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Herausforderungen

•Eis und Schnee bedeckte Flächen haben die Fähigkeit mehr als die Hälfte der einfallenden
Sonneneinstrahlung zu reflektieren und spielen deshalb eine wichtige Rolle für das Klima.

•Das Verhältnis von rückgestrahlte zu einfallenden Licht wird als Albedo bezeichnet.
Zum Vergleich: Wüste 0.30, Rasen: 0.20, Asphalt 0.15.

•Klimamodelle gehören zu den komplexesten und rechenaufwendigsten Berechnungs-
modellen, die je entwickelt wurden.

•Übliche Modellvariablen : Geschwindigkeit v œ H1
�D(⌦)

Bedeckungsgrad A œ H1(⌦)
Eishöhe H œ H1(⌦)

Spannungen

Insbesondere weil sie als Quellterm in die anderen
Gleichungen der Klimamodelle eingehen, stellen
die Spannungen eine weitere wichtige Größe in
der Eismodellierung dar. Um einen Approximati-
onsverlust zu vermeiden kann ein direkter Ansatz
für den Spannungstensor ‡ œ H(div ,⌦) gewählt
werden, so dass die Spannungen gleichzeitig mit
den anderen Variablen approximiert werden.
Geeignete Finite Element Räume basierend
auf einer Trinagulierung T bilden hierfür die
H(div ,⌦)-konformen Räume, wie zum Beispiel
die Raviart-Thomas Elemente:

RTk = {vh œ H(div ,⌦) : vh|T œ RTk(T ) ’ T œ Th} mit RTk(T ) = (Pk(T ))d + xPk(T ) ,
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2k(k + 1)

innere Punkte

� �� �
k + 1 Freiheitsgrade auf jede Kante

wobei Pk die Menge der Polynome vom Grad k bildet. Diese Elemente sind vektorwertige
Elemente, bei denen einige Freiheitsgrade durch den Wert der Normalkomponente an der
Elementgrenze gegeben sind. Mit den Spannungen kann die Impulsbilanz explizit geschrieben
werden. Es gilt

div ‡ = fleisH
 

ˆ

ˆtv + fcer ◊ (v ≠ vo)
!

≠ f (1)

mit f = fo + fa wobei fleis die Dichte des Eises, fc die Corioliskraft, fo die Krafteinwirkung
vom Ozean und fa die Krafteinwirkung der Atmosphäre sind. Die Krafteinwirkung ist mit den
jeweiligen Flüssen va und vo verknüpft:

fa = flaCaÎvaÎ2va, fo = floCoÎvo ≠ vÎ2(vo ≠ vo),

wobei fla und flo die jeweiligen Dichten von Atmosphäre und Ozean sind, und Ca und Co die
Strömungswiderstandskoe�zienten beschreiben.

Meereis Rheologie

Meereis wird als viskoses kompressibles Fluid modelliert. Dies bedeutet,
dass sowohl der spurfreie Anteil dev ‡ als auch die Spur vom Spannungs-
tensor des Deformationsgradienten Á(u) abhängen:

dev ‡ = 1
2’dev Á(v)

tr ‡ = 3
2’tr(Á(u)) ≠ 2P

(2)

wobei die Viskosität ’ = P
2�(Á(u)) vom statischen Druck P

2 abhängt, der
selbst linear von der Meereisdicke H und exponentiell vom Bedeckungsgrad
A abhängt.

P = 1
2P0He(≠C(1≠A))

P0 und C werden Bruchparameter genannt, weil das Eis bis zu der Bruchgrenze P einer
Deformation widersteht. Insbesondere die empirische Bestimmung dieser Parameter war Ziel
des Expedition der SA Agulhas zur Antarktis vom 25.06.2017 bis zum 16.07.2017, an der
Fleurianne Bertrand und Marcel Moldenhauer teilgenommen haben.

Least-Squares Methode

Bei der Least-Squares Methode werden die Residuen der Gleichungen in (1) und (2) sowie
Kontinuitätsgleichungen, in der L2(⌦)-Norm, im Funktional

F(‡, v, A, H) =
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zusammengefasst. Die diskrete Approximation (‡h, vh, Ah, Hh) wird durch die Minimierung
von F in dem Raum (RTk)2 ◊ (Pk)4, welcher durch Randbedingungen eingeschränkt wird,
gewonnen. Hierbei bezeichnet Pk den H1-konformen Raum der stückweise Polynome vom
Grad k . Wird das Energiegleichgewicht

|||(‡, v, A, H)|||2 h F(‡, v, A, H) (3)

bewiesen, so liefert die Least-Squares Methode sowohl optimale a priori Fehlerabschätzungen
als auch einen e�zienten und zuverlässigen a posteriori Fehlerschätzer.
Ein beliebtes Beispiel ist ein durch das
quadratische Gebiet ⌦ = [0, 500] ◊
[0, 500] über einen Zeitraum [0, tmax ] mit
tmax = 8 Tage, wandernder Zyklon.
Der Mittelpunkt des Zyklons ist gegeben
durch

xm = (450 + (sgn(t ≠ 4)(200 ≠ 50t))
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Die Geschwindigkeit des Zyklons ist so gewählt, dass sie größer in der Nähe des Auges ist,

vatm(t) = (t ≠ 4)(8 ≠ |t ≠ 4|)R90¶≠9¶ sgn(t≠4)+3
2

(x ≠ xm)e
≠|x≠xm|

100

50
während die Krafteinwirkung des Ozeans nicht von der Zeit abhängt:

vocean(x , y) = 0.01
 2y

500 ≠ 1
1 ≠ 2x

500
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Krafteinwirkungen von Atmosphäre und Ozean zu t = 0
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Eisgeschwindigkeit zu t = 2, t = 4, t = 6, t = 8
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