Nichtlineare Optimierung

Blatt 1

Aufgabe 1

(Konvexität der Norm)

Seien $\|\cdot\|$ eine beliebige Norm auf \mathbb{R}^n und $y \in \mathbb{R}^n$. Zeigen Sie, dass die Funktion $f: \mathbb{R}^n \to \mathbb{R}$ gegeben durch $f(x) = \|x - y\|$ konvex, aber nicht strikt konvex auf \mathbb{R}^n ist.

Aufgabe 2

Zeigen Sie: Sind $C \subset \mathbb{R}^n$ eine konvexe Menge und $f: C \to \mathbb{R}$ konvex, dann gilt:

- 1. Jedes lokale Minimum von f auf C ist auch globales Minimum.
- 2. Die Lösungsmenge von

$$\min_{x \in C} f(x)$$

ist konvex.

3. Ist f strikt konvex, so hat f auf C höchstens ein lokales Minimum und dieses ist dann auch globales Minimum.

Aufgabe 3

- (a) Berechnen Sie den Gradienten und die Hesse-Matrix der Funktion $f(x) = \frac{1}{2}x^T H x + b^T x + c$ für allgemeine $H \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$, $c \in \mathbb{R}$ und für ein symmetrisches H.
- (b) Schreiben Sie die Funktion

$$f(x_1, x_2) = 5x_1^2 + 5x_2^2 + 8x_1x_2 - 4x_1 - 2x_2 + 3$$

in der obigen Form mit symmetrischem H. Ist H positiv definit? Berechnen Sie das globale Minimum von f.

Aufgabe 4

Zeigen Sie: Ist $H \in \mathbb{R}^{n \times n}$ positiv definit, so ist die Funktion $f(x) = \frac{1}{2}x^T H x + b^T x$ streng konvex.

Homepage der Veranstaltung ist:

http://www.uni-due.de/mathematik/agroesch/lv $_ramazanova1819.php$ Termine und Räume:

		Zeit	Raum	
\overline{VL}	Di	14-16	WSC-N-U-4.05	Arnd Rösch
			WSC-N-U-4.05	
Üb	Mi	10-12	WSC-N-U-4.03	Aysel Ramazanova