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- Spannungsbasierte Approximationen
fur die Modellierung von Eisflachen
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Least-Squares Methode

e Eis und Schnee bedeckte Flachen haben die Fahigkeit mehr als die Halfte der einfallenden
Sonneneinstrahlung zu reflektieren und spielen deshalb eine wichtige Rolle fir das Klima.

_icht wird als Albedo bezeichnet.

e Das Verhaltnis von riickgestrahlte zu einfallenden

Zum Vergleich: Wiiste 0.30, Rasen: 0.20, Asphalt 0.15.

e Klimamodelle gehoren zu den komplexesten und rechenaufwendigsten Berechnungs-
modellen, die je entwickelt wurden.

Geschwindigkeit v € H ()

Bedeckungsgrad A € H'(Q)

Eishohe H € H}(Q)

e Ubliche Modellvariablen :

Spannungen

Insbesondere weil sie als Quellterm in die anderen
Gleichungen der Klimamodelle eingehen, stellen
die Spannungen eine weitere wichtige GroBe in
der Eismodellierung dar. Um einen Approximati-
onsverlust zu vermeiden kann ein direkter Ansatz
fir den Spannungstensor o € H(div , ) gewahlt
werden, so dass die Spannungen gleichzeitig mit
den anderen Variablen approximiert werden.
Geeignete Finite Element Raume basierend
auf einer Trinagulierung 7 bilden hierfir die
H(div , Q2)-konformen Raume, wie zum Beispiel
die Raviart-Thomas Elemente:

Lk(k +1).

]

k 4+ 1 Freiheitsgrade auf jede Kante

RTe={v, € H(div,Q): vyt € RT(T)V T €T} mit RT(T) = (Pu(T))? + xPu(T) ,

wobei Pj die Menge der Polynome vom Grad k bildet. Diese Elemente sind vektorwertige
Elemente, bei denen einige Freiheitsgrade durch den Wert der Normalkomponente an der
Elementgrenze gegeben sind. Mit den Spannungen kann die Impulsbilanz explizit geschrieben

werden. Es gilt
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div o = peisH V -+ fcer X (V — Vo) (1)
mit f = f, + f, wobei p.; die Dichte des Eises, f. die Corioliskraft, f, die Krafteinwirkung

vom Ozean und f, die Krafteinwirkung der Atmosphare sind. Die Krafteinwirkung ist mit den

jeweiligen Fliussen v, und v, verkniipft:

fa — IOaCaHVaHQVm fo — poCoHVo — VH2(V0 — VO);

wobei p, und p, die jeweiligen Dichten von Atmosphare und Ozean sind, und C, und C, die
Stromungswiderstandskoeffizienten beschreiben.

Meereis Rheologie

Meereis wird als viskoses kompressibles Fluid modelliert. Dies bedeutet,
dass sowohl der spurfreie Anteil dev o als auch die Spur vom Spannungs-
tensor des Deformationsgradienten (u) abhangen:

1
dev o = ECdev e(v)

3 (2)
tr o = §Ctr(€(u)) — 2P
wobei die Viskositat ( = 2A(5P(u)) vom statischen Druck g abhangt, der

selbst linear von der Meereisdicke H und exponentiell vom Bedeckungsgrad
A abhangt.

p — 1p Hel-c-m)
2
Py und C werden Bruchparameter genannt, weil das Eis bis zu der Bruchgrenze P einer

Deformation widersteht. Insbesondere die empirische Bestimmung dieser Parameter war Ziel
des Expedition der SA Agulhas zur Antarktis vom 25.06.2017 bis zum 16.07.2017, an der
Fleurianne Bertrand und Marcel Moldenhauer teilgenommen haben.

D. Hibler, A dynamic thermodynamic sea ice model. J. Phys. Oceanogr, 566 9(4):815-846, 1979.

Mehlmann und T. Richter, A modified global Newton solver for viscous-plastic sea ice models, Ocean Modeling, Vol. 116, p.967107, 2017.
Lemke und M. Hlimer, Meereismodelle, promet, Jahrg. 29, Nr. 1-4, 90-97, 2003.

(1)
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Bei der Least-Squares Methode werden die Residuen der Gleichungen in (1) und (2) sowie
Kontinuitatsgleichungen, in der L?(2)-Norm, im Funktional

2 2
1
Flo,v, A H) =||divo — pesH 8\’ -fe, xv)| —f +| dev o — =(dev g(v)
Ot 0 : 2 0 :
3 2 ||0A oH
+ ‘ tr o — §Ctr(€(u)) + 2P : g T div (vA) O 157 div (vH) 0

zusammengefasst. Die diskrete Approximation (o, vp, Ap, Hy) wird durch die Minimierung
von F in dem Raum (RTy)? x (Pi)*, welcher durch Randbedingungen eingeschrankt wird,
gewonnen. Hierbei bezeichnet P, den H'-konformen Raum der stiickweise Polynome vom

Grad k. Wird das Energiegleichgewicht
(3)

bewiesen, so liefert die Least-Squares Methode sowoh| optimale a priori Fehlerabschatzungen

als auch einen effizienten und zuverlassigen a posteriori Fehlerschatzer.
Ein beliebtes Beispiel ist ein durch das

(e, v, A, H)|||” = F(o,v, A H)
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1 Krafteinwirkungen von Atmosphare und Ozean zu t = 0
Die Geschwindigkeit des Zyklons ist so gewahlt, dass sie groBer in der Nahe des Auges ist,
_|x=xml
e 100
Varm(t) = (t — 4)(8 — |t — 4]) Ry _gosmte—a3(X — X ) o0
2
wahrend die Krafteinwirkung des Ozeans nicht von der Zeit abhangt:
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