Übung Optimale Steuerung partieller Differentialgleichungen

Blatt 4

Aufgabe 1

(i) Es seien U ein normierter linearer Raum, $U_{ad} \subset U$ konvex und $f: U_{ad} \to \mathbb{R}$ streng konvex. Weiter sei $\bar{u} \in U_{ad}$ ein globales Minimum der Aufgabe

$$\min_{u \in U_{ad}} f(u).$$

Zeigen Sie, dass \bar{u} eindeutig bestimmt ist.

(ii) Es seien U und H reelle Hilberträume, $y_d \in H$, $S \in \mathcal{L}(U, H)$ und $\lambda \geq 0$. Beweisen Sie, dass das Funktional

$$\hat{J}(u) = \frac{1}{2} ||Su - y_d||_H^2 + \frac{\lambda}{2} ||u||_U^2$$

konvex und im Fall $\lambda > 0$ sogar streng konvex ist.

Aufgabe 2

Es sei das Funktional

$$J: C[0,1] \to \mathbb{R}$$
 $J(u) = \int_{0}^{1} x^{2}(u,t) + y^{2}(u,t)dt$

gegeben, wobei $x(u,\cdot), y(u,\cdot)$ die Lösungen folgender Differentialgleichungen sind:

$$x' = \cos(\pi u(t)), \quad y' = \sin(\pi u(t)), \quad x(0) = y(0) = 0.$$

- (i) Geben Sie Schranken für den Wert $J^* = \inf\{J(u) | u \in C[0,1]\}$ an.
- (ii) Zeigen Sie $J^* = 0$ (**Hinweis:** Konstruieren Sie eine geeignete Infimalfolge $\{u_n(t)\}$).
- (iii) Existiert eine optimale Lösung u^* , so dass $J^* = J(u^*)$?

Aufgabe 3

Definition: Ein linearer normierter Raum U heißt stetig eingebettet in einen linearen normierten Raum V, wenn $U \subset V$ ein Unterraum von V ist und ein $c \geq 0$ existiert, so dass $||u||_V \leq c||u||_U$ gilt für alle $u \in U$. Man schreibt $U \hookrightarrow V$.

Beweisen Sie: Für ein beschränktes Gebiet Ω gilt $L^p(\Omega) \hookrightarrow L^q(\Omega)$ für $1 \le q \le p \le \infty$.

Homepage der Veranstaltung ist:

http://www.uni-due.de/mathematik/agroesch/lv_ramazanova1920.php

Termine und Räume:

		Zeit	Raum	
VL	Di	10-12	WSC-N-U-4.03	Arnd Rösch
	Do	10-12	WSC-N-U-4.03	
Ü	Fr	10-12	WSC-N-U-4.03	Aysel Ramazanova