Quasilinear Maxwell Variational Inequalities in Ferromagnetic Shielding

joint work with Gabriele Caselli, Irwin Yousept

Maurice Hensel
The 1st East and Southeast Asia Workshop on Inverse Problems and Optimal Control
August 01st - 05th, 2022
University of Duisburg-Essen

Obstacle Problem in Ferromagnetic Shielding

Electromagnetic shielding

Effect of redirecting or blocking electromagnetic fields by barriers made of conductive or magnetic materials.

Electromagnetic shielding

Effect of redirecting or blocking electromagnetic fields by barriers made of conductive or magnetic materials.

Ferromagnetic shielding

Special case of Electromagnetic shielding: redirecting or blocking magnetic fields by ferromagnetic materials. Ferromagnetic materials are materials with high (relative) magnetic permeability, for example:

- Iron

$$
\left(\mu / \mu_{0} \approx 200.000\right)
$$

- Permalloy $\quad\left(\mu / \mu_{0} \approx 100.000\right)$
- Mu-metal $\quad\left(\mu / \mu_{0} \approx 50.000\right)$

To model the ferromagnetic shielding effect, we combine a Maxwell-structured elliptic VI of the first kind with a nonlinearity $\nu=\mu^{-1}: \Omega \times \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}$, resulting in the problem
(VI) $\left\{\begin{array}{l}\text { Find }(A, \phi) \in K \times H_{0}^{1}(\Omega), \text { s.t. } \\ \int_{\Omega} \nu(\cdot,|\operatorname{curl} A|) \operatorname{curl} A \cdot \operatorname{curl}(v-A)+\int_{\Omega} \nabla \phi \cdot(v-A) \geq \int_{\Omega} J \cdot(v-A) \quad \forall v \in K \\ \int_{\Omega} A \cdot \nabla \psi=0 \quad \forall \psi \in H_{0}^{1}(\Omega)\end{array}\right.$

$$
\text { \& } \quad K:=\left\{v \in H_{0}(\text { curl }):|\operatorname{curl} v| \leq d(\cdot) \text { a.e. on } \Omega\right\} \text {. }
$$

To model the ferromagnetic shielding effect, we combine a Maxwell-structured elliptic VI of the first kind with a nonlinearity $\nu=\mu^{-1}: \Omega \times \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}$, resulting in the problem
(VI) $\left\{\begin{array}{l}\text { Find }(A, \phi) \in K \times H_{0}^{1}(\Omega), \text { s.t. } \\ \int_{\Omega} \nu(\cdot,|\operatorname{curl} A|) \operatorname{curl} A \cdot \operatorname{curl}(v-A)+\int_{\Omega} \nabla \phi \cdot(v-A) \geq \int_{\Omega} J \cdot(v-A) \quad \forall v \in K \\ \int_{\Omega} A \cdot \nabla \psi=0 \quad \forall \psi \in H_{0}^{1}(\Omega)\end{array}\right.$

$$
\text { \& } \quad K:=\left\{v \in H_{0}(\operatorname{curl}):|\operatorname{curl} v| \leq d(\cdot) \text { a.e. on } \Omega\right\} \text {. }
$$

- $\Omega \subseteq \mathbb{R}^{3}$ open, bounded, Lipschitz, simply connected
- $(J, d) \in L^{2}(\Omega) \times L^{2}(\Omega)$
- ν is 'standard', i.e. Carathéodory, strictly positive, bounded, strongly monotone and Lipschitz

We investigate:

- Is (VI) well-posed?
- How regular is its dual multiplier?
- Optimal control of (VI)

Main ingredient: A Yosida type penalization of (VI).

Optimal control of variational inequalities:

- V. Barbu
- F. Mignot and J.P. Puel
- M. Bergounioux
-...
Optimal control of Maxwell-related PDEs:
- F. Tröltzsch
- I. Yousept
- A. Valli
- K. Ito and K. Kunisch
- M. Hintermüller
- R. Herzog, C. Meyer and G. Wachsmuth

Regularization of the Variational Inequality

Vector-valued penalization and smoothing

We define the penalization term

$$
\boldsymbol{\theta}: \Omega \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad(x, s) \mapsto \begin{cases}\max (|s|-d(x), 0) \frac{s}{|s|}, & s \neq 0 \\ 0, & s=0\end{cases}
$$

Vector-valued penalization and smoothing

We define the penalization term

$$
\boldsymbol{\theta}_{\gamma}: \Omega \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad(x, s) \mapsto \begin{cases}\max _{\gamma}(|s|-d(x), 0) \frac{s}{|s|}, & s \neq 0 \\ 0, & s=0\end{cases}
$$

Vector-valued penalization and smoothing

We define the penalization term

$$
\boldsymbol{\theta}_{\gamma}: \Omega \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad(x, s) \mapsto \begin{cases}\max _{\gamma}(|s|-d(x), 0) \frac{s}{|s|}, & s \neq 0 \\ 0, & s=0\end{cases}
$$

Vector-valued penalization and smoothing

We define the penalization term

$$
\boldsymbol{\theta}_{\gamma}: \Omega \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad(x, s) \mapsto \begin{cases}\max _{\gamma}(|s|-d(x), 0) \frac{s}{|s|}, & s \neq 0 \\ 0, & s=0\end{cases}
$$

Vector-valued penalization and smoothing

We define the penalization term

$$
\boldsymbol{\theta}_{\gamma}: \Omega \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad(x, s) \mapsto \begin{cases}\max _{\gamma}(|s|-d(x), 0) \frac{s}{|s|}, & s \neq 0 \\ 0, & s=0\end{cases}
$$

Vector-valued penalization and smoothing

We define the penalization term

$$
\boldsymbol{\theta}_{\gamma}: \Omega \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad(x, s) \mapsto \begin{cases}\max _{\gamma}(|s|-d(x), 0) \frac{s}{|s|}, & s \neq 0 \\ 0, & s=0\end{cases}
$$

For $\gamma>0$, we consider the regularized (unconstrained) problem

$$
\left(\mathrm{VE}_{\gamma}^{\text {sol }}\right) \quad\left\{\begin{array}{l}
\text { Find } A_{\gamma} \in X_{N, 0}:=H_{0}(\operatorname{curl}) \cap H(\operatorname{div}=0), \text { s.t. } \\
\int_{\Omega} \nu\left(\cdot,\left|\operatorname{curl} A_{\gamma}\right|\right) \operatorname{curl} A_{\gamma} \cdot \operatorname{curl} v+\gamma \int_{\Omega} \theta_{\gamma}\left(\cdot, \operatorname{curl} A_{\gamma}\right) \cdot \operatorname{curl} v=\int_{\Omega} J_{\text {sol }} \cdot v \\
\forall v \in X_{N, 0} .
\end{array}\right.
$$

For $\gamma>0$, we consider the regularized (unconstrained) problem

$$
\left(\mathrm{VE}_{\gamma}^{\text {sol }}\right) \quad\left\{\begin{array}{l}
\text { Find } A_{\gamma} \in X_{N, 0}:=H_{0}(\operatorname{curl}) \cap H(\operatorname{div}=0), \text { s.t. } \\
\int_{\Omega} \nu\left(\cdot,\left|\operatorname{curl} A_{\gamma}\right|\right) \operatorname{curl} A_{\gamma} \cdot \operatorname{curl} v+\gamma \int_{\Omega} \theta_{\gamma}\left(\cdot, \operatorname{curl} A_{\gamma}\right) \cdot \operatorname{curl} v=\int_{\Omega} J_{\text {sol }} \cdot v \\
\forall v \in X_{N, 0} .
\end{array}\right.
$$

For $\gamma>0$, we consider the regularized (unconstrained) problem
$\left(\mathrm{VE}_{\gamma}^{\text {sol }}\right) \quad\left\{\begin{array}{l}\text { Find } A_{\gamma} \in X_{N, 0}:=H_{0}(\operatorname{curl}) \cap H(\operatorname{div}=0), \text { s.t. } \\ \int_{\Omega} \nu\left(\cdot,\left|\operatorname{curl} A_{\gamma}\right|\right) \operatorname{curl} A_{\gamma} \cdot \operatorname{curl} v+\gamma \int_{\Omega} \theta_{\gamma}\left(\cdot, \operatorname{curl} A_{\gamma}\right) \cdot \operatorname{curl} v=\int_{\Omega} J_{\text {sol }} \cdot v \\ \forall v \in X_{N, 0} .\end{array}\right.$

Lemma

For every $J_{\text {sol }} \in H(\operatorname{div}=0)$, the regularized problem $\left(\mathrm{VE}_{\gamma}^{\text {sol }}\right)$ admits a unique solution A_{γ}.
Left-hand side induces a monotone and coercive operator $X_{N, 0} \rightarrow X_{N, 0}^{*}$.

Convergence property of the regularization

Theorem

For $I_{\text {sol }} \in H($ div $=0)$, the unique solution A_{γ} of $\left(V_{\gamma}^{\text {sol }}\right)$ converges strongly in $X_{N, 0}$ to the unique solution of the problem

$$
\left(V_{I_{\text {sol }}}\right) \quad\left\{\begin{array}{l}
\text { Find } A \in K \cap H(\operatorname{div}=0), \text { s.t. } \\
\int_{\Omega} \nu(\cdot,|\operatorname{curl} A|) \operatorname{curl} A \cdot \operatorname{curl}(v-A) \geq \int_{\Omega} J_{\text {sol }} \cdot(v-A) \quad \forall v \in K \cap H(\operatorname{div}=0) .
\end{array}\right.
$$

Well-Posedness and Regularity

Corollary

For every $J \in L^{2}(\Omega)$, there exists a unique solution $(A, \phi) \in K \times H_{0}^{1}(\Omega)$ to (VI). Moreover, there exists a unique multiplier $m \in X_{N, 0}$ such that the solution (A, ϕ) is characterized by the dual formulation

$$
\left\{\begin{array}{l}
\int_{\Omega} \nu(\cdot,|\operatorname{curl} A|) \operatorname{curl} A \cdot \operatorname{curl} v+\nabla \phi \cdot v+\operatorname{curl} m \cdot \operatorname{curl} v=\int_{\Omega} J \cdot v \quad \forall v \in H_{0}(\operatorname{curl}) \\
\int_{\Omega} A \cdot \nabla \psi=0 \quad \forall \psi \in H_{0}^{1}(\Omega) \\
\int_{\Omega} \operatorname{curl} m \cdot \operatorname{curl}(v-A) \leq 0 \quad \forall v \in K .
\end{array}\right.
$$

Corollary

For every $J \in L^{2}(\Omega)$, there exists a unique solution $(A, \phi) \in K \times H_{0}^{1}(\Omega)$ to (VI). Moreover, there exists a unique multiplier $m \in X_{N, 0}$ such that the solution (A, ϕ) is characterized by the dual formulation

$$
\left\{\begin{array}{l}
\int_{\Omega} \nu(\cdot,|\operatorname{curl} A|) \operatorname{curl} A \cdot \operatorname{curl} v+\nabla \phi \cdot v+\operatorname{curl} m \cdot \operatorname{curl} v=\int_{\Omega} J \cdot v \quad \forall v \in H_{0}(\operatorname{curl}) \\
\int_{\Omega} A \cdot \nabla \psi=0 \quad \forall \psi \in H_{0}^{1}(\Omega) \\
\int_{\Omega} \operatorname{curl} m \cdot \operatorname{curl}(v-A) \leq 0 \quad \forall v \in K .
\end{array}\right.
$$

How regular are the appearing multipliers?

Theorem

Let $\partial \Omega$ be connected. For $J \in L^{2}(\Omega)$, let $(A, \phi, m) \in X_{N, 0} \times H_{0}^{1}(\Omega) \times X_{N, 0}$ denote the unique solution to the previous dual formulation. Then, the following multiplier regularity results hold true:

$$
\begin{array}{ll}
p \in[2,3], J \in L^{p}(\Omega), d \in L^{p}(\Omega) & \Rightarrow \phi \in W_{0}^{1, p}(\Omega), \operatorname{curl} m \in L^{p}(\Omega) \\
p \in[2,6], J \in L^{p}(\Omega), d \in L^{P}(\Omega), \Omega \text { of class } C^{1,1} & \Rightarrow \phi \in W_{0}^{1, p}(\Omega), \operatorname{curlm} \in L^{p}(\Omega) \\
p \in[2, \infty), J \in H_{0}(c u r l), d \in L^{P}(\Omega), \Omega \text { of class } c^{2,1} \\
J \in H_{0}(\text { curl }), d \in L^{\infty}(\Omega), \nu(\cdot,|\operatorname{curl} A|) \in \mathcal{C}^{0,1}(\bar{\Omega}), \Omega \text { of class } \mathcal{C}^{2,1} \Rightarrow \operatorname{curlm} \in L^{p}(\Omega)
\end{array}
$$

Theorem

Let $\partial \Omega$ be connected. For $J \in L^{2}(\Omega)$, let $(A, \phi, m) \in X_{N, 0} \times H_{0}^{1}(\Omega) \times X_{N, 0}$ denote the unique solution to the previous dual formulation. Then, the following multiplier regularity results hold true:

$$
\begin{array}{ll}
p \in[2,3], J \in L^{p}(\Omega), d \in L^{p}(\Omega) & \Rightarrow \phi \in W_{0}^{1, p}(\Omega), \operatorname{curl} m \in L^{p}(\Omega) \\
p \in[2,6], J \in L^{P}(\Omega), d \in L^{P}(\Omega), \Omega \text { of class } c^{1,1} & \Rightarrow \phi \in W_{0}^{1, p}(\Omega), \operatorname{curlm} \in L^{P}(\Omega) \\
\left.p \in[2, \infty), J \in H_{0}(\operatorname{curl}), d \in L^{P}(\Omega), \Omega \text { of class } c^{2,1}\right) \\
J \in H_{0}(\text { curl }), d \in L^{\infty}(\Omega), \nu(\cdot,|\operatorname{curl} A|) \in \mathcal{C}^{0,1}(\bar{\Omega}), \Omega \text { of class } \mathcal{C}^{2,1} \Rightarrow \operatorname{curlm} \in L^{\infty}(\Omega)
\end{array}
$$

The proof is mainly based on an L^{p}-Helmholz-decomposition and elliptic regularity theory.

Optimal Control

$$
\left\{\begin{array}{l}
\min _{(U, A) \in L^{2}(\Omega) \times X_{N, 0}} \frac{1}{2}\left\|\operatorname{curl} A-B_{d}\right\|_{L^{2}(\Omega)}^{2}+\frac{\lambda}{2}\| \| \|_{L^{2}(\Omega)}^{2} \\
\text { subject to } \\
\int_{\Omega} \nu(\cdot,|\operatorname{curl} A|) \operatorname{curl} A \cdot \operatorname{curl}(v-A)+\int_{\Omega} \nabla \phi \cdot(v-A) \geq \int_{\Omega} J \cdot(v-A) \quad \forall v \in K \\
\int_{\Omega} A \cdot \nabla \psi=0 \quad \forall \psi \in H_{0}^{1}(\Omega) .
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\min _{(v, A) \in L^{2}(\Omega) \times X_{N, 0}} \frac{1}{0}\left\|\operatorname{curl} A-B_{d}\right\|_{L^{2}(\Omega)}^{2}+\frac{\lambda}{2}\| \|_{s_{01}}\left\|_{L^{2}(\Omega)}^{2}+\frac{\lambda}{2}\right\| \nabla \psi_{j} \|_{L^{2}(\Omega)}^{2} \\
\text { subject to } \\
\int_{\Omega} \nu(\cdot,|\operatorname{curl} A|) \operatorname{curl} A \cdot \operatorname{curl}(v-A)+\int_{\Omega} \nabla \phi \cdot(v-A) \geq \int_{\Omega} J \cdot(v-A) \quad \forall v \in K \\
\int_{\Omega} A \cdot \nabla \psi=0 \quad \forall \psi \in H_{0}^{1}(\Omega) .
\end{array}\right.
$$

(P)

$$
\left\{\begin{array}{l}
\min _{(U, A) \in L^{2}(\Omega) \times X_{N, 0}} \frac{1}{2}\left\|\operatorname{curl} A-B_{d}\right\|_{L^{2}(\Omega)}^{2}+\frac{\lambda}{2}\| \|_{\text {sol }} \|_{L^{2}(\Omega)}^{2} \\
\text { subject to } \\
\int_{\Omega} \nu(\cdot,|\operatorname{curl} A|) \operatorname{curl} A \cdot \operatorname{curl}(v-A)+\int_{\Omega} \nabla \phi \cdot(v-A) \geq \int_{\Omega} J \cdot(v-A) \quad \forall v \in K \\
\int_{\Omega} A \cdot \nabla \psi=0 \quad \forall \psi \in H_{0}^{1}(\Omega) .
\end{array}\right.
$$

$$
\text { (P) }\left\{\begin{array}{l}
\min _{(J, A) \in H(\operatorname{div}=0) \times x_{N, 0}} \frac{1}{2}\left\|\operatorname{curl} A-B_{d}\right\|_{L^{2}(\Omega)}^{2}+\frac{\lambda}{2}\| \| \|_{L^{2}(\Omega)}^{2} \\
\text { subject to } \\
\int_{\Omega} \nu(\cdot,|\operatorname{curl} A|) \operatorname{curl} A \cdot \operatorname{curl}(v-A)+\int_{\Omega} \nabla \phi \cdot(v-A) \geq \int_{\Omega} J \cdot(v-A) \quad \forall v \in K \\
\int_{\Omega} A \cdot \nabla \psi=0 \quad \forall \psi \in H_{0}^{1}(\Omega) .
\end{array}\right.
$$

(P) $\left\{\begin{array}{l}\min _{(J, A) \in H(\text { div }=0) \times X_{N, 0}} \frac{1}{2}\left\|\operatorname{curl} A-B_{d}\right\|_{L^{2}(\Omega)}^{2}+\frac{\lambda}{2}\| \| \|_{L^{2}(\Omega)}^{2} \\ \text { subject to } \\ \int_{\Omega} \nu(\cdot,|\operatorname{curl}| A \mid) \operatorname{curl} A \cdot \operatorname{curl}(v-A) \geq \int_{\Omega} J \cdot(v-A) \quad \forall v \in K \cap H(\operatorname{div}=0) .\end{array}\right.$

Analysis of (P)

Theorem

There exists an optimal solution $J^{\star} \in H(\operatorname{div}=0)$ to the problem (P).

Analysis of (P)

Theorem

There exists an optimal solution $J^{\star} \in H(\operatorname{div}=0)$ to the problem (P).
The solution mapping

$$
G: H(\operatorname{div}=0) \rightarrow X_{N, 0}, \quad J \mapsto A
$$

is weak-strong continuous.

Analysis of (P)

Theorem

There exists an optimal solution $J^{\star} \in H(\operatorname{div}=0)$ to the problem (P).
The solution mapping

$$
G: H(\operatorname{div}=0) \rightarrow X_{N, 0}, \quad J \mapsto A
$$

is weak-strong continuous.

Task: Find optimality conditions for optimal controls J^{\star}.
Problem: The mapping G is not directionally differentiable.

$$
\left\{\begin{array}{l}
\min _{\left(\gamma_{\gamma}, A_{\gamma}\right) \in H(d i v=0) \times X_{N, 0}} \frac{1}{2}\left\|\operatorname{curl} A_{\gamma}-B_{d}\right\|_{L^{2}(\Omega)}^{2}+\frac{\lambda}{2}\| \|_{\gamma}\left\|_{L^{2}(\Omega)}^{2}+\frac{\lambda}{4}\right\|\left\|_{\gamma}-J^{\star}\right\|_{L^{2}(\Omega)}^{2} \\
\text { subject to } \\
\int_{\Omega} \nu\left(\cdot,\left|\operatorname{curl} A_{\gamma}\right|\right) \operatorname{curl} A_{\gamma} \cdot \operatorname{curl} v+\gamma \int_{\Omega} \theta_{\gamma}\left(\cdot, \operatorname{curl} A_{\gamma}\right) \cdot \operatorname{curl} v=\int_{\Omega} J_{\gamma} \cdot v \\
\forall v \in X_{N, 0} .
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\min _{\left(\gamma_{\gamma}, A_{\gamma}\right) \in H(d i v=0) \times X_{N, 0}} \frac{1}{2}\left\|\operatorname{curl} A_{\gamma}-B_{d}\right\|_{L^{2}(\Omega)}^{2}+\frac{\lambda}{2}\| \|_{\gamma}\left\|_{L^{2}(\Omega)}^{2}+\frac{\lambda}{4}\right\|\left\|_{\gamma}-J^{\star}\right\|_{L^{2}(\Omega)}^{2} \\
\text { subject to } \\
\int_{\Omega} \nu\left(\cdot, \mid \operatorname{curl}\left(A_{\gamma} \mid\right) \operatorname{curl} A_{\gamma} \cdot \operatorname{curl} v+\gamma \int_{\Omega} \theta_{\gamma}\left(\cdot, \operatorname{curl} A_{\gamma}\right) \cdot \operatorname{curl} v=\int_{\Omega} J_{\gamma} \cdot v\right. \\
\forall v \in X_{N, 0} .
\end{array}\right.
$$

The solution mapping

$$
G_{\gamma}: H(\operatorname{div}=0) \rightarrow X_{N, 0}, \quad J_{\gamma} \mapsto A_{\gamma}
$$

is weak-strong continuous, i.e. there exists a minimizer $\left(J_{\gamma}, A_{\gamma}\right) \in H(\operatorname{div}=0) \times X_{N, 0}$ for $\left(P_{\gamma}\right)$. Especially, as a result of our smoothing process, G_{γ} is weakly Gâteaux differentiable.

Theorem

$J_{\gamma} \in H(\operatorname{div}=0)$ optimal control for $\left(P_{\gamma}\right)$. Then, there exists $\left(A_{\gamma}, Q_{\gamma}\right) \in X_{N, 0} \times X_{N, 0}$, s.t.

$$
\begin{aligned}
& \int_{\Omega} \nu\left(\cdot,\left|\operatorname{curl} A_{\gamma}\right|\right) \operatorname{curl} A_{\gamma} \cdot \operatorname{curl} v+\gamma \int_{\Omega} \theta_{\gamma}\left(\cdot, \operatorname{curl} A_{\gamma}\right) \cdot \operatorname{curl} v=\int_{\Omega} J_{\gamma} \cdot v \quad \forall v \in X_{N, 0} \\
& \int_{\Omega}\left(D_{s}[\nu(\cdot,|s|) s]\left[\operatorname{curl} A_{\gamma}\right]\right)^{\top} \operatorname{curl} Q_{\gamma} \cdot \operatorname{curl} v+\gamma \int_{\Omega} D_{s} \theta_{\gamma}\left(\cdot, \operatorname{curl} A_{\gamma}\right) \operatorname{curl} Q_{\gamma} \cdot \operatorname{curl} v \\
& =\int_{\Omega}\left(\operatorname{curl} A_{\gamma}-B_{d}\right) \cdot \operatorname{curl} v \quad \forall v \in X_{N, 0} \\
& J_{\gamma}=-\frac{2}{3} \lambda^{-1} Q_{\gamma}+\frac{1}{3} J^{\star} .
\end{aligned}
$$

Theorem

$J_{\gamma} \in H($ div $=0)$ optimal control for $\left(P_{\gamma}\right)$. Then, there exists $\left(A_{\gamma}, Q_{\gamma}\right) \in X_{N, 0} \times X_{N, 0}$, s.t.

$$
\begin{aligned}
& \int_{\Omega} \nu\left(\cdot,|\operatorname{curl}| A_{\gamma} \mid\right) \operatorname{curl} A_{\gamma} \cdot \operatorname{curl} v+\int_{\Omega} \underbrace{\gamma \theta_{\gamma}\left(\cdot, \operatorname{curl} A_{\gamma}\right)}_{=\xi_{\gamma}} \cdot \operatorname{curl} \mid v=\int_{\Omega} J_{\gamma} \cdot v \quad \forall v \in X_{N, 0} \\
& \int_{\Omega}\left(D_{s}[\nu(\cdot,|s|) s]\left[\operatorname{curl} A_{\gamma}\right]\right)^{\top} \operatorname{curl} Q_{\gamma} \cdot \operatorname{curlv}+\int_{\Omega} \underbrace{\gamma D_{s} \theta_{\gamma}\left(\cdot, \operatorname{curl} A_{\gamma}\right) \operatorname{curl} Q_{\gamma}}_{=\lambda_{\gamma}} \cdot \operatorname{curl} v \\
& =\int_{\Omega}\left(\operatorname{curl} A_{\gamma}-B_{d}\right) \cdot \operatorname{curl} v \quad \forall v \in X_{N, 0} \\
& J_{\gamma}=-\frac{2}{3} \lambda^{-1} Q_{\gamma}+\frac{1}{3} J^{\star} \cdot
\end{aligned}
$$

Limiting Analysis of $\left(P_{\gamma}\right)$

Given an optimal control $J^{\star} \in H($ div $=0)$ of (P), we obtain

- a sequence $\left\{J_{\gamma}^{\star}\right\}_{\gamma>0} \subseteq H(\operatorname{div}=0)$ of minimizers to $\left(P_{\gamma}\right)$ satisfying

$$
J_{\gamma}^{\star} \rightarrow J^{\star} \quad \text { strongly in } L^{2}(\Omega) \quad \text { as } \gamma \rightarrow \infty .
$$

Limiting Analysis of $\left(\mathrm{P}_{\gamma}\right)$

Given an optimal control $J^{\star} \in H($ div $=0)$ of (P), we obtain

- a sequence $\left\{J_{\gamma}^{\star}\right\}_{\gamma>0} \subseteq H($ div $=0)$ of minimizers to $\left(P_{\gamma}\right)$ satisfying

$$
J_{\gamma}^{\star} \rightarrow J^{\star} \quad \text { strongly in } L^{2}(\Omega) \quad \text { as } \gamma \rightarrow \infty .
$$

- a sequence

$$
\left\{\left(A_{\gamma}^{\star}, Q_{\gamma}^{\star}, \xi_{\gamma}^{\star}, \lambda_{\gamma}^{\star}\right)\right\}_{\gamma>0} \subseteq X_{N, 0} \times X_{N, 0} \times L^{2}(\Omega) \times L^{2}(\Omega)
$$

of states and multipliers as well as limiting fields, s.t.

$$
\begin{array}{rlrll}
\boldsymbol{A}_{\gamma}^{\star} \rightarrow \boldsymbol{A}^{\star} & \text { strongly } & \text { in } X_{N, 0} & \text { as } \gamma \rightarrow \infty \\
Q_{\gamma}^{\star} & \rightharpoonup Q^{\star} & \text { weakly } & \text { in } X_{N, 0} & \text { as } \gamma \rightarrow \infty \\
\left(\mathbb{P}_{\text {curl } X_{N, 0}} \boldsymbol{\xi}_{\gamma}^{\star}, \mathbb{P}_{\text {curl } X_{N, 0}} \boldsymbol{\lambda}_{\gamma}^{\star}\right) & \rightharpoonup\left(\text { curl } m^{\star}, \text { curln } n^{\star}\right) & \text { weakly } & \text { in } L^{2}(\Omega) \times L^{2}(\Omega) & \text { as } \gamma \rightarrow \infty .
\end{array}
$$

Theorem

The limiting fields $\left(A^{\star}, Q^{\star}, \operatorname{curl} m^{\star}, \operatorname{curl} n^{\star}\right) \in X_{N, 0} \times X_{N, 0} \times \operatorname{curl} X_{N, 0} \times \operatorname{curl} X_{N, 0}$ satisfy

$$
\begin{aligned}
& \int_{\Omega} \nu\left(\cdot,\left|\operatorname{curl} A^{\star}\right|\right) \operatorname{curl} A^{\star} \cdot \operatorname{curl} v+\int_{\Omega} \operatorname{curl} m^{\star} \cdot \operatorname{curl} v=\int_{\Omega} J^{\star} \cdot v \quad \forall v \in X_{N}^{0} \\
& \int_{\Omega} \operatorname{curl} m^{\star} \cdot \operatorname{curl}\left(v-A^{\star}\right) \leq 0 \quad \forall v \in K \\
& \int_{\Omega}\left(D_{S}[\nu(\cdot,|s|) s]\left[\operatorname{curl} A^{\star}\right]\right)^{\top} \operatorname{curl} Q^{\star} \cdot \operatorname{curl} v+\int_{\Omega} \operatorname{curl} n^{\star} \cdot \operatorname{curl} v \\
& =\int_{\Omega}\left(\operatorname{curl} A^{\star}-B_{d}\right) \cdot \operatorname{curl} v \quad \forall v \in X_{N}^{0} \\
& J^{\star}=-\lambda^{-1} Q^{\star} \cdot
\end{aligned}
$$

Theorem

The limiting fields $\left(A^{\star}, Q^{\star}, \operatorname{curl} m^{\star}, \operatorname{curl} n^{\star}\right) \in X_{N, 0} \times X_{N, 0} \times \operatorname{curl} X_{N, 0} \times \operatorname{curl} X_{N, 0}$ satisfy

$$
\begin{aligned}
& \int_{\Omega} \nu\left(\cdot,\left|\operatorname{curl} A^{\star}\right|\right) \operatorname{curl} A^{\star} \cdot \operatorname{curl} v+\int_{\Omega} \operatorname{curl} m^{\star} \cdot \operatorname{curl} v=\int_{\Omega} J^{\star} \cdot v \quad \forall v \in X_{N}^{0} \\
& \int_{\Omega} \operatorname{curl} m^{\star} \cdot \operatorname{curl}\left(v-A^{\star}\right) \leq 0 \quad \forall v \in K \\
& \int_{\Omega}\left(D_{S}[\nu(\cdot,|s|) s]\left[\operatorname{curl} A^{\star}\right]\right)^{\top} \operatorname{curl} Q^{\star} \cdot \operatorname{curl} v+\int_{\Omega} \operatorname{curl} n^{\star} \cdot \operatorname{curl} v \\
& =\int_{\Omega}\left(\operatorname{curl} A^{\star}-B_{d}\right) \cdot \operatorname{curl} v \quad \forall v \in X_{N}^{0} \\
& J^{\star}=-\lambda^{-1} Q^{\star} \cdot
\end{aligned}
$$

In the scalar H^{1}-setting (without an additional quasilinearity) with an obstacle set

$$
K=\left\{v \in H_{0}^{1}(\Omega): v \geq 0 \text { a.e. on } \Omega\right\}
$$

it is known that the adjoint multiplier is characterized ${ }^{1}$ by

$$
\begin{aligned}
\left.\int_{\Omega} \text { (adjoint multiplier }\right) \cdot(\text { state }) & =0 \\
\left.\int_{\Omega} \text { (adjoint multiplier }\right) \cdot(\text { adjoint state }) & \geq 0 .
\end{aligned}
$$

[^0]In the scalar H^{1}-setting (without an additional quasilinearity) with an obstacle set

$$
K=\left\{v \in H_{0}^{1}(\Omega): v \geq 0 \text { a.e. on } \Omega\right\}
$$

it is known that the adjoint multiplier is characterized ${ }^{1}$ by

$$
\begin{aligned}
\int_{\Omega}(\text { adjoint multiplier }) \cdot(\text { state }) & =0 \\
\int_{\Omega}(\text { adjoint multiplier }) \cdot(\text { adjoint state }) & \geq 0 .
\end{aligned}
$$

As a reminder, we have

$$
K=\left\{v \in H_{0}(\operatorname{curl}):|\operatorname{curl} v| \leq d(\cdot) \text { a.e. on } \Omega\right\} .
$$

[^1]In the scalar H^{1}-setting (without an additional quasilinearity) with an obstacle set

$$
K=\left\{v \in H_{0}^{1}(\Omega): v \geq 0 \text { a.e. on } \Omega\right\}
$$

it is known that the adjoint multiplier is characterized ${ }^{1}$ by

$$
\begin{aligned}
\left.\int_{\Omega} \text { (adjoint multiplier }\right) \cdot(\text { state }) & =0 \\
\int_{\Omega}(\text { adjoint multiplier }) \cdot(\text { adjoint state }) & \geq 0 .
\end{aligned}
$$

As a reminder, we have

$$
K=\left\{v \in H_{0}(\operatorname{curl}):|\operatorname{curl} v| \leq d(\cdot) \text { a.e. on } \Omega\right\} .
$$

[^2]In the scalar H^{1}-setting (without an additional quasilinearity) with an obstacle set

$$
K=\left\{v \in H_{0}^{1}(\Omega): v \geq 0 \text { a.e. on } \Omega\right\}
$$

it is known that the adjoint multiplier is characterized ${ }^{1}$ by

$$
\begin{aligned}
\int_{\Omega}(\text { adjoint multiplier }) \cdot(\text { state }) & =0 \\
\int_{\Omega} \operatorname{curl} n^{\star} \cdot \operatorname{curl} Q^{\star} & \geq 0 .
\end{aligned}
$$

As a reminder, we have

$$
K=\left\{v \in H_{0}(\operatorname{curl}):|\operatorname{curl} v| \leq d(\cdot) \text { a.e. on } \Omega\right\} .
$$

[^3]In the scalar H^{1}-setting (without an additional quasilinearity) with an obstacle set

$$
K=\left\{v \in H_{0}^{1}(\Omega): v \geq 0 \text { a.e. on } \Omega\right\}
$$

it is known that the adjoint multiplier is characterized ${ }^{1}$ by

$$
\begin{aligned}
\int_{\Omega}(\text { adjoint multiplier }) \cdot(\text { state }) & =0 \\
\int_{\Omega} \operatorname{curl} n^{\star} \cdot \operatorname{curl} Q^{\star} & \geq 0 .
\end{aligned}
$$

As a reminder, we have

$$
K=\left\{v \in H_{0}(\operatorname{curl}):|\operatorname{curl} v| \leq d(\cdot) \text { a.e. on } \Omega\right\} .
$$

[^4]In the scalar H^{1}-setting (without an additional quasilinearity) with an obstacle set

$$
K=\left\{v \in H_{0}^{1}(\Omega): v \geq 0 \text { a.e. on } \Omega\right\}
$$

it is known that the adjoint multiplier is characterized ${ }^{1}$ by

$$
\begin{gathered}
\int_{\Omega} \operatorname{curl} n^{\star} \cdot\left(d \frac{\operatorname{curl} A^{\star}}{\left|\operatorname{curl} A^{\star}\right|}-\operatorname{curl} A^{\star}\right)=0 \quad ? \\
\int_{\Omega} \operatorname{curl} n^{\star} \cdot \operatorname{curl} Q^{\star} \geq 0
\end{gathered}
$$

As a reminder, we have

$$
K=\left\{v \in H_{0}(\operatorname{curl}):|\operatorname{curl} v| \leq d(\cdot) \text { a.e. on } \Omega\right\} .
$$

[^5]$$
\int_{\Omega} \operatorname{curl} n^{\star} \cdot\left(d \frac{\operatorname{curl} A^{\star}}{\left|\operatorname{curl} A^{\star}\right|}-\operatorname{curl} A^{\star}\right)=0 ?
$$
$$
\int_{\Omega} \operatorname{curl} n^{\star} \cdot\left(d \frac{\operatorname{curl} A^{\star}}{\left|\operatorname{curl} A^{\star}\right|}-\operatorname{curl} A^{\star}\right)=0 \quad ?
$$

We recall that

$$
\mathbb{P}_{\text {curl } X_{N, 0}} \lambda_{\gamma}^{\star} \rightharpoonup \text { curl } n^{\star} \quad \text { weakly in } L^{2}(\Omega) \quad \text { as } \gamma \rightarrow \infty .
$$

$$
\int_{\Omega} \operatorname{curl} n^{\star} \cdot\left(d \frac{\operatorname{curl} A^{\star}}{\left|\operatorname{curl} A^{\star}\right|}-\operatorname{curl} A^{\star}\right)=0 \quad ?
$$

We recall that

$$
\mathbb{P}_{\text {curl } X_{N, 0}} \lambda_{\gamma}^{\star} \rightharpoonup \text { curl }^{\star} \quad \text { weakly in } L^{2}(\Omega) \quad \text { as } \gamma \rightarrow \infty .
$$

In particular, there exist $\boldsymbol{\sigma}_{d_{+}}^{\star}, \boldsymbol{\sigma}_{d_{-}}^{\star} \in L^{2}(\Omega)$, s.t.

$$
\begin{array}{lll}
\chi_{\left\{\mid \text {curl } A_{\gamma}^{\star} \mid>d\right\}} \mathbb{P}_{\text {curl } X_{N, 0}} \boldsymbol{D}_{\gamma}^{\star} \rightharpoonup \boldsymbol{\sigma}_{d_{+}}^{\star} & \text { weakly in } L^{2}(\Omega) & \text { as } \gamma \rightarrow \infty \\
\chi_{\left\{\mid \text {curl } A_{\gamma}^{\star} \mid \leq d\right\}} \mathbb{P}_{\text {curl } X_{N, 0}} \boldsymbol{\lambda}_{\gamma}^{\star} \rightharpoonup \boldsymbol{\sigma}_{d_{-}}^{\star} & \text { weakly in } L^{2}(\Omega) & \text { as } \gamma \rightarrow \infty
\end{array}
$$

and

$$
\operatorname{curl} n^{\star}=\sigma_{d_{+}}^{\star}+\sigma_{d_{-}}^{\star} .
$$

$$
\int_{\Omega} \sigma_{d_{+}}^{\star} \cdot\left(d \frac{\operatorname{curl} A^{\star}}{\left|\operatorname{curl} A^{\star}\right|}-\operatorname{curl} A^{\star}\right)=0 \text { ? }
$$

We recall that

$$
\mathbb{P}_{\text {curl }} X_{N, 0} \lambda_{\gamma}^{\star} \rightharpoonup \text { curl } n^{\star} \quad \text { weakly in } L^{2}(\Omega) \text { as } \gamma \rightarrow \infty \text {. }
$$

In particular, there exist $\boldsymbol{\sigma}_{d_{+}}^{\star}, \sigma_{d_{-}}^{\star} \in L^{2}(\Omega)$, s.t.

$$
\begin{aligned}
& \chi_{\left\{| | \text {curr } A_{\gamma}^{\star} \mid>d\right\}} \mathbb{P}_{\text {curr }} X_{N_{,}, 0} \boldsymbol{\lambda}_{\gamma}^{\star} \rightharpoonup \boldsymbol{\sigma}_{d_{+}}^{\star} \quad \text { weakly in } L^{2}(\Omega) \text { as } \gamma \rightarrow \infty \\
& \chi_{\left\{| | \text {curr } A_{\gamma}^{\star} \mid \leq d\right\}} \mathbb{P}_{\text {curr }} x_{N_{,}, 0} \lambda_{\gamma}^{\star} \rightharpoonup \boldsymbol{\sigma}_{d_{-}}^{\star} \quad \text { weakly in } L^{2}(\Omega) \text { as } \gamma \rightarrow \infty
\end{aligned}
$$

and

$$
\operatorname{curl} n^{\star}=\sigma_{d_{+}}^{\star}+\sigma_{d_{-}}^{\star} .
$$

$$
\int_{\Omega} \sigma_{d_{+}}^{\star} \cdot\left(d \frac{\operatorname{curl} A^{\star}}{\left|\operatorname{curl} A^{\star}\right|}-\operatorname{curl} A^{\star}\right)=0 .
$$

We recall that

$$
\mathbb{P}_{\text {curl } X_{N, 0}} \lambda_{\gamma}^{\star} \rightharpoonup \text { curl }^{\star} \quad \text { weakly in } L^{2}(\Omega) \quad \text { as } \gamma \rightarrow \infty .
$$

In particular, there exist $\boldsymbol{\sigma}_{d_{+}}^{\star}, \boldsymbol{\sigma}_{d_{-}}^{\star} \in L^{2}(\Omega)$, s.t.

$$
\begin{array}{lll}
\chi_{\left\{\mid \text {curl } A_{\gamma}^{\star} \mid>d\right\}} \mathbb{P}_{\text {curl } X_{N, 0}} \boldsymbol{D}_{\gamma}^{\star} \rightharpoonup \boldsymbol{\sigma}_{d_{+}}^{\star} & \text { weakly in } L^{2}(\Omega) & \text { as } \gamma \rightarrow \infty \\
\chi_{\left\{\mid \text {curl } A_{\gamma}^{\star} \mid \leq d\right\}} \mathbb{P}_{\text {curl } X_{N, 0}} \boldsymbol{\lambda}_{\gamma}^{\star} \rightharpoonup \boldsymbol{\sigma}_{d_{-}}^{\star} & \text { weakly in } L^{2}(\Omega) & \text { as } \gamma \rightarrow \infty
\end{array}
$$

and

$$
\operatorname{curl} n^{\star}=\sigma_{d_{+}}^{\star}+\sigma_{d_{-}}^{\star} .
$$

Theorem

The adjoint multiplier curl $n^{\star} \in L^{2}(\Omega)$ is additionally characterized by

$$
\begin{aligned}
\int_{\Omega} \sigma_{d_{+}}^{\star} \cdot\left(d \frac{\operatorname{curl}^{\star}}{\left|\operatorname{curl} A^{\star}\right|}-\operatorname{curl} A^{\star}\right) & =0 \\
\operatorname{curl} n^{\star} & =\sigma_{d_{+}}^{\star}+\sigma_{d_{-}}^{\star} \\
\int_{\Omega} \operatorname{curl} n^{\star} \cdot \operatorname{curl} Q^{\star} & \geq 0 .
\end{aligned}
$$

Thank you for your attention!

[^0]: ${ }^{1}$ F. Mignot and J.P. Puel. Optimal Control in Some Variational Inequalities. SIAM Journal on Control and Optimization, 1984

[^1]: ${ }^{1}$ F. Mignot and J.P. Puel. Optimal Control in Some Variational Inequalities. SIAM Journal on Control and Optimization, 1984

[^2]: ${ }^{1}$ F. Mignot and J.P. Puel. Optimal Control in Some Variational Inequalities. SIAM Journal on Control and Optimization, 1984

[^3]: ${ }^{1}$ F. Mignot and J.P. Puel. Optimal Control in Some Variational Inequalities. SIAM Journal on Control and Optimization, 1984

[^4]: ${ }^{1}$ F. Mignot and J.P. Puel. Optimal Control in Some Variational Inequalities. SIAM Journal on Control and Optimization, 1984

[^5]: ${ }^{1}$ F. Mignot and J.P. Puel. Optimal Control in Some Variational Inequalities. SIAM Journal on Control and Optimization, 1984

