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Eddy current approximation in
Maxwell obstacle problems

Maurice Hensel and Irwin Yousept

Abstract. This paper analyzes the mathematical modeling of the transient eddy current approxima-
tion in the Maxwell obstacle problem. Here, the medium is assumed to be solely open, containing
conducting and non-conducting materials with certain properties of anisotropy and non-smoothness.
The proposed evolutionary PDE model preserves the Faraday law and excludes the displacement
current from the governing AmpJere–Maxwell variational inequality (VI). Our study strives to jus-
tify this model and delivers two main results: Global well-posedness of the model and its quantitative
precision by uniform a priori estimates. The latter result yields an explicit bound for the smallness
condition on the ratio between the electric permittivity and the electric conductivity in the region
where the displacement current is disregarded. Below this threshold, the eddy current solution pro-
vides the desired reasonable approximation and justifies the proposed model.

1. Introduction

Maxwell obstacle problems describe the dynamics and propagation of electromagnetic
(EM) fields under the influence of constraints. For instance, in electromagnetic shield-
ing, certain magnetic and conducting materials may serve as a barrier to redirect or block
EM fields in a specific domain of interest. From the mathematical perspective, this phe-
nomenon falls into the class of Maxwell obstacle problems: In the free region, EM fields
satisfy Maxwell’s equations, while in the shielded area (unilateral or bilateral) constraints
are imposed on the fields. The very first contribution to this research direction was made
by Duvaut and Lions [11, Chapter 7, Section 8], who explored and analyzed the electro-
magnetic wave propagation in a polarizable medium through a Maxwell obstacle problem
involving an electric constraint of the type

jE.x; t/j � d.x/ a.e. in � � .0; T /

for some obstacle d W �! Œ0;1�. Based on the method of vanishing curl curl-viscosity
and constraint penalization, they proved a well-posedness result [11, Chapter 7, Theo-
rem 8.1] which was modified some years later by Milani [21, 22] to the case of a time-
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dependent obstacle d D d.x; t/. More recently, building on [34], the second author [35]
refined the developed theory by Duvaut and Lions [11] to allow a more general constraint
structure.

Let us formulate the Maxwell obstacle problem we focus on in this paper: Suppose
that � � R3 is an open set representing an anisotropic medium in which the electric field
E W � � .0; T /! R3 and the magnetic field H W � � .0; T /! R3 are acting in a finite
time interval .0; T /. Furthermore, let 0 2 K � L2.�/ denote a convex and closed subset
representing the underlying feasible set for the electric field. Given initial data .E0;H0/ 2

.K\H0.curl//�H.curl/ and an applied current source f 2W 1;1..0; T /;L2.�//, find a
unique solution .E;H/2W 1;1..0;T /;L2.�/�L2.�//\L1..0;T /;H0.curl/�L2.�//
such that8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

Z
�

"
d
dt

E.t/ � .v � E.t//C �E.t/ � .v � E.t// �H.t/ � curl.v � E.t// dx

�

Z
�

f.t/ � .v � E.t// dx; 8v 2 K \H0.curl/ and for a.e. t 2 .0; T /I

�
d
dt

H.t/C curl E.t/ D 0 for a.e. t 2 .0; T /I

E.t/ 2 K for a.e. t 2 .0; T /I

.E;H/.0/ D .E0;H0/:

(P)

Here, "; �; � W � ! R3�3 denote the electric permittivity, the magnetic permeability,
and the electric conductivity, respectively. All these coefficients are allowed to be non-
smooth. Moreover, as the medium � may contain different conducting and non-conduct-
ing materials, the electric conductivity � is assumed to be merely positive semi-definite.
The precise mathematical assumptions for all data involved in (P) are specified in Assump-
tion 1.1. Note that (P) preserves the Faraday law but modifies the AmpJere–Maxwell
equation into a variational inequality of the first kind. The global well-posedness of (P)
for � � 0 is a special case of [35, Theorems 1 and 2] and can be extended to the case of a
non-vanishing conductivity � .

The present paper aims to explore the eddy current (magneto-quasistatic) approxima-
tion to (P) and its justification. Our analysis is mainly motivated by the profound role of
eddy current modeling in electrical engineering applications and low-frequency physics.
Generally speaking, the eddy current model approximates the full Maxwell system by
excluding the displacement current " d

dtE while still preserving the Faraday law. Such
approximations are widely used in the engineering community and are particularly reason-
able if the electric permittivity is significantly smaller than the electric conductivity, and
the corresponding wavelength is much larger than the diameter of �. From among many
other contributions to the eddy current model, we refer to the monographs by Alonso and
Valli [3] and Bossavit [6,8], and papers [1,4,5,10,14,15,23,26,28,29,31]. While the math-
ematical and numerical analysis for the eddy current equations seems to have reached an
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advanced stage of development, so far, we are not aware of any previous study regarding
the justification of eddy current modeling for (P).

We focus on an eddy current model allowing the displacement current to be disre-
garded in an open conducting subregion �� � �. More precisely, we look for a unique
solution .E;H/ 2W 1;1..0;T /;L2.�n�� /�L2.�//\L1..0;T /;H0.curl/�L2.�// to8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

Z
�n��

"
d
dt

E.t/ � .v � E.t// dx C
Z
�

�E.t/ � .v � E.t// �H.t/ � curl.v � E.t// dx

�

Z
�

f.t/ � .v � E.t// dx; 8 v 2 K \H0.curl/ and for a.e. t 2 .0; T /I

�
d
dt

H.t/C curl E.t/ D 0 for a.e. t 2 .0; T /I

E.t/ 2 K for a.e. t 2 .0; T /I

.E;H/.0/ D .E0;H0/ a.e. in .� n�� / ��:

(Pec)

To justify the eddy current model (Pec), there are two open mathematical questions to be
rigorously addressed and answered. First, the model itself (see (Pec)) has to be reasonable
in the sense that there exists a unique solution to it. Second, under a suitable condition, its
solution must provide a good estimation for the original problem (see (P)). In particular,
inspired by the time-harmonic case [3], (Pec) should serve as a reasonable approximation
if the quantity ��1k"kL1.�� /3�3 is small enough, with � > 0 denoting a uniform lower
bound for the lowest eigenvalues of �.x/ for almost all x 2 �� .

This paper develops three novelties delivering positive answers to the issues mentioned
above. The first novelty concerns the a priori analysis for the time-discrete approxima-
tion (PN ) of (Pec) based on the Rothe method. Here, our analysis hinges on the mild com-
patibility assumption (1.8) for the initial data .E0;H0/ in the subset �� . With the com-
patibility condition, we prove the stability of (PN ) (see Theorem 2.1) through the use of
special correction terms developed using the variational inequality structure of (Pec). Then,
the analysis for the time-discrete scheme (PN ) allows us to establish a well-posedness
result for (Pec) as the second novelty of this paper (Theorem 3.1). To be more precise,
applying the stability result to a specific interpolation of (PN ) and passing to the limit
in the time discretization, the weak-star limit of the interpolation turns to satisfy (Pec),
leading to an existence result for (Pec). We note that the standard technique of passing to
the weak-star limit of the piecewise linear interpolations fails to work, as (PN ) does not
admit sufficient stability of its solutions in�� . This difficulty is overcome by considering
the weak-star limit of the piecewise constant interpolations. Let us point out that (Pec)
does not exclude the displacement current " d

dtE in� n�� . In Section 3.1, we address the
case described by (P0ec) where the displacement current is entirely neglected both in the
conducting and non-conducting regions (�� and � n�� ). It turns out that the proposed
techniques for (Pec) can be extended to (P0ec), leading to a well-posedness result for (P0ec)
(see Theorem 3.2) under additional assumptions (see Assumption 3.2). Our final result is
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the justification for (Pec) (see Theorem 4.1): If j� n�� j ¤ 0, then the solution .Eec;Hec/

of (Pec) approximates the solution .E;H/ to (P) through the following uniform a priori
estimate:.E;H/ � .Eec;Hec/


C.Œ0;T �;L2" .�n�� /�L2�.�//

C
E � Eec


L2..0;T /;L2� .�� //

(1.1)

� 2

�
L.�� /

2T

�
C
2L.� n�� /Tp
".� n�� /

s
4L.� n�� /2T 2

".� n�� /
C
2L.�� /2T

�

�1=2 "
�


L1.�� /3�3

;

where L.�� / > 0 (resp. L.� n �� / > 0) stands for the Lipschitz constant of fj��
(resp. fj�n�� ), and ".� n�� / > 0 denotes a uniform lower bound for the lowest eigenval-
ues of ".x/ for almost all x 2 � n�� . If �� D �, that is, if the displacement current is
completely removed in the conducting medium�, then the following precision is obtained
for the eddy current approximation:H �Hec


C.Œ0;T �;L2�.�//

C
E � Eec


L2..0;T /;L2� .�//

�
2L.�/

p
T

p
�

 "
�


L1.�/3�3

: (1.2)

We emphasize that in many electromagnetic applications (see, e.g., [3, 20]), the ratio
k"=�kL1.�� /3�3 is often negligibly small. For instance, stainless steel and copper admit
the value 6:14 � 10�18 and 1:56 � 10�19 for the corresponding ratio, respectively. This
property is in particular satisfied by every good conductor �� (see [20]) as the electric
permittivity " is in this case very close to the one in a vacuum (� 8:85 � 10�12), and
the electric conductivity � is in the order of 106–107. Therefore, the achieved estimation
reveals the desired approximation by the eddy current solution with a specific bound for
the smallness condition on the quantity k"=�kL1.�� /3�3 . At the same time, it guarantees
the strong convergence of (Pec) towards (P) with a linear convergence rate in terms of
k"kL1.�� /3�3 . Last but not least, all theoretical results of this paper, in particular uniform
estimates (1.1) and (1.2), also apply to the classical Maxwell equations by simply consid-
ering K D L2.�/.

Another important application of the eddy current model arises in the context of
type-II superconductivity. The corresponding model leads to parabolic obstacle problems
with first-order gradient or curl constraints. We refer to [7,12,24,27,30,32,33] for contri-
butions in this research direction. More recently, a unified analysis for non-linear parabolic
obstacle problems, including those with curl-type constraints, has been recently developed
by Miranda et al. [25].

The remainder of this paper is organized as follows: In the upcoming section, we
introduce our notation as well as basic properties and present the required assumptions for
our analysis. The subsequent section includes the formulation of the time-discrete scheme
together with its associated a priori stability analysis (Theorem 2.1). Section 3 is devoted
to the existence and uniqueness analysis (Theorems 3.1 and 3.2) for (Pec) and its full eddy
current version (P0ec). In Section 4, we prove Theorem 4.1 for the justification of the eddy
current model, and the final section features a numerical test verifying the a priori estimate
and the predicted convergence rate (see Theorem 4.1).
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1.1. Preliminaries

Given a real Hilbert spaceH , we denote by .�; �/H and k � kH its scalar product and induced
norm, respectively. In the case ofH DRd , we simply write a dot and j � j for the Euclidean
scalar product and norm, respectively. Note that given a0; : : : ; an0 2 H for n0 2 N, the
binomial-type formula

n0X
nD1

.an � an�1; an/H D
1

2

�
kan0k

2
H � ka0k

2
H C

n0X
nD1

kan � an�1k
2
H

�
(1.3)

holds. Discussing problems of Maxwell-type, there naturally arise function spaces of R3-
valued functions. We will therefore use a bold typeface to indicate them. Given an open set
� � R3, let L2.�/ denote the space of all (equivalence classes of) R3-valued Lebesgue
square-integrable functions. We introduce the Hilbert space

H.curl/ WD
®
u 2 L2.�/ j curl u 2 L2.�/

¯
endowed with its natural graph norm. Here the curl operator is to be understood in the
sense of distributions. Furthermore, let C10 .�/ denote the space of infinitely differen-
tiable R3-valued functions with compact support in �. The subspace H0.curl/ stands
for the closure of C10 .�/ with respect to the H.curl/ topology. We recall that H0.curl/
admits the useful characterization

H0.curl/ D
®
z 2 H.curl/ j .z; curl v/L2.�/ D .curl z; v/L2.�/ 8v 2 H.curl/

¯
: (1.4)

By L1sym.�/
3�3 we denote the space of all (equivalence classes of) symmetric R3�3-

valued Lebesgue measurable and essentially bounded functions with respect to the spectral
norm, that is,

k˛kL1.�/3�3 WD ess sup
x2�

max
j�j�1
j˛.x/�j <1; 8˛ 2 L1sym.�/

3�3: (1.5)

For a given uniformly positive definite matrix-valued function ˛ 2 L1sym.�/
3�3, that is,

there exists a constant ˛ > 0 such that

˛.x/� � � � ˛j�j2 for a.e. x 2 � and all � 2 R3;

we denote by L2˛.�/ the vector space L2.�/ equipped with the weighted scalar product
.˛�; �/L2.�/. We close this section by presenting the mathematical assumptions for our
analysis.

Assumption 1.1. We make the following assumptions in our analysis:

(1) The set��R3 is open and contains a given (possibly empty) open subset����.

(2) Both the electric permittivity " W � ! R3�3 and the magnetic permeability
� W �! R3�3 are of class L1sym.�/

3�3 and uniformly positive definite, that is,
there exist constants "; � > 0 such that

".x/� � � � "j�j2 and �.x/� � � � �j�j2 for a.e. x 2 � and all � 2 R3: (1.6)
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The electric conductivity � W�!R3�3 is of classL1sym.�/
3�3 and positive semi-

definite. Furthermore, it is uniformly positive definite on �� , that is, there exists
a constant � > 0 such that

�.x/� � � � � j�j2 for a.e. x 2 �� and all � 2 R3: (1.7)

(3) The obstacle set K � L2.�/ is assumed to be closed and convex containing 0.

(4) The applied current source fulfills f 2 W 1;1..0; T /;L2.�// with Lipschitz con-
stant L � 0.

(5) The initial value satisfies .E0;H0/ 2 .K \H0.curl// �H.curl/ andZ
��

.�E0 � curl H0/ � .v � E0/ dx

�

Z
��

f.0/ � .v � E0/ dx; 8 v 2 K \H0.curl/: (1.8)

Remark 1.2. Condition (1.8) is obviously satisfied if

�E0 � curl H0 D f.0/ a.e. in �� : (1.9)

If (1.9) fails to hold, then (1.8) may still be valid. For instance, if the feasible set K fulfills

e 2 K H) e.x/ D 0 for a.e. x 2 �� ; (1.10)

then condition (1.8) is satisfied for all f.0/ 2 L2.�/ and .E0;H0/ 2 .K \ H0.curl// �
H.curl/. Note that (1.10) is highly relevant to the physical phenomenon of electric shield-
ing, such as the Faraday cage to block the effects of external electric fields in the mate-
rial �� . Another example is the case where K only permits a certain feasible direction of
the electric field in �� , such as

e 2 K H) e1.x/ � 0 and e2.x/ D e3.x/ D 0 for a.e. x 2 �� : (1.11)

If E0.x/ D 0 holds for a.e. x 2 �� and the first components of curl H0 and f.0/ are
non-positive a.e. in �� , then condition (1.8) is satisfied in the case of (1.11).

Lastly, we note that in the case given by (P), that is to say �� D ;, (1.8) is always
satisfied since all integrals over �� vanish. In particular, for (P) there is no restriction on
the initial value other than .E0;H0/ 2 .K \H0.curl// �H.curl/.

2. Analysis of the time-discrete approximation to (Pec)

This section is devoted to the analysis of the time-discrete approximation to (Pec) based
on the Rothe method. Let us begin by introducing an equidistant partition of the time
interval Œ0; T � as follows: Given N 2 N, we set

� WD
T

N
; 0 D t0 < t1 < : : : < tN D T with tn WD n�; n 2 ¹0; : : : ; N º:
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Furthermore, we introduce the backward Euler difference quotients

ıEn WD
En � En�1

�
; ıHn WD

Hn �Hn�1

�
; 8n 2 ¹1; : : : ; N º (2.1)

and set fn WD f.tn/ 2 L2.�/ for all n 2 ¹0; : : : ; N º: Invoking these quantities, the time-
discrete (Euler) approximation to (Pec) reads as follows: Find elements ¹.En;Hn/º

N
nD1 �

.K \H0.curl// �H.curl/ such that8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

Z
�n��

"ıEn � .v � En/ dx C
Z
�

�En � .v � En/ �Hn � curl.v � En/ dx

�

Z
�

fn � .v � En/ dx; 8v 2 K \H0.curl/ 8n 2 ¹1; : : : ; N ºI

�ıHn C curl En D 0; 8n 2 ¹1; : : : ; N º:

(PN )

To derive an existence and uniqueness result for (PN ), let us consider a bounded and
coercive bilinear form a W H0.curl/ �H0.curl/! R given by

.E; v/ 7!
Z

�n��

"E � v dx C
Z
�

��E � vC �2��1 curl E � curl v dx

and bounded linear forms Fn W H0.curl/! R given by

v 7!
Z
�

� fn � vC �Hn�1 � curl v dx C
Z

�n��

"En�1 � v dx; 8n 2 ¹1; : : : ; N º:

In view of (2.1), (PN ) is equivalent to the problem of successively finding elements
.E1;H1/; : : : ; .EN ;HN / 2 .K \H0.curl// �H.curl/ such that

a.En;v�En/�Fn.v�En/; 8v 2K\H0.curl/ and HnD���
�1 curlEnCHn�1:

The well-posedness of (PN ) therefore follows from the classical theory of elliptic varia-
tional inequalities (see [18, Theorem 2.1] or [13, Theorem 3.1]), which we summarize in
the following lemma:

Lemma 2.1. Let Assumption 1.1 hold. Then, for every N 2 N, the time-discrete prob-
lem (PN ) admits a unique solution ¹.En;Hn/º

N
nD1 � .K \H0.curl// �H.curl/.

In the upcoming theorem, we prove our first main result on the stability for (PN ). For
the convenience of the reader, we recall Gronwall’s lemma in its discrete version in the
following auxiliary lemma (see [9, page 280]):

Lemma 2.2. Let ¹akº1kD0 and ¹bkº1kD0 be sequences of non-negative real numbers satis-
fying

an � c C

n�1X
kD0

akbk ; 8n 2 N
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for some constant c > 0. Then, it holds that

an � c exp
�n�1X
kD0

bk

�
; 8n 2 N:

As pointed out in the introduction, our upcoming stability proof is based on the use
of certain correction terms z 2 L2.� n�� / and w 2 L2.�/ for the initial data, which are
defined as follows:

z WD "E0 C �E0 � curl H0 � f0 a.e. on � n�� ;

w WD �H0 C curl E0 a.e. on �:

Theorem 2.1. Let Assumption 1.1 be satisfied. Then, there exists a positive real con-
stant C0 depending only on T; "; � �; f; E0;H0 such that for every N 2 N the unique
solution ¹.En;Hn/º

N
nD1 � .K \H0.curl// �H.curl/ of (PN ) satisfies

max
1�n�N

�En


L2.�/ C
Hn


L2.�/ C

ıEnL2.�n�� /

C
ıHn


L2.�/ C

curl En


L2.�/

�
� C0: (2.2)

Proof. LetN 2N be arbitrarily fixed and let ¹.En;Hn/º
N
nD1 � .K\H0.curl//�H.curl/

denote the unique solution to (PN ). Now let v 2 K\H0.curl/ be arbitrarily fixed. Multi-
plying the above equation for z by v � E0 and integrating the resulting equality
over � n�� , we obtain thatZ
�n��

"E0 � .v � E0/ dx C
Z

�n��

.�E0 � curl H0/ � .v � E0/ dx D
Z

�n��

.f0 C z/ � .v � E0/ dx:

Then, combining the above equality with (1.8), it follows thatZ
�n��

"E0 � .v � E0/ dx C
Z
�

.�E0 � curl H0/ � .v � E0/ dx

�

Z
�

f0 � .v � E0/ dx C
Z

�n��

z � .v � E0/ dx;

and consequently, applying characterization (1.4) to the previous inequality, the initial
data .E0;H0/ 2 .K \H0.curl// �H.curl/ satisfy8̂̂̂̂

ˆ̂̂<̂
ˆ̂̂̂̂̂:

Z
�n��

"E0 � .v � E0/ dx C
Z
�

�E0 � .v � E0/ �H0 � curl.v � E0/ dx

�

Z
�

f0 � .v � E0/ dx C
Z

�n��

z � .v � E0/ dx; 8v 2 K \H0.curl/I

�H0 C curl E0 D w:

(2.3)
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Now, the underlying system (see (2.3)) allows us to incorporate the initial data .E0;H0/ to
the time-discrete scheme (PN ) and preserve its pivotal structure for our stability analysis.
To realize this, we employ the quantities

ıE0 WD E0; ıH0 WD H0;

zNn WD

´
z; n D 0;

0; n 2 ¹1; : : : ; N º;
wNn WD

´
w; n D 0;

0; n 2 ¹1; : : : ; N º

(2.4)

and deduce from (2.3) that the unique solution to (PN ) fulfills8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

Z
�n��

"ıEn � .v � En/ dx C
Z
�

�En � .v � En/ �Hn � curl.v � En/ dx

�

Z
�

fn �.v � En/ dx C
Z

�n��

zNn �.v � En/ dx; 8v2 K \H0.curl/; 8n2 ¹0; : : : ; N ºI

�ıHn C curl En D wNn ; 8n 2 ¹0; : : : ; N º:
(2.5)

For every n2 ¹1; : : : ;N º, setting vDEn�1 (resp. vDEn) in the n-th inequality of (2.5)
(resp. the .n� 1/-th inequality of (2.5)) and then dividing the resulting inequalities by�� ,
we obtain Z

�n��

"ıEn � ıEn dx C
Z
�

�En � ıEn �Hn � curl ıEn dx

�

Z
�

fn � ıEn dx C
Z

�n��

zNn � ıEn dx (2.6)

and

�

Z
�n��

"ıEn�1 � ıEn dx �
Z
�

�En�1 � ıEn �Hn�1 � curl ıEn dx

� �

Z
�

fn�1 � ıEn dx �
Z

�n��

zNn�1 � ıEn dx: (2.7)

On the other hand, the second equation in (2.5) yields that

curl ıEn D ���1�.ıHn � ıHn�1/C �
�1.wNn � wNn�1/; 8n 2 ¹1; : : : ; N º: (2.8)

Adding (2.6) and (2.7) together and then utilizing (2.8), as well as the positive semi-
definiteness of � , we getZ

�n��

".ıEn � ıEn�1/ � ıEn dx C
Z
��

�.En � En�1/ � ıEn dx

C

Z
�

�.ıHn � ıHn�1/ � ıHn dx
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�

Z
�

.fn � fn�1/ � ıEn dx C
Z

�n��

.zNn � zNn�1/ � ıEn dx

C

Z
�

.wNn � wNn�1/ � ıHn dx; 8n 2 ¹1; : : : ; N º: (2.9)

Now let n0 2 ¹1; : : : ;N º be arbitrarily fixed, and sum up inequality (2.9) over ¹1; : : : ; n0º.
Then, applying binomial formula (1.3) along with Hölder’s inequality and (1.7), it follows
that

1

2

�ıEn02L2" .�n�� / � ıE02L2" .�n�� / C n0X
nD1

ıEn � ıEn�12L2" .�n�� /�
C
1

2

�ıHn0

2
L2�.�/

�
ıH0

2
L2�.�/

C

n0X
nD1

ıHn�ıHn�1

2
L2�.�/

�
C

n0X
nD1

��
ıEn2L2.��/

�

n0X
nD1

fn � fn�1


L2.�n�� /

ıEnL2.�n�� /
C

n0X
nD1

fn � fn�1


L2.�� /

ıEnL2.�� /

C

n0X
nD1

zNn � zNn�1


L2.�n�� /

ıEnL2.�n�� /

C

n0X
nD1

wNn � wNn�1


L2.�/

ıHn


L2.�/: (2.10)

Using Young’s inequality together with an estimate of the type ˛k � k2
L2.�/

� k � k2
L2˛.�/

and the Lipschitz property of f, the first and second terms in the right-hand side of (2.10)
can be estimated by

n0X
nD1

fn � fn�1


L2.�n�� /

ıEnL2.�n�� /

�

n0X
nD1

�N
"

fn � fn�1
2

L2.�n�� /
C

1

4N

ıEn2L2" .�n�� /�
�

n0X
nD1

�N
"
L2�2 C

1

4N

ıEn2L2" .�n�� /�
�„ƒ‚…
�D T

N

L2T 2

"
C
1

4

ıEn02L2" .�n�� / C n0�1X
nD1

1

4N

ıEn2L2" .�n�� / (2.11)

and
n0X
nD1

fn � fn�1


L2.�� /

ıEnL2.�� /
�

n0X
nD1

� 1

4��

fn � fn�1
2

L2.�� /
C ��

ıEn2L2.�� /�
�
L2T

4�
C

n0X
nD1

��
ıEn2L2.�� /: (2.12)
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For the remaining terms on the right-hand side of (2.10), we find by Young’s inequality
and the triangle inequality that

n0X
nD1

zNn � zNn�1


L2.�n�� /

ıEnL2.�n�� /
D„ƒ‚…

(2.4)

kzkL2.�n�� /
ıE1L2.�n�� /

� kzkL2.�n�� /
ıE1 � ıE0L2.�n�� /

C kzkL2.�n�� /
ıE0L2.�n�� /

�
2

"
kzk2L2.�n�� / C

1

4

ıE1 � ıE02L2" .�n�� / C 1

4

ıE02L2" .�n�� /; (2.13)

and analogously,

n0X
nD1

wNn � wNn�1


L2.�/

ıHn


L2.�/

�
2

�
kwk2L2.�/ C

1

4

ıH1 � ıH0

2
L2�.�/

C
1

4

ıH0

2
L2�.�/

: (2.14)

Applying (2.11)–(2.14) to (2.10) along with ıE0 D E0 and ıH0 D H0, it follows after
some rearrangement that

1

4

ıEn02L2" .�n�� / C 1

2

ıHn0

2
L2�.�/

�
L2T 2

"
C
L2T

4�
C
3

4

E0
2

L2" .�n�� /
C
3

4

H0

2
L2�.�/

C
2

"
kzk2L2.�n�� / C

2

�
kwk2L2.�/

C

n0�1X
nD1

1

4N

ıEn2L2" .�n�� /:
By virtue of Lemma 2.2, we eventually deduce that

ıEn02L2" .�n�� / C ıHn0

2
L2�.�/

� C exp
�n0�1X
nD1

1

N

�
� C exp.1/;

with a generic constant C > 0 depending only on T; L; "; �, �;E0;H0. In particular, it
holds that ıEn0L2.�n�� /

C
ıHn0


L2.�/ � C: (2.15)

From (2.15) and the reversed triangle inequality, it follows by the definition of the differ-
ence quotients in (2.1) thatEn0


L2.�n�� /

C
Hn0


L2.�/ � �C C

En0�1


L2.�n�� /
C
Hn0�1


L2.�/

� � � � � n0�C C
E0


L2.�n�� /

C
H0


L2.�/

� TC C
E0


L2.�n�� /

C
H0


L2.�/: (2.16)
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Furthermore, the estimate curl En0


L2.�/ � C (2.17)

immediately results from (2.15) along with the discrete Faraday law in (PN ). We are left
with showing the estimate for En0 in L2.�� /. To do so, we test with v D 0 in (PN ) and
use the positive semi-definiteness of � to obtainZ

�n��

"ıEn0 � En0 dx C
Z
��

�En0 � En0 dx �
Z
�

Hn0 � curl En0 dx

�

Z
�n��

fn0 � En0 dx C
Z
��

fn0 � En0 dx: (2.18)

Applying the estimateZ
��

fn0 � En0 dx �
1

2�

fn0
2

L2.�� /
C
�

2

En0
2

L2.�� /

to (2.18) together with (1.7) and Hölder’s inequality, we end up with

�

2

En0
2

L2.�� /
�
fn0


L2.�n�� /

En0


L2.�n�� /
C

1

2�

fn0
2

L2.�� /

C
ıEn0L2" .�n�� /

En0


L2" .�n�� /

C
Hn0


L2.�/

curl En0


L2.�/; (2.19)

where all the terms on the right-hand side are bounded due to the stability shown before.
Since n0 2 ¹1; : : : ; N º was chosen arbitrarily, (2.15), (2.16), (2.17) and (2.19) imply that
the a priori estimate (2.2) is valid.

3. Well-posedness

This section is devoted to the well-posedness analysis for the eddy current obstacle prob-
lem (see (Pec)) based on the time-discrete approximation (PN ). As a preparation, for
every N 2 N, we set up piecewise linear and piecewise constant (in time) interpolations
out of the solution ¹.En;Hn/º

N
nD1 � .K \H0.curl// �H.curl/ of (PN ) as follows:

EN W Œ0; T �! K \H0.curl/; t 7!

´
E0 if t D 0;

En�1 C .t � tn�1/ıEn if t 2 .tn�1; tn�I

HN W Œ0; T �! L2.�/; t 7!

´
H0 if t D 0;

Hn�1 C .t � tn�1/ıHn if t 2 .tn�1; tn�;

(3.1)
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and

EN W Œ0; T �! K \H0.curl/; t 7!

´
E0 if t D 0;

En if t 2 .tn�1; tn�I

HN W Œ0; T �! L2.�/; t 7!

´
H0 if t D 0;

Hn if t 2 .tn�1; tn�I

fN W Œ0; T �! L2.�/; t 7!

´
f0 if t D 0;

fn if t 2 .tn�1; tn�:

(3.2)

In view of (PN ), it follows immediately that the above interpolations satisfy8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:̂

Z
�n��

"
d
dt

EN .t/ � .v � EN .t// dx

C

Z
�

�EN .t/ � .v � EN .t// �HN .t/ � curl.v � EN .t// dx

�

Z
�

fN .t/ � .v � EN .t// dx; 8v 2 K \H0.curl/; 8t 2 .0; T �I

�
d
dt

HN .t/C curl EN .t/ D 0; 8t 2 .0; T �I

EN .t/ 2 K \H0.curl/; 8t 2 Œ0; T �:

(zPN )

Theorem 3.1. Let Assumption 1.1 hold. Then, the eddy current obstacle problem
(see (Pec)) admits a unique solution .E;H/ 2 W 1;1..0; T /; L2.� n �� / � L2.�// \
L1..0; T /;H0.curl/ � L2.�//:

Proof. Existence of a solution. By our construction (see (3.1) and (3.2)), Theorem 2.1
yields the existence of a subsequence of ¹.EN ;HN /º

1
ND1, denoted again by the same

symbol, such that

.EN ;HN /
�
* .E;H/ weakly-* in L1..0; T /;H0.curl/ � L2.�// as N !1;

.EN ;HN /
�
* .E;H/ weakly-* in L1..0; T /;H0.curl/ � L2.�// as N !1;

d
dt
.EN ;HN /

�
* .�; �/ weakly-* in L1..0; T /;L2.� n�� / � L2.�// as N !1;

(3.3)

for some .E; H/; .E; H/ 2 L1..0; T /; H0.curl/ � L2.�// and .�; �/ 2 L1..0; T /;

L2.� n�� / � L2.�//. Furthermore, (3.1) and (3.2) also implyEN .t/ � EN .t/


L2.�n�� /
� � max

1�n�N

ıEnL2.�n�� /
�„ƒ‚…

(2.2)

TC0

N
; 8t 2 Œ0; T �I

HN .t/ �HN .t/


L2.�/ � � max
1�n�N

ıHn


L2.�/ �„ƒ‚…

(2.2)

TC0

N
; 8t 2 Œ0; T �;

(3.4)
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and consequently,

lim
N!1

EN � EN

L1..0;T /;L2.�n�� //

D lim
N!1

HN �HN


L1..0;T /;L2.�// D 0: (3.5)

By the above convergence properties together with (3.3), we obtain that

E D E a.e. in .0; T / � .� n�� / and H D H a.e. in .0; T / ��: (3.6)

Let us now verify that
d
dt

E D � and
d
dt

H D �: (3.7)

Indeed, the definition of the weak time derivative implies that

TZ
0

.�.t/;�.t//L2.�n�� / dt D„ƒ‚…
(3.3)

lim
N!1

TZ
0

.
d
dt

EN .t/;�.t//L2.�n�� / dt

D lim
N!1

�

TZ
0

.EN .t/;
d
dt

�.t//L2.�n�� / dt

D„ƒ‚…
(3.3)&(3.6)

�

TZ
0

�
E.t/;

d
dt

�.t/
�

L2.�n�� /
dt; 8� 2 C10 ..0; T /;L

2.� n�� //;

and hence d
dtED �. Analogous arguments are also valid for H, which concludes the proof

of (3.7). Altogether, the weak-star limit .E;H/ enjoys the regularity property

.E;H/ 2 W 1;1..0; T /;L2.� n�� / � L2.�//\L1..0; T /;H0.curl/ � L2.�//: (3.8)

As the next step, we verify Faraday’s law for .E;H/. According to (zPN ), it holds that

�
d
dt

HN .t/C curl EN .t/ D 0; 8t 2 .0; T �;

from which it follows that

TZ
0

�
�

d
dt

H.t/C curl E.t/;�.t/
�

L2.�/
dt

D„ƒ‚…
(3.3)&(3.7)

lim
N!1

TZ
0

�
�

d
dt

HN .t/C curl EN .t/;�.t/
�

L2.�/
dt D 0

for all � 2 C10 ..0; T /;L
2.�//. As a consequence, by the fundamental theorem of varia-

tional calculus, we obtain

�
d
dt

H.t/C curl E.t/ D 0 for a.e. t 2 .0; T /: (3.9)
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Let us now prove the pointwise weak convergence

.EN ;HN /.t/ * .E;H/.t/ weakly in L2.� n�� / � L2.�/
as N !1 for all t 2 Œ0; T �:

(3.10)

To this aim, let t 2 .0; T �;w 2 L2.� n�� /, and � 2 C1.Œ0; t �/ be arbitrarily fixed. Inte-
gration by parts yields�

E.t/;w
�

L2.�n�� /
�.t/ �

�
E.0/;w

�
L2.�n�� /

�.0/

D

tZ
0

� d
ds

E.s/;w
�

L2.�n�� /
�.s/C

�
E.s/;w

�
L2.�n�� /

d
ds
�.s/ ds

D„ƒ‚…
(3.3);(3.6);(3.7)

lim
N!1

� tZ
0

� d
ds

EN .s/;w
�

L2.�n�� /
�.s/C

�
EN .s/;w

�
L2.�n�� /

d
ds
�.s/ ds

�
D lim
N!1

��
EN .t/;w

�
L2.�n�� /

�.t/ �
�
EN .0/;w

�
L2.�n�� /

�.0/
�
: (3.11)

Choosing �.t/ ¤ 0 and �.0/ D 0 (resp. �.t/ D 0 and �.0/ ¤ 0) yields EN .t/ * E.t/
weakly in L2.� n�� / asN !1 for all t 2 Œ0;T �. By the same argumentation, we derive
the pointwise weak convergence for ¹HN º

1
ND1. In conclusion, (3.10) is valid. As a direct

consequence of (3.10) and .EN ;HN /.0/ D .E0;H0/ for all N 2 N, we have

E.0/ D E0 a.e. in � n�� ;

H.0/ D H0 a.e. in �;
(3.12)

which is exactly the initial value condition in (Pec). Let us now introduce the subset

yK WD
®
w 2 L2..0; T /;L2.�// j w.t/ 2 K for a.e. t 2 .0; T /

¯
:

Since K is a closed and convex subset of L2.�/, the subset yK � L2..0; T /;L2.�// is
closed and convex. Therefore, since EN 2 yK for all N 2 N, convergence property (3.3)
implies that

E 2 yK H) E.t/ 2 K for a.e. t 2 .0; T /: (3.13)

By virtue of (3.8), (3.9), (3.12), and (3.13), the weak limit .E;H/ is a solution to (Pec)
once we are able to show that it satisfies the variational inequality in (Pec). In view of (3.2)
and the Lipschitz regularity f 2 W 1;1..0; T /;L2.�//, it holds that

lim
N!1

fN D f in L2..0; T /;L2.�//: (3.14)

Now let v 2 L2..0; T /; H0.curl// be arbitrarily fixed and satisfy v.t/ 2 K for a.e.
t 2 .0; T /. By standard properties of the limit superior, we deduce that

TZ
0

�
f.t/; v.t/ � E.t/

�
L2.�/ dt D„ƒ‚…

(3.14)

lim
N!1

TZ
0

�
fN .t/; v.t/ � EN .t/

�
L2.�/ dt
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�„ƒ‚…
(zPN )

lim sup
N!1

TZ
0

� d
dt

EN .t/; v.t/ � EN .t/
�

L2" .�n�� /
C
�
�EN .t/; v.t/ � EN .t/

�
L2.�/

�
�
HN .t/; curl.v.t/ � EN .t//

�
L2.�/ dt

�„ƒ‚…
(3.3)&(3.7)

TZ
0

� d
dt

E.t/; v.t/
�

L2" .�n�� /
dt � lim inf

N!1

TZ
0

� d
dt

EN .t/;EN .t/
�

L2" .�n�� /
dt

C

TZ
0

�
�E.t/; v.t/

�
L2.�/ dt � lim inf

N!1

TZ
0

�
�EN .t/;EN .t/

�
L2.�/ dt

�

TZ
0

�
H.t/; curl v.t/

�
L2.�/ dt C lim sup

N!1

TZ
0

�
HN .t/; curl EN .t/

�
L2.�/ dt: (3.15)

Our next step is to estimate the remaining terms on the right-hand side of (3.15). First of
all, by the weak sequential lower semi-continuity of the squared norm, we infer that

lim inf
N!1

TZ
0

� d
dt

EN .t/;EN .t/
�

L2" .�n�� /
dt

D lim inf
N!1

1

2

�
kEN .T /k2L2" .�n�� / � kE0k

2
L2" .�n�� /

�
�„ƒ‚…

(3.10)

1

2

�
kE.T /k2L2" .�n�� / � kE0k

2
L2" .�n�� /

�
D„ƒ‚…

(3.12)

TZ
0

� d
dt

E.t/;E.t/
�

L2" .�n�� /
dt; (3.16)

and consequently

lim inf
N!1

TZ
0

� d
dt

EN .t/;EN .t/
�

L2" .�n�� /
dt

� lim inf
N!1

TZ
0

� d
dt

EN .t/;EN .t/ � EN .t/
�

L2" .�n�� /
dt

C lim inf
N!1

TZ
0

� d
dt

EN .t/;EN .t/
�

L2" .�n�� /
dt

�„ƒ‚…
(3.5)&(3.16)

TZ
0

� d
dt

E.t/;E.t/
�

L2" .�n�� /
dt: (3.17)
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Furthermore, the positive semi-definiteness of � implies

lim inf
N!1

TZ
0

�
�EN .t/;EN .t/

�
L2.�/ dt

D lim inf
N!1

TZ
0

�
�.EN .t/ � E.t//;EN .t/ � E.t/

�
L2.�/

C
�
�.EN .t/ � E.t//;E.t/

�
L2.�/ C

�
�E.t/;EN .t/

�
L2.�/ dt

� lim inf
N!1

TZ
0

�
�.EN .t/ � E.t//;E.t/

�
L2.�/ C

�
�E.t/;EN .t/

�
L2.�/ dt

D„ƒ‚…
(3.3)

TZ
0

�
�E.t/;E.t/

�
L2.�/ dt: (3.18)

Using once again the weak sequential lower semi-continuity of the squared norm, we find
that

lim sup
N!1

�

TZ
0

�
HN .t/;

d
dt

HN .t/
�

L2�.�/
dt D lim sup

N!1

1

2

�
kH0k

2
L2�.�/

� kHN .T /k
2
L2�.�/

�
�„ƒ‚…

(3.10)

1

2

�
kH0k

2
L2�.�/

� kH.T /k2L2�.�/
�
D„ƒ‚…

(3.12)

�

TZ
0

�
H.t/;

d
dt

H.t/
�

L2�.�/
dt

D„ƒ‚…
(3.9)

TZ
0

�
H.t/; curl E.t/

�
L2.�/ dt; (3.19)

and therefore

lim sup
N!1

TZ
0

�
HN .t/; curl EN .t/

�
L2.�/ dt

D„ƒ‚…
(zPN )

lim sup
N!1

�

TZ
0

�
HN .t/;

d
dt

HN .t/
�

L2�.�/
dt

� lim sup
N!1

�

TZ
0

�
HN .t/ �HN .t/;

d
dt

HN .t/
�

L2�.�/
dt

C lim sup
N!1

�

TZ
0

�
HN .t/;

d
dt

HN .t/
�

L2�.�/
dt
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�„ƒ‚…
(3.5)&(3.19)

TZ
0

�
H.t/; curl E.t/

�
L2.�/ dt: (3.20)

Applying (3.17), (3.18), and (3.20) to (3.15) results in

TZ
0

Z
�n��

"
d
dt

E.t/ � .v.t/ � E.t// dx

C

Z
�

�E.t/ � .v.t/ � E.t// �H.t/ � curl.v.t/ � E.t// dx dt

�

TZ
0

Z
�

f.t/ � .v.t/ � E.t// dx dt; (3.21)

for all v 2 L2..0; T /;H0.curl// such that v 2 K a.e. on .0; T /. Finally, to show that the
variational inequality in (Pec) holds, let us assume the contrary, that is,

9q 2 K \H0.curl/ and 9M � .0; T / with jM j > 0 such thatZ
�n��

"
d
dt

E.t/ � .q � E.t// dx C
Z
�

�E.t/ � .q � E.t// �H.t/ � curl.q � E.t// dx

<

Z
�

f.t/ � .q � E.t// dx

for a.e. t 2M , which impliesZ
M

Z
�n��

"
d
dt

E.t/ � .q � E.t// dx C
Z
�

�E.t/ � .q � E.t// �H.t/ � curl.q � E.t// dx dt

<

Z
M

Z
�

f.t/ � .q � E.t// dx dt: (3.22)

Inserting v WD �M zC �.0;T /nME into (3.21) immediately contradicts (3.22). In conclu-
sion, .E;H/ satisfies the variational inequality in (Pec). This completes the existence proof.

Uniqueness and Lipschitz stability. Let .E1;H1/ and .E2;H2/ denote, respectively,
solutions to (Pec) associated with the initial data .E10;H

1
0/; .E

2
0;H

2
0/ and the right-hand

sides f1; f2 satisfying Assumption 1.1. Setting v D E2.s/ in (Pec) for E D E1 (resp.
v D E1.s/ in (Pec) for E D E2) and multiplying with �1, we haveZ

�n��

"
d
ds

E1.s/ � .E1.s/ � E2.s// dx

C

Z
�

�E1.s/ � .E1.s/ � E2.s// �H1.s/ � curl.E1.s/ � E2.s// dx
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�

Z
�

f1.s/ � .E1.s/ � E2.s// dx for a.e. s 2 .0; T / (3.23)

and

�

Z
�n��

"
d
ds

E2.s/ � .E1.s/ � E2.s// dx

�

Z
�

�E2.s/ � .E1.s/ � E2.s// �H2.s/ � curl.E1.s/ � E2.s// dx

� �

Z
�

f2.s/ � .E1.s/ � E2.s// dx for a.e. s 2 .0; T /: (3.24)

In addition, by the Faraday law for .E1;H1/ and .E2;H2/, it holds that

curl.E1.s/ � E2.s// D ��
d
ds
.H1.s/ �H2.s// for a.e. s 2 .0; T /: (3.25)

Adding (3.23) and (3.24) together and then applying (3.25) to the resulting inequality, we
obtain by using the properties of � as well as the Hölder and Young inequalities that

1

2

d
ds

E1.s/ � E2.s/
2

L2" .�n�� /
C �

E1.s/ � E2.s/
2

L2.�� /

C
1

2

d
ds

H1.s/ �H2.s/
2

L2�.�/

�
f1.s/ � f2.s/


L2.�n�� /

E1.s/ � E2.s/


L2.�n�� /

C
f1.s/ � f2.s/


L2.�� /

E1.s/ � E2.s/


L2.�� /

�

� 1
2"
C

1

2�

�f1 � f2
2

C.Œ0;T �;L2.�// C
1

2

E1.s/ � E2.s/
2

L2" .�n�� /

C
�

2

E1.s/ � E2.s/
2

L2.�� /
for a.e. s 2 .0; T /:

By integration over the time interval .0; t/ and rearrangement, it follows that

E1.t/ � E2.t/
2

L2" .�n�� /
C �

tZ
0

E1.s/ � E2.s/
2

L2.�� /
ds

C
H1.t/ �H2.t/

2
L2�.�/

�
E10 � E20

2
L2" .�n�� /

C
H1

0 �H2
0

2
L2�.�/

C

� t
"
C
t

�

�f1 � f2
2

C.Œ0;T �;L2.�//

C

tZ
0

E1.s/ � E2.s/
2

L2" .�n�� /
ds
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� max
°
1;
t

"
C
t

�

±�.E10;H1
0/ � .E

2
0;H

2
0/
2

L2" .�n�� /�L2�.�/
C
f1 � f2

2
C.Œ0;T �;L2.�//

�
C

tZ
0

E1.s/ � E2.s/
2

L2" .�n�� /
ds; 8t 2 Œ0; T �:

Employing the Gronwall lemma, we then arrive at

.E1;H1/.t/ � .E2;H2/.t/
2

L2" .�n�� /�L2�.�/
C �

tZ
0

E1.s/ � E2.s/
2

L2.�� /
ds

� et max
°
1;
t

"
C
t

�

±�.E10;H1
0/ � .E

2
0;H

2
0/
2

L2" .�n�� /�L2�.�/

C
f1 � f2

2
C.Œ0;T �;L2.�//

�
; 8t 2 Œ0; T �: (3.26)

In view of (3.26), we conclude that (Pec) admits at most one solution.

Remark 3.1. Introducing the subset

U WD
°
.f;E0;H0/ 2 W

1;1..0; T /;L2.�// � .K \H0.curl// �H.curl/ jZ
��

.�E0 � curl H0/ � .v � E0/ dx �
Z
��

f.0/ � .v � E0/ dx

8v 2 K \H0.curl/
±

of C.Œ0; T �;L2.�// � L2.�/ � L2.�/, the solution operator associated to (Pec)

ˆ W U! C.Œ0; T �;L2.� n�� / � L2.�// \ L2..0; T /;L2.�� / � L2.�//;
.f;E0;H0/ 7! .E;H/

is Lipschitz continuous, as a consequence of (3.26).

3.1. The full eddy current case in the presence of a non-conducting region

Up to this point, the displacement current d
dtE was only neglected in the region where �

is uniformly positive definite. In this section, we suppose that � n �� is of non-zero
Lebesgue measure and represents an insulating region, that is,

� D 0 a.e. in � n�� :

Our focus lies on the full eddy current case where the displacement current is completely
removed in the whole domain containing the insulating region � n�� . Here, the previ-
ously developed analysis serves as the foundation to cover this case with some additional
assumptions as follows:
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Assumption 3.2. We make the following assumptions:

(6) It holds that j� n�� j ¤ 0 and

� D 0 a.e. in � n�� ;

f D 0 a.e. in .0; T / � .� n�� /;

curl H0 D 0 a.e. in � n�� :

(3.27)

(7) The obstacle set K satisfies one of the following conditions:

(i) 9C > 0 8v 2 K W kvkL2.�n�� / � C I (3.28a)

(ii) K � X".�/ and � is a bounded Lipschitz domain with

a connected boundary, (3.28b)

where X".�/ WD ¹v 2 L2.�/ j ."v;r�/L2.�/ D 0 8� 2 H 1
0 .�/º.

Remark 3.3. (i) As � n �� represents an insulating region such as air, it is physically
reasonable to assume that no current source is present in the insulator. Condition (3.27)
on the vanishing source and vanishing initial rotational magnetic field in the insulator is
indeed common in the study of the eddy current problems (see, for example, [29, page 42]
or [3, page 239]).

(ii) Condition (3.28a) is obviously satisfied if the obstacle set K is bounded in L2.�/.
A prominent example is the set KD ¹v 2 L2.�/ j jv.x/j � d.x/ for a.e. x 2�º for some
electric obstacle d 2 L2.�/. On the other hand, condition (3.28b) describes a physical
medium with vanishing charge density, that is, the case where the electric field satisfies
div."E/ � 0.

Let us now state the full eddy current problem we focus on in this section:8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

Z
��

�E.t/ � .v � E.t// dx �
Z
�

H.t/ � curl.v � E.t// dx

�

Z
��

f.t/ � .v � E.t// dx; 8v 2 K \H0.curl/ for a.e. t 2 .0; T /I

�
d
dt

H.t/C curl E.t/ D 0 for a.e. t 2 .0; T /I

E.t/ 2 K for a.e. t 2 .0; T /; H.0/ D H0 a.e. in �:

(P0ec)

Note that in contrast to (Pec), problem (P0ec) comprises an elliptic VI for the electric field E
and an evolutionary equation for the magnetic field H, which is why we do not impose
any initial condition for E (cf. [23] for the case of the full eddy current equations with a
constant and scalar conductivity � > 0). The time-discrete approximation for (P0ec) reads
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as finding ¹.En;Hn/º
N
nD1 � .K \H0.curl// �H.curl/ such that8̂̂̂̂

ˆ̂̂<̂
ˆ̂̂̂̂̂:

Z
��

�En � .v � En/ dx �
Z
�

Hn � curl.v � En/ dx

�

Z
��

fn � .v � En/ dx; 8v 2 K \H0.curl/; 8n 2 ¹1; : : : ; N ºI

�ıHn C curl En D 0; 8n 2 ¹1; : : : ; N º:

(P0N )

To prove the well-posedness of (P0N ), we reformulate it as a minimization problem in a
Hilbert space as follows:

Lemma 3.4. Let Assumption 1.1 and Assumption 3.2 be satisfied. Then, the time-discrete
problem (see (P0N )) admits a solution ¹.En; Hn/º

N
nD1 � .K \ H0.curl// � H.curl/.

If (3.28b) holds true, then the solution to (P0N ) is unique.

Proof. First, using the discrete Faraday law, we rewrite problem (P0N ) asZ
��

�En � .v � En/ dx C �
Z
�

��1 curl En � curl.v � En/ dx

�

Z
��

fn � .v � En/ dx

C

Z
�

Hn�1 � curl.v � En/ dx; 8v 2 K \H0.curl/; 8n 2 ¹1; : : : ; N º;

which is equivalent to the minimization problem

min
v2K\H0.curl/

�1
2
kvk2L2� .�� / C

�

2
k curl vk2L2

��1
.�/

�

Z
��

fn � v dx �
Z
�

Hn�1 � curl v dx
�
; 8n 2 ¹1; : : : ; N º: (3.29)

Next, let n 2 ¹1; : : : ; N º be arbitrarily fixed. For any v 2 H0.curl/, it holds that

1

2
kvk2L2� .�� / C

�

2
k curl vk2L2

��1
.�/
�

Z
��

fn � v dx �
Z
�

Hn�1 � curl v dx

�
1

4
kvk2L2� .�� / C

�

4
k curl vk2L2

��1
.�/
�
1

�

fn
2

L2.�� /
�
�

�

Hn�1

2
L2.�/

� �
1

�

fn
2

L2.�� /
�
�

�

Hn�1

2
L2.�/: (3.30)

This shows that the objective functional associated with (3.29) is bounded from below.
Therefore, since K\H0.curl/ is non-empty, we have that there exists an infimal sequence
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¹vn
k
º1
kD1
� K \H0.curl/ for minimization problem (3.29). Thanks to (3.30), the infimal

sequence ¹vn
k
º1
kD1
� K \H0.curl/ satisfiesvnk


L2.�� /

C
curl vnk


L2.�/ � C; k 2 N; (3.31)

for some constant C > 0, independent of k. Now, if (3.28a) is satisfied, then in view
of (3.31) it follows that the infimal sequence ¹vn

k
º1
kD1

is bounded in H0.curl/. On the
other hand, if (3.28b) is satisfied, then it implies the Poincaré-Friedrichs-type inequality
[2, Lemma 3.1]

9Cp > 0 8v 2 X".�/ \H0.curl/ W kvkL2.�/ � Cpk curl vkL2.�/; (3.32)

which yields due to (3.31) the boundedness of ¹vn
k
º1
kD1

in H0.curl/. In conclusion, for
every n2 ¹1; : : : ;N º, the existence of a minimizer to (3.29) follows by standard arguments
as in the proof of the direct method of variational calculus. Finally, if (3.28b) holds true,
then due to (3.32) the objective functional associated with (3.29) is strictly convex, and so
minimization problem (3.29) admits a unique solution.

Lemma 3.5. Let Assumption 1.1 and Assumption 3.2 hold. Then, there exists a positive
real constant C0, depending only on T;�, �; f;H0 such that, for anyN 2N, every solution
¹.En;Hn/º

N
nD1 � .K \H0.curl// �H.curl/ of (P0N ) satisfies

max
1�n�N

�En


L2.�/ C
Hn


L2.�/ C

ıHn


L2.�/ C

curl En


L2.�/

�
� C0: (3.33)

Proof. LetN 2N be arbitrarily fixed and let ¹.En;Hn/º
N
nD1 � .K\H0.curl//�H.curl/

denote a solution to (P0N ). Further, let v 2K\H0.curl/ and n0 2 ¹1; : : : ;N º be arbitrarily
fixed. The lines of argumentation are similar to Theorem 2.1, where we simply set z to be
zero, thanks to (3.27) and since " does not appear in (P0N ). Then, together with the fact that
fD 0 a.e. in .0; T /� .� n�� /, by analogous argumentation to the proof of Theorem 2.1,
it follows that

1

2

�ıHn0

2
L2�.�/

�
ıH0

2
L2�.�/

C

n0X
nD1

ıHn � ıHn�1

2
L2�.�/

�
C

n0X
nD1

��
ıEn2L2.�� /

�

n0X
nD1

fn � fn�1


L2.�� /

ıEnL2.�� /
C

n0X
nD1

wNn � wNn�1


L2.�/

ıHn


L2.�/: (3.34)

In turn, this implies the estimate

1

2

ıHn0

2
L2�.�/

�
L2T

4�
C
3

4

H0

2
L2�.�/

C
2

�
kwk2L2.�/:

In view of the above estimate, we obtain kHn0k
2
L2�.�/

� C and k curl En0kL2.�/ � C ,

due to (2.16) and the discrete Faraday law (P0N ). The bound on kEn0kL2.�� / is obtained
by testing with v D 0 in (P0N ) and proceeding as in (2.18) and (2.19). The bound on
kEn0kL2.�n�� / is an immediate result of (3.28a) or (3.28b) along with the Poincaré-
Friedrichs-type inequality (3.32) and the estimate k curl En0kL2.�/ � C .
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In view of (P0N ), invoking again constructions (3.1) and (3.2), it follows that the inter-
polations satisfy8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

Z
��

�EN .t/ � .v � EN .t// dx �
Z
�

HN .t/ � curl.v � EN .t// dx

�

Z
��

fN .t/ � .v � EN .t// dx; 8v 2 K \H0.curl/ for all t 2 .0; T �I

�
d
dt

HN .t/C curl EN .t/ D 0 for all t 2 .0; T �I

EN .t/ 2 K \H0.curl/ for all t 2 Œ0; T �:

(zP0N )

Theorem 3.2. Let Assumption 1.1 and Assumption 3.2 hold. Then, the eddy current obsta-
cle problem (P0ec) admits a solution .E; H/ 2 L1..0; T /; H0.curl// � W 1;1..0; T /;

L2.�//. If (3.28b) holds true, then the solution to (P0ec) is unique.

Proof. First, as in the proof of Theorem 3.1, the a priori estimate from Theorem 3.5 yields
the existence of a subsequence of ¹.EN ;HN /º

1
ND1, denoted again by the same symbol,

such that �
EN ;HN ;HN ;

d
dt

HN

�
�
*
�

E;H;H;
d
dt

H
�

weakly-* in L1..0; T /; H0.curl/ � L2.�/ � L2.�/ � L2.�// as N ! 1 for some
.E;H/ 2 L1..0; T /;H0.curl// �W 1;1..0; T /;L2.�//. Passing to the limit in the dis-
crete Faraday law as in (3.9), we then obtain

�
d
dt

H.t/C curl E.t/ D 0 for a.e. t 2 .0; T /:

Analogously to (3.11), we obtain the pointwise weak convergence

HN .t/ * H.t/ weakly in L2.�/ as N !1 for all t 2 Œ0; T �;

which implies the initial condition H.0/ D H0 a.e. in �. Also, as in the proof of Theo-
rem 3.1, the above weak-star convergence yields the feasibility E.t/2K for a.e. t 2 .0;T /.
Ultimately, the final passage to the limit in (zP0N ) follows again the same arguments as in
the proof of Theorem 3.1. In conclusion, the weak-star limit .E;H/ satisfies (P0ec). Let us
now assume that (3.28b) is valid and let .E1;H1/, and .E2;H2/ denote, respectively, solu-
tions to (P0ec). Setting vD E2.s/ in (P0ec) for ED E1 (resp. vD E1.s/ in (P0ec) for ED E2)
we can proceed as in (3.23), (3.24) and (3.25) to obtain the estimateE1.s/ � E2.s/

2
L2� .�� /

C
1

2

d
ds

H1.s/ �H2.s/
2

L2�.�/
� 0 for a.e. s 2 .0; T /:

As H1.0/ D H0 D H2.0/, the above inequality implies that H1 D H2, which yields due
to the Faraday law in (P0ec) that curl.E1 � E2/D 0. As a result of the Poincaré-Friedrichs-
type inequality (3.32), it then follows that E1 D E2. This completes the proof.
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Remark 3.6. Let us mention that even in the case of the eddy current equations, with-
out assuming additional conditions such as (3.28b), uniqueness of the solution cannot be
expected in general.

Remark 3.7. The analysis in this section with respect to condition (3.28b) reveals that
a local Poincaré-Friedrichs-type inequality in the insulator � n�� is sufficient to obtain
an existence and uniqueness result for (P0ec). This allows us to work with another obstacle
set K as follows: Suppose again that � is a bounded Lipschitz domain such that �� � �
and� n�� is connected. Then, for the obstacle set K, an alternative assumption to (3.28b)
reads

K �fX".�/ WD ®v 2 L2.�/ j ."v;r�/L2.�n�� / D 0 8� 2 H 1.� n�� /;

."v;h/L2.�n�� / D 0 8h 2 H
¯
;

where H denotes the finite-dimensional vector space of Neumann fields related to topo-
logical quantities of the physical domain � and the insulating region � n �� (see [3,
page 13] for its definition). As proven in [3, Lemma 2.2], the Poincaré-Friedrichs-type
inequality below holds true:

9Cp > 0 8v 2fX".�/ \H0.curl/ W
kvkL2.�n�� / � Cp

�
k curl vkL2.�/ C kvkL2.�� /

�
:

(3.35)

With (3.35) at hand, the existence of a unique solution to (P0ec) is obtained under minor
and obvious changes of this section.

4. Justification of the eddy current model

Theorem 3.1 implies that both the Maxwell obstacle problem (P) (by choosing �� D ;)
and the eddy current model (Pec) admit unique solutions, which we denote in the follow-
ing, respectively, by

.E;H/ 2 W 1;1..0; T /;L2.� n�� / � L2.�// \ L1..0; T /;H0.curl/ � L2.�// (4.1)

and

.Eec;Hec/ 2W
1;1..0;T /;L2.� n�� /�L2.�//\L1..0;T /;H0.curl/�L2.�//: (4.2)

Our goal now is to justify the eddy current model (Pec) in the sense that its unique solution
.Eec;Hec/ is close to .E;H/ under a reasonable smallness condition on k"=�kL1.�� /3�3 .
By proposing an additional assumption on the initial data (see Assumption 4.1), we are
able to not only justify the eddy current model but also prove an a priori error estimate for
the eddy current approximation with a linear convergence rate in terms of k"kL1.�� /3�3 .
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Assumption 4.1. The initial value .E0;H0/ satisfiesZ
�n��

.�E0 � curl H0/ � .v�E0/dx �
Z

�n��

f.0/ � .v�E0/dx; 8v 2K\H0.curl/ (4.3)

and
curl E0 D 0 a.e. on �: (4.4)

Remark 4.2. The inequality in (4.3) is of technical importance and is trivially satisfied
if �E0 � curl H0 D f.0/ a.e. in � n�� . Note that in real applications � n�� typically
represents a non-conducting medium such that the conductivity �j�n�� is zero. In this
case (4.3) is satisfied if � curl H0 D f.0/ a.e. in �n�� .

In what follows, if j� n �� j ¤ 0, the constant ".� n �� / denotes a uniform lower
bound for the lowest eigenvalues of " in � n�� , that is, it satisfies

".x/� � � � ".� n�� /j�j
2 for a.e. x 2 � n�� and all � 2 R3: (4.5)

Furthermore, let L.�� / and L.� n�� / denote, respectively, the Lipschitz constants of f
in �� and � n�� , that is,

kf.t1/ � f.t2/kL2.�� / � L.�� /jt1 � t2j 8t1; t2 2 Œ0; T �;

kf.t1/ � f.t2/kL2.�n�� / � L.� n�� /jt1 � t2j 8t1; t2 2 Œ0; T �:
(4.6)

Theorem 4.1. Let Assumption 1.1 and Assumption 4.1 be satisfied. If j� n�� j ¤ 0, then
it holds that.E;H/ � .Eec;Hec/


C.Œ0;T �;L2" .�n�� /�L2�.�//

C
E � Eec


L2..0;T /;L2� .�� //

� 2

�
L.�� /

2T

�
C
2L.� n�� /Tp
".� n�� /

�

s
4L.� n�� /2T 2

".� n�� /
C
2L.�� /2T

�

�1=2 "
�


L1.�� /3�3

: (4.7)

If �� D �, then

H �Hec


C.Œ0;T �;L2�.�//
C
E � Eec


L2..0;T /;L2� .�//

� 2
L
p
T

p
�

 "
�


L1.�/3�3

: (4.8)

Remark 4.3. If the applied current source f is only acting in the conducting region �� ,
we have L.� n �� / D 0 so that the upper bound for (4.7) precisely coincides with the
one in (4.8) given by 2L

p
T =
p
�k"=�kL1.�/3�3 .
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Proof. We split the proof into three parts.

Step 1: Boundedness of t 7!
tR
0

k
d

dsE.s/k2
L2.�� /

ds with an upper bound being indepen-

dent of "j�� . Setting v D E.s C h/ (resp. v D E.s/) in (P) for t D s (resp. t D s C h)
and then adding the resulting inequalities, we obtain (similarly to the uniqueness proof for
Theorem 3.1) by employing the Faraday law, the properties of � , and Hölder’s inequality
that

1

2

d
ds

E.s C h/ � E.s/
2

L2" .�n�� /
C
1

2

d
ds

E.s C h/ � E.s/
2

L2" .�� /

C �
E.s C h/ � E.s/

2
L2.�� /

C
1

2

d
ds

H.s C h/ �H.s/
2

L2�.�/

�
f.s C h/ � f.s/


L2.�n�� /

E.s C h/ � E.s/


L2.�n�� /

C
f.s C h/ � f.s/


L2.�� /

E.s C h/ � E.s/


L2.�� /

for a.e. s 2 .0; T / and a.e. h 2 .0; T � s/. Integrating the above inequality over .0; t/ and
dividing by h2, we obtain that

1

2

E.t C h/ � E.t/
h

2
L2" .�n�� /

�
1

2

E.h/ � E0
h

2
L2" .�n�� /

C
1

2

E.t C h/ � E.t/
h

2
L2" .�� /

�
1

2

E.h/ � E0
h

2
L2" .�� /

C �

tZ
0

E.s C h/ � E.s/
h

2
L2.�� /

ds C
1

2

H.t C h/ �H.t/
h

2
L2�.�/

�
1

2

H.h/ �H0

h

2
L2�.�/

�

tZ
0

 f.s C h/ � f.s/
h


L2.�n�� /

E.s C h/ � E.s/
h


L2.�n�� /

ds

C

tZ
0

 f.s C h/ � f.s/
h


L2.�� /

E.s C h/ � E.s/
h


L2.�� /

ds

�„ƒ‚…
(4.5)

1p
".� n�� /

tZ
0

 f.s C h/ � f.s/
h


L2.�n�� /

E.s C h/ � E.s/
h


L2" .�n�� /

ds

C

tZ
0

1

2�

 f.s C h/ � f.s/
h

2
L2.�� /

ds C
�

2

tZ
0

E.s C h/ � E.s/
h

2
L2.�� /

ds (4.9)

for any t 2 .0; T / and h 2 .0; T � t /. Note that if j� n �� j D 0 then all integrals
over �n�� vanish, and we may simply set ".� n�� / D 1 in the case of j� n�� j D 0.
Now, by Lipschitz property (4.6) and the regularity property E 2 W 1;1..0; T /;L2.�//,
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it follows thatE.t C h/ � E.t/
h

2
L2" .�n�� /

C �

tZ
0

E.s C h/ � E.s/
h

2
L2.�� /

ds

�

E.h/ � E0
h

2
L2" .�n�� /

C

E.h/ � E0
h

2
L2" .�� /

C

H.h/ �H0

h

2
L2�.�/

C
2L.� n�� /tp
".� n�� /

 d
dt

E

L1..0;t/;L2" .�n�� //

C
L.�� /

2t

�
; 8t 2 .0; T /; h 2 .0; T � t /: (4.10)

Our goal now is to show the boundedness of the difference quotients at the point 0 appear-
ing on the right-hand side of (4.10). Setting v D E0 in (P) yieldsZ

�

"
d
ds

E.s/ � .E.s/ � E0/C �E.s/ � .E.s/ � E0/ �H.s/ � curl.E.s/ � E0/ dx

�

Z
�

f.s/ � .E.s/ � E0/ dx (4.11)

for a.e. s 2 .0; T /. On the other hand, since E.s/ 2K\H0.curl/ holds for a.e. s 2 .0; T /,
a combination of (1.8) and (4.3) ensures thatZ

�

�"
d
ds

E0„ƒ‚…
D0

�.E.s/ � E0/ � �E0 � .E.s/ � E0/CH0 � curl.E.s/ � E0/ dx

�

Z
�

�f.0/ � .E.s/ � E0/ dx (4.12)

for a.e. s 2 .0; T /. Therefore, adding (4.11) and (4.12) together results inZ
�

"
d
ds
.E.s/ � E0/ � .E.s/ � E0/C �.E.s/ � E0/ � .E.s/ � E0/

� .H.s/ �H0/ � curl.E.s/ � E0/ dx

�

Z
�

.f.s/ � f.0// � .E.s/ � E0/ dx for a.e. s 2 .0; T /: (4.13)

In addition, the Faraday law in (P) along with (4.4) yields

curl.E.s/ � E0/ D ��
d
ds
.H.s/ �H0/ for a.e. s 2 .0; T /: (4.14)

Applying (4.14) to (4.13), integrating the resulting inequality over .0; h/ and dividing
by h2, we follow the same argumentation as before to deduce by the Hölder and Young



Eddy current approximation in Maxwell obstacle problems 29

inequalities as well as the properties of � that

1

2

E.h/ � E0
h

2
L2" .�n�� /

C
1

2

E.h/ � E0
h

2
L2" .�� /

C �

hZ
0

E.s/ � E0
h

2
L2.�� /

ds

C
1

2

H.h/ �H0

h

2
L2�.�/

�

hZ
0

 f.s/ � f.0/
h


L2.�n�� /
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h


L2.�n�� /

ds

C

hZ
0

 f.s/ � f.0/
h


L2.�� /

E.s/ � E0
h


L2.�� /

ds

�

hZ
0

� 1

2".� n�� /
C

1

2�

� f.s/ � f.0/
h

2
L2.�/

ds C
1

2

hZ
0

E.s/ � E0
h

2
L2" .�n�� /

ds

C
�

2

hZ
0

E.s/ � E0
h

2
L2.�� /

ds; 8h 2 .0; T /;

and consequently, by the Lipschitz continuity of f as well as rearrangement, we arrive atE.h/ � E0
h

2
L2" .�n�� /

C

E.h/ � E0
h

2
L2" .�� /

C

H.h/ �H0

h

2
L2�.�/

�
1

3
hL2

� 1

".� n�� /
C
1

�

�
C

hZ
0

E.s/ � E0
h

2
L2" .�n�� /

ds; 8h 2 .0; T /:

In conclusion, Gronwall’s lemma deliversE.h/ � E0
h

2
L2" .�n�� /

C

E.h/ � E0
h

2
L2" .�� /

C

H.h/ �H0

h

2
L2�.�/

�
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3
hL2
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".� n�� /
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�

�
eh (4.15)

for all h 2 .0; T /. Going back to (4.10) and on account of (4.15), we attain

E.t C h/ � E.t/
h

2
L2" .�n�� /

C �

tZ
0

E.s C h/ � E.s/
h

2
L2.�� /

ds

�
1

3
hL2

� 1

".� n�� /
C
1

�

�
ehC

2L.� n�� /tp
".� n�� /

 d
dt

E

L1..0;t/;L2" .�n�� //

C
L.�� /

2t

�
; 8t 2 .0; T /; h 2 .0; T � t /: (4.16)
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By passing to the limit h! 0 in the first term of the left-hand side of (4.16), we obtain
that d

dt
E.t/

2
L2" .�n�� /

�
2L.� n�� /Tp
".� n�� /

 d
dt

E

L1..0;T /;L2" .�n�� //

C
L.�� /

2T

�

�
2L.� n�� /

2T 2

".� n�� /
C
1

2

 d
dt

E
2
L1..0;T /;L2" .�n�� //

C
L.�� /

2T

�

for a.e. t 2 .0; T /, from which it follows that d
dt

E
2
L1..0;T /;L2" .�n�� //

�
4L.� n�� /

2T 2

".� n�� /
C
2L.�� /

2T

�
: (4.17)

Finally, using again the regularity property E 2 W 1;1..0; T /; L2.�//, Fatou’s lemma
yields

tZ
0

 d
ds

E.s/
2

L2.�� /
ds � lim inf

h!0

tZ
0

E.s C h/ � E.s/
h

2
L2.�� /

ds

�„ƒ‚…
(4.16)&(4.17)

L.�� /
2T

�2
C
2L.� n�� /T

�
p
".� n�� /

�

s
4L.� n�� /2T 2

".� n�� /
C
2L.�� /2T

�
; 8t 2 .0; T /: (4.18)

Step 2: The proof of (4.7) for j� n�� j ¤ 0. We start by inserting v D E.s/ in (Pec)
and v D Eec.s/ in (P) to obtain thatZ

�n��

"
d
ds

Eec.s/ � .Eec.s/ � E.s// dx

C

Z
�

�Eec.s/ � .Eec.s/ � E.s// �Hec.s/ � curl.Eec.s/ � E.s// dx

�

Z
�

f.s/ � .Eec.s/ � E.s// dx for a.e. s 2 .0; T / (4.19)

and

�

Z
�

"
d
ds

E.s/ � .Eec.s/ � E.s// dx

�

Z
�

�E.s/ � .Eec.s/ � E.s// �H.s/ � curl.Eec.s/ � E.s// dx

� �

Z
�

f.s/ � .Eec.s/ � E.s// dx for a.e. s 2 .0; T /: (4.20)
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Adding inequalities (4.19) and (4.20) together results inZ
�n��

"
d
ds
.Eec.s/ � E.s// � .Eec.s/ � E.s// dx �

Z
��

"
d
ds

E.s/ � .Eec.s/ � E.s// dx

C

Z
�

�.Eec.s/ � E.s// � .Eec.s/ � E.s//

� .Hec.s/ �H.s// � curl.Eec.s/ � E.s// dx � 0 for a.e. s 2 .0; T /: (4.21)

By the Faraday law for the solutions of (Pec) and (P), we have that

curl.Eec.s/ � E.s// D ��
d
ds
.Hec.s/ �H.s// for a.e. s 2 .0; T /; (4.22)

and thus, applying (4.22) to (4.21) leads toZ
�n��
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d
ds
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d
ds

E.s/ � .Eec.s/ � E.s// dx (4.23)

for a.e. s 2 .0; T /. Since E.0/ D Eec.0/ D E0 in � n�� and H.0/ D Hec.0/ D H0, we
find after integrating (4.23) over .0; t/ that
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and consequently,
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(1.5)
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L2.�� /
ds (4.25)
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for all t 2 .0; T /. Eventually, applying (4.18) to (4.25) yieldsE.t/ � Eec.t/
2
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for all t 2 .0; T /. In view of regularity properties (4.1) and (4.2), the above pointwise
estimate leads immediately to uniform estimate (4.7).

Step 3: The proof of (4.8) for �� D �. In this case, inequality (4.16) turns out to be
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and so, by Fatou’s lemma
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(4.26)

for all t 2 .0; T /. Now, in the case of �� D �, inequality (4.25) reads asH.t/ �Hec.t/
2

L2�.�/
C
E � Eec

2
L2..0;t/;L2� .�//

�
1

�
k"k2

L1.�/3�3

tZ
0

 d
ds

E.s/
2

L2.�/
ds; 8t 2 .0; T /: (4.27)

The final claim (see (4.8)) follows therefore by applying (4.26) to (4.27).

5. Numerical verification

We close this paper with a brief numerical verification of our theoretical findings. In par-
ticular, our numerical test confirms the linear convergence rate with respect to "j�� for
the eddy current approximation (see Theorem 4.1). Note that the following example is
of merely academic nature as the conducting domain is chosen to be equal to the whole
domain. So, for the test, we consider � D .�1; 1/3, T D 1, � � 1, � � 1 and �� D �,
with .0;0/ as an initial value. For the applied current source, we choose f W Œ0;1���!R3

defined by

f.t; x1; x2; x3/ WD

8̂̂<̂
:̂
�
0;

�tx3q
x22 C x

2
3

;
tx2q
x22 C x

2
3

�
if .x1; x2; x3/ 2 P;

0 if .x1; x2; x3/ … P;
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whereP D¹.x1;x2;x3/2R3 j 0� x1 � 0:5;0:3�
q
x22 C x

2
3 � 0:5ºmodels a cylindrical

pipe coil. Furthermore, the feasible set is set to be

K D
®
v 2 L2.�/ j jv.x/j1 � 5 � 10�4 for a.e. x 2 !

¯
;

with the obstacle region

! WD
®
.x1; x2; x3/ 2 � j �0:25 � x1 � �0:125; jx2j � 0:5; jx3j � 0:5

¯
:

Note that the choice of the bound 5 � 10�4 in the obstacle set K is of no particular impor-
tance. With the choice of our bound, we strive to model the effects of electric shielding.
Our numerical computation is based on the time-discrete (implicit Euler) scheme (PN )
along with the space discretization consisting of Nédélec’s edge elements [17] for E and
piecewise constant elements for H. The corresponding finite element approximation of the
time-discrete problems in (PN ) (with roughly 829; 000 degrees of freedom) were solved
by the primal dual active set algorithm (see [16]) implemented on the open-source plat-
form FEniCS [19] (see Figures 1 and 2 for a visualization). We note that the primal dual
method approximates the elliptic variational inequalities in (PN ) by equalities on the cor-
responding active and inactive sets that are iteratively updated. To verify the convergence
of the eddy current approximation, we use the quantity

Errork D
.E;H/k � .Eec;Hec/


L2..0;T /;L2.�//�C.Œ0;T �;L2.�//

with .E;H/k being the numerical solution to (P) for " D 1

2k
and .Eec;Hec/ being the

numerical solution to the eddy current model (Pec). Furthermore, to check the experimen-
tal order of convergence with respect to ", we make use of the following quantity:

EOCk D
log.ErrorkC1/ � log.Errork/

log.2�.kC1// � log.2�k/
:

Table 1 depicts the computed error and experimental order of convergence for the values
k D 4; : : : ; 14. In agreement with our theoretical finding (Theorem 4.1), we observe that
the eddy current approximation (Pec) becomes closer and closer to (P) as " decreases.
More importantly, the experimental order of convergence is readily very close to 1, which
exactly confirms the linear convergence rate in a priori error estimate (4.8).

"
�

1
24

1
25

1
26

1
27

1
28

1
29

1
210

1
211

1
212

1
213

1
214

Errork 1:9 � 10�3 9:9 � 10�4 5:1 � 10�4 2:6 � 10�4 1:3 � 10�4 6:7 � 10�5 3:4 � 10�5 1:7 � 10�5 8:5 � 10�6 4:2 � 10�6 2:1 � 10�6

EOCk 0:9487 0:9512 0:9547 0:9749 0:9866 0:9933 0:9972 0:9984 0:9985 0:9991 0:9999

Table 1. Convergence behavior of the eddy current approximation.
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Figure 1. Computed magnetic field from two different views at the last time step together with the
applied circular current and the outlined obstacle.

Figure 2. Evolution of the magnetic field at the time steps tn D n
4 with n 2 ¹1; 2; 3; 4º.
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