposition 4.29 the real valued stochastic process

(Yt)t≥0 :=
(
e−αth̃(Xt)

)
t≥0

(5.189)

is a Pµ-supermartingale with respect to the canonical filtration (At)t≥0 for any initial distri-
bution µ ∈ M1(S ). Furthermore, Yt is bounded by 1 for each t ≥ 0 which implies uniform
integrability of Y .
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Consider the following construction. Let Γ ⊂ (0,∞) be a finite set with a := minΓ and
b := maxΓ and write

τ(Γ, A) := min { t ∈ Γ | Xt ∈ A } , (5.190)

and set τ(Γ, A) = b if { t ∈ Γ | Xt ∈ A } = Ø. Clearly, τ(Γ, A) is a stopping time and Yτ(Γ,A) =

e−ατ(Γ,A) on the event {τ(Γ, A) < b}.

Let g ∈ B+(S ) be a non negative Borel measurable function with
∫

S g dν = 1 and set µ := g · ν.
Then,

Eµ
[
e−ατ(Γ,A)

∣∣∣ τ(Γ, A) < b
]
≤ Eµ

[
Yτ(Γ,A)

]
. (5.191)

By uniform integrability we can apply the optional sampling theorem (cf. [Kle14, Theorem
10.21]) to obtain

Eµ
[
e−ατ(Γ,A)

∣∣∣ τ(Γ, A) < b
]
≤ Eµ [Ya] . (5.192)

Now fix b > 0 and choose for each n ∈ N a finite set Γn ⊂ (0, b) ∩ Q such that Γn ⊂ Γn+1 and⋃
n∈N Γn = (0, b) ∩ Q. As n→ ∞ the right hand side of (5.192) converges to

Eµ [Y0] =
∫

S
h̃ dµ =

∫
S

gh̃ dν =
〈
g, h̃

〉
. (5.193)

When we now let b→ ∞, the left hand side of (5.192) converges to

Eµ
[
e−ατA

]
=

∫
S

pαA dµ =
∫

S
gpαA dν =

〈
g, pαA

〉
. (5.194)

We have thus shown
〈
g, pαA

〉
≤

〈
g, h̃

〉
for all g ∈ B+(S ) with

∫
S g dν = 1 and hence pαA ≤ h̃

ν-a.e. which concludes the proof. □

5.4.3 0-capacities

In the last section we have made use of the fact that Eα turns D into a Hilbert space which
ensured the existence of a unique minimizer for the variational problem that defines the
α-capacity (5.162).

For the remainder of this section we assume that (E,D) is a regular Dirichlet form.

Now suppose (E,D) is a transient Dirichlet form on L2(S , ν) and recall that the extended
Dirichlet space as defined in Definition 5.33De then becomes a Hilbert space when equipped
with the inner product E by Theorem 5.38. Analogously to the definition of the α-capacity
in the previous section we can therefore introduce the notion of (0-)capacities for transient
Dirichlet forms. To that end we write

LA
e := { f ∈ De | f ≥ 1 ν-a.e. on A } . (5.195)
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Definition 5.55 (0-Capacity). Let (E,D) be a transient Dirichlet form. For open A ∈ T we
define the (0-)capacity3 as

Cap(A) := inf
{
E( f , f )

∣∣∣ f ∈ LA
e

}
(5.196)

if F A , Ø and Cap(A) := ∞ otherwise. For arbitrary B ⊂ S we define

Cap(B) := inf
{

Cap(A)
∣∣∣ A ∈ T , B ⊂ A

}
(5.197)

and denote by C :=
{

A ⊂ S
∣∣∣ Cap(A) < ∞

}
the subsets of S with finite (0-)capacity. ♢

By the same arguments laid out in the proof of Proposition 5.44, we can argue that the capacity
defined in Definition 5.55 is a Choquet capacity. Furthermore, it is easy to check that the
analogue of Lemma 5.53 remains true for the 0-capacity. In particular, there exists a unique
minimizer hA ∈ L

A
e to the variational problem in (5.196) such that

Cap(A) = E(hA, hA). (5.198)

Lemma 5.56. Let f ∈ De ∩ C(S ) be a continuous representative of an element ofDe. Then,

Cap ({ x ∈ S | | f (x)| > λ }) ≤ λ−2E( f , f ), (5.199)

for all λ > 0.

Proof. See the proof of Lemma 5.56. □

Recall that a set A ⊂ S has zero α-capacity for some α > 0 then Capα(A) = 0 for all α > 0.
Also note that sets of zero capacity give us a finer notion than sets of measure zero since ν(A)
implies Capα(A) = 0 but not the other way around. In Proposition 5.61 we will see that every
set with zero α-capacity also has 0-capacity zero and vice versa. We could hence equivalently
reformulate the following definition in terms of the α-capacity.

Definition 5.57 (Quasi continuous functions). We call an extended real valued function
f : S → R ∪ {−∞,∞} quasi continuous if for each ε > 0 there exists an open set A ∈ T such
that Cap(A) < ε and the restriction f |∁A of f to the closed set S \ A is finite and continuous.
If f |∁A is even finite and continuous on the complement of A with respect to the one-point
compactification Sϑ \ A, we say that f is quasi continuous in the restricted sense. ♢

3We will use the notation Cap without index for the 0-capacity. Note that both our reference texts [CF11; FOT11]
use the notation without index to denote the 1-capacity.
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Proposition 5.58 ([FOT11, Theorem 2.1.3]). Let (E,D) be a regular Dirichlet form, then each
f ∈ De admits a quasi continuous modification in the restricted sense which we will denote by
f̃ .

Proof. By definition of the extended Dirichlet spaceDe, we have thatD is a dense subset of
De. On the other hand, by definition of regularity, Definition 5.9, for each f ∈ De there exists
a sequence ( fn)n∈N ⊂ De ∩ C0(S ) such that E1( fn − f , fn − f )→ 0 as n→ ∞. Then, ( fn)n∈N

is a Cauchy sequence and we can assume without loss of generality that

E1( fn+1 − fn, fn+1 − f ) ≤ 2−3n. (5.200)

Furthermore, fn+1 − fn is continuous. If we set

An :=
{

x ∈ S
∣∣∣ | fn+1 − fn| > 2−n }

, (5.201)

we can apply Lemma 5.56 to obtain

Cap(An) ≤ 2−n. (5.202)

Observe that An ⊂ An+1 and set

Bn :=
∞⋂

k=n

∁Ak. (5.203)

Then, Bn is closed, Bn ⊂ Bn+1 for all n ∈ N and Cap(S \ Bn)→ 0 as n→ ∞.4 Now fix N ∈ N,
then we have for all k, l > m ≥ N and all x ∈ BN that

| fk(x) − fl(x)| ≤
∞∑

i=N+1

| fi+1(x) − fi(x)| ≤
∞∑

i=N+1

2−i = 2−N . (5.204)

Consequently, for each k ∈ N, the sequence of functions given by fn|Bk∪{ϑ} (where we set
fn(ϑ) = 0) converges uniformly as n→ ∞ and we can define

f̃ (x) := lim
n→∞

fn(x), x ∈
∞⋃

n=1

Bn. (5.205)

Then, by uniform convergence, f̃ is the desired quasi continuous representative of f since
f̃ ∈ C∞(Bn) for each n ∈ N and f = f̃ ν-a.e. □

Recall that we say that a property holds quasi everywhere (q.e.) if it holds outside a set of
capacity zero. For now, we will use the term with respect to the 0-capacity. This ambiguity
will we resolved once we prove Proposition 5.61.

Note that the elements ofDe are equivalence classes of ν-a.e. identical functions and while
f̃ = f ν-a.e. for all f ∈ De, f̃ itself describes an equivalence class of q.e. identical functions.

4Recall that this means that (Bn)n∈N is a E-nest from Definition 5.49.
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We make the following observations about quasi continuous functions.

Lemma 5.59 ([FOT11, Lemma 2.1.6 & Theorem 2.1.4]). Let (E,D) be a transient regular
Dirichlet form on L2(S , ν).

(i) For each f ∈ De and λ > 0,

Cap
({

x ∈ S
∣∣∣ ∣∣∣ f̃ (x)

∣∣∣ > λ })
≤ λ−2E( f , f ). (5.206)

(ii) Suppose ( fn)n∈N ⊂ De is a E-Cauchy sequence. Then there exists a f ∈ De such that
limn→∞ f̃n = f̃ q.e. and fn → f with respect to E as n→ ∞.

Proof. We start with the first claim (i). Fix f ∈ De. Similarly to the proof of Proposition 5.58
there exists a sequence ( fn)n∈N ∈ C0(S ) ∩ De such that limn→∞ fn = f with respect to E, by
regularity. By assumption, f = f̃ q.e. Therefore, for each ε > 0 there exists an open set A ∈ T
such that Cap(A) < ε and fn → f̃ uniformly on S \ A as n→ ∞. Now let λ > 0, then we find
for each δ > 0 with δ < λ a n0 ∈ N such that{

x ∈ S
∣∣∣ ∣∣∣ f̃ (x)

∣∣∣ > λ }
⊂ { x ∈ S | | fn(x)| > λ − δ } ∪ A (5.207)

for all n > n0. Consequently, by Lemma 5.56,

Cap
({

x ∈ S
∣∣∣ ∣∣∣ f̃ (x)

∣∣∣ > λ })
≤ E( fn, fn)(λ − δ)−2 + ε. (5.208)

The claim then follows when we let n→ ∞, δ→ 0 and then ε→ 0.

For the second assertion (ii) let ( fn)n∈N ⊂ De be a E-Cauchy sequence. By assumption and
Theorem 5.38, (De,E) is a real Hilbert space and therefore complete. Consequently, there
exists a f ∈ De with limn→∞ E( fn − f , fn − f ) = 0 and it remains to show that limn→∞ f̃n = f
q.e.

Similarly as in the proof of Proposition 5.58 we set

An :=
{

x ∈ S
∣∣∣ ∣∣∣ f̃n+1 − f̃n

∣∣∣ > 2−n
}
. (5.209)

By passing over to a subsequence, if necessary, we can assume by (i) that

Cap(An) ≤ 2−n. (5.210)

By quasi continuity of f̃n we can choose for every n ∈ N a family
(
E(n)

k

)
k∈N

of closed subsets

of S with E(n)
k ⊂ E(n)

k+1 and

Cap
(
S \ E(n)

k

)
≤

1
2nk

(5.211)
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such that f̃n is continuous on E(n)
k for all k ∈ N. We can therefore set Ek :=

⋂
n∈N E(n)

k to obtain
a family of sets with Ek ⊂ Ek+1 and

Cap(S \ Ek) ≤ 1/k (5.212)

such that f̃n is continuous on Ek for each k, n ∈ N. For ε > 0 we can therefore find open sets
B1, B2 ∈ T with Cap(B1),Cap(B2) ≤ ε/2 and a n0 ∈ N such that An ⊂ B1 and f̃n is continuous
on S \ B2 for all n > n0. Then, f̃n converges uniformly to f̃ on B := B1 ∪ B2 and we can
conclude the proof by letting ε→ 0.

□

For arbitrary A ⊂ S consider the following family of functions

F A :=
{

f ∈ De
∣∣∣ f̃ ≥ 1 q.e. on A

}
. (5.213)

Theorem 5.60. Let (E,D) be a transient regular Dirichlet form on L2(S , ν). Further let
Ø , A ⊂ S be an arbitrary subset. Then the following hold.

(i) The 0-capacity of A is given by the following variational problem

Cap(A) = inf
{
E( f , f )

∣∣∣ f ∈ F A
}

(5.214)

(ii) Suppose F A is non empty. Then there exists a unique minimizer hA ∈ F
A to the

variational problem (5.214) and

Cap(A) = E(hA, hA). (5.215)

(iii) The minimizer hA from (ii) satisfies 0 ≤ hA ≤ 1 ν-a.e. and h̃A = 1 q.e. on A.

We call the minimizer hA of the variational problem in (5.214) the 0-order equilibrium potential
of A or simply the equilibrium potential of A.

Proof. We start with assertion (ii). Suppose F A , Ø. Then, clearly, the set F A is convex and
by Lemma 5.59 (ii) it is closed. Therefore, there exists a unique element hA ∈ F

A such that

E(hA, hA) ≤ E( f , f ) (5.216)

for all f ∈ F A. By definition of capacity, there exists for each ε > 0 a B ∈ T open such that
A ⊂ B and

Cap(A) > Cap(B) − ε. (5.217)

Then LB
e ⊂ F

A since f ≥ 1 ν-a.e. on B implies f̃ ≥ 1 q.e. on B (cf. [FOT11, Lemma 2.1.4]).
Consequently,

Cap(B) ≥ E(hA, hA) (5.218)
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and hence Cap(A) ≥ E(hA, hA) since ε > 0 was arbitrary. For the reversed inequality fix
a quasi continuous modification h̃A of hA. For each ε > 0 we can choose an open set Bε
such that Cap(Bε) < ε and h̃A is continuous on S \ Bε and h̃A ≥ 1 for all x ∈ A \ Bε. For
convenience we write hε for the minimizer of the variational problem for the capacity of Bε,
i.e. Cap(Bε) = E(hε, hε). Observe that the set

Eε :=
{

x ∈ S \ Bε
∣∣∣ h̃A(x) > 1 − ε

}
∪ Bε (5.219)

is open and A ⊂ Eε. On the other hand, hA + hε ≥ 1 − ε ν-a.e. on Eε. Hence,

Cap(A) ≤ Cap(Eε) ≤ (1 − ε)−1E(hA + hε, hA + hε)

≤ (1 − ε)−2
(
E(hA, hA)1/2 + E(hε, hε)1/2

)2

≤ (1 − ε)−2
(
E(hA, hA)1/2 + ε1/2

)2
,

(5.220)

where we have used the triangle inequality for E from Lemma 5.3 in the second line. Letting
ε→ 0, we obtain

Cap(A) ≤ E(hA, hA), (5.221)

therefore verifying (5.215). Furthermore, we obtain (i) as a direct consequence. Assertion (iii)
follows from the observation that for each f ∈ F A we have g := (0 ∨ f ) ∧ 1 ∈ F A and g̃ = 1
q.e. on A.

□

We are now in a position to show the equivalence of the quasi notions with respect to the
α-capacity and with respect to the 0-capacity.

Proposition 5.61 ([FOT11, Theorem 2.1.6]). Let (E,D) be a transient regular Dirichlet form
on L2(S , ν). For all A ⊂ S we have Cap(A) = 0 if and only if Cap1(A) = 0. Furthermore, a
function f is quasi continuous with respect to the 0-capacity if and only if f is quasi continuous
with respect to the 1-capacity.

Recall from Definition 5.49 that a set A ⊂ S is said to be E-polar, if Cap1(A) = 0.

Proof of Proposition 5.61. Recall from Theorem 5.38 that if (E,D) is transient there exists a
function ψ ∈ L1(S , ν) with ψ > 0 ν-a.e. called the reference function such that∫

S
| f |ψ dν ≤ E( f , f )1/2 (5.222)

for all f ∈ De. Consequently, Cap(A) = 0 implies ν(A) = 0. On the other hand it is clear from
the definition that

Cap(A) ≤ Cap1(A) (5.223)
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for all A ⊂ S . Now suppose (An)n∈N ⊂ T is a decreasing sequence of relatively compact open
subsets of S . We first show that limn→∞ Cap(An) = 0 if and only if limn→∞ Cap1(An) = 0. By
(5.223) we only need to show the implication

lim
n→∞

Cap(An) = 0 ⇒ lim
n→∞

Cap1(An) = 0. (5.224)

Using (5.222), we obtain that
hAn → 0 ν-a.e (5.225)

as n → ∞, where hAn denotes the minimizer for the variational problem for Cap(An), as
usual. By assumption the closure A1 is compact and E is regular. Consequently there exists a
continuous function h ∈ D ∩ C0(S ) such that h(x) ≥ 1 for all x ∈ A1. Define

hn := hAn ∧ h, (5.226)

then hn ∈ L2(S , ν) ∩De = D. Hence,

sup
n∈N
E1(hn, hn) ≤ sup

n∈N
E(hn, hn) + ⟨h, h⟩ ≤ sup

n∈N
E(h, h) + E(hAn , hAn) + ⟨h, h⟩

≤ sup
n∈N

Cap(An) + E1(h, h) ≤ Cap(A1) + E1(h, h) < ∞.
(5.227)

We can now apply the Banach-Saks Theorem (cf. [CF11, Theorem A.4.1]) to argue that there
exists a subsequence

(
hnk

)
k∈N such that the Cesàro means

gk :=
1
k

k∑
j=1

hn j (5.228)

converge with respect to E1. By (5.225) we can conclude that hn → 0 ν-a.e. as n → ∞ and
consequently gk → 0 ν-a.e. as k → ∞. Observe that gk ∈ L

Ak as (An)n∈N was taken to be
decreasing. We arrive therefore at

Cap1(Ak) ≤ E1(gk, gk)→ 0, (5.229)

as n→ ∞, showing (5.224).

Now let A ⊂ S be arbitrary. From (5.223) we immediately obtain Cap(A) = 0 if Cap1(A) = 0.
Now observe that by σ-compactness there exists a decreasing sequence of relatively compact
open sets (An)n∈N ⊂ T such that A ⊂

⋂
n∈N and Cap1(An)→ 0 .Then the reverse implication

follows from the statement above.

Now let f : S → R be quasi continuous with respect to the 1-capacity. Then, for every ε > 0
there exists an open set A such that Cap1(A) < ε and f |∁A is continuous. Then (5.223) implies
Cap(A) < ε, too. Now suppose f is quasi continuous with respect to the 0-capacity. Then, by
σ-compactness, there exists a increasing sequence (Kn)n∈N of compact subsets of S such that
S =

⋃
n∈N Kn. For every n ∈ N we can therefore find a decreasing sequence

(
A(n)

k

)
k∈N
⊂ T
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such that f |Kn\A
(n)
k

is continuous and Cap(A(n)
k ) → 0 as k → ∞. Then we can find for every

ε > 0 and n ∈ N a k ∈ N such that

Cap1(A(n)
k ) ≤ ε2−n. (5.230)

Then, f is continuous on the complement of A :=
⋃

n∈N An and Cap1(A) ≤ ε and f is quasi
continuous with respect to the 1-capacity, as claimed. □

Next we want to characterize the minimizer hA in a similar manner as in Theorem 5.51. We
first need the following definition.

Definition 5.62. An element f ∈ L∞(S , ν) is called excessive (with respect to (Tt)t≥0) if f ≥ 0
ν-a.e. and for all t ≥ 0,

Tt f ≤ f ν-a.e. (5.231)
♢

Again, we can characterize excessive functions via the Dirichlet form.

Lemma 5.63. An element f ∈ De is excessive if and only if

E( f , g) ≥ 0 (5.232)

for every g ∈ De with g ≥ 0 ν-a.e.

Proof. The claim follows from Lemma 5.46 by letting α→ 0. □

Theorem 5.64. Let (E,D) be a transient regular Dirichlet form on L2(S , ν) and Ø , A ⊂ S
a non-empty subset of S . Denote by hA ∈ F

A the equilibrium potential of A. Then hA is the
unique element ofDe such that h̃A = 1 q.e. on A and

E(hA, f ) ≥ 0, (5.233)

for all f ∈ De with f̃ ≥ 0 q.e. on A.

Proof. Take f ∈ De with f̃ ≥ 0 q.e. on A. Then, for each ε > 0, ε f + hA ∈ F
A and

E(hA, hA) ≤ E(ε f + hA, ε f + hA). (5.234)

Rearranging yields
ε

2
E( f , f ) ≥ −E(hA, f ) (5.235)
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from which we can conclude that E(hA, f ) ≥ 0. Now suppose that g ∈ F A is another element
of F A with g̃ = 1 q.e. on A and E( f , g) ≥ 0 for all f ∈ De with f̃ ≥ 0 q.e. Suppose h ∈ F A,
then h̃ − g ≥ 0 q.e. on A and we obtain

E(h, h) = E(g + (h − g), g + (h − g))

= E(g, g) + 2E(g, h − g) + E(h − g, h − g) ≥ E(g, g).
(5.236)

If we take h = hA, we can conclude that g = hA from Theorem 5.60 (ii), which completes the
proof.

□

Corollary 5.65. In the situation of Theorem 5.64, hA is also the unique element of De such
that h̃A = 1 q.e. on A and

E(hA, f ) = 0 (5.237)

for all f ∈ De with f̃ = 0 q.e. on A.

Proof. Suppose f ∈ De with f̃ = 0 q.e. on A, then − f has the same property and both
f̃ , −̃ f ≥ 0 q.e. on A. By Theorem 5.64 we obtain

E(hA, f ) ≥ 0 and E(hA,− f ) = −E(hA, f ) ≥ 0. (5.238)

Consequently, E(hA, f ) = 0. For the converse implication suppose g ∈ De is another element
with g̃ = 1 q.e. on A satisfying (5.237) for all f ∈ De with f̃ = 0 q.e. on A. Then, hA − g ∈ De

and h̃A − g = 0 q.e. on A. Therefore,

0 = E(hA, hA − g) + E(g, hA − g) = E(hA, hA) − E(g, g) (5.239)

which implies E(g, g) = Cap(A) and therefore g = hA by uniqueness, Theorem 5.60 (ii). □

Remark 5.66. For open sets A ∈ T ∩ C with finite capacity, we have the analogue of
Theorem 5.51 also for the 0-capacity where we replace LA by LA

e and drop the α. The proof
is verbatim. ♢

We conclude this section by relating the analytic results developed above to probabilistic
properties of a Feller process X which is associated with a transient regular Dirichlet form.
The result is an analogue of Proposition 5.54.

Proposition 5.67. Let X be a ν-symmetric Feller associated with a transient regular Dirichlet
form (E,D) on L2(S , ν). For every Borel set A ∈ B ∩ C with finite capacity, the function
x 7→ pA(x) given by

pA(x) := Px(τA < ∞) (5.240)

is a quasi continuous version of the equilibrium potential hA of A.
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Proof. See [CF11, Corollary 3.4.3]. □

Remark 5.68. From the start, the theory of Dirichlet forms is a theory of equivalence classes
of L2 functions. As such one would expect that we can only arrive at statements that are true
outside a set of measure zero. The potential theory we have condensed on the last pages,
however, enables us to make finer grained statements, in the sense that they are true outside a
set of zero capacity.5 In order to obtain results that hold for every starting point of the process
X we must therefore assume that every point x ∈ S has positive capacity. This assumption
leads to the resistance forms discussed under Section 5.6 ♢

5.5 Resistances

In this section we introduce the notion of resistance between two sets of positive capacity.
The resistance R(A, B) will be defined as the inverse of the 0-capacity of the set B ⊂ S with
respect to the Dirichlet form of the process XA which is the process X but killed upon hitting
the set A ⊂ S . Recall from (4.142) in Section 4.3.1 that XA is given by

XA
t =

Xt, t < τA

ϑ, t ≥ τA.
(5.241)

As usual assume that (S ,U, ν) is a locally compact uniform measure space and denote by
(Sϑ,Uϑ) its one-point compactification. Furthermore, let X denote a ν-symmetric Feller
process with values in S . We will assume throughout this section that X is associated with a
regular Dirichlet form (E,D) on L2(S , ν).

5.5.1 The Dirichlet form of the killed process

Let A ⊂ B be a nonempty Borel measurable subset of S . in the following we will denote the
complement of A in S by D, i.e.

D := S \ A. (5.242)

We can identify the space L2(D, ν) with the subspace

L2(D, ν) =
{

f ∈ L2(S , ν)
∣∣∣ f = 0 ν-a.e. on A

}
⊂ L2(S , ν). (5.243)

Let X be a ν-symmetric Feller process with values in Sϑ. Recall from Theorem 4.65 that the
killed process XA is again a ν|D symmetric Feller process with values in Dϑ, where D = S \ A.

5see also the remarks in Section 7.3
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Moreover, recall from (4.139) that for nearly Borel measurable A ∈ Bn and α > 0 the α-hitting
distribution Hα

A is given by
Hα

A f (x) = Ex
[
f (XτAe−ατA

]
(5.244)

for f ∈ B ∩ L2(S , ν), that is for a Borel measurable representative f of an element of L2(S , ν).
Let

FA :=
{

f ∈ D
∣∣∣ f̃ = 0 q.e. on A

}
, (5.245)

where f̃ denotes the quasi-continuous version of f . Then FA is a closed linear subset of the
Hilbert space (D,Eα) for every α > 0. We denote its orthogonal complement (with respect to
Eα) byHα

A , i.e.
Hα

A := { g ∈ D | Eα( f , g) = 0, ∀ f ∈ FA } . (5.246)

Finally, denote by παA : D → Hα
A the projection ontoHα

A .

Lemma 5.69. Let α > 0 and f ∈ D be α-excessive with respect to the process X. For every
nearly Borel measurable set A ⊂ Bn ,

παA f = Hα
A f . (5.247)

Furthermore, for every f ∈ D, Hα
A| f̃ | < ∞ q.e. and Hα

A f̃ is a quasi continuous version of παA f .

Proof. See [CF11, Lemma 3.2.1 & Theorem 3.2.2]. □

Recall from (4.148) that the resolvent of the killed process XA is given by

RA
α f (x) = Ex

[∫ τA

0
e−αt f (Xt) dt

]
(5.248)

for f ∈ B+b (D). Naturally, (5.248) can be extended to B+b (S ). From (4.150) recall the Dynkin
formula,

RA
α f (x) = Rα f (x) − Hα

ARα f (x) (5.249)

holds for all f ∈ B+b (S ), x ∈ S and α > 0. This equation can also be extended to hold for
f ∈ B(S ) ∩ L2(S , ν) and q.e. x ∈ S . Clearly, RA

α f (x) = 0 for all x ∈ A since every point of A is
regular for A if A is closed. It can be shown (for a rigorous argument see [CF11, p. 105]) that
RA
α f ∈ FA for all f ∈ B(S ) ∩ L2(S , ν) and α > 0. From Lemma 5.69 we can then deduce that

(5.249) represents the orthogonal decomposition of f into the sum of elements of FA andHα
A

with respect to the scalar product Eα onD. Furthermore, RA
α f is quasi continuous and

Eα

(
RA
α f , g

)
=

∫
D

f (x)g(x) ν(dx) (5.250)

for every g ∈ FA. In the same way, it holds that∫
D

f (x)RA
αg(x) ν(dx) =

∫
D

RA
α f (x)g(x) ν(dx) (5.251)
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for all f , g ∈ FA and α > 0.

We can now identify the Dirichlet form associated with the killed process XA.

Theorem 5.70. Let (E,D) be a regular Dirichlet form on L2(S , ν) and A ⊂ S closed with
ν(A) > 0. Then the bilinear form (ED,DD), where

DD = FA =
{

f ∈ D
∣∣∣ f̃ = 0 q.e. on A

}
(5.252)

and ED( f , f ) = E( f , f ) for all f ∈ DD is a regular Dirichlet form on L2(D, ν). Furthermore,
(ED,DD) is associated with the ν-symmetric Feller process XA.

Proof. We begin with the second claim. Recall from Theorem 4.65 that the killed process
XA is again a ν-symmetric Feller process with resolvent

(
RA
α

)
α>0

given by (5.248) Using

Lemma 5.30, we can extend
(
RA
α

)
α>0

to a family of operators
(
GA
α

)
α>0

on L2(D, ν) which gives
rise to a Dirichlet form (ED,DD) on L2(D, ν) by (5.51). It follows from the discussion above
that for each α > 0,

FA =
{

GA
α f

∣∣∣ f ∈ L2(D, ν)
}

(5.253)

and (5.250) implies that (ED,DD) is in fact the Dirichlet form associated with the killed
process by virtue of (5.46).

The regularity of (ED,DD) is due to [CF11, Theorem 3.3.9 (ii)]. □

Corollary 5.71. Let X be a ν-symmetric Feller process with values in Sϑ and A ∈ B closed
with Cap1(A) > 0. Then the Dirichlet form (ED,DD) is transient.

Proof. By Theorem 5.70, (ED,DD) is associated with the killed process XA. With Proposi-
tion 5.50 we can conclude analogously to Lemma 4.69, that XA is transient and the claim
follows from Proposition 5.41. □

By virtue of Theorem 5.70 and Corollary 5.71 we can transfer the potential theoretic notions
developed in Section 5.4 to the Dirichlet form (EA,DA). Most notably, we can define the
α-capacity CapA

α with respect to (EA,DA) and, in the case where Cap1(A) > 0, the 0-capacity
CapA in the same way as before. By Definition 5.33 the extended Dirichlet space with respect
to (EA,DA) is given by

DA
e =

{
f ∈ L∞(D, ν)

∣∣∣∣∣ ∃ ( fn)n∈N ⊂ D
A Cauchy s.t. lim

n→∞
fn = f in L∞(D, ν)

}
. (5.254)

Note that, analogously to (5.243), we can identify L∞(D, ν) with the subspace

L∞(D, ν) =
{

f ∈ L∞(S , ν)
∣∣∣ f = 0 ν-a.e. on A

}
⊂ L∞(S , ν). (5.255)
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Consequently, we can identifyDA
e with

DA
e = De ∩ L∞(D, ν). (5.256)

Recall from Theorem 5.38, that DA
e becomes a real Hilbert space equipped with the inner

product EA if (EA,DA) is transient.

We conclude this section with some potential theoretic properties of the killed process.

Proposition 5.72. Let X be a ν-symmetric Feller process with values in Sϑ and associated
Dirichlet form (E,D). Moreover let A ⊂ S be closed and denote by (EA,DA) the Dirichlet
form of the killed process XA.

(i) If an increasing sequence (Bn)n∈N ⊂ B(S ) of closed subsets of S is a E-nest, then
(Bk ∩ D) is a EA-nest.

(ii) For all B ⊂ D, CapA
1 (B) ≥ Cap1(B).

(iii) Suppose that (E,D) is transient, then CapA(B) ≥ Cap(B) for all B ⊂ D.

(iv) If f ∈ FA, then f is quasi continuous with respect to EA if and only if f is the restriction
to D of a quasi continuous function (with respect to E) on S .

Proof. See [CF11, Theorem 3.3.8] □

5.5.2 Effective resistance

We now introduce the effective resistance as a further potential theoretic notion. The effective
resistance has long been recognized as an important tool in the analysis of Markov processes
on graphs (see our example in Section 4.5.1). Peter G. Doyle and J. Laurie Snell in [DS84]
trace some of the ideas regarding the electrical network interpretation of graphs back the first
half of the last century, in particular to [Kak45] by Shizuo Kakutani. The first application
of the effective resistance seems to be found in the work [Nas59] by Crispin Nash-Williams.
Despite its potential theoretic nature, the effective resistance is usually not treated in potential
analytic texts on Markov processes e.g. [FOT11; CF11; BG68; RY99].

As usual, let (S ,U, ν) denote a uniform measure space and X a ν-symmetric Feller process.
We denote the Dirichlet form associated to X by (E,D) and assume that it is regular.

Recall the definitions of F A and FA from (5.213) and (5.245), respectively. For A ∈ B closed
with Cap1(A) > 0 and B ⊂ D = S \ A set

F B
A :=

{
f ∈ DA

e

∣∣∣ f̃ ≥ 1 q.e. on B
}
, (5.257)

whereDA
e denotes the extended Dirichlet space (see Definition 5.33 and (5.254)) associated

with the transient Dirichlet form (EA,DA) (see Corollary 5.71).
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Definition 5.73. Let (E,D) be a regular Dirichlet form on L2(S , ν). For two closed subsets
A, B ⊂ S with Cap1(A),Cap1(B) > 0 the (effective) resistance between A and B is defined as

R(A, B) := sup
{
E( f , f )−1

∣∣∣ f ∈ F B
A

}
, (5.258)

where we set sup Ø = 0, as usual. ♢

We make note of the following properties of the effective resistance.

Proposition 5.74. Let (E,D) be a regular Dirichlet form on L2(S , ν). Suppose A, B ⊂ S
are closed and have have positive capacity. Then the effective resistance has the following
properties.

(i) R(A, B) ≥ 0.

(ii) If CapA(B) > 0 then,
R(A, B) = CapA(B)−1 (5.259)

and R(A, B) = ∞ else.

(iii) B ⊂ E ⊂ S implies that R(A, E) ≤ R(A, B) and A ⊂ F ⊂ S implies R(F, B) ≤ R(A, B).

(iv) R(A, B) < ∞.

(v) R(A, B) > 0 if and only if Cap1(A ∩ B) = 0 and Cap1(B) < ∞.

Proof. The first and the second assertion, (i) and (ii), follow directly from the definition.

We show (iii). Without loss of generality assume R(A, E) > 0. For B ⊂ E we have F E
A ⊂ F

B
A

and consequently R(A, E) ≤ R(A, B). The second part follows analogously.

For (iv) suppose that R(A, B) > 0. Then set F B
A is non empty and therefore the 0-capacity

CapA(B) of B with respect to (EA,DA) is well defined. Now, Cap1(B) > 0 implies CapA
1 (B) > 0,

by (ii), and consequently CapA(B) > 0 by Proposition 5.61. The claim then follows from (ii).

To verify (v) note that Cap1(A ∩ B) > 0 immediately implies that F B
A = Ø and therefore

R(A, B) = 0. On the other hand, if Cap1(B) = ∞ that implies that LC = Ø for all C ∈ T open
with B ⊂ C. Since FA = D

A ⊂ D this implies that there exists no f ∈ FA with f ≥ 1 ν-a.e. on
B and therefore F B

A = Ø.6 Now suppose Cap1(A ∩ B) = 0 and Cap1(B) < ∞. First observe
that

R(A, B) = R(A, B \ N), (5.260)

where N ⊂ S with Cap1(N) = 0. This is just a simple consequence of the definition of quasi
continuity and quasi everywhere. We can therefore assume that A ∩ B = Ø or, equivalently,
that B is a proper subset of D = S \ A. This, together with Cap1(B) < ∞, implies that F B

A , Ø
and therefore R(A, B) > 0. □

6This argument can be made more direct by applying, for example, [FOT11, Theorem 2.1.5].
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Remark 5.75. Note that the definition of the effective resistance can easily be extended to
include arbitrary sets B ⊂ S \ A since the 0-capacity is defined for such sets by Definition 5.55.
Since we want the resistance to be symmetric (see Theorem 5.76) the question arises whether
we can also extend the definition to allow arbitrary sets A ⊂ S in the first argument. Some
preliminary results in that direction are collected in Section 7.3.1. ♢

Theorem 5.76. Let (E,D) be a regular Dirichlet form. Suppose A, B ⊂ S are closed and
R(A, B) > 0. Then the following hold.

(i) There exists a unique maximizer gB
A ∈ F

B
A to the variational problem (5.258) and

R(A, B) = E−1(gB
A, g

B
A). (5.261)

(ii) The maximizer gB
A from (i) satisfies 0 ≤ gB

A ≤ 1 ν-a.e. and g̃B
A = 1 q.e. on B (and g̃B

A = 0
q.e. on A, by definition).

(iii) gB
A is the unique element of F B

A with the property

E(gB
A, f ) = 0 (5.262)

for all f ∈ De with f̃ = 0 q.e. on A ∪ B.

(iv) Suppose that (E,D) is recurrent and Cap1(A) < ∞, then the effective resistance is
symmetric,

R(A, B) = R(B, A). (5.263)

Proof. We begin in the beginning and start with (i). By assumption R(A, B) > 0 and therefore
F B

A , Ø. The space F B
A is a closed and convex subset of the real Hilbert space (DA

e ,E
A).

Therefore, there exists a unique minimizer of (5.258) and (5.261) follows from the fact that
EA( f , f ) = E( f , f ) for all f ∈ DA

e .

The second claim (ii) follows immediately from the fact that gB
A is the minimizer for the

0-capacity with respect to the Dirichlet form (EA,DA) and Theorem 5.60 (ii).

Similarly, Corollary 5.65 states that gB
A is the unique element of F B

A with the property

EA(gB
A, f ) = 0 (5.264)

for all f ∈ DA
e with f̃ = 0 q.e. on B. By definition ofDA

e those f ∈ DA
e are exactly the f ∈ De

with f̃ = 0 q.e. on A ∪ B. In the same way, gB
A can be considered an element of De and

EA(gB
A, f ) = E(gB

A, f ), again by definition, which implies (iii).

For the last assertion (iv) recall that by Corollary 5.40 recurrence of implies 1 ∈ De and
E(1, f ) = 0 for all f ∈ D. Let

g := 1 − gB
A. (5.265)
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Then, g ∈ De with g̃ = 1 q.e. on A and g̃ = 0 q.e. on B. Moreover,

E(g, f ) = E(1 − gB
A, f ) = E(1, f ) − E(gB

A, f ) = 0 (5.266)

for all f ∈ De with f̃ = 0 q.e. on A ∪ B. Consequently, by (iii),

g = gA
B (5.267)

and therefore

R(B, A)−1 = E(gA
B, g

A
B) = E(1 − gB

A, 1 − gB
A)

= E(1, 1) − 2E(1, gB
A) + E(gB

A, g
B
A) = E(gB

A, g
B
A) = R(A, B)−1,

(5.268)

completing the proof □

In the case where (E,D) is transient, we generally do not have symmetry of the effective
resistance. We can, however, say the following. Suppose (E,D) is transient and A, B ⊂ S are
closed and 0 < Cap1(A) Cap1(B) < ∞. Let h := gB

A + gA
B where gB

A and gA
B are the maximizers

from Theorem 5.76. Then, h ∈ De and h̃ = 1 q.e. on A ∪ B, by Theorem 5.76 (ii). Fix some
f ∈ De with f̃ = 0 q.e. on A ∪ B and observe that by Theorem 5.76 (iii),

E(h, f ) = E(gB
A, f ) + E(gA

B, f ) = 0. (5.269)

By Theorem 5.60, this implies that h = hA∪B where hA∪B is the minimizer of the variational
problem for Cap(A ∪ B).

In the same manner as in Proposition 5.54 and Proposition 5.67 we can describe the maximizer
of the variational problem for the resistance probabilistically.

Proposition 5.77. Let X be a ν-symmetric Feller process with values in Sϑ associated
with a regular Dirichlet form (E,D) on L2(S , ν). Suppose A, B ⊂ S are closed and 0 <

Cap1(A) Cap1(B) < ∞ and define the function pB
A : S → [0, 1] as

pB
A(x) := Px(τB < τA, τA∪B < ∞). (5.270)

Then pB
A is a quasi continuous version of gB

A.

Proof. The claim follows directly from Proposition 5.67. If (E,D) is recurrent, we have
τA∪B < ∞ almost surely and PA

x (τB < ∞) = Px(τB < τA) is a quasi continuous version of
gB

A. Here PA denotes the probability with respect to the killed process XA. If, on the other
hand, (E,D) is transient we have that PA

x (τB < ∞) = Px(τB < τA, τA∪B < ∞), which is a quasi
continuous version of gB

A, again by Proposition 5.67. □
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Fig. 5.2.: The Sierpiński Gasket with 5 iterations

5.6 Resistance forms

Resistance forms are closely related to Dirichlet forms. Informally speaking, resistance forms
are Dirichlet forms for which the effective resistance, as defined in the previous section,
between points is finite and therefore induce a metric on S . In particular, these are regular
recurrent Dirichlet forms for which singletons have positive capacity. One example of a process
associated with a resistance form is the random walk on a graph described in Section 4.5.1.

The concept of resistance forms is deeply rooted in the analysis of stochastic processes on
fractals like the Sierpiński Gasket or the Sierpiński Carpet, named after Wracław Sierpiński
[Sie16]. In the late 80s Martin T. Barlow, Richard F. Bass and Edwin Perkins described and
constructed the Brownian motion on the Sierpiński Gasket in [BP88; BB89]. This research
was continued for example by Shigeo Kusuoka and Zhou Yin in [KY92], Jun Kigami in
[Kig95] and Volker Metz in [Met97]. The notion of resistance forms seems to first occur
in [Kig01] and has since gained a lot of attention. Notable works include [Kig03; Kig12],
[Kum04] by Takashi Kumagai, [KS05] by Kumagai and Karl-Theodor Sturm and [GT12] by
Alexander Grigor’yan and Andras Telcs. More recently, David Croydon obtained results for
the convergence of Feller processes associated with resistance forms in [Cro18] and further
details were developed by Croydon together with Kumagai and Ben Hambly in [CHK17]. A
good introduction to the topic of resistance forms in the context of random walks on graphs
can be found in [Kum14]. Most of the results and their proofs presented here about resistance
forms can be found in [Kig12]

Definition 5.78 (resistance forms). Let S be a non empty set. A quadratic form (E,F ) on RS

is a called a resistance form if the following conditions are satisfied.

194 Chapter 5 Dirichlet Forms and symmetric Feller Processes



(i) The domain F of E is a linear subspace of RS and contains the constant functions
f (x) = c ∈ R. Furthermore, E( f , f ) = 0 if and only if f : S → R is constant.

(ii) Define an equivalence relation ∼ on F by f ∼ g if and only f − g = c is constant. Then,
the quotient space F / ∼ equipped with the inner product E is a real Hilbert space.

(iii) F separates points in S , i.e. for x, y ∈ S with x , y there exists a f ∈ F such that
f (x) , f (y).

(iv) For all x, y ∈ S it holds that

R(x, y) := sup
{
| f (x) − f (y)|2

E( f , f )

∣∣∣∣∣∣ f ∈ F , E( f , f ) > 0
}
< ∞, (5.271)

where sup Ø = 0, as usual.

(v) If f ∈ F and g := f + ∧ 1, then g ∈ F and E(g, g) ≤ E( f , f ). ♢

In the following we will indicate the underlying set S by saying that (E,F ) is a resistance
form on S .

Note that in the definition of resistance forms we do not assume any a priori structure on the
set S . Instead, the resistance form itself induces a metric on S via (5.271).

Proposition 5.79. Let S , Ø and (E,F ) be a resistance form on S . Then the resistance
R : S → S → R is a metric on S .

Proof. By definition, R(x, y) is non negative and we immediately obtain R(x, x) = 0. Suppose
x , y. Then there exists a f ∈ F with f (x) , f (y) by Definition 5.78 (iii) and by (i), we
have E( f , f ) > 0. Consequently, R(x, y) > 0. It remains to show that R satisfies the triangle
inequality. Let x, y, z ∈ S , then

R(x, z) = sup
{
| f (x) − f (z)|2

E( f , f )

∣∣∣∣∣∣ f ∈ F , E( f , f ) > 0
}

≤ sup
{
| f (x) − f (y)|2 + | f (y) − f (z)|2

E( f , f )

∣∣∣∣∣∣ f ∈ F , E( f , f ) > 0
}

≤ R(x, y) + R(y, z),

(5.272)

therefore completing the proof. □

Fix x, y ∈ S with x , y and choose f ∈ F with f (y) , f (x). Then

f̂ :=
( f − f (x))
f (y) − f (x)

∈ F (5.273)
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with f̂ (x) = 0 and f̂ (y) = 1. Moreover,

| f (x) − f (y)|
E( f , f )

=
( f (y) − f (x))2

∣∣∣ f̂ (x) − f (x) − f̂ (y) + f (x)
∣∣∣

( f (y) − f (x))2E( f̂ − f (x), f̂ − f (x))

=
f̂ (y)

E( f̂ , f̂ )
= E( f̂ , f̂ )−1.

(5.274)

We can therefore rewrite the variational principle for the resistance in (5.271) as follows

R(x, y) =
(
inf { E( f , f ) | f ∈ F , E( f , f ) > 0, f (x) = 0, f (y) = 1 }

)−1. (5.275)

In the following we will tacitly assume that the space S is equipped with the resistance metric
R when making topological statements like the next.

Lemma 5.80. Let (E,F ) be a resistance form on S . Then each f ∈ F is uniformly continuous.

Proof. Let f ∈ F . By definition of the resistance metric we have for all x, y ∈ S ,

( f (x) − f (y))2 ≤ R(x, y)E( f , f ), (5.276)

which yields the claim. □

Next, we want to extend the definition of the resistance to measure the resistance between a
point and a set. In the same spirit as before we set for A ⊂ S

FA := { f ∈ F | f |A = 0 } . (5.277)

Definition 5.81. Let (E,F ) be a resistance form on S and A ⊂ S non empty. For x ∈ S we
define the resistance between x and A as

R(x, A) := sup
{
E( f , f )−1

∣∣∣ f ∈ FA, f (x) ≥ 1
}
, (5.278)

where we set sup Ø = 0, as usual. ♢

We will only focus on closed sets A ⊂ S in the following. The results can, however, be
extended to sufficiently regular sets (cf. [Kig12, Chapter 4]).

Theorem 5.82 (Green function). Let (E,F ) be a resistance form on S and A ⊂ S non empty
and closed. Then (FA,E) is a Hilbert space and there exists a unique map gA : S × S → R
with gx

A = gA(x, · ) ∈ FA for all x ∈ S and

E
(
gx

A, f
)
= f (x) (5.279)

for all f ∈ FA. Furthermore, gA(x, x) ≥ 0 for all x ∈ S and gA(x, x) = 0 if and only if x ∈ B.
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Proof. First we show that FA equipped with E is indeed a Hilbert space. By definition the
only constant function in FA is the zero function and completeness follows from the fact that
(F ,E) is complete and A is closed. Now let y ∈ A and f ∈ FB. Then,

| f (x)|2 = | f (y) − f (x)|2 ≤ R(x, y)E( f , f ) (5.280)

for every x ∈ S . Consequently, the evaluation map f 7→ f (x) is a continuous linear functional
FA → R. By Riesz’ representation theorem [Yos78, Theorem II.6], there exists a unique
gx

A ∈ FA such that
E

(
gx

A, f
)
= f (x) (5.281)

for all f ∈ FA. Consequently, gA(x, x) = E
(
gx

A, g
x
A

)
≥ 0. If x ∈ B, then gA(x, x) = 0 because

gx
A ∈ FA. Conversely, suppose gA(x, x) = 0. Then, E

(
gx

A, g
x
A

)
= 0 which means, gx

A = 0. As a
consequence, we obtain for every f ∈ FA,

f (x) = E
(
gx

A, f
)
= 0. (5.282)

Therefore, x ∈ A and the proof is finished. □

We call the map gA the Green function or Green kernel associated with the resistance form
(E,F ). Equation (5.279) means that gA is a reproducing kernel for the Hilbert space (F ,E).
The space (F ,E) is therefore called a reproducing kernel Hilbert space.

Proposition 5.83. Let (E,F ) be a resistance form on S and A ⊂ S non empty and closed. For
x ∈ S the unique maximizer of (5.278) is given by gx

A/gA(x, x). In particular,

R(x, A) = E
(
gx

A/gA(x, x), gx
A/gA(x, x)

)
= gA(x, x)−1. (5.283)

Proof. The case x ∈ A is trivial. Suppose x ∈ S \ A. Clearly, the set { f ∈ FA | f (x) ≥ 1 } is a
closed convex subset of the Hilbert space (FA,E) which implies the existence and uniqueness
of a maximizer h of the variational problem (5.278). Note that by Definition 5.78 (v) we can
assume without loss of generality that 0 ≤ h ≤ 1 and h(x) = 1. By virtue of Theorem 5.82 we
have that gA(x, x) > 0. Set ψx

A := gx
A/gA(x, x), then

E
(

f − ψx
A, ψ

x
A

)
=
E

(
f − ψx

A, g
x
A

)
gA(x, x)

=
f (x) − 1
gA(x, x)

= 0 (5.284)

for all f ∈ FA with f (x) = 1. Consequently,

E(h, h) = E
(
h − ψx

A, h − ψ
x
A

)
+ E

(
h − ψx

A, ψ
x
A

)
+ E

(
ψx

A, h
)

≤ E
(
ψx

A, h
)
= gA(x, x)−1 = E

(
ψx

A, ψ
x
A

)
.

(5.285)
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Since h was assumed to be the maximizer of (5.278), we have E(h, h) = E
(
ψx

A, ψ
x
A

)
and

therefore h = ψx
A. Finally,

E
(
ψx

A, ψ
x
A

)
=
E

(
gx

A, g
x
A

)
gA(x, x)2 = gA(x, x)−1, (5.286)

thus completing the proof. □

For a subset A of S we write S A := (S \ A) ∪ {a} to describe the set where A is replaced with a
single point a. Moreover, we write

F A := { f ∈ F | f |A = c ∈ R } (5.287)

for the subspace of F consisting only of functions that are constant on A. It is straight forward
to verify the following fact.

Lemma 5.84. Let (E,F ) be a resistance form on S and A ⊂ S non empty and closed. Then
(E,F A) is a resistance form on S A.

Note that we have to make some restrictions on the set A for Lemma 5.84 to hold. If A is open,
for example, there might be no function f ∈ F A that separates a from some x ∈ ∂A. Note
that our assumption that A is closed is sufficient but not necessary for Lemma 5.84 to hold (cf.
[Kig12, Chapter 4]).

If we think of the resistance form (E,F ) representing some kind of electrical network, like in
Section 4.5.1, the resistance form (E,F A) represents a transformation of the original electrical
network where the whole set has been shortened or fused to a single point. The resistance
form (E,F A) is therefore sometimes referred to as the shortened or fused resistance form. We
denote the resistance associated with the fused resistance form (E,F A) by

RA(x, y) = sup
{
| f (x) − f (y)|2

E( f , f )

∣∣∣∣∣∣ f ∈ F A, E( f , f ) > 0
}
. (5.288)

Note that RA(A, x) := RA(a, x) = R(x, A).

Proposition 5.85. Let (E,F ) be a resistance form on S and A ⊂ S non empty and closed.
Then,

gA(x, y) =
R(A, x) + R(A, y) − RA(x, y)

2
, (5.289)

for all x, y ∈ S .

Proof. See [Kig12, Theorem 4.3]. □
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5.6.1 Resistance forms and Dirichlet forms

The close relationship between resistance forms and Dirichlet forms is salient. Condition (v)
of Definition 5.78 is analogous to the Markov property of Dirichlet forms. On the other hand,
(i) can be understood as a recurrence property in light of Theorem 5.39.

Similarly to the regularity of Dirichlet forms we define regularity of resistance forms as
follows.

Definition 5.86. Let (E,F ) be a resistance form on S , where S , Ø. Denote by C0(S ) the
compactly supported functions f : S → R that are continuous with respect to the metric R on
S . We say that (E,F ) is regular if and only if F ∩ C0(S ) is dense in C0(S ) with respect to the
uniform norm ∥ · ∥∞. ♢

Indeed, when we equip the metric space (S ,R) associated with the resistance form (E,F ) with
a Borel regular measure, the resistance form gives rise to a Dirichlet form. We will assume in
the following that ν is a Borel regular measure on (S ,R) with

0 < ν (BR(x, r)) < ∞, (5.290)

for all x ∈ S and r > 0, where BR(x, r) denotes the ball with respect to the resistance metric
with radius r > 0 and center x ∈ S .

Proposition 5.87. Let (E,F ) be a regular resistance form on S . Denote byD the closure of
F ∩ C0(S ) with respect to the inner product E1 on F ∩ L2(S , ν) given by

E1( f , g) = E( f , g) + ⟨ f , g⟩ν . (5.291)

Then E can be uniquely extended toD and (E,D) is a regular Dirichlet form on L2(S , ν).

Proof. The extension of E toD is, of course, given by

E( f , f ) = lim
n→∞
E( fn, fn), (5.292)

where f ∈ D and ( fn)n∈N ⊂ F is such that E1( f − fn, f − fn) → 0 as n → ∞. Clearly, this
extension is unique and in particular E( f , f ) does not depend on the choice of ( fn)n∈N ⊂ F .

By definition, (E,D) is a closed form on L2(S , ν). The Markov property, Definition 5.78 (v),
of (E,F ) is preserved under the closure operation: Fix f ∈ D and set g := f + ∧ 1. Then there
exists a sequence ( fn)n∈N ⊂ F such that limn→∞ fn = f with respect to E1. The sequence
(gn)n∈N ∈ F with gn = f +n ∧ 1 is again a Cauchy sequence and converges to some g ∈ D with
respect to E1. Clearly, g = f + ∧ 1 and

E(g, g) = lim
n→∞
E(gn, gn) ≤ lim

n→∞
E( fn, fn) = E( f , f ). (5.293)
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It remains to show that (E,D) is regular. We have F ⊂ D and consequently, C0(S ) ∩ D is
dense in C0(S ) with respect to the uniform norm. On the other hand, C0(S ) ∩D is dense inD
with respect to E1, by definition of D. Hence, (E,D) satisfies (D4) of Definition 5.9 and is
therefore regular. □

We will from now on assume that we are dealing with regular resistance forms. Then
Proposition 5.87 allows us to apply the potential theory developed in the previous sections for
the resistance form (E,F ). Note that we will not always make the dependence on the Dirichlet
form (E,D) associated with (E,F ) explicit. Instead we will simply speak about the 1-order
capacity associated with the resistance form (E,F ), for example.

If not explicitly stated otherwise, we will always assume that the resistance forms are defined
on S , where S , Ø.

Lemma 5.88 (reproducing kernel Hilbert space). Let (E,F ) be a regular resistance form.
Denote by (E,D) the regular Dirichlet form associated with (E,F ). Then there exists a
reproducing kernel for the Hilbert space (D,E1). That is, for each x ∈ S there exists a unique
φx ∈ D such that

E1( f , φx) = f (x), (5.294)

for all f ∈ D.

Note that in (5.294) we evaluate f (x) for a continuous representative of f ∈ D. By construction,
such a continuous representative is unique and the expression makes sense.

Proof of Lemma 5.88. Fix x ∈ S . It suffices to show that the evaluation map ex : D → R
given by ex f = f (x) is a bounded operator. Then the existence of φx follows from Riesz’
representation theorem (cf. [Yos78, Theorem II.6]). To that end let f ∈ D and assume that
f (x) , 0. Without loss of generality we can assume that f (x) = 1. Now let ( fn)n∈N ⊂ F be a
sequence with fn → f with respect to E1. We can choose fn such that fn(x) = 1. Suppose we
have

E1( fn, fn) = 1/n. (5.295)

By definition of the resistance metric we get

| fn(x) − fn(y)| ≤

√
R(x, y)
√

n
≤

√
R(x, y), (5.296)

for every y ∈ S . Consequently, fn(y) ≥ 1/2 for all y ∈ BR(x, 1/4). Therefore,

∥ fn∥22 =
∫

S
f 2 dν ≥

∫
BR(x,1/4)

f (y)2 ν(dy) ≥
ν(BR(x, 1/4))

4
> 0, (5.297)

by (5.290). This is clearly a contradiction to (5.295) and we have shown that there exists a
constant cx > 0 such that

1 = f (x) = ex f ≤ cx
√
E1( f , f ). (5.298)
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Note that the bound in (5.297) does not depend on f which implies that for all f ∈ D,

f (x) ≤ cx
√
E1( f , f ). (5.299)

Uniqueness of φx is clear. Suppose g had the same property, then

E1(φx − g, f ) = f (x) − f (x) = 0, (5.300)

for all f ∈ D, which implies g = φx. □

One of the fundamental properties of resistance forms is that singleton have positive capacity.
This property makes it possible to associate a symmetric Feller process with a resistance form
that is unique in distribution for every initial condition.

Proposition 5.89. Let (E,F ) be a regular resistance form. Each x ∈ S has positive 1-order
capacity,

Cap1({x}) > 0. (5.301)

Proof. Fix x ∈ S and denote by φx the unique element of D with E1(φx, f ) = f (x) for all
f ∈ D, as in Lemma 5.88. Note that φx(x) = E1(φx, φx) > 0 and therefore, φx/φx(x) is well
defined. Fix any f ∈ D with f (x) ≥ 1 and set a := f (x). Write h1

x = φx/φx(x), then

E1( f , f ) = E1
(

f − ah1
x, f − ah1

x

)
+ E1

(
f − ah1

x, ah1
x

)
+ E

(
f , ah1

x

)
. (5.302)

By the reproducing property of φx, we obtain

E1
(

f − ah1
x, ah1

x

)
=

a
φx(x)

(
f (x) − ah1

x(x)
)
= 0 (5.303)

and similarly,

E1
(

f , ah1
x

)
=

a
φx(x)

f (x) =
a2

φx(x)
E1

(
h1

x, φx
)
= E1

(
ah1

x, ah1
x

)
. (5.304)

Combining those with (5.302) and using the fact that a ≥ 1, we arrive at

E1( f , f ) = E1
(

f − ah1
x, f − ah1

x

)
+ E1

(
ah1

x, ah1
x

)
≤ E1

(
h1

x, h
1
x

)
. (5.305)

Consequently, h1
x minimizes E1( f , f ) over the set { f ∈ D | f (x) ≥ 1 }.

Now let U ∈ U be an open entourage. By definition of the 1-Capacity, we have

Cap1(U[x]) = inf
{
E1( f , f )

∣∣∣ f ∈ D, E( f , f ) > 0, f |U[x] ≥ 1
}

≥ inf { E1( f , f ) | f ∈ D, E( f , f ) > 0, f (x) ≥ 1 }

= E1
(
h1

x, h
1
x

)
= φx(x)−1.

(5.306)
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Taking the limit inferior over a sequence Un ∈ U of open entourages with
⋂

n≥1 Un = ∆, we
obtain Cap1({x}) = φx(x)−1 > 0. □

We have not only shown that singletons have positive capacity, we also have identified the
minimizer for the 1-capacity of a point x ∈ S to be h1

x and given an expression for the
1-capacity in terms of the reproducing kernel φx.

Lemma 5.90. The regular Dirichlet form (E,D) associated with a regular resistance form is
transient.

Proof. Since D is defined as the E1-closure of F ∩ C0(S ), we immediately obtain 1 ∈ De

from 1 ∈ F . The claim then follows by Theorem 5.39. □

5.6.2 Feller processes associated with resistance forms

Suppose (E,F ) is a regular resistance form on S and (E,D) the regular Dirichlet form on
L2(S , ν) associated with (E,F ). It follows from the standard theory of Dirichlet forms, a
part of which that we have not presented in this chapter, that there exists a ν-symmetric
Feller process X with values in Sϑ that is associated with (E,D). See for example [FOT11,
Theorem 7.2.1] or our remarks in Chapter 7. Moreover, as singletons have positive capacity
by Proposition 5.89, it follows from [CF11, Theorem 3.1.12] that X is unique in distribution
for every initial condition µ ∈ M1(S ).

We can therefore give probabilistic interpretations of the Green function and the resistance.
We will restrict to the case where (S ,R) is compact. Recall the definition of the Green operator
GA : Bb(S )→ Bb(S ),

GA f (x) := Ex

[∫ τA

0
f (Xs) ds

]
, x ∈ S , f ∈ Bb(S ) (5.307)

from (4.178).

The next result shows that the Green function is, in fact, the integral kernel for the Green
operator.

Proposition 5.91. Let (E,F ) be a regular resistance form on S and X the ν-symmetric Feller
process associated with (E,D). Suppose that the metric space (S ,R) is compact. Then,

GA f (x) =
∫

S
gA(x, y) f (y) ν(dy), (5.308)

for every f ∈ Bb(S ) and x ∈ S .

Proof. See [Kig12, Theorem 10.10] and [Cro18, Lemma 3.1]. □

202 Chapter 5 Dirichlet Forms and symmetric Feller Processes



Note that by Proposition 5.77, we can identify

gA(x, y) = Px(τy < τA)gA(y, y). (5.309)

Moreover, from Theorem 4.72, we know that the process X is uniquely determined by the
family of Green operators GU[x] for x ∈ S and U ∈ U open. By Proposition 5.85, on the other
hand, the Green kernel gA(x, y) can be expressed in terms of the resistance metric. In some
sense the Green kernel gx(y, z) measures how much the triangle inequality for the triple (x, y, z)
deviates from the identity.

Although random walks on graphs are the prime example of processes associated with resis-
tance forms, the class of such examples is larger. We have already mentioned random walks
on fractals like the Sierpiński gasket which can be constructed as limit of discrete, self similar
graphs. The question that naturally arises is whether the random walks on such a sequence
of graphs also converge to a limit. Further examples are continuous limits of discrete trees
like the continuum random tree constructed by David Aldous in a series of papers [Ald91a;
Ald91b; Ald93]. In [AEW13], Siva Athreya, Michael Eckhoff and AnitaWinter constructed
the Brownian motion on so-called R-trees and in [ALW17] Athreya and Winter together with
Wolfgang Löhr showed that the random walks on discrete trees converge to the Brownian
motion on the R-tree when the trees converge to an R-tree. The following result is due to
David Croydon [Cro18].

Theorem 5.92. For each n ∈ N ∪ {∞} let S (n) ⊂ S be non empty and ρ(n) ∈ S (n). Moreover,
let

(
E(n),F (n)

)
be a regular resistance form on S (n) and ν(n) be a Borel regular measure on(

S (n),R(n)
)

with full support. Denote by X(n) the ν-symmetric Feller process associated with
(E(n),D(n)). Suppose (S (n),R(n)) is compact and(

S (n),R(n), ρ(n), ν(n)
)
−→

(
S (∞),R(∞), ρ(∞), ν(∞)

)
(5.310)

with respect to the pointed Gromov-Hausdorff-weak topology. Then there exists a common
metric space (S , d) and for each n ∈ N ∪ {∞}, (S (n),R(n)) can be embedded isometrically in
(S , d) such that

Pρ(n)

(
X(n) ∈ ·

)
→ Pρ(∞)

(
X(∞) ∈ ·

)
(5.311)

weakly as processes with values in (S , d).

Proof. This is a simplified version of [Cro18, Theorem 1.2]. □

Note that despite many important examples of symmetric Feller processes are associated with
resistance forms, such examples are basically low dimensional in the sense that the processes
hit points almost surely. This fails to hold, for example, for Brownian motion already in
dimension d = 2 (see Example 5.11).
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5.7 Brownian Motion on Riemannian manifolds

Another class of examples of symmetric Feller processes are the analogue of Brownian
motions on Riemannian manifolds. These processes are in some sense complementary to those
associated with resistance forms. We will keep this section almost painfully short because
we only want to highlight the connection between the Riemannian metric and the Brownian
motion itself. We rely for the details on Riemannian manifolds on the book [Jos11] by Jürgen
Jost. A (very) short construction of the Brownian motion on Riemannian manifolds can
be found in [CF11, Section 2.2.5] and [FOT11, Example 5.7.2]. More results on Brownian
motions on Riemannian manifolds under certain curvature conditions as well as a convergence
result can be found in the paper [Suz19a] by Kohei Suzuki or [GL17] by Maria Gordina and
Thomas Laetsch.

5.7.1 Riemannian Manifolds

We recall the basic concepts of Riemannian manifolds. For further details see [Jos11]. A
different and less analytical approach to Riemannian manifolds can be found in [BBI01,
Chapter 5.1].

Definition 5.93 (Differentiable manifold). A connected and paracompact Hausdorff space M
is called a manifold of dimension d ∈ N if every point p ∈ M has a neighborhood U that is
homeomorphic to an open subset O of Rd. The homeomorphism

x : U → O (5.312)

is called a (coordinate) chart. A family of charts { {xα,Uα} | α ∈ I } is called an atlas if
{ Uα | α ∈ I } is an open cover of M. A manifold M is called differentiable if all chart transitions

xβ ◦ x−1
α : xα(Uα ∩ Uβ)→ xβ(Uα ∩ Uβ) (5.313)

are infinitely often continuously differentiable, i.e. in C∞, whenever Uα ∩ Uβ , Ø. ♢

Let x = (x1, . . . , xd) ∈ Rd and O ⊂ Rd open. The tangent space of O at the point z ∈ O,

TzO (5.314)

is the space {z} × E, where E is the d-dimensional vector space spanned by the partial
derivatives

∂

∂x1

∣∣∣∣∣
z
, . . . ,

∂

∂xd

∣∣∣∣∣
z

(5.315)
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at z. Suppose O ⊂ Rd and O′ ⊂ Rc are open and f : O → O′ is differentiable. For z ∈ O we
define the derivative d f (z) : TzO → T f (z)O

′ by

v =
d∑

i=1

∂

∂xi 7→

d∑
i=1

c∑
j=1

vi ∂ f j

∂xi (z)
∂

∂ f j . (5.316)

Definition 5.94 (Tangent space). Let M be a differentiable manifold and p ∈ M. Define an
equivalence relation on the set{

(x, v)
∣∣∣ x : U → O is a chart with p ∈ U and v ∈ Tx(p)O

}
(5.317)

by setting
(x, v) ∼ (y,w) ⇐⇒ w = d(y ◦ x−1)v. (5.318)

We denote the quotient space by TpM and say that TpM is the tangent space to M at p. ♢

The tangent bundle is the disjoint union of the tangent spaces TpM, p ∈ M and can itself be
again equipped with a differentiable structure.

Definition 5.95 (Riemannian manifold). A Riemannian metric on a differentiable manifold
M is given by a scalar product on each tangent space TpM which depends smoothly on p. A
Riemannian manifold is a differentiable manifold equipped with a Riemannian metric. ♢

The Riemannian metric can be represented as a positive definite symmetric matrix. Let
x = (x1, . . . , xd) be local coordinates, then a Riemannian metric can be written as

g =
(
gi j(x)

)
i, j=1,...,d

. (5.319)

Then, for v,w ∈ TpM we have

⟨v,w⟩p :=
∑
i, j

gi j(x(p))viw j. (5.320)

The representation (gi j) is also called a metric tensor

The volume element V(dp) of (M, g) is given by

V(dp) =
√

g dp =
√

det(gi j) dp, (5.321)

in local coordinates. Note that V(dp) constitutes a Radon measure on (M,B(M)).

The Riemannian metric also gives rise to a metric on M. Let γ : [a, b]→ M be a smooth curve,
i.e. γ ∈ C∞. We write Γ for set of all such curves. The length of γ is defined as

L(γ) :=
∫ b

a

∣∣∣∣∣∣∣∣∣∣ dγ
dt

(t)
∣∣∣∣∣∣∣∣∣∣ dt, (5.322)
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where ∥ · ∥ denotes the norm with respect to the Riemannian metric. For two points p, q ∈ M
we define

d(p, q) := inf { L(γ) | γ ∈ Γ, γ(a) = p, γ(b) = q } (5.323)

and observe that (M, d,V(dx)) is a metric measure space.

5.7.2 Brownian motion

There are different ways to define the Brownian motion on a Riemannian manifold. One way
is through its Dirichlet form.

Let M be a Riemannian manifold with dimension d ∈ N and metric tensor (gi j) in some local
coordinates x1, . . . , xd. We want to construct a Dirichlet form on L2(M, dV).

For a smooth function f : M → R we define the gradient of f as the vector field given by

∇ f := grad f :=
d∑

i, j=1

gi j ∂ f
∂xi

∂

∂x j , (5.324)

where gi j is the i j-th entry of the inverse (gi j)−1
i j=1,...,d of the metric tensor. For compactly

supported smooth functions f , g ∈ C∞0 (M) we define a bilinear form E by

E( f , g) :=
1
2

∫
M
⟨∇ f ,∇g⟩p V(dp). (5.325)

We can further define the divergence of a vector field Z =
∑d

i=1 Zi ∂
∂xi by

div Z :=
1
√

g

d∑
i=1

∂

∂x j

(√
gZ j

)
=

1
√

g

d∑
i, j=1

∂

∂x j

(
√

ggi j
〈
Z,

∂

∂xi

〉)
. (5.326)

Moreover the Laplace-Beltrami operator is defined by

∆ f := − div grad f = −
1
√

g

d∑
i, j=1

∂

∂x j

(
√

ggi j ∂ f
∂xi

)
. (5.327)

For more details see the [Jos11, Chapter 3].

Then the quadratic form E can be written for f , g ∈ C∞0 (M) as

E( f , g) = −
1
2
⟨∆ f , g⟩V = −

1
2
⟨ f ,∆g⟩V , (5.328)

where ⟨ · , · ⟩V denotes the scalar product on L2(M, dV). It can be shown that the quadratic
form (E,C∞0 ) is closable and that the closed form (E,D) is indeed a regular Dirichlet form.
The dV-symmetric Feller process X with values in M and Dirichlet form (E,D) is then called
the Brownian motion on M. Compare this also to our Example 5.11.
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Remark 5.96 (Convergence of Brownian motions on Riemannian manifolds). In [Suz19a]
and [Suz19b], Kohei Suzuki developed conditions under which the convergence of a sequence
of Riemannian manifolds implies the (pathwise) convergence of the Brownian motions living
on these manifolds. These conditions are basically Gromov-Hausdorff weak convergence of
the manifolds as metric measure spaces, similar to the last example, and a lower bound on
the so-called Ricci curvature to ensure that the limit is again a Riemannian manifold with a
Brownian motion. ♢

It is important to point out that points on Riemannian manifolds in general do not have positive
capacity. Therefore, the Brownian motion on manifolds is generally not uniquely determined
by its Dirichlet form for every starting point (see our remarks in Section 7.3). Instead, the
results in [Suz19a] require that the Brownian motion is started in a initial distribution that is
absolutely continuous with respect to the volume measure dV .

Remark 5.97. As noted in the beginning of this section, this result complements the result for
resistance forms in different ways. On the one hand, it covers examples where points have
capacity zero like the Brownian motion on Rd in dimensions d ≥ 2 or the Ornstein-Uhlenbeck
process (cf. [Suz19a, Remark 3.1]). On the other hand, the starting point here is a geometric
structure, the Riemannian structure on the manifold. We use this structure, in particular
the metric tensor, to construct the processes via their Dirichlet forms. Whereas in the case
of resistance forms, the starting point is a bilinear form, which then induces the geometric
structure on the state space and at the same time defines the processes. Another difference
is that the speed measure and the geometric of the Riemannian manifold are related to each
other through the Riemannian metric. In contrast to the resistance forms where the geometric
structure, given by the resistance metric, and the speed measure are separated. ♢
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Convergence of symmetric
Feller processes

6
„Invention, it must be humbly admitted, does not

consist in creating out of void, but out of chaos.

— Mary Wollstonecraft Shelley
Frankenstein

In this chapter we formulate our main convergence result. We introduce four conditions
and show in three steps which role these conditions play for the convergence of a sequence
of symmetric doubly Feller processes. We first show that the sequence of semigroups has
subsequential limits which are again doubly Feller. Then we show that the processes along
such converging subsequence converge already weakly in the path space. Finally, we apply
Theorem 4.72 to conclude that all subsequential limits must coincide.

In Section 6.3 we will discuss each of the conditions individually.

6.1 Statement of the theorem

For the remainder of this chapter let (S ,U) be a locally compact uniform Polish space. For
each n ∈ N∞ let ν(n) denote a boundedly finite measure on (S ,B) with support S (n). Assume
further that for each n ∈ N∞ a ν(n)-symmetric doubly Feller process is given by X(n). We
write

P(n) := PX(n)
(6.1)

for the distribution of X(n). Generally, we will indicate all entities related to X(n) by a
superscript (n).

Recall from Definition 2.57 that the sequence
(
ν(n)

)
n∈N

converges Hausdorff weakly if and only
if the measures ν(n) converge weakly and their supports converge in the Hausdorff topology.

Consider the following conditions.

(C1) ν(n) converges Hausdorff weakly to ν(∞).

(C2) The family
{

Q(n)
∣∣∣ n ∈ N

}
of maps given by

Q(n) : S (n) × [0,∞)→M1(S ), (x, t) 7→ Q(n)
x,t ( · ) := Px

(
X(n)

t ∈ ·
)

(6.2)
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is uniformly equicontinuous.

(C3) For every sequence (xn)n∈N ⊂ S with xn ∈ S (n) and limn→∞ xn = x∞ ∈ S (∞), the
sequence

{
P(n)

xn

∣∣∣∣ n ∈ N
}

is tight as probability measures on DS ([0,∞)).

(C4) The Green’s functionals G(n)
A converge to G(∞)

A in the following sense. For all bounded
measurable functions f ∈ Bb(S ) and all A ∈ B(S ) with τA < ∞, P(∞)

x∞ -a.s.,

lim
n→∞

G(n)
A f (xn) = G(∞)

A f (x∞), (6.3)

for all sequences (xn)n∈N ⊂ S with xn ∈ S (n) and limn→∞ xn = x∞ ∈ S (∞).

We will exclusively consider the case where the space (S ,U) is compact which implies that
the closed subsets S (n) are compact for each n ∈ N∞. Moreover, we will assume that the
processes X(n) are conservative for each n ∈ N∞. We are confident that an extension to general
state spaces S (n) is possible by approximation similar to [ALW17; Cro18]. Such an extension,
however, remains subject to further research.

Theorem 6.1. Assume that (S ,U) is compact and that X(n) is conservative for each n ∈ N∞.
Under conditions (C1), (C2), (C3) and (C4) X(n) converges in distribution to X(∞) for all
sequences of initial distributions

(
µ(n)

)
n∈N
⊂ M1(S ) with µ(n) ∈ M1(S (n)) and µ(n) ⇒ µ(∞) ∈

M1(S (∞)). In other words,
P(n)
µ(n) ⇒ P

(∞)
µ(∞) (6.4)

weakly as probability measures on DS ([0,∞)) as n→ ∞.

In order to proof Theorem 6.1 we will first show that under (C1) and (C2), the sequence{
X(n)

∣∣∣ n ∈ N
}

has subsequential limits in the f.d.d. sense which are again doubly Feller. Next,

we will show that the sequence
{

X(n)
∣∣∣ n ∈ N

}
has subsequential limits in pathspace if we

additionally impose condition (C3). The final step is then to show that these subsequential
limits coincide. We follow roughly the path that was laid out by [ALW17] and refined by
[Cro18].

6.2 Existence of subsequential limits

For each n ∈ N∞ denote the Feller semigroups associated with X(n) by P(n) =
{

P(n)
t

∣∣∣∣ t ≥ 0
}

and observe that for each f ∈ C(S ) and x ∈ S (n),

P(n)
t f (x) =

∫
S (n)

f dQ(n)(x, t), (6.5)

where Q(n) is given by (6.2).
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We begin by showing that the uniform continuity of the family
{

Q(n)
∣∣∣ n ∈ N

}
(condition

(C2)) together with the Hausdorff convergence of the spaces S (n) (condition (C1)) implies that
every subsequential limit of the semigroups P(n) =

{
P(n)

t

∣∣∣∣ t ≥ 0
}

is again a conservative Feller
semigroup. Furthermore, we proof that such subsequential limits exist. The proof is based on
the proofs of [ALW17, Proposition 5.2] and [Cro18, Lemma 5.4].

Theorem 6.2 (Convergence of semigroups). Let (S ,U) be compact and assume that conditions
(C1) and (C2) hold. Then for every subsequence of

(
P(n)

)
n∈N

there exists a further subsequence(
P(nk)

)
k∈N

and a conservative doubly Feller semigroup P = (Pt)t≥0 with the property that for
every ε > 0, f ∈ C(S ) there exists a U ∈ U open and a δ > 0 such that for every k ∈ N large
enough,{ (

Ps f (x), P(nk)
t f (y)

) ∣∣∣∣ (x, y) ∈ U ∩ S (∞) × S (nk), s, t > 0 : |t − s| < δ
}
⊂ Bε, (6.6)

where Bε :=
{

(α, β) ∈ R2
∣∣∣ |α − β| < ε }

.

Proof. Recall the definition of the Prokhorov uniformity from Section 3.5.1 and denote
the Prokhorov uniformities on M1(S ) and M1(S (n)) by DM and D(n)

M
, respectively. By

assumption, (S ,U) is a Polish space and by virtue of Proposition 3.33 so are (M1(S ),DM) and(
M1(S n),D(n)

M

)
, n ∈ N. Consequently, the Prokhorov uniformities are completely metrizable

by Proposition 2.20 and Lemma 2.39.

Fix T > 0 and write
Q(n)

T : S (n) × [0,T ]→M1(S ) (6.7)

for the restriction of Q(n) to S (n) × [0,∞). Now take any subsequence (nk)k∈N. For ease of
notation we simply use the index k to indicate elements from this sequence. Clearly, the family{

Q(k)
T

∣∣∣∣ k ∈ N
}

is uniformly equicontinuous by assumption (C2). Furthermore, we have by
assumption (C1) and Lemma 2.55 that for each x ∈ S∞ there exists a sequence (xk)k∈N with
xk ∈ S k and limk→∞ xk = x. We can therefore apply the Arzelà-Ascoli theorem as formulated
in Lemma 2.47 to obtain a continuous map QT : S (∞) × [0,T ] → M1(S ) with the property
that for all V ∈ DM open there exists a U ∈ U open and a δ > 0 such that for all k ∈ N large
enough,{ (

Q(k)
T (x, s),QT (y, t)

) ∣∣∣∣ (x, y) ∈ U ∩ S (k) × S (∞), s, t ∈ [0,T ] : |s − t| < δ
}
⊂ V. (6.8)

By letting T → ∞ we obtain a continuous map Q : S (∞) × [0,∞) → M1(S ) with the same
property (6.8) for all s, t ∈ [0,∞) with |s−t| < δ. Note that because the spaces S (n), n ∈ N∪{∞}
are all closed we can trivially extend the measures Q(x, t) and Q(n)(xn, t), t ≥ 0, x ∈ S (∞),
xn ∈ S (n) to probability measures on the whole of S . We will do so implicitly in the following.

Let P(n) :=
(
P(n)

t

)
t≥0

be defined as in (6.5) and analogously define P = (Pt)t≥0 as the family of
operators on Bb(S ) given by

Pt f (x) :=
∫

S
f dQ(x, t). (6.9)
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Now take f ∈ C(S (∞)). Since Q is a continuous map, we have that Q(xn, t) =⇒
n→∞

Q(x, t)

weakly in M1(S ) for every sequence (xn)n∈N ⊂ S (∞) with limn→∞ xn = x which readily
implies Pt f (xn) −→

n→∞
Pt f (x). Hence, Pt f ∈ C(S (∞)). By the same argument we also obtain

Pt f ∈ Cb(S (∞)) for all f ∈ Bb(S ). Furthermore, Pt is a positive contraction operator on
C(S (∞)), since Q(x, t) is a probability measure for each t ≥ 0 and x ∈ S (∞). In order to show
that P is a Feller semigroup it therefore remains to show that P is a strongly continuous
semigroup, i.e.

PsPt f = Ps+t f ∀s, t > 0 (6.10)

and
lim
t→0

Pt f (x) = f (x) (6.11)

for all f ∈ C(S (∞)) and x ∈ S (∞).

We first show that (Pt)t≥0 indeed satisfies (6.6). To that end fix a metric d on S that generates
U. We denote the Prokhorov metric (cf. Definition B.1) onM1(S ) induced by d by dPr and
the Kantorovich-Rubinshtein metric (cf. Definition B.2) by dKR and recall that both metrics
are uniformly equivalent (cf. [Bog07, Theorem 8.10.43]). Hence, both metrics induce the
Prokhorov uniformityDM onM1(S ). Furthermore, denote by

Lip1(S ) := Lipd
1(S ) := { f ∈ C(S ) ∥ f (x) − f (y)| ≤ d(x, y) } (6.12)

the family of real valued Lipschitz continuous functions with Lipschitz constant at most 1
(with respect to the metric d). We first show (6.6) for f ∈ Lip1(S ). To that end observe that by
definition of dKR we have for (x, y) ∈ S (∞) × S (n),∣∣∣∣Ps f (x) − P(k)

t f (y)
∣∣∣∣ = ∣∣∣∣∣∫

S
f dQ(x, s) −

∫
S

f dQ(k)(y, t)
∣∣∣∣∣

≤ dKR
(
Q(x, s),Q(k)(y, t)

)
,

(6.13)

which implies the claim by (6.8). As any continuous function on a compact metric space can
be approximated uniformly by Lip1-functions (cf. [Mic00; Geo67]), we obtain (6.6) by an
approximation argument.

By the same reasoning it suffices to show that both (6.10) and (6.11) hold for f ∈ Lip1(S (∞)).
We first show the semigroup property (6.10). Fix f ∈ Lip1(S (∞)) and note that f can be
extended to a function f̃ ∈ Lip1(S ). In fact, any continuous function f ∈ C(S (∞)) can be
extended to a continuous function f̃ ∈ C(S ). Take x ∈ S (∞) and denote by (xk)k∈N ⊂ S a
sequence with xk ∈ S (k) and limk→∞ xk = x. Such a sequence exists by assumption (C1). By
(6.6), we have for t > 0,

Pt f (x) = lim
k→∞

P(k)
t f̃ (xk). (6.14)

In particular we have for s, t > 0,

PsPt f (x) = lim
k→∞

P(k)
s (̃Pt f )(xk), (6.15)
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where (̃Pt f ) ∈ C(S ) again denotes the continuous extension of Pt f ∈ C(S (∞)). Applying the
semigroup property of P(k) for s, t > 0 on the right hand side we obtain

Ps+t f (x) = lim
k→∞

P(k)
s+t f̃ (xk) = lim

k→∞
P(k)

s P(k)
t f̃ (xk). (6.16)

With (6.15) in mind it suffices to show that P(k)
s (̃Pt f )(xk) and P(k)

s P(k)
t f̃ (xk) have the same limit

as k → ∞. From assumption (C1) we know that the supports S (n) converge in the Hausdorff
topology to S (∞). By Lemma 2.56, there exist sets Tn and surjective maps φn : Tn → S n,
ψn : Tn → S (∞) for all n ∈ N such that for all U ∈ U open,

{ (φn(y), ψn(y)) | y ∈ Tn } ⊂ U, (6.17)

eventually. Hence,∣∣∣∣P(k)
s P(k)

t f̃ (xk) − P(k)
s (̃Pt f )(xk)

∣∣∣∣ ≤ ∣∣∣∣P(k)
t f̃ (xk) − (̃Pt f )(xk)

∣∣∣∣
≤ sup

y∈Tk

∣∣∣∣P(k)
t f̃ (φk(y)) − (̃Pt f ) (φk(y))

∣∣∣∣
≤ sup

y∈Tk

∣∣∣∣P(k)
t f̃ (φk(y)) − Pt f (ψk(y))

∣∣∣∣
+ sup

y∈Tk

∣∣∣Pt f (ψk(y)) − (̃Pt f ) (φk(y))
∣∣∣

(6.18)

where we applied the contraction property of P(n) in the first inequality and the triangle
inequality in the second. Now it is easy to see that the right hand side tends to 0 as k → ∞, as
the first summand goes to 0 by construction of φk, ψk and their property (6.17) together with
(6.6). Whereas the second summand goes to 0 by continuity of Pt f . We have thus shown that
P is indeed a semigroup and it remains to show the strong continuity of P (6.11). Using (6.14)
we obtain for f ∈ C(S (∞)) and x ∈ S (∞),

P0 f (x) = lim
k→∞

P(k)
0 f̃ (xk) = lim

k→∞
f̃ (xk) = f (x), (6.19)

where (xk)k∈N ⊂ S is chosen as before. Finally, we deduce (6.11) from limt→0 Pt f (x) = P0 f (x)
which is a direct consequence of the continuity of Q. □

We have shown that there exists a subsequence
{

X(nk)
∣∣∣ nk ∈ N

}
of

{
X(n)

∣∣∣ n ∈ N
}

so that the

semigroups
{

P(nk)
∣∣∣ nk ∈ N

}
converge in the sense of (6.6) to a limiting semigroup (Pt)t≥0,

which is again Feller. By Remark 4.46 there exists a unique Feller process X associated to
(Pt)t≥0. We need to examine if and in which sense the sequence of processes

{
X(nk)

∣∣∣ nk ∈ N
}

converges to X. But first we verify that the limit is again symmetric with respect to the limit
ν(∞) of the sequence

{
ν(n)

∣∣∣ n ∈ N
}
.

Lemma 6.3. Under the assumptions of Theorem 6.2 suppose that the P = (Pt)t≥0 is the
limit of a subsequence

{
P(nk)

∣∣∣ nk ∈ N
}

of
{

P(n)
∣∣∣ n ∈ N

}
in the sense of (6.6). Then P is

ν(∞)-symmetric Feller semigroup.
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Proof. It only remains to show that P is ν(∞)-symmetric by Theorem 6.2. For readability we
again write just k instead of nk for the index of the subsequence. We first show that for every
f ∈ C(S ),

lim
k→∞

∫
S

P(k)
t f dν(k) =

∫
S

Pt f dν(∞). (6.20)

Note that by (6.6) there exists a continuous extensions P̃t f of Pt f to C(S ) such that,

M(k)
t, f := sup

x∈S (k)

∣∣∣∣P(k)
t f (x) − P̃t f (x)

∣∣∣∣→ 0, (6.21)

as k → ∞. Consequently,∫
S

P(k)
t f dν(k) ≤

∫
S

P̃t f dν(k) + M(k)
t, f ν

(k)(S ). (6.22)

Because S is compact we have ν(k)(S ) < ∞ for all k ∈ N. Moreover, as limn→∞ ν
(k)(S ) =

ν(∞)(S ) < ∞, the sequence ν(k)(S ) is uniformly bounded. Therefore we obtain (6.20) from
(6.22) by weak convergence of ν(k) and (6.21).

As a immediate consequence, we obtain the conclusion∫
S

f Ptg dν(∞) = lim
k→∞

∫
S

f P(k)
t g dν(k) = lim

k→∞

∫
S

P(k)
t f g dν(k) =

∫
S

Pt f g dν(∞), (6.23)

for all f , g ∈ C(S ). □

Theorem 6.4 (Subsequential limits in f.d.d.). Under the assumptions of Theorem 6.2 suppose
that the P = (Pt)t≥0 is the limit of a subsequence

{
P(nk)

∣∣∣ nk ∈ N
}

of
{

P(n)
∣∣∣ n ∈ N

}
in the

sense of (6.6) and that X is the ν(∞)-symmetric Feller process associated with the semigroup
(Pt)t≥0. Then, for every sequence of starting points

(
xnk

)
k∈N ⊂ S with xnk ∈ S (nk) and

limk→∞ xnk = x∞ ∈ S (∞), X(nk) converges to X in finite dimensional distributions. In other
words, for every N ∈ N, f1, . . . , fN ∈ C(S ) and 0 ≤ t1 ≤ · · · ≤ tN ,

lim
k→∞
E(nk)

xnk

 N∏
j=1

f j
(
X(nk)

t j

) = Ex∞

 N∏
j=1

f j
(
Xt j

) , (6.24)

where E(n) denotes the expectation with respect to P(n) and E the expectation with respect to
PX .

Proof. Again we use just the index k instead of nk for the subsequence. We proceed by
induction. In the case N = 1, we have

lim
k→∞

P(k)
t1 f (xk) = Pt1 f (x∞), (6.25)

214 Chapter 6 Convergence of symmetric Feller processes



which is true by Theorem 6.2. Suppose now that (6.24) holds for N ∈ N. Applying the Markov
property at tN yields

E(nk)
xk

N+1∏
j=1

f j
(
X(k)

t j

) = Exk

P(k)
tN+1−tN fN

(
X(k)

tN

) N∏
j=1

f j
(
X(k)

t j

) . (6.26)

As before, PtN+1−tn fN can be extended to a continuous function ˜PtN+1−tn fN on S and it holds
that

lim
k→∞

sup
x∈S (k)

∣∣∣∣P(k)
tN+1−tN fN(x) − ˜PtN+1−tn fN(x)

∣∣∣∣ = 0. (6.27)

Combining this with (6.26), we arrive at

lim
k→∞
E(nk)

xk

N+1∏
j=1

f j
(
X(k)

t j

) = lim
k→∞
Exk

 ˜PtN+1−tN fN
(
X(k)

tN

) N∏
j=1

f j
(
X(k)

t j

) . (6.28)

Note that the factor ˜PtN+1−tN fN
(
X(k)

tN

)
fN

(
X(k)

tN

)
in the expectation on the right is a function of

X(k)
tN and we can apply the inductive hypothesis to obtain

lim
k→∞
E(nk)

xk

N+1∏
j=1

f j
(
X(k)

t j

) = Ex∞

PtN+1−tN fN
(
XtN

) N∏
j=1

f j
(
Xt j

) = Ex∞

N+1∏
j=1

f j
(
Xt j

) , (6.29)

as claimed. □

If we now add the tightness (C3) to our set of assumptions, we immediately obtain from
Prokhorov’s theorem Proposition 3.37 that for every subsequence of

{
P(n)

∣∣∣ n ∈ N
}

and every
sequence (xn)n∈N ⊂ S with xn ∈ S (nn) and limn→∞ xn = x∞ ∈ S (∞), there exists a further
subsequence

{
P(nk)

∣∣∣ nk ∈ N
}

and a probability measure Px∞ on DS ([0,∞)) such that P(nk)
xk ⇒

Px∞ weakly as k → ∞. In conjunction with the previous result Theorem 6.4 we directly obtain
the following result.

Theorem 6.5 (Subsequential limits in DS ([0,∞))). Let (S ,U) be compact and assume that
conditions (C1), (C2) and (C3) hold. Then for every subsequence of

{
X(n)

∣∣∣ n ∈ N
}

there

exists a further subsequence
{

X(nk)
∣∣∣ nk ∈ N

}
and a ν(∞)-symmetric Feller process X such that

P(nk)
µ(k) ⇒ P

X
µ(∞) , (6.30)

weakly as measures on DS ([0,∞)) for every sequence
(
µ(k)

)
k∈N

of initial distributions with
µ(k) ∈ M1(S (k)) and µ(k) ⇒ µ(∞) ∈ M1(S (∞)) weakly as k → ∞.
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6.3 Identification of subsequential limits

So far we have established that under conditions (C1), (C2) and (C3) the sequence
(
X(n)

)
n∈N

possesses subsequential limits not only in a f.d.d. sense but also in a pathwise sense. In
order to establish convergence of the sequence

{
X(n)

∣∣∣ n ∈ N
}

we must therefore show that all
subsequential limits coincide. Here comes our assumption (C4) into play.

Proof of Theorem 6.1. Suppose
{

X(nk)
∣∣∣ nk ∈ N

}
and

{
X(nl)

∣∣∣ nl ∈ N
}

are two subsequences
along which the convergence in Theorem 6.5 holds. For ease of notation we write again k
instead of nk and l instead of nl for the indices. Denote the respective limits by X and X̂. By
Theorem 6.2 we have that both X and X̂ are ν(∞)-symmetric Feller processes on S∞. Moreover,
from (C4) we can conclude that for each x ∈ S (∞) and A ∈ B(S ) with τA < ∞, P(∞)

x -a.s. and
every f ∈ Bb(S ),

GA f (x) = ĜA f (x), (6.31)

where GA and ĜA denote the Green operators associated with X and X̂, respectively. We can
therefore apply Theorem 4.72 to obtain X d

= X̂, concluding the proof. □

By the same argument we obtain convergence in f.d.d. if we don’t assume the tightness (C3)
of the sequence

{
X(n)

∣∣∣ n ∈ N
}
.

Corollary 6.6. Assume that (S ,U) is compact and that X(n) is conservative for each n ∈ N∞.
Under conditions (C1), (C2) and (C4) X(n) converges in f.d.d. to X(∞) for all sequences of
initial distributions

(
µ(n)

)
n∈N
⊂ M1(S ) with µ(n) ∈ M1(S (n)) and µ(n) ⇒ µ(∞) ∈ M1(S (∞)).

6.4 Discussing the assumptions

Recall our discussion of the two examples at the end of the last chapter in Remark 5.97. In
both examples the behavior of process X is linked to the geometric structure of the state
space. For the Brownian motion on a Riemannian manifold M through the Riemannian metric
tensor g which induces both the metric d on the manifold and the Dirichlet form (E,D) on
L2(M, dV) that defines the Brownian motion. A different point of view is that the generator of
the Brownian motion on M is given by the Laplace-Beltrami operator ∆, which is defined in
terms of the metric tensor g and therefore related to the geometry of M.

A similar connection exists for the resistance form. Here the resistance form (E,F ) itself
is the link between the resistance metric R and the Dirichlet form (E,D) on L2(S , ν) and
consequently the process X.

This connection between the geometry of the state space and the process is sometimes (cf.
[Sto63; AEW13; ALW17]) expressed by saying that the process is on its “natural scale”.
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6.4.1 Convergence of Green operators (C4)

For the resistance forms, the relation between the process and the metric of the state place is
explicit in the following way. By Proposition 5.85 together with (5.309), we have that

Px(τy < τA) =
gA(x, y)
gA(y, y)

=
R(A, x) + R(A, y) − R(x, y)

2R(A, y)
. (6.32)

Consequently, the probabilities to hit one point before the other can be expressed in terms
of their mutual distances and their distance to the starting point. Similarly, the Green kernel
gA(x, y) and consequently the Green operator GA f (x) =

∫
S gA(x, y) f (y) ν(dy) is determined by

the resistance metric. As a consequence, it is plausible that for resistance forms the Hausdorff-
weak convergence (C1) already implies the convergence of the Green operators, (C4). Indeed,
this is the case as shown in [Cro18, Lemma 5.5]. Note that the Green kernel can also be
expressed in terms of the probabilities to hit one point before another, by (6.32).

Under our assumptions the processes are not on their “natural scale” as we do not have a
scale (i.e. a metric) on the state spaces, to begin with. We have, however, defined a notion of
resistance between sets in Section 5.5. We have shown in Proposition 5.77 that the minimizer
of the variational problem for R(A, B) is given by Px(τB < τA).

This leads us to believe that the following conjecture holds true.

Conjecture 6.7. Suppose that (S ,U) is compact and that (C1) holds. Then (C4) is equivalent
to the following condition.

(C4∗) For all A, B ∈ B(S ) closed with τA < ∞ P
(∞)
x -a.s. for all x ∈ S (∞),

lim
n→∞
P(n)

xn (τA < τB) = P(∞)
x∞ (τA < τB) (6.33)

for every sequence (xn)n∈N ⊂ S with xn ∈ S (n) and limn→∞ xn = x∞.

Using the relation between the probabilities Px(τA < τB) and the resistance R(A, B), we can
rephrase Conjecture 6.7 as follows.

Conjecture 6.8. Suppose that (S ,U) is compact and that (C1) holds. Then (C4) is equivalent
to the following condition.

(C4∗∗) For all A, B ∈ B(S ) closed with Cap1(A) > 0,

lim
n→∞
R(n)(A, B) = R(∞)(A, B), (6.34)

where R(n) denotes the effective resistance associated with the process X(n), n ∈ N∞,
as defined in Definition 5.73.
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6.4.2 Tightness (C3)

By Theorem 4.75, condition (C3) holds whenever the probability that X(n) moves far from
its starting point in a short period of time is uniformly bounded in the starting point and
n ∈ N. Hausdorff weak convergence of the state spaces is one important property to ensure
the tightness. Because it ensures that there are no areas of the state space, where the measure
ν(∞) vanishes in the limit while having positive measure for all n ∈ N. This would mean
that the limiting process moves increasingly faster through these areas, causing (4.203) of
Theorem 4.75 to fail.

For both special cases, for resistance forms and the Brownian motion on manifolds the
tightness follows from Theorem 4.75 by the Gromov-Hausdorff weak convergence of the state
spaces together with an additional condition. In [Cro18, Assumption 1.1 b)], this additional
condition for resistance forms is a uniform recurrence condition given by

lim
r→∞

lim sup
n→∞

R(n)
(
xn,∁B(n)(xn, r)

)
= ∞. (6.35)

In [CHK17, Assumption 1.2], the authors instead assumed the stronger1 uniform volume
doubling condition, which claims that there exists a non decreasing function v : (0,∞)→ (0,∞)
and constants c1, c2, c3 > 0 such that v(2r) ≤ c1v(r) for every r > 0 and

c2v(r) ≤ ν(n)
(
B(n)(x, rn

)
≤ c3v(r), ∀x ∈ S (n), rn ∈ [R0(n),R∞(n) + 1], (6.36)

where
R0(n) := inf

x,y∈S (n), x,y

{
R(n)(x, y)

}
and R∞(n) := sup

x,y∈S (n)

{
R(n)(x, y)

}
. (6.37)

For Brownian motions on Riemannian manifolds, Suzuki imposes the following condition in
[Suz19a, Lemma 5.6 (ii)] on the sequence of initial distribution. First, the sequence µ(n) of
initial distributions must be absolutely continuous with respect to the volume measure dVn.
Moreover the Radon-Nikodym derivatives φn =

dµ(n)

dVn
are uniformly bounded in the following

sense. For every r > 0 there exists a Mr > 0 such that

sup
n∈N

sup
{
|φn(z)|

∣∣∣ z ∈ B(n)(xn, r)
}
< Mr < ∞. (6.38)

It is far from obvious what additional assumption would be needed in our situation to apply
Theorem 4.75.

6.4.3 Uniform equicontinuity of the semigroups (C2)

In [ALW17, Lemma 5.3] and in [Cro18, Lemma 5.2], the authors use a coupling argument to
show the uniform equicontinuity of the semigroups (C2). Here the connection between the

1See Croydon’s discussion of these assumptions in [Cro18, Remark 1.3 b)].

218 Chapter 6 Convergence of symmetric Feller processes



behavior of the process and the geometric structure of the state space given by the resistance
metric plays a fundamental role.

6.4.4 Hausdorff-weak convergence of the state spaces (C1)

The results in [ALW17], [Cro18] and [Suz19a] all allow the processes to live on different state
spaces. A part of the results, or more precisely, part of the assumption, is that the state spaces
S (n) can be isometrically embedded into a common ambient space.

We also allow the processes to have different state spaces we do, however, assume that these
state spaces are already subsets of an ambient space. This is due to the lack of a metric
structure on the state spaces S (n). Without a metric structure we cannot define isometric
embeddings and hence no Gromov-Hausdorff convergence.

A possible extension of our result would rely on the definition of convergence of uniform
measure spaces.

6.4 Discussing the assumptions 219





Remarks and Outlook 7
„It is possible to commit no mistakes and still loose.

That is not a weakness; that is life.

— Jean Luc Picard
Star Trek: The Next Generation

In this chapter we collect various remarks and present an outlook of further research questions
that could not be answered in this thesis.

7.1 Chapter 3: The path space

In the discussion following Lemma 3.20 we already mentioned that it would make the following
results a bit stronger if it could be shown that completeness of the uniform space (S ,U) implies
completeness of the path space DS ([0,∞)) without the assumption of metrizability. Indeed we
conjecture that the following is true.

Conjecture 7.1. Assume (S ,U) is a uniform Hausdorff space. If (S ,U) is complete then so is
DS ([0,∞)).

7.2 Chapter 4: Symmetric Feller processes

In Example 4.15 we have shown that fixed jump times break the homogeneity property of a
Markov process. The following conjecture seems like it should be well known. Nevertheless I
have not been able to find a reference and will leave the proof as an open problem.1

Conjecture 7.2. Let X be a homogeneous Markov process with state space (S ,U). Then for
all s ≥ 0 and x ∈ S

Px(Xs , Xs−) = 0. (7.1)

In Proposition 4.34 we have shown that this conjecture is indeed true if we assume that the
semigroup of X has the Feller property.

1The author has posted this conjecture online: https://math.stackexchange.com/q/4443534/1054746
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7.2.1 The killed process

In Section 4.3.1 we show that the Feller property, the strong Feller property and the ν-symmetry
of the original process X carry over to the killed process XA. It remains an open question
whether also the strong ν-symmetry is preserved under killing.

7.2.2 Uniqueness by hitting times

In order to establish the uniqueness of a Feller process by its hitting times through the Green
operator in Section 4.3.3, we have to make some quite restrictive assumptions. On the one
hand we assume that the state space is compact and on the other hand we need the strong
Feller property in the proof of Theorem 4.72. The compactness is needed to make sure that
the 0-resolvent of a transient process and the Green operator are bounded operators. This
assumption can certainly be relaxed as can be seen in our discussion of transient Dirichlet
forms in Section 5.3.2. For more on this topic see [CF11, Section 2.1].

We have the following conjecture which might be too strong.

Conjecture 7.3. Let (S ,U) be a locally compact uniform Hausdorff space and ν a Radon
measure on (S ,B) with full support. Suppose X is a transient ν-symmetric Feller process with
values in Sϑ. Then the 0-resolvent given by

R f (x) :=
∫ ∞

0
Pt f (x) dt (7.2)

for f ∈ C∞(S ) and x ∈ S is a bounded operator mapping C∞(S ) to C∞(S ).

It is worth pointing out that that the proof of Theorem 4.72 is the only point where we need
the strong Feller property. If we could show that the same conclusion holds under the normal
Feller property, we could significantly strengthen our results in Chapter 6.

7.3 Chapter 5: Dirichlet Forms and symmetric Feller
Processes

We have tried extract the most important parts from the very rich analytic theory of Dirichlet
forms. This leads necessarily to some gaps. For example we completely ignore the question if
there is a ν-symmetric Feller associated with every Dirichlet form. The answer to this question
is basically “yes” but a precise statement needs more potential theory than we can develop in
this short summary. A partial answer is given by the following theorem.
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Theorem 7.4 ([CF11, Theorem 1.5.1]). Let (E,D) be a regular Dirichlet form on L2(S , ν),
where S is a locally compact separable metric space and ν is a Radon measure on S with full
support. Then there exists a Hunt process X with values in S and a ν-symmetric transition
function such that (E,D) is the Dirichlet form associated with X.

For a more general result see [CF11, Theorem 1.5.2]. Even uniqueness in distribution of the
associated processes can be shown [CF11, Theorems 3.1.12 & 3.1.13]. However, uniqueness
only holds for quasi all starting points, in other words, outside a set of zero capacity.

7.3.1 Resistance

In Remark 5.75 we have hinted at a possible extension of the definition of the effective
resistance to arbitrary subsets of S .

One possible extension is given by the following.

Definition 7.5. Let (E,D) be a regular Dirichlet form on L2(S , ν). For two subsets A, B ⊂ S
with Cap1(A),Cap1(B) > 0 and A closed the (effective) resistance between A and B is defined
as

R(A, B) := sup
{
E( f , f )−1

∣∣∣ f ∈ F B
A

}
, (7.3)

where we set sup Ø = 0. For arbitrary sets A, B ⊂ S we define

R(A, B) := sup { R(K, B) | K ⊃ A and K ⊂ S closed } (7.4)

whenever Cap1(A) > 0 and R(A, B) = 0 otherwise. ♢

This definition would lead to the following consequence.

Proposition 7.6. Suppose A, B ⊂ S with positive capacity and R(A, B) > 0, then

R(A, B) = R(A, B). (7.5)

Proof. First observe that for F ⊂ S with A ⊂ F, it holds hat R(F, B) ≤ R(A, B). To see that
take any closed set K ⊂ S with F ⊂ K, then K also contains A. Hence,

R(F, B) := sup { R(K, B) | K ⊃ F and K ⊂ S closed }

≤ sup { R(K, B) | K ⊃ A and K ⊂ S closed } = R(A, B).
(7.6)

Now the claim follows simply from the fact that A ⊂ K for all closed K ⊂ S with A ⊂ K. □

Furthermore, we conjecture that the same variational problem, (7.3) defines the effective
resistance for arbitrary sets A, B.
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Conjecture 7.7. Let (E,D) be a regular Dirichlet form. Suppose A, B ⊂ S are such that
R(A, B) > 0, then the resistance between A and B is given by the following variational
problem

R(A, B) := sup
{
E( f , f )−1

∣∣∣ f ∈ F B
A

}
. (7.7)

Sketch of proof. If A is closed (7.7) is just the definition of the resistance. Suppose A is not
closed. Then R(A, B) = R(A, B) by Proposition 7.6. Now let f ∈ FA, i.e. f ∈ D is such that
its quasi continuous version f̃ is 0 q.e. on A. By quasi continuity, f̃ = 0 q.e. on A. Hence,
FA ⊂ FA. The reverse inclusion is trivial and consequently FA = FA. Recall the definition of
the boundary of A, ∂A := A \ A◦ from Definition A.2. Since for every f ∈ FA, f̃ = 0 q.e. on
∂A, we have that f = 0 ν-a.e. on ∂A. Consequently, every limit in L∞(S \ A, ν) of an E-Cauchy
sequence in FA is 0 ν-a.e. on A \ A. That means, we can identifyDA

e = D
A
e and consequently

F B
A = F

B
A

which implies the statement. (□)

7.4 Chapter 6: Convergence of symmetric Feller
processes

In the proof of Theorem 6.2 we stray from our path to completely avoid metrics. However,
observe that the proof does not depend on the choice of the metric. We strongly believe that
the statement is provable without using metrics. That would require an in depth analysis of
the convergence of (probability) measures on uniform spaces which would go beyond the
scope of this thesis. It could be subject of further research in order to establish a full theory of
stochastic processes on uniform spaces.
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Topology A
We formally introduce the basic topological concepts used throughout this thesis.

Throughout this chapter let S , Ø be a non empty set and denote by P(S ) = {A ⊂ S } the
powerset of S .

A.1 Fundamentals of topology

Definition A.1. Let S be a non-empty set. A family T of subsets of S is called a topology (on
S ), if it satisfies

(i) S ,Ø ∈ T ,

(ii) any union of elements in T belongs again to T ,

(iii) finite intersections of elements in T belong again to T .

The pair (S ,T ) is called a topological space. When there can be no confusion about the
topology T we sometimes refer to S as a topological space.

The elements of T are called open sets. A set A ⊂ S is called closed if its complement
Ac := S \ A is open. ♢

Observe that openness and closedness are not complementary: A set can be both open and
closed – or neither.

Definition A.2 (Interior and closure of sets). Let A ⊂ S be a set. The interior of A is defined
as

A◦ :=
⋃

U⊂A : U open

U. (A.1)

Conversely, we define the closure of A as

A :=
⋂

K⊃A : K closed

K. (A.2)

We call the set theoretic difference ∂A := A \ A◦ the boundary of the set A. ♢
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It is easy to check that the interior of a set A is open and the closure is closed. Furthermore, a
set A ⊂ S is open if and only if A = A◦ and it is closed if and only if A = A.

A neighborhood of x ∈ S is a set V such that there exists an open set Ux ∈ T with Ux ⊂ V
and x ∈ Ux. We sometimes write Ux := { U ⊂ S | ∃U ∈ T : U ⊂ V and x ∈ U } for the
neighborhood system at x.

The family of all neighborhood systems { Ux | x ∈ S } is clearly determined by the topology
on S . But the converse is also true.

Proposition A.3. Let S be a topological space and Ux the neighborhood system of x ∈ S .
ThenUx satisfies

(i) x ∈ U for all U ∈ Ux,

(ii) U ∩ V ∈ Ux for all U,V ∈ Ux,

(iii) for all U ∈ Ux there exists a V ∈ Ux, such that U ∈ Uy for each y ∈ V,

(iv) if U ∈ Ux and U ⊂ V, then V ∈ Ux.

Furthermore

(v) U ⊂ S is open if and only if U contains a neighborhood of all its elements.

Conversely, if for each x ∈ S there is a familyUx satisfying (i)–(iv), then the family of open
sets in the sense of (v) is a topology and the neighborhood system of x in this topology isUx.

We shall not provide a proof of this statement. Instead we focus on a similar statement for
bases of neighborhood systems.

Definition A.4. Let S be a topological space. A base of the neighborhood system at x ∈ S or a
neighborhood base at x is a family Nx ⊂ Ux such that

∀U ∈ Ux ∃V ∈ Nx : V ⊂ U. (A.3)

The elements of the neighborhood base Nx are called basic neighborhoods of x. ♢

We categorize topological spaces by the size of their bases, i.e. whether they have a countable
base or at least a countable neighborhood base at every point x ∈ S .

Definition A.5. A topological space (S ,T ) is said to be first countable, if T possesses a
countable neighborhood baseNx at every x ∈ S . We call a topological space second countable
if the topology T has a countable base. ♢
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Proposition A.6. Let S be a topological space and Nx a neighborhood base at x ∈ S . Then
Nx satisfies

(i) x ∈ U for all U ∈ Nx,

(ii) for any U1,U2 ∈ Nx there exists V ∈ Nx such that V ⊂ U1 ∩ U2,

(iii) for any U ∈ Nx there exists a V ∈ Nx such that for all y ∈ V there exists a W ∈ Ny such
that W ⊂ U.

Furthermore,

(iv) U ⊂ S is open if and only if U contains a basic neighborhood of each of its elements.

Conversely, if we assign to each x ∈ S a family Nx satisfying (I)–(III) and use (IV) to define
the open subsets of S , then the result is a topology in which a neighborhood base for each
x ∈ S is given by Nx.

Proof. Assertion (i) is evident from the definition of neighborhoods and the fact thatNx ⊂ Ux.
To show (ii) let U1,U2 ∈ Nx and observe that U := U◦1 ∩ U◦2 is open and contains x, hence
U ∈ Ux. By definition Definition A.4, there exists a V ∈ Nx such that V ⊂ U ⊂ U1 ∩ U2.
Now, let U ∈ Nx then U◦ ∈ Ux and by definition of Nx there exists a V ∈ Nx with V ⊂ U◦.
Clearly, U ∈ Uy for all y ∈ V and by definition of Ny there exists a W ∈ Ny with W ⊂ U,
establishing (iii). For (iv) assume that U ⊂ S is open, then U is a neighborhood for each of its
elements and a fortiori contains a basic neighborhood of all its elements. Now assume that
U ⊂ S contains a basic neighborhood Vx of all its elements x ∈ U. Then x ∈ V◦x ⊂ U and by
taking the union over all x ∈ U we get U ⊂

⋃
x∈U Vx ⊂ U and hence U is the union of open

sets and thus open.

For the converse assertion assume that we are given a family Nx at each x ∈ S satisfying
(I)–(III). Let

T := { U ⊂ S | ∀x ∈ U ∃V ∈ Nx : V ⊂ U } . (A.4)

We first show that T is a topology. Clearly S ,Ø ∈ T , the former because it contains all subsets
and the latter because it has no elements. LetU ⊂ T be any family of open sets. For each
x ∈ A :=

⋃
U∈U U there exists a U ∈ U and a V ∈ Nx such that V ⊂ U. Thus V ∈ A and A

contains a basic neighborhood of each of its elements and thus A ∈ T . Assume n ∈ N and
U1, . . . ,Un ∈ T and let x ∈ U :=

⋂n
k=1 Uk. Then there is a basic neighborhood Uk

x ∈ Nx

with Uk
x ⊂ Uk for all k = 1, . . . , n and by (II) and induction there exists V ∈ Nx such that

V ⊂
⋂n

k=1 Uk
x ⊂ U and hence U ∈ T because x ∈ U was arbitrary.

Now, for each x ∈ S letUx := { U ⊂ S | ∃V ∈ Nx : V ⊂ U }. It remains to be shown thatUx

defines a neighborhood system at each x ∈ S . Let x ∈ S and U ∈ Ux, by (I) x ∈ U and it
suffices to show that x ∈ U◦. The assertion follows immediately from (III) if we can show that
U◦ =

{
y ∈ U

∣∣∣ U ∈ Uy
}
=: ι(U). The inclusion U◦ ⊆ ι(U) is clear by (IV), the fact that U◦ is

open and the definition ofUx. For the converse inclusion it is enough to show that ι(U) ∈ T .
Let y ∈ ι(U), then there exists V ∈ Ny such that V ⊂ U. By (III) there exists a B ⊂ Ny such
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that for all z ∈ B there exists a W ∈ Nz such that W ⊂ V ⊂ U. And by construction, all these
W are subsets of U and hence U ∈ Uz for all z ∈ B which means B ⊂ ι(U). Since y was
arbitrary, ι(U) contains a basic neighborhood of all its elements and is thus open. □

Remark A.7. In the proof of Proposition A.6 we have actually shown more. If at each x ∈ S
we have families Nx and N ′x satisfying (i)–(iii) then the topologies induced by { Nx | x ∈ S }
and

{
N ′x

∣∣∣ x ∈ S
}

coincide. ♢

There are various ways to define a topology on a set S . In Section 2.6 we use the closure
operator to define the topology induced by a proximity.

Definition A.8 (Closure operator). Let S , Ø be a set. A map Γ : P(S ) → P(S ) is called
closure operator if it satisfies the following conditions for all A, B ∈ P(S )

(i) A ⊂ Γ(A),

(ii) Γ(Γ(A)) = Γ(A),

(iii) Γ(A ∪ B) = Γ(A) ∪ Γ(B),

(iv) Γ(Ø) = Ø.

If Γ is a closure operator, we write A := Γ(A). ♢

Clearly, the operation A defined by (A.2) defines a closure operator.

Proposition A.9. Let Γ be a closure operator on P(S ). The family

T :=
{

U ∈ P(S )
∣∣∣∣ Γ (∁U

)
= ∁U

}
(A.5)

is a topology on S . In other words, the closed sets are those sets A ∈ P(S ) for which Γ(A) = A
holds.

Proof. By (i) of Definition A.8, S is closed and hence, Ø ∈ T . On the other hand, by (iv), Ø
is closed and hence S is open. Now let U1, . . . ,Un ∈ T . Using (iii) and induction we get

Γ

∁ n⋂
j=1

U j

 = Γ
 n⋃

j=1

∁U j

 = n⋃
j=1

Γ
(
∁U j

)
=

n⋃
j=1

∁U j = ∁
n⋂

j=1

U j (A.6)

and hence
⋂n

j=1 U j ∈ T .
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It remains to show that if I is any index set and { Ui | i ∈ I } ⊂ T we have that
⋃

i∈I Ui ∈ T .
First observe that if A, B ⊂ S with A ⊂ B, we have Γ(B) = Γ(A) ∪ Γ(B \ A) by (iii) and hence
Γ(A) ⊂ Γ(B). As

⋂
i∈I ∁Ui ⊂ ∁U j for every j ∈ I, we conclude

Γ

⋂
i∈I

∁Ui

 ⊂⋂
i∈I

Γ
(
∁Ui

)
=

⋂
i∈I

∁Ui. (A.7)

Using (i) we obtain the reverse inclusion and hence

Γ

⋂
i∈I

∁Ui

 =⋂
i∈I

∁Ui, (A.8)

which implies, by definition of T ,
⋃

i∈I Ui ∈ T . □

Recall the following fundamental concepts of topology.

Definition A.10. Let (S ,T ) be a topological space.

(i) A point x ∈ S is called a cluster point (or point of accumulation) of a set A ⊂ S if every
basic neighborhood V ∈ Nx of x contains some point y ∈ A \ {x}.

(ii) A set K ⊂ S is called compact if and only if for every open covering of K, i.e. a family
U ⊂ T with K ⊂

⋃
U∈U U, there exists a finite open subcover of K, i.e. there exists a

familyV ⊂ U such that K ⊂
⋃

V∈V V and |V| < ∞. ♢

Lemma A.11. A set A ⊂ S is closed if and only if all cluster points of A are contained in A.
Furthermore A = A ∪ { x ∈ S | x is a cluster point of A }.

Proof. Assume that A ⊂ S is closed. Then ∁A is open and for all x ∈ ∁A there exists a basic
neighborhood V ∈ Nx such that V ∩A = Ø. Hence all cluster points of A are already contained
in A. Assume the converse is true, i.e. all cluster points of A are contained in A. Then, for
each y ∈ ∁A there exists a basic neighborhood V ∈ Ny such that V ⊂ ∁A and hence ∁A is
open and A is closed. For the last part of the claim observe that A ⊂ A and A is closed and
consequently contains all its cluster points and a fortiori all cluster points of A. To show the
converse inclusion “⊇” observe that any closed subset K ⊂ S that contains A has to contain all
cluster points of A and so does the intersection of all such sets which is, by definition, A. □

Definition A.12 (relatively compact subsets). Let (S ,T ) be a topological Hausdorff space. A
subset A ⊂ S is relatively compact if its closure A is compact in (S ,T ). ♢

Sometimes, especially in probability theory, it is useful to work with topological spaces that
are “almost countable” in the following sense.
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Definition A.13 (Separability). Let (S ,T ) be a topological space.

(i) A subset A ⊂ S is said to be dense in S , if A = S .

(ii) The topological space (S ,T ) is called separable, if there exists a countable dense subset
D ⊂ S . ♢

Definition A.14 (Complete regularity). A topological space (S ,T ) is called completely regular
if for every closed set A ⊂ S and every x ∈ S \ A there exists a real valued continuous function
f : S → R with f |A = 0 and f (x) = 1. ♢

Definition A.15 (Hausdorff property). A topological space (S ,T ) has the Hausdorff property
if for every x, y ∈ S with x , y there exist neighborhoods Ux ∈ Ux and Uy ∈ Uy of x and y
respectively such that Ux ∩ Uy = Ø. ♢

If (S ,T ) has the Hausdorff property we refer to (S ,T ) as a Hausdorff space.

Hausdorff spaces have the following nice property.

Lemma A.16. Let (S ,T ) be a Hausdorff topological space. Then every compact subset of S
is closed.

Proof. Assume K ⊂ S is compact and let x ∈ S \ K be arbitrary. By the Hausdorff property,
for each y ∈ K there exist open neighborhoods Ux(y) of x and Vy of y such that Ux(y)∩Vy = Ø.
Clearly,

{
Vy

∣∣∣ y ∈ K
}

is an open covering of K, hence, by compactness, there exists a finite

subset F ⊂ K such that
{

Vy
∣∣∣ y ∈ F

}
is already an open covering of K. Then

Ux :=
⋂
y∈F

Ux(y) (A.9)

is an open neighborhood of x, disjoint from K. Since x ∈ S \ K was arbitrary this implies
that S \ K can be written as the union of open sets and is therefore open, which proves the
claim. □

We introduce some concepts that are closely related to compactness.

Definition A.17. Let (S ,T ) be a topological Hausdorff space.

(i) (S ,T ) is said to be locally compact if each point has a compact neighborhood.

(ii) (S ,T ) is called σ-compact if S is the union of countably many compact sets.

(iii) (S ,T ) is said to be Lindelöf if every open cover of S has a countable subcover. ♢
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Note that some authors refer to the property in Definition A.17 as weakly locally compact
and require the existence of a local base of compact neighborhoods for each x ∈ S for local
compactness. However, the two definitions are equivalent for topological Hausdorff spaces by
[Wil70, Theorem 18.2].

Clearly, if (S ,T ) itself is compact, then S is a compact neighborhood of each x ∈ S and (S ,T )
is locally compact.

Lemma A.18. Let (S ,T ) be a locally compact Hausdorff space. Suppose A ⊂ S is open or
closed, then A is locally compact with respect to the subspace topology.

Proof. First let A ⊂ S be closed. Fix x ∈ A and take a compact neighborhood Kx ⊂ S of x in
S . Clearly, Kx ∩ A is closed in S and therefore compact. Since every open subset of A is of
the form U ∩ A for some U ∈ T , every open cover of Kx ∩ A in A gives rise to an open cover
of Kx in S which possesses an open subcover { Uk ∈ T | k = 1, . . . , n } of Kx, by compactness.
Then, { Uk ∩ A | k = 1, . . . , n } is a finite open subcover of Kx ∩ A.

If A is open, on the other hand, the case is simple. Let x ∈ A, then there exists an open
neighborhood Ux ⊂ A of x which contains a compact neighborhood Kx (in S ). But then Kx is
also a compact neighborhood of x in A. □

Lemma A.19. Every second countable topological space is Lindelöf.

Proof. Let (S ,T ) be a second countable topological space. Suppose that { Aα ∈ T | α ∈ I } is
an open cover of S . Since T possesses a countable base { Un ∈ T | n ∈ N }, we can deduce
that for each α ∈ I there exists a n ∈ N such that

Un ⊂ Aα. (A.10)

Now choose a subset J ⊂ I such that for each n ∈ N, Un ⊂ Aβ for at most one β ∈ J. Then, J is
at most countable and

{
Aβ

∣∣∣ β ∈ J } is a countable open cover of S . □

We can relate the different notions in Definition A.17 to each other in the following way.

Lemma A.20. Let (S ,T ) be a locally compact Lindelöf space. Then (S ,T ) is σ-compact.

Proof. By local compactness there exists for each x ∈ S a compact neighborhood Kx of x.
By definition, there exists an open neighborhood Ux such that Ux ⊂ Kx for each x ∈ S . Now,
{ Ux | x ∈ S } is an open cover of S and by the Lindelöf property there exists a countable
collection { xn ∈ S | n ∈ N } such that

S ⊂
⋃
n∈N

Uxn ⊂
⋃
n∈N

Kxn . (A.11)

Hence, (S ,T ) is σ-compact. □
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Another notion related to compactness is that of a paracompact space.

Definition A.21 (Paracompactness). Let (S ,T ) be a topological Hausdorff space. A cover
{ Aα ∈ T | α ∈ I } is said to be locally finite if for every x ∈ S there exists an open neighborhood
Ux such that Ux∩Aα , Ø for only finitely many α ∈ I. The space (S ,T ) is called paracompact
if every open cover possesses a locally finite refinement. In other words, for every open cover
{ Aα ∈ T | α ∈ I } of S there exists a locally finite open cover

{
Bβ ∈ T

∣∣∣ β ∈ J } such that for
all β ∈ J there exists an α ∈ I such that Bβ ⊂ Aα. ♢

A.1.1 Compactification

Compactification is the process of embedding a topological space (S ,T ) into a compact
topological space (S̃ , T̃ ).

In the main text we use the one-point compactification or Alexandrov compactification of
locally compact topological spaces.

Definition A.22 (One-point compactification). Let (S ,T ) be a locally compact Hausdorff
topological space. The one-point compactification is the topological space (S ∪ {ϑ},Tϑ),
where ϑ < S is a single point and Tϑ := T ∪ T ′, where

T ′ :=
{

(S \C) ∪ {ϑ}
∣∣∣ C ⊂ S compact

}
. (A.12)

♢

We also use the notation Sϑ := S ∪ {ϑ} in the main text. Sometimes, the point ϑ in Defini-
tion A.22 is referred to as “point at infinity” and denoted by∞. In the main text we use the
uncommon1 ϑ instead of ∞, because the point in the one-point compactification represents
rather a cemetery state2 of the state space of a Markov process than a point at infinity of some
metric space.

We present the following useful properties of the one-point compactification.

Proposition A.23. Let (S ,T ) be a locally compact Hausdorff space and (Sϑ,Tϑ) its one-point
compactification. Then the following assertions hold.

(i) (Sϑ,Tϑ) is compact and Hausdorff.

(ii) The embedding map ι : S ↪→ Sϑ is continuous and open.

1but not unprecedented (see e.g. [CW05])
2hence ϑ from greek: θανατoς, “Death”
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(iii) When (S ,T ) is not already compact, then the image ι(S ) of the embedding is dense in
Sϑ.

(iv) When (S ,T ) is separable, then so is (Sϑ,Tϑ).

Proof. Assume thatU ⊂ Tϑ is an open covering of Sϑ. Then there exists a V ∈ T ′ ∩U, by
assumption. I.e. V = (S \C)∪ {ϑ} for some C ⊂ S compact. ThenU\{V} is an open covering
of C and by compactness of C, there is a finite open subcoverU′ ⊂ U of C and furthermore
(U′ ∩ {V}) ⊂ U is a finite open cover of Sϑ. To show the Hausdorff property it suffices to find
disjoint open neighborhoods of ϑ and x for an arbitrary x ∈ S . By assumption, there exists a
compact neighborhood Cx of x that contains an open neighborhood Ux of x. Then Cc ∪ {ϑ} is
an open neighborhood of ϑ and disjoint from Ux, which proves (i).

It is obvious that the embedding is an open map, i.e. it maps open sets to open sets. To show
continuity, we need to show that the preimage of every set of the form (S \ C) ∪ {∞} with
C ⊂ S compact is open. Hence, (ii) follows from Lemma A.16 and the fact that (S ,T ) is
Hausdorff by assumption.

Finally, (iii) follows because every compact set C ⊂ S has non-empty complement in S and
thus, ϑ is a cluster point of S in Sϑ.

Assertion (iv) is trivial because we can amend the countable dense subset of (S ,T ) by ϑ to get
a countable dense subset of (Sϑ,Tϑ). □

A.1.2 sequences

Given a topology T on a set S it is possible to speak of converging sequences. A sequence is a
subset of the ambient space S with countably many elements, thus the elements of a sequence
can be indexed by the natural numbers and we write

(xn)n∈N := { xn ∈ S | n ∈ N } ⊂ S . (A.13)

Of course, we can index sets by arbitrary index sets I and we write (xi)i∈I in that case. As a
shorthand, we sometimes use the notation (xi)i, if the index set is clear.

Being a subset of a topological space (S ,T ) we have a notion of cluster points for sequences
from Definition A.10 (i). Recall the following definition of limit points of sequences.

Definition A.24. Let (S ,T ) be a topological space and (xn)n∈N ⊂ S a sequence in S . Then
(xn)n converges to a limit point x ∈ S if and only if for every open neighborhood Ux of x there
exists an n0 ∈ N such that xn ∈ Ux for all n ≥ n0. In that case we write limn→∞ xn = x or
xn → x as n→ ∞. ♢

A.1 Fundamentals of topology 233



Observe that limit points are not well defined in general. Assume for example that S is
equipped with the lump topology T = {S ,Ø}. Then S is the only open neighborhood for every
x ∈ S and by definition, every x ∈ S is a limit point for every sequence in S . Clearly, the lump
topology is not Hausdorff and it turns out that the Hausdorff property ensures uniqueness of
limit points of sequences.

Lemma A.25. Let (S ,T ) be a Hausdorff topological space and (xn)n∈N a sequence in S .
Assume that there exist x, y ∈ S with limn→∞ xn = x and limn→∞ xn = y. Then x = y.

Proof. Assume x , y. Then there exist neighborhoods Ux and Uy of x and y, respectively,
with Ux∩Uy = Ø by the Hausdorff property. Thus xn < Ux∩Uy for any n ∈ N, a contradiction
to the assumption that both x and y are limit points of (xn)n. □

A.1.3 Metrizable spaces

Recall the following definition.

Definition A.26 ((Pseudo) metric). Let S be a non empty set. A map d : S × S → R+ is a
pseudo metric if it satisfies

(i) d(x, y) = d(y, x) for all x, y ∈ S (symmetry),

(ii) d(x, y) ≥ 0 for all x, y ∈ S , (non negative definiteness),

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ S (triangle inequality).

If in addition d(x, y) = 0 if and only if x = y, we call d a metric.

We call a pair (S , d), where S is a set and d a (pseudo) metric on S a (pseudo) metric space. ♢

Given a metric d on a set S we write

Bd(x, ε) := { y ∈ S | d(x, y) < ε } (A.14)

for the open ball around x ∈ S with radius ε > 0. When it is clear from the context
which metric we are using, we sometimes drop the d from the notation of balls and write
B(ε, x) = Bε(x). Using open balls we can always define a topology T on a metric space by
taking T to be the collection of arbitrary unions and finite intersections of open balls. In that
case we say that d generates the topology T . If not explicitly stated otherwise we always
assume a metric space to be equipped with the topology generated by the given metric.

Definition A.27. A topological space (S ,T ) is called metrizable if there exists a metric d on S
that generates T . ♢
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Metrizable spaces have some nice features, for example they are Hausdorff.

Proposition A.28. Metrizable topological spaces are Hausdorff.

Proof. Assume (S ,T ) is metrizable and d is a metric that generates T . Assume x, y ∈ S with
x , y, then there exists an ε > 0 such that d(x, y) ≥ 2ε. Hence Bd(x, ε) and Bd(y, ε) are disjoint
open neighborhoods of x and y, respectively. □

Recall that a Cauchy sequence in a metric space (S , d) is a sequence (xn)n∈N such that for
each ε > 0 there exists an n0 ∈ N such that d(xn, xm) < ε for all n,m ≥ n0. This leads to the
following definition.

Definition A.29. A metric d on a set S is called complete if every Cauchy sequence converges
in the topology generated by d. Furthermore we call the metric space (S , d) complete when d
is a complete metric on S and we say that a topological space (S ,T ) is completely metrizable
when it is metrizable and there exists a complete metric that generates T . ♢

Definition A.30. A metric space (S , d) is said to be Polish if it is complete and separable. ♢

In the main text we are concerned with metrizable spaces without a specific metric. For a
sensible treatment of these spaces we need a slight weakening of the Polish property in the
following sense.

Definition A.31 (Souslin and Lusin spaces). A topological Hausdorff space (S ,T ) is called a
Souslin space if it is the image of Polish metric space under a continuous map Φ. If the map Φ
is additionally bijective, we call (S ,T ) a Lusin space. ♢

A.1.4 Weak topology

In this section we collect some useful facts about weak or initial topologies.

Definition A.32. Let S be a nonempty set and (T, τ) a topological space. Assume F ⊂
{ f : S → T } is a non empty family of maps. The initial or weak topology generated by this
family is the coarsest topology that makes every f ∈ F measurable. ♢

Let τ(F ) be the weak topology on S as in the definition. Then it is easy to check that the
family of sets {

f −1A
∣∣∣ f ∈ F , A ∈ τ

}
(A.15)

forms a subbase of the topology τ(F ).

If the space (T, τ) is a metric space, we have the following useful characterization of τ(F ).
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Lemma A.33. Let S be a non empty set, (T, d) a metric space and F ⊂ { f : S → T } a non
empty family of functions. Then the sets of the form{

f −1B(x, ε)
∣∣∣ f ∈ F , x ∈ T, ε > 0

}
(A.16)

form a subbase of τ(F ).

Lemma A.34. Let S be a nonempty set and (T, τ) a topological Hausdorff space. Assume
F ⊂ { f : S → T } is a family of functions and equip S with the weak topology τ(F ). A sequence
(xn)n∈N ⊂ S in S converges to a limit x ∈ S if and only if for all f ∈ F , f (xn)→ f (x).

Proof. The direction “⇒” is a obvious by continuity. For the converse implication assume
(xn)n∈N ⊂ S is such that there exists a x ∈ S with

lim
n→∞

f (xn) = f (x) ∀ f ∈ F . (A.17)

By definition of the weak topology τ(F ), for every open neighborhood Ux ∈ τ(F ) of x there
exist finitely many f1, . . . , fm ∈ F such that

x ∈
m⋂

j=1

f −1
j V j ⊂ Ux, (A.18)

where V j ∈ τ is an open neighborhood of f j(x) for every j = 1, . . . ,m. By assumption (A.17)
we have f j(xn) ∈ V j eventually for every j = 1, . . . ,m. Hence, xn ∈

⋂m
j=1 f −1

j V j eventually,
which means limn→∞ xn = x, concluding the proof. □

A.2 Measures on topological spaces

Let (S ,T ) be a topological space, recall that the Borel σ-algebra B(S ) on S is the σ-algebra
generated by the open sets. Another σ-algebra that can be defined on every topological space
is the Baire σ-algebra Ba(S ) which is generated by the continuous real valued functions C(S ),
i.e. Ba(S ) is the smallest σ-algebra that makes all f ∈ C(S ) measurable. It is conceivable
that the Borel σ-field and the Baire σ-field are not very different. Indeed the two σ-algebras
coincide when S is a completely regular Souslin space (cf. [Bog07, Theorem 6.7.7]).

Definition A.35. Let (S ,T ) be a locally compact topological Hausdorff space and B(S ) the
Borel σ-field on S . A Radon measure on (S ,B(S )) is a measure ν such that

(i) ν is finite on compact sets,

(ii) ν is outer regular on all Borel sets, i.e. for all A ∈ B(S )

ν(A) = inf { ν(U) | U ∈ T ,U ⊃ A } , (A.19)
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(iii) ν is inner regular on all open sets, i.e. for all U ∈ T

ν(U) = sup
{
ν(K)

∣∣∣ K ⊂ S , K compact,U ⊂ K
}
. (A.20)

♢

Throughout this thesis we use the following notation for families of Radon measures, finite
measures and probability measures on a topological Hausdorff space (S ,T ) equipped with the
Borel σ-algebra B(S ).

M(S ) := { ν : B(S )→ [0,∞] | ν Radon measure } (A.21)

M f (S ) := { ν ∈ M(S ) | ν(S ) < ∞ } (A.22)

M1(S ) :=
{
ν ∈ M f (S )

∣∣∣ ν(S ) = 1
}

(A.23)

Recall the following definition of the support of a Radon measure.

Definition A.36. Let (S ,T ) be a topological Hausdorff space and ν ∈ M(S ) a Radon measure
on (S ,B(S )). Let further N := { N ∈ T | ν(N) = 0 } be the collection of open ν-nullsets. The
support of ν is defined as

supp(ν) :=

⋃
N∈N

N

c

, (A.24)

i.e. the complement of the union of all open ν-nullsets. ♢

Remarks A.37. (i) By definition, the union of open sets is open and hence the support is
always closed as the complement of an open set.

(ii) We frequently assume that the measures we are working with have full support, that
is, supp(ν) = S . An important consequence of this assumption is that open sets A ⊂ S
always have strictly positive measure.

♢

Definition A.38. Let (S ,T ) be a topological Hausdorff space, (νn)n∈N ⊂ M f (S ) and ν ∈

M f (S ).

(i) We say that the sequence (νn)n∈N converges weakly to ν, if

lim
n→∞

∫
S

f dνn =

∫
S

f dν ∀ f ∈ Cb(S ). (A.25)
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(ii) We say that the sequence (νn)n∈N converges vaguely to ν, if

lim
n→∞

∫
S

f dνn =

∫
S

f dν ∀ f ∈ C0(S ). (A.26)

♢

Remark A.39 (Weak convergence of measures). We can equip the spaceM f (S ) with the
weak topology generated by the functions

F =

{
ν 7→

∫
S

f dν
∣∣∣∣∣ f ∈ Cb(S )

}
. (A.27)

By Lemma A.34 the weak convergence of a sequence of measure (νn)n∈N ⊂ M f (S ) is
equivalent to the convergence of (νn)n∈N in the weak topology generated by F . ♢

A.3 Topologies and Nets

By definition, a topology always determines the convergent sequences. The converse is not
true in general as there may be different topologies with the same convergent sequences.

Example A.40 (different topologies may have the same class of convergent sequences).
Let S be an uncountable set. Consider the discrete topology T1 = { {x} ⊂ S | x ∈ S } and
the topology T2 := { A ⊂ S | Ac is countable } consisting of complements of countable sets.
Clearly, a sequence (xn)n∈N ⊂ S converges to x ∈ S in the T1 topology if and only if there
exists an k ∈ N such that xn = x for all n ≥ k, that is, when (xn)n∈N is eventually constant.
On the other hand, assume limn→∞ xn = x in the T2 topology but (xn)n∈N is not eventually
constant. Then, for every k ∈ N the set Nk := { xn | n ≥ k } \ {x} is nonempty and countable.
By definition of T2, Nc

1 is an open neighborhood of x. Further, N1 ∩Nk , Ø for all k ∈ N, thus
{ xn | n ≥ k } is not contained in Nc

1 for any k ∈ N, a contradiction. Hence, every converging
sequence in T2 must also be eventually constant. □

It turns out that there is a generalized notion of sequences, so called nets, not to be confused
with ε-nets, whose convergence already uniquely determines the topology. Before we introduce
nets we need the following definition.

Definition A.41. A directed set is a set I equipped with a binary relation ⪰ such that

(i) (transitivity) for all α, β, γ ∈ I with α ⪰ β and β ⪰ γ it holds that α ⪰ γ,

(ii) (reflexivity) for all α ∈ I it holds that α ⪰ α and

(iii) (Archimedean property) for all α, β ∈ I there exists a γ ∈ I such that γ ⪰ α and γ ⪰ β. ♢
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We can now introduce nets.

Definition A.42. Let S be any set. A net in S is a set { xα ∈ S | α ∈ I } where the index set
(I,⪰) is a directed set. ♢

We adopt the following notions from Kelley’s book [Kel75]. We say that a property holds for
a net (xα)α eventually iff there exists an α0 ∈ I such that xα has that property for all α ⪰ α0.
We say that a property holds for a net (xα)α frequently, if for every α such that xα has the
property, there exists a β ⪰ α, such that the property also holds for xβ. A subnet of (xα)α∈I is a
net (xβ)β∈J with index set J ⊂ I such that (J, ⪰|J×J) is itself a directed set.

We say that a net (xα)α converges to a point x ∈ S if and only if (xα)α is eventually in every
neighborhood U ∈ Ux. In that case, we write limα∈I xα = x, or, if there can be no confusion
about the index set, limα xα = x.

We will show that the knowledge of convergent nets uniquely determines a topology if the
class of convergent nets is sufficiently rich.

Definition A.43 (Convergence class). Let N be a family of elements of the form ((xα)α∈I, x)
where (xα)α∈I ⊂ S is some net in S and x ∈ S . We say that a net (xα)α∈I converges to x with
respect to N if and only if ((xα)α∈I, x) ∈ N . In that case we write limNα∈I xα = x. We call the
family N a convergence class if and only if

(i) For every net (xα)α∈I with xα = x for all α ∈ I it holds that limNα∈I xα = x.

(ii) If (xα)α∈I converges to x with respect to N , then so does every subnet of (xα)α∈I.

(iii) If (xα)α∈I does not converge to x with respect to N then there exists a subnet (xβ)β∈J of
(xα)α∈I such that no subset of (xβ)β∈J converges to x.

(iv) For each α ∈ I let Jα be another directed set and denote the product directed set by

K := I ××
α∈I
Jα. (A.28)

Assume that (xκ)κ∈K converges to x with respect to N . Let f (κ) = f (α, j) := (α, j(α)),
where κ ∈ K, α ∈ I and j ∈×α∈I Jα. Then (x f (κ))κ∈K converges to x with respect to
N . ♢

It is easy to check that the convergent nets in a given topological space satisfy (i) to (iv) (cf.
[Kel75, p. 74]). But also the converse holds true.

Theorem A.44 ([Kel75, Theorem 2.9]). LetN be a convergence class for a set S and for each
sucbset A ⊂ S let Γ(A) be the set of all points x ∈ S such that there exists a net (xα)α∈I ⊂ A
with limNα∈I xα = x. Then Γ is a closure operator and ((xα)α∈I, x) ∈ N if and only if (xα)α∈I
converges to x in the topology generated by Γ.
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Definition A.45. A topological space (S ,T ) is called sequential if the topology T is deter-
mined by the convergent sequences. ♢

Proposition A.46 ([Wil70, Theorem 10.4]). Let (S ,T ) be a first countable topological space.
Then T is sequential.
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Metric spaces B
B.1 Metrics on the space of probability measures

Let (S , d) be a metric space.

Definition B.1 (Prokhorov metric). For two probability measures µ, ν ∈ M1(S ), define

d∗(µ, ν) := inf
{
ε > 0

∣∣∣ ∀B ∈ B : µ(B) ≤ ν(Bε) + ε
}
, (B.1)

where Bε := { x ∈ S | ∃y ∈ B : d(x, y) < ε } denotes the ε-blowup of B. Then the Prokhorov
metric onM1(S ) is defined as

dPr(µ, ν) := max
{
d∗(µ, ν), d∗(ν, µ)

}
. (B.2)

♢

Definition B.2 (Kantorovich-Rubinshtein metric). Denote by Lip1(S ) the Lipschitz continuous
functions f : S → R with Lipschitz constant at most 1. On the space of probability measures
M1(S ) we introduce the Kantorovich-Rubinshtein norm as

∥µ∥KR := sup
{ ∫

S
f dµ

∣∣∣∣∣ f ∈ Lip1(S ), ∥ f ∥∞ ≤ 1
}
, µ ∈ M1(S ). (B.3)

Then,
dKR(µ, ν) := ∥µ − ν∥KR (B.4)

is called the Kantorovich-Rubinshtein metric onM1(S ). ♢

B.2 The resistance metric

In Section 4.5.1 we have introduced the effective resistance metric on weighted graphs. In
this appendix we collect some useful properties of the effective resistance metric on finite
graphs.
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Let V be a finite set and recall from Definition 4.77 the definition of a weighted graph (V, µ).
Furthermore recall from (4.231) the definition of the energy form E given by

E( f , g) :=
1
2

∑
x,y∈V

µxy ( f (x) − f (y)) (g(x) − g(y)) (B.5)

for each f : V → R. Observe that in the case of finite V , the domain of E is unrestricted.

Let f : V → R and denote by f̃ := ( f ∨ 0) ∧ 1 the unit truncation of f . Since ( f̃ (x) − f̃ (y))2 ≤

( f (x) − f (y))2 for all x, y ∈ V we immediately obtain

E( f̃ , f̃ ) ≤ E( f , f ). (B.6)

Let F y
x := { f : V → R | f (x) = 0, f (y) = 1 }. The effective resistance metric on V is given

by1

R(x, y) = inf
{
E( f , f )

∣∣∣ F y
x

}−1
= inf

{
E( f , f )

∣∣∣ f ∈ F y
x , 0 ≤ f ≤ 1

}−1

= sup
{

( f (y) − f (x))2

E( f , f )

∣∣∣∣∣∣ f : V → R, E( f , f ) > 0
}
.

(B.7)

1See (4.233), (4.239) and (B.6).
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Some loose ends C
C.1 The Bochner Integral

Let B , Ø denote a Banach space with norm ∥ · ∥ and let (Ω,A, µ) be a complete and σ-finite
measure space. We want to define the integral of a map F : Ω→ B.

The Bochner integral is defined similar to the Lebesgue integral and its construction is due to
Salomon Bochner [Boc33].

Let E = E(Ω;B) be the space of elementary functions i.e.

E :=
{

F =
n∑

i=1

fi 1Ai

∣∣∣∣∣∣ n ∈ N, fi ∈ B, Ai ∈ A :

µ(Ai) < ∞, Ai ∩ A j = Ø, i , j ∈ {1, . . . , n}
}
.

(C.1)

Definition C.1 (Bochner integral). Let F ∈ E. The Bochner integral of F with respect to µ is
defined as ∫

B
F dµ :=

n∑
i=1

fi µ(Ai ∩ B), B ∈ A. (C.2)

We say that a function F : Ω→ B is Bochner integrable if there exists an sequence (Fn)n∈N ⊂ E

of elementary functions satisfying

(i) lim
n→∞

Fn = F, µ-a.e. and

(ii) lim
n→∞

∫
Ω

∥Fn − F∥ dµ = 0.

In that case, the Bochner Integral of F (with respect to µ) is defined as∫
B

F dµ := lim
n→∞

∫
B

Fn dµ, B ∈ A. (C.3)
♢

Not only is the Bochner integral defined similar to the Lebesgue integral, it also exhibits most
of the properties of the Lebesgue integral. The following properties are shown in the same
way as for the Lebesgue integral.

Proposition C.2. (i) The Bochner integral
∫

B F dµ does not depend on the choice of the
approximating sequence (Fn)n∈N ⊂ E.
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(ii) The Bochner integral is linear.

(iii) The Bochner integral is monotone,

F ≤ G µ-a.e. ⇒
∫

B
F dµ ≤

∫
B

G dµ. (C.4)

Definition C.3 (Strong measurability). Let F : Ω→ B. We say that F is strongly measurable
(or Bochner measurable) if there exists a sequence (Fn)n∈N ⊂ E of elementary functions with

lim
n→∞
∥Fn(ω) − F(ω)∥ = 0 (C.5)

for almost all ω ∈ Ω. ♢

Strong measurability yields a handy criterion for Bochner integrability.

Theorem C.4 ([Rao04, Theorem VII.5]). A function F : Ω→ B is Bochner integrable if and
only if F is strongly measurable and ∥F∥ is Lebesgue integrable.

Lemma C.5. LetH be a real or complex Hilbert space with inner product ⟨ · , · ⟩ and F : Ω→
H Bochner integrable. Then for each g ∈ H , the function ω 7→ ⟨F(ω), g⟩ is Lebesgue
integrable and 〈∫

B
F dµ, g

〉
=

∫
B
⟨F, g⟩ dµ. (C.6)

Proof. Fix g ∈ H . First assume that F is elementary, i.e.

F =
n∑

i=1

fi1Ai (C.7)

for some n ∈ N and fi ∈ H , Ai ∈ A. Then,〈∫
B

F dµ, g
〉
=

n∑
i=1

µ(Ai ∩ B) ⟨ fi, g⟩ =
∫

B

n∑
i=1

⟨ fi, g⟩1Ai dµ =
∫

B
⟨F, g⟩ dµ (C.8)

and clearly the Lebesgue integral on the right hand side exists.

Now let F : Ω → B be Bochner integrable. By Theorem C.4, there exists a sequence
(Fn)n∈N ⊂ E such that ∥Fn − F∥ → 0 outside a set of measure 0 as n → ∞. Therefore, by
application of the definition of the Bochner integral and (C.8),〈∫

B
F dµ, g

〉
= lim

n→∞

〈∫
B

Fn dµ, g
〉
= lim

n→∞

∫
B
⟨Fn, g⟩ dµ. (C.9)
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The Cauchy-Schwarz inequality now yields

|⟨Fn, g⟩ − ⟨F, g⟩| = |⟨Fn − F, g⟩| ≤ ∥Fn − F∥ ∥g∥ −→
n→∞

0, (C.10)

for µ-almost all ω ∈ Ω.

Without loss of generality, we can choose the sequence (Fn)n∈N in such a way that (∥Fn∥)n∈N

is increasing. Then the functions ⟨Fn, g⟩ are bounded µ-almost everywhere by the integrable
function ∥F∥ ∥g∥ and an application of the dominated convergence theorem yields the claim.

□

C.2 Probabilistic results in the uniform setting

Here we collect some important results from probability theory that can be found in most
textbooks but are usually formulated for (Polish) metric spaces. We show how the proofs can
easily be generalized to the uniform setting.

As always, let (Ω,A,P) denote some probability space.

Theorem C.6 (Skorokhod coupling [Kal21, Theorem 5.31]). Let (S ,U) be a separable uniform

Hausdorff space and X, X1, X2, . . . : Ω → S random variables. Assume that Xn
d
−→ X, then

there exists a probability space (Ω′,A′,P′) and random variables Y,Y1,Y2, . . . : Ω′ → S such
that PX = P

′
Y and PXn = P

′
Yn

for all n ∈ N and furthermore

Yn → Y P′-a.s. (C.11)

The proof relies on the following general result.

Lemma C.7. Let I be some index set and (Ωα,Aα,Pα) a probability space for each α ∈ I.
Then there exist independent random variables Xα on Ωα with

L(Xα) = Pα, α ∈ I. (C.12)

Proof. See [Kal21, Corollary 8.25]. □

Proof of Theorem C.6. We start with the case where S = {1, . . . ,m} is finite. Set

pk := P(X = k) and pn
k := P(Xn = k). (C.13)

Let η be defined on a probability space (Ω1,A1,P1) and uniformly distributed on [0, 1]. We
can construct random variables (Yn)n∈N on the product space Ω′ = Ω1 with L(Yn) = Xn by
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setting Yn = k whenever X = k and η ≤ pn
k/pk. By assumption, pn

k/pk → 1 as n→ ∞ for each
1 ≤ k ≤ m. Hence, Yn → Y P′-a.s.

Now let (S ,U) be an arbitrary separable uniform Hausdorff space and (Un)n∈N ⊂ U a sequence
of open entourages with Un+1 ⊂ Un and

⋂
n∈NUn = ∆. Fix p ∈ N and suppose further that(

B j
)

j∈N
⊂ B is a partition of S into subsets with P(X ∈ ∂B j) = 0 such that there exists a

sequence (xn)n∈N ⊂ S with B j ⊂ Up[x j] for all j ∈ N. We can choose m ∈ N large enough so
that

P

X <
⋃
k≤m

Bk

 < 2−p. (C.14)

Moreover, write B0 :=
⋂

k≤m∁Bk. Let κ, (κn)n∈N be random variables with κ = k when X ∈ Bk

and κn = k when Xn ∈ Bk for n ∈ N and k ∈ {0, 1, . . . ,m}. By assumption, κn
d
−→ κ as n→ ∞.

We can therefore apply the result for finite S and conclude that there exist random variables
κ̃, (κ̃n)n∈N on some probability space (Ω′,A′,P′) such that κ̃ d

= κ, κ̃n
d
= κn and κ̃n → κ̃, P′-a.s.

as n→ ∞. Define now further random variables ξk
n on Ω′ with values in S and distributions

L(ξk
n) = L(Xn | Xn ∈ Bk). (C.15)

Moreover, define
Y p

n :=
∑
k∈N

ξk
n 1κ̃n=k. (C.16)

Then, Y p
n

d
= Xn and, by construction,{(

Y p
n , X

)
< Up

}
⊂ {κ̃n , κ} ∪ {X ∈ B0} , (C.17)

for all n, p ∈ N. Let Y be defined on Ω′ with Y d
= X. Because of the almost sure convergence

κ̃n → κ̃ and (C.14), we conclude that for every p ∈ N there exists a np ∈ N such that

P′

⋃
n≥np

{(
Y p

n ,Y
)} < 2−p. (C.18)

Without loss of generality we can assume that the sequence
(
np

)
p∈N

is increasing. Applying
the Borel-Cantelli Theorem, find that{

(Y p
n ,Y)

∣∣∣ n > np
}
⊂ U (C.19)

for all but finitely many p ∈ N. We can therefore apply a diagonal argument and set Yn := Y p
n

for some n ∈ {np, . . . , np+1 − 1} to finally obtain

Xn
d
= Yn → Y, (C.20)

P′-a.s. as n→ ∞. □

246 Appendix C Some loose ends



Bibliography

[AF02] David Aldous and James Allen Fill. Reversible Markov Chains and Random Walks on
Graphs. Unfinished monograph, recompiled 2014, available at http : / / www . stat .
berkeley.edu/~aldous/RWG/book.html. 2002.

[Ald78] David J. Aldous. “Stopping Times and Tightness”. In: The Annals of Probability 6.2 (Apr.
1978), pp. 335–340. doi: 10.1214/aop/1176995579.

[Ald91a] David J. Aldous. “The Continuum Random Tree. I”. In: The Annals of Probability 19.1
(1991), pp. 1–28.

[Ald91b] David J. Aldous. “The Continuum Random Tree. II”. In: Stochastic Analysis. Proceedings
of the Durham Symposium on Stochastic Analysis, 1990. 1991.

[Ald93] David J. Aldous. “The Continuum Random Tree. III”. In: The Annals of Probability 21.1
(1993), pp. 248–289.

[AEW13] Siva Athreya, Michael Eckhoff, and Anita Winter. “Brownian motion on R-trees”. In:
Transactions of the American Mathematical Society 365 (2013), pp. 3115–3150. doi: 10.
1090/S0002-9947-2012-05752-7.

[ALW17] Siva Athreya, Wolfgang Löhr, and Anita Winter. “Invariance Principle for variable speed
random walks on trees”. In: The Annals of Probability 45.2 (2017), pp. 625–667. doi:
10.1214/15-AOP1071.

[BLM18] Boris Baeumer, Tomasz Luks, and Mark M. Meerschaert. “Space-time fractional Dirichlet
problems”. In: Mathematische Nachrichten 291.17-18 (2018), pp. 2516–2535. doi: 10.
1002/mana.201700111.

[BGL14] Dominique Bakry, Ivan Gentil, and Michel Ledoux. Analysis and Geometry of Markov Dif-
fusion Operators. Vol. 348. Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences]. Springer International Publishing, 2014, pp. xx+552.
doi: 10.1007/978-3-319-00227-9.

[BP88] Martin Barlow and Edwin Perkins. “Brownian motion on the Sierpinski gasket”. In: Probabil-
ity Theory and Related Fields 79.4 (Nov. 1988), pp. 543–623. doi: 10.1007/bf00318785.

[BB89] Martin T. Barlow and Richard F. Bass. The construction of brownian motion on the Sierpinski
carpet. 1989.

[Bas10] Richard Bass. “The measurability of hitting times”. In: Electronic Communications in
Probability 15 (Jan. 2010), pp. 99–105. doi: 10.1214/ecp.v15-1535.

[Bil99] Patrick Billingsley. Convergence of Probability Measures. 2nd ed. New York: John Wiley &
Sons, Inc., 1999. doi: 10.1002/9780470316962.

[BG68] Robert McCallum Blumenthal and Ronald Getoor. Markov processes and potential theory.
Academic Press, 1968.

247

http://www.stat.berkeley.edu/~aldous/RWG/book.html
http://www.stat.berkeley.edu/~aldous/RWG/book.html
https://doi.org/10.1214/aop/1176995579
https://doi.org/10.1090/S0002-9947-2012-05752-7
https://doi.org/10.1090/S0002-9947-2012-05752-7
https://doi.org/10.1214/15-AOP1071
https://doi.org/10.1002/mana.201700111
https://doi.org/10.1002/mana.201700111
https://doi.org/10.1007/978-3-319-00227-9
https://doi.org/10.1007/bf00318785
https://doi.org/10.1214/ecp.v15-1535
https://doi.org/10.1002/9780470316962


[Boc33] Salomon Bochner. “Integration von Funktionen, deren Werte die Elemente eines Vektor-
raumes sind”. In: Fundamenta Mathematicae 20.1 (1933), pp. 262–176. doi: 10.4064/FM-
20-1-262-176.

[Bog07] Vladimir I. Bogachev. Measure Theory. 1st ed. Vol. 2. Berlin: Springer, 2007. doi: 10.
1007/978-3-540-34514-5.

[BSW13] Björn Böttcher, René Schilling, and Jian Wang. Lévy Matters III. Lévy-Type Processes:
Construction, Approximation and Sample Path Properties. Springer International Publishing,
2013. doi: 10.1007/978-3-319-02684-8.

[Bou66a] Nicolas Bourbaki. General Topology. Vol. 1. Elements of Mathematics. Addison-Wesley,
1966.

[Bou66b] Nicolas Bourbaki. General Topology. Vol. 2. Elements of Mathematics. Addison-Wesley,
1966.

[BBI01] Dmitri Burago, Yuri Burago, and Sergei Ivanov. A course in metric geometry. Vol. 33.
Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001.

[CF11] Zhen-Qing Chen and Masatoshi Fukushima. Symmetric Markov Processes, Time Change,
and Boundary Theory. Vol. 35. London Mathematical Society Monographs. Princeton:
Princeton University Press, 2011.

[Chu86] Kai Lai Chung. “Doubly-Feller Process with Multiplicative Functional”. In: Seminar on
Stochastic Processes, 1985. Birkhäuser Boston, 1986, pp. 63–78. doi: 10.1007/978-1-
4684-6748-2_4.

[Chu82] Kai Lai Chung. Lectures from Markov Processes to Brownian Motion. Springer New York,
1982. doi: 10.1007/978-1-4757-1776-1.

[CW05] Kai Lai Chung and John B. Walsh. Markov Processes, Brownian Motion, and Time Symmetry.
2nd ed. Vol. 249. Grundlehren der mathematischen Wissenschaften. New York: Springer,
2005. doi: 10.1007/0-387-28696-9.

[Con07] John B. Conway. A Course in Functional Analysis. 2nd ed. Springer New York, 2007. doi:
10.1007/978-1-4757-4383-8.

[Cro18] D. A. Croydon. “Scaling limits of stochastic processes associated with resistance forms”. In:
Annales de l’Institut Henri Poincaré Probabilités et Statistiques 54.4 (2018), pp. 1939–1968.
doi: 10.1214/17-AIHP861.

[CHK17] David A. Croydon, Ben M. Hambly, and Takashi Kumagai. “Time-changes of stochastic
processes associated with resistance forms”. In: Electronic Journal of Probability 22.82
(2017), pp. 1–41. doi: 10.1214/17-EJP99.

[DM79] Claude Dellacherie and Paul-André Meyer. Probabilities and Potential, A. Vol. 29. North-
Holland Mathematics Studies. North Holland, 1979.

[Die84] Joseph Diestel. Sequences and Series in Banach Spaces. English. Vol. 92. Grad. Texts Math.
Springer, Cham, 1984.

[Don51] Monroe D. Donsker. “An invariance principle for certain probability limit theorems”. In:
Four Papers on Probability. Vol. 1. Memoirs of the American Mathematical Society 6.
American Mathematical Society, 1951.

248 Bibliography

https://doi.org/10.4064/FM-20-1-262-176
https://doi.org/10.4064/FM-20-1-262-176
https://doi.org/10.1007/978-3-540-34514-5
https://doi.org/10.1007/978-3-540-34514-5
https://doi.org/10.1007/978-3-319-02684-8
https://doi.org/10.1007/978-1-4684-6748-2_4
https://doi.org/10.1007/978-1-4684-6748-2_4
https://doi.org/10.1007/978-1-4757-1776-1
https://doi.org/10.1007/0-387-28696-9
https://doi.org/10.1007/978-1-4757-4383-8
https://doi.org/10.1214/17-AIHP861
https://doi.org/10.1214/17-EJP99


[Dos49] Raouf Doss. “On uniform spaces with à unique structure”. French. In: American Journal of
Mathematics 71.1 (1949), pp. 19–23. doi: 10.2307/2372088.

[DS84] Peter G. Doyle and J. Laurie Snell. “Random Walks and Electric Networks”. In: arXiv
e-prints (1984). arXiv: 0001057 [math].

[Dud02] Richard M. Dudley. Real Analysis and Probability. 2nd ed. Cambridge Studies in Ad-
vanced Mathematics. Cambridge: Cambridge University Press, 2002. doi: 10 . 1017 /
CBO9780511755347.

[DS58] Nelson Dunford and Jacob T. Schwartz. Linear operators. Part I. English. Wiley Interscience,
1958.

[Dyn65] Eugene B. Dynkin. Markov Processes. Volume 1. 1st ed. Grundlehren der mathematischen
Wissenschaften. Springer Berlin Heidelberg, 1965. doi: 10.1007/978-3-662-00031-1.
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