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Obstacle Problem in Ferromagnetic Shielding



Shielding of EM-waves

Electromagnetic shielding
Effect of redirecting or blocking electromagnetic fields by barriers made of conductive or
magnetic materials.

Ferromagnetic shielding
Special case of Electromagnetic shielding: redirecting or blocking magnetic fields by
ferromagnetic materials. Ferromagnetic materials are materials with high (relative)
magnetic permeability, for example:

• Iron (µ/µ0 ≈ 200.000)
• Permalloy (µ/µ0 ≈ 100.000)
• Mu-metal (µ/µ0 ≈ 50.000)
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The obstacle problem

To model the ferromagnetic shielding effect, we combine a Maxwell-structured elliptic VI
of the first kind with a nonlinearity ν = µ−1 : Ω× R+

0 → R, resulting in the problem

(VI)



Find (A, ϕ) ∈ K× H1
0(Ω), s.t.∫

Ω

ν(·, | curlA|) curlA · curl(v− A) +
∫
Ω

∇ϕ · (v− A) ≥
∫
Ω

J · (v− A) ∀v ∈ K∫
Ω

A · ∇ψ = 0 ∀ψ ∈ H1
0(Ω)

& K := {v ∈ H0(curl) : | curl v| ≤ d(·) a.e. on Ω}.

• Ω ⊆ R3 open, bounded, Lipschitz,
simply connected

• (J,d) ∈ L2(Ω)× L2(Ω)

• ν is ‘standard’, i.e. Carathéodory,
strictly positive, bounded, strongly
monotone and Lipschitz
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The obstacle problem

We investigate:

• Is (VI) well-posed?
• How regular is its dual multiplier?
• Optimal control of (VI)

Main ingredient: A Yosida type penalization of (VI).
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Regularization of the Variational Inequality



Vector-valued penalization and smoothing

We define the penalization term

θ : Ω× Rn → Rn, (x, s) 7→

max(|s| − d(x), 0) s
|s| , s 6= 0

0, s = 0.

−1 1

θ

d(·) ≡ 1
n = 1

θγ=2

−1 1
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The regularized VI

For γ > 0, we consider the regularized (unconstrained) problem

(VEsolγ )


Find Aγ ∈ XN,0 := H0(curl) ∩ H(div=0), s.t.∫

Ω

ν(·, | curlAγ |) curlAγ · curl v+ γ

∫
Ω

θγ(·, curlAγ) · curl v =

∫
Ω

Jsol · v

∀v ∈ XN,0.

Lemma
For every Jsol ∈ H(div=0), the regularized problem (VEsolγ ) admits a unique solution Aγ .

Left-hand side induces a monotone and coercive operator XN,0 → X∗N,0.
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Convergence property of the regularization

Theorem
For Jsol ∈ H(div=0), the unique solution Aγ of (VEsolγ ) converges strongly in XN,0 to the
unique solution of the problem

(VIsol)


Find A ∈ K ∩ H(div=0), s.t.∫

Ω

ν(·, | curlA|) curlA · curl(v− A) ≥
∫
Ω

Jsol · (v− A) ∀v ∈ K ∩ H(div=0).
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Well-Posedness and Regularity



Well-posedness and dual formulation

Corollary

For every J ∈ L2(Ω), there exists a unique solution (A, ϕ) ∈ K× H1
0(Ω) to (VI). Moreover,

there exists a unique multiplier m ∈ XN,0 such that the solution (A, ϕ) is characterized by
the dual formulation

∫
Ω

ν(·, | curlA|) curlA · curl v+∇ϕ · v+ curlm · curl v =
∫
Ω

J · v ∀v ∈ H0(curl)∫
Ω

A · ∇ψ = 0 ∀ψ ∈ H1
0(Ω)∫

Ω

curlm · curl(v− A) ≤ 0 ∀v ∈ K.

How regular are the appearing multipliers?
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Multiplier regularity

Theorem
Let ∂Ω be connected. For J ∈ L2(Ω), let (A, ϕ,m) ∈ XN,0 × H1

0(Ω)× XN,0 denote the unique
solution to the previous dual formulation. Then, the following multiplier regularity
results hold true:

p ∈ [2, 3], J ∈ Lp(Ω), d ∈ Lp(Ω) ⇒ ϕ ∈ W1,p
0 (Ω), curlm ∈ Lp(Ω)

p ∈ [2, 6], J ∈ Lp(Ω), d ∈ Lp(Ω), Ω of class C1,1 ⇒ ϕ ∈ W1,p
0 (Ω), curlm ∈ Lp(Ω)

p ∈ [2,∞), J ∈ H0(curl), d ∈ Lp(Ω), Ω of class C2,1 ⇒ curlm ∈ Lp(Ω)
J ∈ H0(curl), d ∈ L∞(Ω), ν(·, | curlA|) ∈ C0,1(Ω), Ω of class C2,1 ⇒ curlm ∈ L∞(Ω)

The proof is mainly based on an Lp-Helmholz-decomposition and elliptic regularity
theory.
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Optimal Control



The optimal control problem



min
(J,A)∈L2(Ω)×XN,0

1
2‖ curlA− Bd‖2L2(Ω) +

λ

2 ‖J‖
2
L2(Ω)

subject to∫
Ω

ν(·, | curlA|) curlA · curl(v− A) +
∫
Ω

∇ϕ · (v− A) ≥
∫
Ω

J · (v− A) ∀v ∈ K∫
Ω

A · ∇ψ = 0 ∀ψ ∈ H1
0(Ω).

(P)
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Analysis of (P)

Theorem
There exists an optimal solution J⋆ ∈ H(div=0) to the problem (P).

The solution mapping
G : H(div=0) → XN,0, J 7→ A

is weak-strong continuous.

Task: Find optimality conditions for optimal controls J⋆.
Problem: The mapping G is not directionally differentiable.
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The regularized optimal control problem

(Pγ)



min
(Jγ ,Aγ)∈H(div=0)×XN,0

1
2‖ curlAγ − Bd‖2L2(Ω) +

λ

2 ‖Jγ‖
2
L2(Ω) +

λ

4 ‖Jγ − J⋆‖2L2(Ω)

subject to∫
Ω

ν(·, | curlAγ |) curlAγ · curl v+ γ

∫
Ω

θγ(·, curlAγ) · curl v =
∫
Ω

Jγ · v

∀v ∈ XN,0.

The solution mapping
Gγ : H(div=0) → XN,0, Jγ 7→ Aγ

is weak-strong continuous, i.e. there exists a minimizer (Jγ ,Aγ) ∈ H(div=0)× XN,0 for (Pγ).
Especially, as a result of our smoothing process, Gγ is weakly Gâteaux differentiable.
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Optimality system for (Pγ)

Theorem
Jγ ∈ H(div=0) optimal control for (Pγ). Then, there exists (Aγ ,Qγ) ∈ XN,0 × XN,0, s.t.∫

Ω

ν(·, | curlAγ |) curlAγ · curl v+ γ

∫
Ω

θγ(·, curlAγ) · curl v =
∫
Ω

Jγ · v ∀v ∈ XN,0∫
Ω

(Ds[ν(·, |s|)s] [curlAγ ])T curlQγ · curl v+ γ

∫
Ω

Dsθγ(·, curlAγ) curlQγ · curl v

=

∫
Ω

(curlAγ − Bd) · curl v ∀v ∈ XN,0

Jγ = −2
3λ

−1Qγ +
1
3 J

⋆.
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Limiting Analysis of (Pγ)

Given an optimal control J⋆ ∈ H(div=0) of (P), we obtain

• a sequence {J⋆γ}γ>0 ⊆ H(div=0) of minimizers to (Pγ) satisfying

J⋆γ → J⋆ strongly in L2(Ω) as γ → ∞.

• a sequence {(
A⋆γ ,Q⋆

γ , ξ
⋆
γ ,λ

⋆
γ

)}
γ>0 ⊆ XN,0 × XN,0 × L2(Ω)× L2(Ω)

of states and multipliers as well as limiting fields, s.t.

A⋆γ → A⋆ strongly in XN,0 as γ → ∞
Q⋆
γ ⇀ Q⋆ weakly in XN,0 as γ → ∞(

Pcurl XN,0ξ
⋆
γ ,Pcurl XN,0λ

⋆
γ

)
⇀ (curlm⋆, curln⋆) weakly in L2(Ω)× L2(Ω) as γ → ∞.
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Optimality system for (P)

Theorem
The limiting fields (A⋆,Q⋆, curlm⋆, curln⋆) ∈ XN,0 × XN,0 × curl XN,0 × curl XN,0 satisfy∫

Ω

ν(·, | curlA⋆|) curlA⋆ · curl v+
∫
Ω

curlm⋆ · curl v =
∫
Ω

J⋆ · v ∀v ∈ X0N∫
Ω

curlm⋆ · curl(v− A⋆) ≤ 0 ∀v ∈ K∫
Ω

(Ds[ν(·, |s|)s] [curlA⋆])T curlQ⋆ · curl v+
∫
Ω

curln⋆ · curl v

=

∫
Ω

(curlA⋆ − Bd) · curl v ∀v ∈ X0N

J⋆ = −λ−1Q⋆.
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Further characterization of the adjoint multiplier curln⋆

In the scalar H1-setting (without an additional quasilinearity) with an obstacle set

K = {v ∈ H1
0(Ω): v ≥ 0 a.e. on Ω}

it is known that the adjoint multiplier is characterized1 by∫
Ω

(adjoint multiplier) · (state) = 0∫
Ω

(adjoint multiplier) · (adjoint state) ≥ 0.

As a reminder, we have

K = {v ∈ H0(curl) : | curl v| ≤ d(·) a.e. on Ω}.

1F. Mignot and J.P. Puel. Optimal Control in Some Variational Inequalities. SIAM Journal on Control and
Optimization, 1984
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Further characterization of the adjoint multiplier curln⋆

∫
Ω

curln⋆ ·
(
d curlA⋆
| curlA⋆| − curlA⋆

)
= 0 ?

We recall that
Pcurl XN,0λ

⋆
γ ⇀ curln⋆ weakly in L2(Ω) as γ → ∞.

In particular, there exist σ⋆
d+
,σ⋆

d−
∈ L2(Ω), s.t.

χ{| curl A⋆γ |>d}Pcurl XN,0λ
⋆
γ ⇀ σ⋆

d+
weakly in L2(Ω) as γ → ∞

χ{| curl A⋆γ |≤d}Pcurl XN,0λ
⋆
γ ⇀ σ⋆

d−
weakly in L2(Ω) as γ → ∞

and
curln⋆ = σ⋆

d+
+ σ⋆

d−
.
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Further characterization of the adjoint multiplier curln⋆

Theorem
The adjoint multiplier curln⋆ ∈ L2(Ω) is additionally characterized by∫

Ω

σ⋆
d+

·
(
d curlA⋆
| curlA⋆| − curlA⋆

)
= 0

curln⋆ = σ⋆
d+

+ σ⋆
d−∫

Ω

curln⋆ · curlQ⋆ ≥ 0.
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Thank you for your attention!
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