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QUASILINEAR VARIATIONAL INEQUALITIES IN
FERROMAGNETIC SHIELDING: WELL-POSEDNESS,
REGULARITY, AND OPTIMAL CONTROL"
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Abstract. This paper examines the analysis and optimal control of an H(curl)-quasilinear first
kind variational inequality with a bilateral vector curl-constraint, stemming from the ferromagnetic
shielding phenomenon. We propose a tailored regularization approach based on the Helmholtz de-
composition and a reduction of the first-order constraint to the zeroth-order one in combination with
a smoothed Yosida penalization. In this way, a suitable family of approximating quasilinear varia-
tional equalities is obtained. The corresponding limiting analysis not only leads to a well-posedness
result for the variational inequality but also reveals its dual formulation. Thereafter, as a second
novelty, we prove a regularity result for the dual multiplier by means of the LP-Helmholtz decompo-
sition in a careful combination with elliptic regularity results for Dirichlet and Neumann problems.
The last part of this paper is devoted to the analysis of the corresponding optimal control, which
is mainly complicated by the involving H(curl)-quasilinearity, the bilateral vector curl-constraint,
and the nonsmoothness. On the basis of the proposed regularization, as the final novelty, we derive
necessary optimality conditions, including a characterization of the limiting dual multiplier through
curl-projection and cut-off type arguments.
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1. Introduction. Electromagnetic (EM) shielding is a physical process of redi-
recting or reducing electromagnetic fields by conductive or magnetic materials. For in-
stance, every ferromagnetic material with high magnetic permeability (cobalt, nickel,
etc.) can realize magnetic shielding by diverting the magnetic flux to another path.
Nowadays, EM shielding is indispensable in many technological and daily applica-
tions, including microwave ovens, mobile phones, aircraft, MRI, circuits, semiconduc-
tor chips, and many other electronic devices. In fact, EM shielding is utterly required
in every application demanding the reduction of undesired electromagnetic interfer-
ence. From the mathematical perspective, EM shielding falls into the class of obstacle
problems: In the free region, the electromagnetic fields satisfy the fundamental Max-
well equations, whereas in the shielded area they are constrained to stay below a
certain threshold.

This paper is devoted to the mathematical analysis of ferromagnetic shielding
in the static regime through the magnetic vector potential formulation. In the free
region, as a particular case of Maxwell’s equations, magnetostatic equations read as
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curl(v(-,| curl A]) curl A) + Vo =J in Q,
(1.1) div A=01in Q,
n x A=0 on 09,

where Q C R? is a bounded Lipschitz domain with a connected boundary, A : Q — R3
denotes the magnetic vector potential, J : Q — R3 the current density, ¢ : Q@ — R
the Lagrange multiplier, and n the unit outward normal to 0Q2. Furthermore, v :
Q x Rar — R describes the nonlinear magnetic reluctivity modelling the physical de-
pendency of ferromagnetic materials on the magnetic induction curl A. From among
many works on (1.1), we refer the reader to [3, 24, 43]. In the present paper, we
consider a variational inequality of the first kind for (1.1), in which the magnetic
induction strength | curl A| is constrained to lie underneath a certain level leading to
the following feasible set:

(1.2) K :={ve Hy(curl)||curlv|<d ae. in Q} for a nonnegative d € L*(Q).

Following the celebrated theory of variational inequalities [25, 27, 33], we formulate
the first kind variational inequality for the quasilinear magnetostatic field equations
(1.1)—(1.2) as follows:

Find (A, ¢) € K x H} () s.t.
/u(~,|curlA|)cur1A~curl(v—A)dx+/V¢'vd1’
0 Q

>/J-('v—A)dx Yve K,
Q

/ A-Vipdz=0 Ve HLNQ).
Q

The analysis of variational inequalities (obstacle problems) for Maxwell’s equa-
tions goes back to Duvaut and Lions [11]. Years after their first investigation, the
study of Maxwell variational inequalities (MVI) has gained more and more attention
due to their paramount applications in superconductivity (see [5, 9, 23, 26, 34, 35, 44]).
Miranda, Rodrigues, and Santos [30] established a general framework for the well-
posedness of parabolic MVI and Maxwell quasi-variational inequalities (MQVT). Fur-
thermore, we refer to the recent works of the third author [46, 47, 48] regarding
hyperbolic MVI and MQVI with applications in superconductivity and EM shielding.
While the aforementioned contributions are primarily devoted to the well-posedness
analysis, numerical methods for MVI were proposed and analyzed in [12, 41, 42]. See
also [17, 18] for the eddy current approximation and the numerical analysis of a hy-
perbolic Maxwell obstacle problem in electric shielding.

Motivated by the technological applications of ferromagnetic shielding, this paper
makes the first attempt to analyze (VI) and the corresponding optimal control prob-
lem (1.3). Due to the involved H (curl)-quasilinearity and the nonsmooth character in
(VI), the analysis is genuinely nonstandard and challenging. In particular, it requires
substantial extension of developed techniques from the existing literature. First, this
paper develops a regularization approach (VE,) for (VI) by means of the Helmholtz
decomposition and a reformulation of the first-order constraint (1.2) through the
zeroth-order one (2.3) in combination with a smoothed Yosida penalization. By the
limiting analysis of (VE,), we establish the well-posedness of (VI) and its dual for-
mulation (Theorem 3.1). The second novelty of this paper is the dual multiplier
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regularity result (Theorem 4.4). To the best of the authors’ knowledge, Theorem 4.4
is the first result in the multiplier regularity analysis for MVI. Our proof is realized
using Maxwell techniques in combination with the LP-Helmholtz decomposition [15]
and elliptic regularity results for Dirichlet and Neumann problems [22, 49].

After analyzing both the well-posedness and regularity for (VI), the final part of
this paper is devoted to the optimal control problem. Our aim is to find an optimal
current source in the ferromagnetic shielding process (VI) which minimizes the L?-
distance between the induced magnetic induction and the desired one. This leads to
the following minimization problem:

min/ |cur1A—Bd|2dx—|—é/ |J|? dz
0 2 Ja
s.t. (VI),

(1.3)

where the vector field Bgq € L*(Q) denotes the desired magnetic induction, and A > 0
denotes the control cost parameter. Let us emphasize that the primary difficulty
of (1.3) lies not only in the H(curl)-quasilinearity and the bilateral vector curl-
constraint (1.2) but also in the lack of differentiability. Even for the simpler H!-
case, the directional differentiability of the solution mapping of the corresponding
variational inequality in the presence of bilateral or gradient constraints cannot be
expected. All these aspects together make the analysis of (1.3) particularly deli-
cate. While the mathematical analysis for the optimal control of H'(f2)-type vari-
ational inequalities seems to have reached an advanced stage of development (cf.
[4, 7, 8, 14, 19, 20, 21, 28, 29]), this paper is the first to address (1.3). In fact, we
are not aware of any previous contributions toward optimal control of MVI. The final
novelty of this paper is therefore the derivation of necessary optimality conditions for
the nonsmooth optimal control problem (1.3) (see Theorem 5.6). In particular, our
proof extends established Maxwell techniques for optimal control [31, 38, 39, 43, 45]
and develops new ideas to cope with the aforementioned complexity involved in (1.3).
Last but not least, we note that the results of this paper are not restricted to the
objective functional (1.3) involving only the first-order term curl A. Following [43,
Theorem 3.8 and Remark 3.9], we obtain analogous results for objective functionals
involving the zeroth-order term ||A — AdHQLQ(Q) with a given Aq € L*(1).

1.1. Preliminaries. Given a real Hilbert space H, we denote by (-, )z and ||-||
its scalar product and induced norm, respectively. In the case of H = R, we simply
write a dot and | - | for the Euclidean scalar product and norm. Discussing problems
of Maxwell type, there naturally arise function spaces of R3-valued functions. We will
therefore use a bold typeface to indicate them. Given some open set O C R?, let L2(O)
denote the space of all (equivalence classes of) R*-valued Lebesgue square-integrable
functions. Moreover, we introduce the Hilbert spaces

H(curl, 0) :={u e L*(O) | curlu € L*(0)},
H(div,0) :={u e L*(0) | div u € L*(0)}

endowed with their natural graph norms. Here the curl and the div operators are to
be understood in the sense of distributions. Furthermore, let C;°(O) denote the space
of infinitely differentiable R3-valued functions with compact support in O. The space
H (curl, O) stands for the closure of C5°(O) with respect to the H (curl, O)-topology.
Analogously defined is the space Ho(div,0). With H (div=0,0) and H(div=0,O)
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we denote the kernels of the divergence in the respective spaces, which are hence-
forth endowed with the L?(O)-topology. Note that if © is additionally bounded and
Lipschitz, it is known (see [40]) that both the embeddings

(1.4) Ho(curl,0)N H(div,0)— L*(©) and H/(curl,0) N H(div,0) < L*(O)

are compact. Let us now review some orthogonal decomposition results in LQ(O).
First of all, by the classical Hilbert projection theorem, we have the elementary
Helmholtz decompositions

(1.5) L?*(0) = Hy(div=0,0) & VH'(0),
(1.6) L?*(0) = H(div=0,0) ® VH}(0).
Then, aiming to write the divergence-free part as the curl of a vector potential, the

above decompositions can be refined. In particular, if the boundary 0O is connected,
it holds that (cf. [1])

(1.7) L?*(0) = curl (H(curl,0) N Hy(div=0,0)) & VHL(0).

For the case O =), we agree not to specify the domain when stating the introduced
function spaces. In the given context, let us also introduce the space

X no:=Hy(curl) N H(div=0),

which plays a pivotal role in our analysis. Especially, owing to (1.4) and recalling that
2 features a connected boundary, there exists a constant C, > 0 such that

(1.8) ||u||L2(Q) SCp||CUI‘l’LL||L2(Q) VUEXN,O.

Finally, C' > 0 represents a generic constant whose value can vary from line to line.
We close this section by presenting the basic (physical) assumptions for our analysis.
We assume the magnetic reluctivity v : € x Rar — R to be a Carathéodory function:
For every s € Rg , the function v(-,s) is measurable, and, for almost every = € Q,
the function v(z,-) is continuous. By vy > 0, we denote the magnetic reluctivity in
a vacuum. Further conditions on the nonlinearity (cf. [3, 24]) are collected in the
following assumption which we assume to be valid throughout the whole document.

Assumption 1.1. There exist constants v,7 € (0,19) such that

v<v(z,s) < for a.e. z € and every s € R{,
22 A 52
(v(z,s)s —v(z,8)8)(s—§) >v(s—§)° Vs, §€Ry,
lv(z,s)s —v(x,8)8| <pls— 3§ Vs,8€R]

holds true.

Under Assumption 1.1, it holds for a.e. x € €2 that
2 Vs,5€R?,
| Vs, 8€R3,

(w(x,[s[)s —v(x,[3])3) - (s — 8

>
(1.9) -

v|s—§
v(x, |s])s — v(z,[3])8] < L|s — 3

where L =21y + 7. A proof for (1.9) can be found in [43, Lemma 2.2].
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2. Regularization of (VI). We propose a regularization approach for (VI)
based on three main steps:

1. reduction of (VI) to the lower level problem (VIg,) with a divergence-free
source term;

2. reformulation of the first-order constraint (1.2) by the zeroth-order one (2.3)
and the application of the Yosida regularization to the subdifferential of the
indicator function for the zeroth-order obstacle set;

3. smoothing of the maximum function (2.4).

For the first step, let us consider a solenoidal source term Jg, i.e., a function Jg €
H (div=0) and test functions v € K N H (div=0) in (VI). In this particular case, since

(2.1) /U-dea::O Vv € H(div=0), Vi€ H(Q),
Q

(VI) leads to the following problem:
Find A € K N H(div=0) s.t.

(Vo) /QV(~, |curl A]) curl A - curl(v — A)dx

> / Jeor - (v—A)dx Vv e KN H(div=0).
Q
Let us remark that the auxiliary problem (VIg) is indeed helpful for our investigation

and serves as a basis for our well-posedness result for (VI). More precisely, applying
the Helmholtz decomposition (1.6) to the source term

(2.2) L*(9)3J = Jso + Vg € H(div=0) © VH; (),

we show in Theorem 3.1 that the solution A to (V) for Jso as in (2.2) turns out
to be the unique solution to (VI) with the corresponding (unique) multiplier given by
¢y from (2.2). For the second step, we introduce the zeroth-order obstacle set

Kz ={ve L*(Q) | |v| <d a.e. on Q},
with which we can reformulate our first-order constraint as
(2.3) AeK & curlAeKy:q).

Based on the proposed reformulation, we invoke the Yosida regularization of the
subdifferential of the indicator function Ik, , which is given by y(Id =Pk, , ) (cf.
[36, p. 137] and [6, Corollary 12.30]) with v > 0 being the regularization parameter.
Here, IP’KL2(Q) denotes the Hilbert projection onto the nonempty, closed, and convex
set K p2(q) C L*(Q). The simplified L*(Q) structure of K 12(g) now allows us to find
an explicit expression (cf. [19, Example 4.2]) for the associated Yosida approximation
as follows:

Y(Id =Pk 5, ) (v) =70( v(-)),
with
max(|s| — d(z),0)—  if s#£0,

(2.4) 0: QxR SR O(z,s):= sl
0 if s=0.
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Note that for a.e. z € Q, the function 6(z,-) is continuous but not differentiable.
Thus, for our final step, we regularize the nonsmooth function 8 by

S .
0, QX ES SRS, (n5)es 4 ol AL O s 0,
0 if s=0,
where
-75_’7_1 ifl‘22fy_17
max,(-,0): R—>R, =z %xQ if € (0,2y71),

0 if z <0.

Geometrically speaking, the function max,(-,0) is a continuously differentiable regu-
larization of max(-,0), which approximates the kink at 0 by a quadratic function in the
interval (0,2y~1). Altogether, for every « > 0, we consider the following regularized
problem:

Find A, € X n 0, s.t.

VE / v(-,|curl A,|)curl A, - curlvdz + 7/ 0,(,curl A,) - curlvdz
(VE,) Q 0

:/Jsol~vdw Vv e X n .
Q

We shall see later in section 5 that (VE,) serves as the state equation for the regu-
larized optimal control problem (P.).

LEMMA 2.1. Let v >0. Then, the mapping 6 is continuously differentiable with
respect to the second variable, with derivative D0, : Q x R? — R3*3 gijven by

(2.5) Ds0.,(z,s)

s®s |s|—d(x) -1 ( s®s> : 1
+ I1d — if |s|>d(x)+ 2y,
EE B EE ol 2 ()
-1, s©5 (sl —d@)? [ s®s\ | L
— — Id — f 2
2 () - e 255+ LB IR (1 228) it o) o) + 27,
0 it |s| < d(z).

For all s € R? and almost every x € Q, the matriz D0, (x,s) € R3%3 s symmetric and
positive semidefinite. Moreover, D0, : @ x R3 — R3*3 is uniformly bounded. Finally,
for almost every x € Q, 0, (z, ) : R® — R3*3 is monotone and Lipschitz-continuous,
and it holds that
3
(2.6) 0., (z,5) — O(x,s)| <= for a.e. z€Q and all s € R
Y

Proof. The proof is rather straightforward and only given for the convenience
of the reader. It is apparent that €, is continuously differentiable at s # 0 since it
is the product and composition of C!'-mappings, and the same is true if s = 0 and
d(xz)>0. If s and d(x) are both zero, it suffices to check that s+ s|s| is continuously
differentiable at the origin, which is easily verified. A direct computation shows that
the Jacobian is given by (2.5). Note that, for each s € R3, the matrices

s®s $® s

d Id———
s EE
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are (symmetric) projection matrices. Thus, they have spectrum {0,1} so that, for
every s € R and almost every x € 2, the matrix Ds0,(z,s) € R3*3 is positive
semidefinite. Thus, we can apply [32, Theorem 12.3] to conclude that 8., is monotone
with respect to the second variable. For the uniform boundedness of D,0.,, we observe
that

—d(z) — -1
5©sls _y g Blod@ -0
5] |s]
where | - |2 denotes the spectral norm. Therefore, there exists a constant C' > 0 such
that |D;6.(z,s)| < C for almost all z € Q and all s € R®. Combining [32, Theorem

9.2] and [32, Theorem 9.7], this also implies the Lipschitz continuity of €,. To finish
the proof we calculate

[s] = d(@) =77 = (sl = d(@)| ifls] = d(@) + 297",

|07($7S)—9(I,8)|§ ~
T (sl = d@))? = (Is| —d(@)| i |s| € (d(@), d(@) +297),
which yields the desired estimate (2.6). d

LEMMA 2.2. For every Jso € H(div=0), the regularized problem (VE,) admits
a unique solution A, € X .

Proof. In view of the Browder-Minty theorem, we define an operator M., :
XN,U — X*N,O by

<M’YA"U>X}‘V,O,XN,0
::/ v(,|curl A|) curl A - curlvdzx +fy/ 0,(-,curl A)-curlvdz VA ,ve Xnp.
Q Q

A combination of Assumption 1.1, the Poincaré-Friedrichs inequality (1.8), and
Lemma 2.1 (the monotonicity and continuity of 8.,) implies that M., is strongly mono-
tone and hemicontinuous. Indeed, for any A;, Ay € X n 0, it holds that

(27)  (MyA1— M, Az, Ay — As) .

0 X N0

= / (v(+, ]| curl A1]) curl A1 —v(-,| curl As|) curl As) - curl(A; — As)dx
Q

—s—’y/ (0,(-,curl A;) — 0.,(-,curl Ay)) - curl(A; — Ay)dx
Q

Y

/ (v(+,| curl Aq|) curl A; — v(-,| curl As|) curl As) - curl(A; — As)dx
Q

) vmin{1,C;?}
> vlleurl(A; — Az)lza0) 2 ——5— —
oo (1.8)

AL — Asll% o

which implies the strong monotonicity of M,,. The hemicontinuity of M., follows im-
mediately from the continuity properties of the nonlinearities v and 6 in combination
with Lebesgue’s dominated convergence theorem. Since the right-hand side in (VE,)
induces a functional in X'y (, the usage of the Browder-Minty theorem completes the
proof. 0

LEMMA 2.3. For every Jyo € H(div=0), the problem (Vls,) admits a unique
solution A € K N H(div=0). Furthermore, the unique solution A, € X o of (VE,)
converges strongly in X o to the unique solution A of (Vls) as vy — oo.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/12/23 to 132.252.62.173 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

2050 G. CASELLI, M. HENSEL, AND I. YOUSEPT

Proof. Let v >0 be given. Testing (VE,) with v= A, leads to

(2.8) /QV(-, |curl A,|)curl A, - curl A, dz + 'y/ﬂ 0,(-,curl A,) -curl A, dx

:/ J501~A7dCE.
Q

Utilizing Assumption 1.1, the Poincaré-Friedrichs inequality (1.8), and Lemma 2.1
(the monotonicity of 8,), a straightforward computation in the fashion of (2.7) in com-
bination with the Hélder and Young inequalities shows that the sequence {A,}y50 C
X n,0 is bounded in X y o, and consequently there exists a subsequence, still denoted
in the same way, and A € Xy, such that

(2.9) A, —A weaklyin Xyo asy—o0.

By the compactness of the embedding (1.4), we also obtain that A, — A strongly
in L*(Q) as v — oo. Next we shall prove that A € K, i.e., |curl A| < d a.e. in Q.
Dividing the equation in (2.8) by v and due to the boundedness of {A,},~¢ in Xy
implying the boundedness of {curl A,}.~¢ in L*(Q), we get

(2.10) /QOW(~,curlA.y)~curlAﬂ,dx%O as y — 0o,
while from (VE,) it also follows that
(2.11) /07(~,cur1A7)~curlfvd:1:%0 asy—oo YveXpyp.
As 0., is monot?)ne in the second variable, it holds for all v € X ¢ that
0< /9(97(~,cur1 A,)—0,(,curlv)) - curl(A, —v)dx
= /Q 0,(-,curl A,) - curl(A, —v)dz
+ /9(0(-,cur1'u) —0,(-,curlv)) - curl(A, —v)dx
— /Q 0(-,curlv) - curl(A, —v)dz.

Thanks to (2.10), (2.11), and the strong L*(2)-convergence of 0. (-,curlv) toward
0(-,curlv) (see (2.6)), we obtain after passing to the limit v — oo in the previous
inequality that

(2.12) / 0(-,curlv)-curl(A —v)dz <0 Vve Xnp.
Q

Now we take s € (0,1), v € X y ¢ arbitrarily fixed and set v=A+sv € Xy in (2.12)
to deduce that

(2.13) /0(~,curl(A—|—s%)) ccurlodr >0 Yoe Xpyp.
Q

By the continuity of 8 with respect to the second variable, it follows that 8(-, curl(A+
sv)) = 0(-,curl A) a.e. in £ as s — 0. Moreover, we have

|0(-,curl(A + sv))| = |max(|curl(A + sv)| —d,0)|
(2.4)

<||curl(A + sv)| — d| <|curl A| + |curlv|+d Vs€(0,1) and a.e. in £,
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and therefore we apply Lebesgue’s dominated convergence theorem to pass to the
limit s — 0 in (2.13). This implies

/0(~,curlA)~curlﬁdeO YoeXnpo
Q

= / 0(-,curl A) -curlvdr =0 Yve Xy,
Q
and setting v = A in the last equation finally yields

0:/0(-,cur1A)~cur1Adx:/max(|cur1A|—d,O)|cur1A\ dz,
Q Q

>0

which implies
max(| curl A(z)| — d(x),0)| curl A(x)|=0 forae z€Q = AcK.

Let us now show that the weak convergence (2.9) is strong. To this end, first we test
(VE,) with v=A, — A€ Xy, to obtain

(2.14) /Ql/(~, |curl A,|) curl A, - curl(A, — A)dx

+7/520W(~7cur1 A,)-curl(Ay, —A)dz = /Q Jool - (A, — A)da.
In view of Assumption 1.1 and (1.8), there exists a constant C,, > 0 such that
(2.15) /Qz/(~7 |curl A,|) curl A, - curl(A, — A)dx

>C)|| Ay — AH%QM + /Q v(-,|curl A|) curl A - curl(A, — A)dz.
Moreover, it holds that
(2.16) /907(-, curlA,)-curl(A, — A)dx

= /Q(OV(-,curl A))—0,(,curlA))-curl(A, — A)dz >0,

where we used the fact that 6.,(-,curl A) =0 since | curl A(z)| <d(z) for a.e. z € Q.
Applying (2.15) and (2.16) to (2.14) leads to

Cull = Al < [ T (A = A)da
- / v(-,|curl A|)curl A - curl(A, — A)dz.
Q

Since, by the convergence (2.9), the right-hand side of the above inequality tends to
0 as v — o0, it follows that

(2.17) A, — A stronglyin Xy asy— o0.
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We are left to show that A is a solution to (VIg). To this end, let v € K. Testing
(VE,) with v — A, yields that

/JS()]'(U*A,Y)CL’E
Q
:/ v(-,|curl A,|) curl A, - curl(v — A,)dx
Q

+7/ 0.,(-,curl A,) - curl(v — A,)dz
Q

(2.18)
= / v(-,|curl A,|) curl A, - curl(v — A,)dx
Q

—|—7/ (04(-,curl A,) — 6,,(-,curlv)) - curl(v — A,)dx
. %

< / v(-,|curl A,|) curl A, - curl(v — A,)dz,
Q

where we exploited the fact that v € K and that 6., is monotone. In view of (2.17),
after passing to the limit v — oo in (2.18), we obtain that A is a solution to (V).
Uniqueness is obtained by a standard energy argument exploiting once again the
monotonicity of 8. This concludes the proof. 0

3. Well-posedness.
THEOREM 3.1. Let J € L*(Q) be given with the associated Helmholtz decomposi-
tion

(3.1) J = Js1+ Vg € H(div=0) & VHj ().

Furthermore, let A € K N H(div=0) denote the unique solution to (Vi) for Jso €
H(div=0) given by (3.1). Then, (A,¢g) is the unique solution to (VI), and there
exists a unique m € X n o, the so-called dual multiplier, such that

/ v(-,|curl A|)curl A-curlvdz + curlm - curlv + Vo -vde
Q

:/J-vdx Vv € Hy(curl),
(3.2) ¢
/A-Vz/)dxzo Vi € Hy(9),
Q

/chrlm-curl(v —A)<0 YwekK.

Proof. First, the unique solution A € K N H(div=0) of (VI,) satisfies
(3.3) /QI/(~, | curl A|) curl A - curl(vg — A)dx
> /Q Jsol - (Vo1 — A)dx Voo € K N H(div=0).

Recalling the Helmholtz decomposition (1.6), it holds that

Vo € L*(Q) 3(veol, o) € H(div=0) x H} (Q) : v =401 + Voby.
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If v e K (see (1.2) for its definition), then we obtain from the above decomposition
that v € K N H(div=0) since | curl vgo)| = |curl(vso + Vo, )| = | curlv| < d a.e. in
Q). For this reason,

(3.4) Vo € K 3(vgol, ) € (K N H(div=0)) x H}(Q) : v =01 + V.

As Jyo € H(div=0) and curl V =0, it follows by applying (3.4) to (3.3) that
(3.5) / v(-,|curl A])curl A - curl(v — A)dz > / Jo-(v—A)dz YveK.
Q Q

Applying the decomposition (3.1) to (3.5) and taking A € H(div=0) into account, we
obtain that

/1/(~,|curlA|)curlA~curl(vfA)der/V¢J~vdx2/J~('va)dm Vve K.
Q Q Q

Hence, (A, ¢y) € (K N H(div=0)) x Hg(f) is a solution to (VI). Toward uniqueness,
let (A,¢) € (K N H(div=0)) x Hj(€2) be another solution to (VI). Considering only
test functions v € K N H(div=0) in (VI), we obtain due to (3.1) and (2.1) that A is
a solution to (VIs), which by the uniqueness of the solution to (VIs) implies that
A= A. Next, for any ¢ € Hg(£2), we have that A+ Vg € K since |curl(A+ V)| =
|curl A| < d a.e. in Q. Thus, testing the variational inequality for the solution (A, ¢)
to (VI) with v =A 4+ Vp € K, we obtain due to curl V =0 that

(3.6) /v&wdxz/J-wdx Vo € HE ().
Q Q

Applying (3.1) to (3.6), we end up with

[ @00 Vodo=0 Voemi®) > G=ou.

In conclusion, (A, ¢s) is the unique solution to (VI).

Let us now prove that (A, ¢y) satisfies the dual characterization (3.2). In view
of Lemma 2.3, {A4}y>0 C Hy(curl) is bounded in H(curl), and hence it follows
from (VE,) that {y0,(-,curl A,)},~¢ is bounded in [curl X y¢]*. Therefore, we
find W € [curl X v o]* such that after selecting a subsequence

(3.7 70 (-,curl A,) = ¥  weakly in [curl X yo]" asy— oo.

At the same time, since curl X y g C L?*(Q) is closed, Riesz’s representation theorem
implies the existence of m € Xy such that

(3.8) ¥ (curlv) = / curlm-curlvdz Vv e Xyp.
)

Combining (3.7) with (3.8), it follows that

(3.9)
7/907(-,cur1A7)-curl'udm—>/chrlm-curl'uda: VveXpno asy—oo.
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Due to (3.9) and the strong convergence A, — A in Xy as 7 — 0o (see Lemma 2.3),
we obtain after passing to the limit v — oo in (VE,) that

(3.10) /y(~,|cur1A|)cur1A~curlvdx—|—/curlm-curl’udx
Q Q

:/Jsol-vdx Vv e X .
Q

As a result of (1.8), (3.10) implies that m € X ¢ is unique. Indeed, assuming that
there exist mq,my € Xy satisfying (3.10), it follows that

/ curl(m; —my)-curlvdr =0 Yve Xpnp.
Q

Then, inserting v = my —mg € X o and taking (1.8) into account, we obtain that
my =ms. Now, since curl V=0 and J, € H(div=0), it follows from the Helmholtz
decomposition Ho(curl) = X o @ VH;(Q) that the variational equality (3.10) is
valid for all test functions in Hg(curl), i.e., it holds for all v € H(curl) that

(3.11) /u(~7|cur1A|)cur1A~curlvdx—|—/curlm-curl'uda:
Q Q
= Jso1-vdx = /(J—ngj)-vdx.
/Q ° (\3’1')’ Q

For the last part in (3.2) we take v € K C Hy(curl) and test equation (3.11) with
v — A to deduce that

/ curl m - curl(v — A)dz
Q

:/(J7V¢J)~(1;7A)d:c7/1/(~,|cur1A|) curl A-curl(v—A)dz < 0.
Q Q F//I-)/

To summarize, we have proved that there is a unique m € X ¢ such that the unique
solution (A, ¢y) of (VI) satisfies the dual characterization (3.2). This completes the
proof. 0

4. Dual multiplier regularity. This section is devoted to the dual multiplier
regularity analysis. Important tools for our study include elliptic regularity results
for Dirichlet and Neumann problems [22, 49] (cf. [13]) and the LP-Helmholtz decom-
position [15], which we recall in the following lemmata.

LEMMA 4.1 (Jerison and Kenig [22]). There exists a po > 3 such that for any
p € (p(,po) the Dirichlet problem

| Tuvode=r@) voew” @)
Q

/
admits for every F € [Wy? ()]* a unique solution ue Wy (Q). If Q is of class C',
then the claim holds true for all p € (1,00).

LEMMA 4.2 (Zanger [49]). There exists a po > 3 such that for any p € (pj, po) the
Neumann problem

/Vu-de:c:F(w) v e W' ()
Q

admits, for every F € [Wl’p/(ﬂ)]* with F(1) =0, a solution uw € W1P(Q).
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LEMMA 4.3 (Fujiwara-Morimoto [15]; cf. [37]). Let Q be of class Ct and p €
(1,00). Then, every q € LP(Q)) admits the following decomposition:

q=Vn+u
for some ne LY (Q) satisfying Vn € LP(Q) and uw € LP(Q) N Hy(div=0).

loc

THEOREM 4.4. Let J € L*(), and let (A,m,d5) € Xno x Xno x HEH(Q)
denote the unique solution to the dual formulation (3.2). Then, the following multiplier
reqularity results hold true:

() If J € LP(Q) and d € LP(Q) for p € [2,3], then ¢y € WP (Q) and curlm €

LP ().

(i) If J € LP(Q) and d € LP(Q) for p € [2,6], and Q is of class Cb', then

by € Wy (Q) and curlm € LP(Q).

(iii) If J € Ho(curl), d € LP(Q) for p € [2,00), and Q is of class C>', then

curlm e L?(Q).
(iv) If J € Ho(curl), d € L>=(2), v(-,|curl A|) € CO1(Q), and Q is of class C>1,
then curlm € L*(Q).

Remark 4.5. The third assumption in (iv) holds, for example, in the linear case
v(-,5) =1(-) for some v € C%(Q).

Proof. The proof is split into four parts.
Step 1. Suppose that J € LP(Q) and d € LP(Q) for p € [2,3]. Since 9N is
connected, (1.7) yields the decomposition

(4.1) J =Vy+curlw

for some y € H}(Q) and w € H(curl) N Ho(div=0). On the other hand, since
J € LP(Q) with p € [2,3], Lemma 4.1 implies that the Dirichlet problem

/Vu-quda::/J~Vz/)dx Vb € WhP ()
Q Q

/
admits a unique solution u € Wy ?(Q). Setting ¢ = u —y € HL(Q) < Wy ? () and
exploiting that curl V =0, we obtain

/QVu-V(u—y)dx:/QJ-V(u—y)dx
:/Q(J—curlw)-V(u—y)dm:/QVy-V(u—y)dx,

and consequently y = u € I/VO1 P(Q) follows from the standard Poincaré-Friedrichs
inequality in HE (). Now, applying (4.1) to (3.2) results in

/ v(-,|curl A]) curl A curlv + curlm - curlv + V¢ - vdx
Q

= / (Vy+curlw) -vdz Vo€ Hy(curl),
Q
which is equivalent to

(4.2) / (v(+,| curl A]) curl A + curl m — w) - curlv
Q

:/V(y—¢J)-vdx Vv € Hy(curl).
Q
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Therefore, inserting v =V (y — ¢s) € Ho(curl) in (4.2), it follows that
(4.3) ¢g=y=ueW;"(Q).

Invoking (4.3) in (4.2) and then making use of the distributional definition of the curl
operator, we infer that

v(-,|curl A]) curl A + curl m — w € H(curl)

with curl(v(-,|curl A|) curl A 4 curl m — w) =0.

The above regularity property allows us to employ (1.5) to attain the following de-
composition:

(4.4) v(,|curl A])curl A+ curlm —w=2+Vyp

for some ¢ € H'(Q) and z € H(curl) N Hy(div=0). Next, in view of the regularity
property d € LP(Q)), A€ K, (1.2), and Assumption 1.1, we have

v(-,|curl A|) curl A € LP(Q),
and hence the functional

F(y) ::/Qy(.,|cur1A\)cur1A.v¢dx Wewlm’(g)

is well defined in [W”’/(Q)]* and satisfies F/(1) = 0. For this reason, as p € [2,3],
Lemma 4.2 yields the existence of u € WP(Q2) such that

Vu Vi de=F(p) Ve Wb ().
Q

Inserting ¢ = u — ¢ € H'(Q) — lep/(Q) and taking curlm — w — z € Hy(div=0)
into account, it follows that

/Vu-V(u—gp)dmz /V(-,|cur1A|) curl A-V(u—p)dz
Q Q
= /(1/(~,|curlA\)cur1A+curlmf'wfz)oV(ufga)dz

Q
= QV50~V(u—<p)da:,
(42)

and so Vo = Vu € LP(2). At last, since p € [2, 3], we know from the embedding result
[10, Theorem 2] that
w, z € H(curl) N Hy(div=0) — HY?(Q) < LP(Q).

Altogether, curlm = Vu +w + z — v(-,| curl A|) curl A € L?(Q). In conclusion, (i)
is valid.

Step 2. Suppose that J € LP(Q) and d € LP(Q) for p € [2,6], and Q is of class
Ch1. Then, by the second claim of Lemma 4.1, we may deduce as in Step 1 that
by € WyP(Q) and

(4.5) v(-,|curl A])curl A+ curlm —w=Vyp+z

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/12/23 to 132.252.62.173 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

QUASILINEAR VI IN FERROMAGNETIC SHIELDING 2057

for some w, z € H(curl) N Hy(div=0) and ¢ € H*($). Furthermore, the C'-property
of  allows us to apply Lemma 4.3 to the vector field v(-,|curl A|) curl A € LP(Q).
In this way, we find n € L} () satisfying Vi € LP(Q) and u € LP(2) N H(div=0)
such that

(4.6) v(-,|curl A|)curl A=Vn+u.

Then, applying (4.6) to (4.5) results in curlm +u —w — 2 =V (¢ — 1), and so

O:/(curlm+u—w—z)~V(<p—n)dac:/|V(Lp—n)|2dm.
¢ € Ho(div=0) ¢

In conclusion,
curlm=w+z —uec LP(Q),

since w, z € H(curl) N Ho(div=0) — H"'(Q) = L°(Q) holds true as Q is of class C*!
(see [2, Theorem 2.9]). This finishes the proof for (ii).

Step 3. Suppose that J € Hy(curl), d € LP(Q) for p € [2,00), and 2 is of class
C%t. According to (3.2),

/(J—V¢J)~v¢dx:0 Vip € HY ()
Q
= J —Véy € Hy(curl) N H(div=0) — H'(Q),

where the last embedding holds as before since € is of class C*! (see [2, Theorem
2.12]). Applying the above regularity to (3.2), it follows again by the distributional
definition of the curl operator that

(4.7) curl(v(-,| curl A|) curl A + curlm) € H'(Q).

This particularly implies that v(-,| curl A|) curl A + curlm € H(curl) such that
(1.5) yields

(4.8) v(-,|curl A])curl A+ curlm=Vy+z

for some ¢ € H'(Q2) and z € H(curl) N Hy(div=0). Combining (4.7) and (4.8)
together leads to

curl z = curl(Vy + z) = curl(v(-, | curl A|) curl A 4 curlm) € H'(Q).

Therefore, since 2 is of class C*! and by a well-known embedding result [2, Corollary
2.15], the above regularity property along with z € H(div=0) implies that z €
H?(Q) — C(Q). Now, as in the previous step, we apply Lemma 4.3 to the vector
field v(-,| curl A|) curl A € L?(Q) to obtain n € Li, (Q) satisfying Vi € L*(Q2) and
U € LP(Q) N Hy(div=0) such that

v(|curl A)curlA=Vn+u = curlm+U—-z=V(p—n).
(4.8)

By the same argumentation as before, the regularity property curlm + U — z €
H (div=0) implies that V(¢ —n) =0. In conclusion, curlm =z — U € L?(Q).
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Step 4. Suppose that all the assumptions from Step 3 are satisfied with p = co
and v(-, |curl A|) € C*(Q). By standard arguments, the latter regularity assumption
implies
(4.9) v(-,|curl A|) curl A € Hy(div)

€Cco1 (@) €H(div)

with div (v(+,|curl A]) curl A) = Vv (-, |curl A]) - curl A.

Also, we already know that (4.8) holds true with ¢ € H'(Q2) and z € C(Q). We
apply now (1.5) and obtain that v(-,| curl A|)curl A = V6 + E for § € H*() and
E € Hy(div=0). Then, thanks to (4.9), we see that u:=6 € H'(Q) solves the elliptic
problem

(4.10) {(—A+1)u=—V1/(~,|cur1A)~cur1A+0 in Q,

Vu-n=0 on 0.
By the regularity of €, [16, Theorem 2.2.2.5] implies that § = u € H*(Q) < C(Q).
Thus, since Vv (-, |curl A]) € L*(Q) and curl A € L*(Q), the right-hand side of
(4.10) lies in L°°(€)). For this reason, [16, Theorem 2.4.2.7] yields the regularity
property 6 =u € W2P(Q) for all p € [1,00) such that
Ve WH(Q) = C(Q) = E=v(,|curl A|)curl A — V0 c L™(Q)
= curlm=z— E € L>*(Q),
-~
(4.8)&Vp=V0
where Vi = V# is obtained as in the previous step. This completes the proof. ]
5. Optimal control. We denote the control-to-state mapping for (VI) by

G:L*(Q) = Xno, J—A.

In view of Theorem 3.1, the restriction of G onto the subspace H (div=0), i.e., G :
H (div=0) — X n ¢, serves as the control-to-state mapping for (VIs,). Invoking G,
we reformulate the optimal control problem (1.3) as

. 1 A
(P) jmin F(7) = g eurl G(7) - Bulltaa) + 51 a0,

LEMMA 5.1. The optimal control problem (P) admits an optimal solution. Every
optimal solution to (P) enjoys a higher regularity property in H (div=0).

Proof. By standard techniques (cf. [43, Proposition 3.2]), the control-to-state
mapping G : LZ(Q) — Xy, is weak-strong continuous. Thus, the existence of an
optimal solution to (P) follows from classical arguments. Let J* € L*(Q) be an
optimal solution to (P). Our goal now is to prove the higher regularity property
J* € H(div=0). In view of (1.6), J* admits the following orthogonal decomposition:

(5.1) J* =J% + Vg € H(div=0) & VH}(Q)
= 2 ) = 15l 20y + Vs 1720 -
Let us now consider the optimal control problem

5.2 i F(J).
(5.2) sein FOD)
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Since G| g (div=0) is as well weak-strong continuous, there exists a minimizer J :Ol €
H (div=0) for (5.2), i.e.,

~%*

F(J.L)<F(J) VJe H(div=0).

sol

It then follows that

~*

1 A
F(Jg) S F(J5) = §||CUI‘1G(J* )_Bd”i?(Q)+§||J;ol||i"’(£2)

sol sol

-
(5.1)

o A ~x A
= F(J") - §||V¢J*||2Lz(n) SF(J o) — §HV¢J*||2L2(Q)7

1 A A
= §HCUI’1G(J201) — BallZ20) + §HJ*||2L2(Q) - §||V¢J* IZ2(0)

where for the last inequality we used the fact that J* is optimal for (P). The above
inequalities yield that V¢« = 0, which in turn implies ¢ 7+ =0 due to ¢ 5+ € Hg ().
Thus, by (5.1), we come to the conclusion that J* = J; € H(div=0). This completes
the proof. 0

Remark 5.2. Lemma 5.1 implies that any optimal solution J* € L*(Q) of (P) is
also an optimal solution of the H (div=0)-reduced problem

. 1 A
(5.3) seRm 3 leurl G(J) — Ballz20) + §||J||i2(sz)-

On the other hand, given an optimal solution J7,, € H(div=0) for (5.3), it is straight-
forward to verify that J is as well an optimal solution of (P). In that sense, both
problems (P) and (5.3) are equivalent, and it is therefore sufficient to focus on the

derivation of optimality conditions for (5.3).

5.1. Necessary optimality conditions for (P). This section is devoted to
establishing an optimality system for (P). To overcome the underlying nonsmoothness,
we consider a smoothed version of (5.3) built upon the approximation (VE,) in the
spirit of Barbu [4]: Given an arbitrarily fixed optimal solution J* € H(div=0) to (P),
we consider

n F(J.),
7, €H (div—0) 7(J5)

1 A A
Fy(J5) = 5lleurl G, (J5) — Ba|720) + §||Jv||3:2(sz) +50dy = I 220

for every J., € H(div=0), where G : H(div=0) — X y o denotes the control-to-state
mapping for (VE,) based on Lemma 2.2. Note that, as a consequence of Lemma 2.3,
standard arguments yield that

(5.4) J,—J weakly in H(div=0) as~y— o0
= G,(J,)—=>G(J) stronglyin Xy asy—oo.

LEMMA 5.3. For all v > 0, there exists an optimal solution J; € H(div=0) to
the problem (P.,).
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Proof. As before, by well-known techniques, the mapping G : H(div=0) —
X n,0 is weak-strong continuous. Therefore, the existence of an optimal solution
J? € H(div=0) of (P,) is guaranteed. O

We note that in general the uniqueness of optimal solutions to (P,) cannot be
guaranteed since G is nonlinear. Next, for the ease of notation, we introduce a vector
version of the nonlinearity v by means of the mapping

F:OxR* =R (2,8) — v(z,|s])s,

for which we require the following regularity assumption to hold.

Assumption 5.4. For almost every x € Q, the mappings v(z,-) : (0,00) = R and
F(z,-) :R3 = R3 are continuously differentiable. Moreover, there is a constant C' > 0
such that

‘ afi (z,8)| < C for a.e. x€Q and all s €R?,
S5

for all 4,5 € {1,2,3}.

Assumption 5.4 is obviously satisfied for v =1, i.e., for the case where the quasi-
linearity is not present. A nontrivial example for v satisfying both Assumption 1.1
and Assumption 5.4 can be found in [43, Example 3.5].

Now, let v > 0 be arbitrarily fixed. Further let J,J € H(div=0) and let A, =

G, (J) be the corresponding state. To obtain differentiability properties of G, we
introduce an auxiliary linear problem:

(5.5)
Find 2[7 S XN,O s.t.

/DSF(-,curlZW)curIQ[,y-curlvdm—k*y/DSOV(-,curIZW)curlﬁlﬁ,-curlvdx
Q Q
:/dex Vv e Xnp.

Q

Now, [43, Proposition 3.7] provides us with

(5.6) D, F(z,s)y-y>vly|? forae zcQandalls,ycR3
Furthermore, as a consequence of Lemma 2.1, it holds that

(5.7) D,0,(z,s)y-y>0 forae xzecandallsye R3.

Since A., is fixed, the left-hand side of (5.5) induces a bilinear form. According to
the properties (5.6) and (5.7), this bilinear form is coercive. Thanks to the uniform
boundedness of D,F from Assumption 5.4 and the uniform boundedness of D8,
from Lemma 2.1, the resulting bilinear form is also bounded. Hence, by the Lax—
Milgram theorem, (5.5) admits a unique solution A, € Xy . Taking into account
Assumption 5.4, it is readily well known to verify the weak Géteaux differentiability
of G, : L*(Q) — X (see the proof of [43, Proposition 3.7]). The weak Géteaux
derivative G/ (J)J is given by the unique solution 24, to (5.5).

As a consequence of the weak Gateaux differentiability, standard adjoint tech-
niques imply necessary optimality conditions for (P,) which are collected in the fol-
lowing lemma.
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LEMMA 5.5. Let v >0, and let J, € H(div=0) be an optimal control for (P»).
Then, there exists a tuple (A%, Q%) € X no x X, such that

/V(-,|cur1A;\)cur1A;~curlvdx—|—7/07(-,cur1A;)-curlvda:
Q Q
:/Jf‘yﬂvdx Vv e X,
Q
/QDST(-, curl A,*Y)Tcurl Q’ -curlvdz

+7/ D6, (-, curl A7) curl Q7 - curlvdz
Q

:/(curlAf/—Bd)-curlvdx Vv € X o,
Q

1 1
Ty =A@+ 5T

In all of what follows, for every v > 0, let J? € H(div=0) denote an optimal
solution to (P.) with the associated state and adjoint state (A7, Q%) € Xy o x Xnpo
satisfying (5.8). Our final goal is to establish necessary optimality conditions for (P)
by means of a limit passage in the necessary optimality systems (5.8). Generally
speaking, as part of necessary optimality conditions, one would expect a certain or-
thogonal relation between the dual multiplier and the optimal state. In the case of
(P), difficulties arise due to the involved quasi-linearity and especially the first-order
bilateral vector curl-constraint in the underlying H (curl)-structured variational in-
equality. Consequently, we can only prove the boundedness of {76, (-, curl A:)}w>0
and {D,0,(-,curl A7) curl Q7 },~¢ in [curl X y]* and not in L?(Q). We tackle this
difficulty by employing the Hilbert projector into the space curl X y g,

(59) Peur :=Peurl XnNo - L? (Q) —curl Xy,

taking into account that curl Xy C L*(Q) is closed, and the following tailored
cut-off type function:
, , . d(z) s if |s| <d(x),

(5.10) 0:QxR°—=R?, p(z,s):=smin (1’|s|> = d(z)é if |s| > d(z).

THEOREM 5.6. Let J* € H(div=0) be an optimal solution of (P). Then, there
exist an optimal state A* € K N H(div=0), an adjoint state Q* € X, a state
multiplier m* € X no, and o triple of adjoint multipliers (n*,U:lJr,UZL) € Xno X
L*(Q) x L*(Q) such that

(5.11) /QI/(', |curl A*|)curl A* - curlvdx +/chrl m* - curlvdz
:/QJ*~'Ud:L' Vv € X n o,

(5.12) /chrl m* -curl(v — A*)dz <0 VveK,

(5.13) /QDS.7~'(~,cur1 AN Tcurl Q*-curl'uda:—&-/ﬂcurl n* - curlvdz

= / (curl A* — By) -curlvdz Vv e Xy,
Q
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(5.14) J=-2"1Q*,
(5.15) / curln* - curl Q* dz > 0,
Q
curl A* N
(5.16) /QU:H : (dcurlA*| — curl A*) dz=0, curln*=o0y +oj .

After selection of a subsequence, the triplet of adjoint multipliers (n*,a§+,a§_) 18
characterized by

YPeur (DSBAY(-7 curl A:;) curl Q;) —curln* weakly in L*(Q),

YPeurl (DSOW(-, curl A:) curl ny) X{] curl A% [>d} — 0'2+ weakly in L?(0),
Pert (D,0(,curl A7) curl @°) X{j cust az <oy — 05 weakly in L3(©)
as y — 0o.

Remark 5.7. We recall from Theorem 3.1 that (5.11)—(5.12) is equivalent to the
primal formulation

/ v(+,|curl A*|)curl A* - curl(v — A*)dz > / J(v—A%)dx YveK.

Q Q

Moreover, combining the variational equality (5.13) and the sign condition (5.15), we
obtain a variational inequality for (Q*,n*) as follows:

/ D, F(-,curl A*)Tcurl Q* - curl(v — Q*)dx + / curln* - curlvdz
Q Q

> / (curl A* — By) -curl(v — Q*)dz Vv e Xy p.
Q

Proof. The proof is divided into three steps.

Step 1 (limiting process). Let J* € H(div=0) be an optimal solution of (5.3).
Combining Lemma 2.3 with standard arguments from [4] taking into account the
penalty term 3||J., — J*||ig(9) in (P,), there exists a sequence {J7 },~0 C H(div=0)
of optimal solutions to (P) such that

JL —J*  strongly in H(div=0) as y— oo.
Combining Lemma 2.3 with Theorem 3.1 and (5.4) implies that

£ 17 Al — A” strongly in X no as vy — 00,
(5.17) 70, (-,curl A7) — curlm* weakly in [curl X y o] asy— oo,
where (A*,m*) € (KN H (div=0)) x X x ¢ is the unique solution to the dual formula-
tion (3.2) with right-hand side J* € H(div=0) and ¢ =0, i.e. (5.11) and (5.12). Let us
now invoke the necessary optimality conditions (5.8) for the optimal control J7, of the
regularized problem (P.). Inserting v = Q7 in (5.8) and taking (5.6) as well as (5.7)
into account, we obtain the boundedness of {Q;}PDO in X n . Furthermore, in view
of (5.8), the boundedness of {Q%},0 and {A}},~¢ as well as Assumption 5.4 yield
the boundedness of {yD.0,(-,curl A%) curl Q},~¢ in the dual space [curl X yo]*.
Altogether, there exist Q" € X o and nf € X o such that, after selection of a
subsequence, we obtain

(5.18) Q,—Q weakly in X n o as y — 0o,

7D;6, (-, curl A7) curl @} — curlng weakly in [curl X 5 ]* as y— oo.
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Taking into account (5.17) and Assumption 5.4, we apply Lebesgue’s dominated con-
vergence theorem to deduce

(5.19) DyF(-,curl AZ) curlv — D, F (-, curl A*) curlv
strongly in L*(Q) asy—oo Yve X0

It now follows from (5.17), (5.18), and (5.19) that (Q*,n}) satisfies the adjoint equa-
tion (5.13). Moreover, passing to the limit v — oo in the representation for the optimal
control in (5.8), we conclude that (5.14) is valid.

Step 2 (orthogonality condition). For every v > 0, employing (5.9), we decompose
D0, (-, curl AY) curl Q as

D0, (-, curl A7) curl Q) =Peyr1(Ds0, (-, curl A7) curl Q) + 2.,
(5.20) with 2z, := (I = Peur1 )(Ds0,(-,curl AY) curl Q%) € (curl X o)t

By definition, for every v >0, there exists g, € X o, such that
Peur1 (D46, (-, curl Afy) curl ny) =curlg,.

Inserting v = g, in the adjoint equation in (5.8) yields
/Q D,F(-,curl A;)Tcurl Q’ -curlg, dz + ’y/Q(curl g, +z,) curlg, dz
= /Q(curl A’ — By)-curlg, dz.

Since z., € (curl X x)*, the L*(Q)-inner product between z., and curl g., vanishes
such that

/ D, F(-,curl A?) curl Q% - ycurlg, dz + +*| curlg, ||i2(9)
Q
= / (curl A7 — By) - yeurl g, dz.
Q

In view of Assumption 5.4, both sequences {curl A%} 5o and {curl@}},~o are
bounded in L*(Q). Thus, an application of the Hélder and Young inequalities implies
that {ycurlg, },>¢ is bounded in L?(Q). As a consequence, there exists n* € XnNo,
such that, after selecting a subsequence, it holds that

(5:21)  YPeur1(DsO, (-, curl A7) curl Q%) =~curl g, — curl n*
weakly in L*(Q) as v — oo,

where we used the fact that curl X y o C L*(2) is closed. Since, according to (5.18)
and (5.20), it also holds that

/'ycurlgv-curlvdm%/curln6~curlvdx asy—o00 YveXnyp,
Q Q

we infer that

/ curln* - curlvdz = / curlng - curlvdr Yve Xnp.
Q Q
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Next, for every v >0, we set
0,y = VPeur1(Ds0 (-, curl AY) curl Q%) X(| curt 42>y = veurl g, x{| curl 4% |>d},
0.d_ = VPeur1(Ds0, (-, curl A7) curl Q%) x| curl ax|<ay =veurl g, x| curl x| <a}-
By definition, it holds that
|oy,d.| <|ycurlg,| ae. in Q,

loy.a | <|ycurlg,| a.e. in Q.

Consequently, as {ycurlg, },~0 C L?(Q) is bounded, the sequences {04,d4, }4>0 and
{0..4_}>0 are also bounded in L*(). For this reason, there exist 05,.,05, € L*(Q)
such that, after extracting a subsequence, we obtain that

(5.22) 044, — 0y, weakly in L?(Q) as~y— oo,
' 04 —0,; weakly in L2(Q) as y — 00.

Finally, due to
Oyd, +0y4_ =n7curlg, Vy>0

and the weak convergence (5.21), we come to the conclusion that curln* =07 +o7 .
Let us now make use of the cut-off type function

curl A% (z) if | curl AZ ()| < d(z),
i) curl Az(a:)
| curl A% ()]

1A2)S4(z) = 1A%) =
(curl 45)>(z) = e(w, curl 43) if | curl A% (x)| > d(x)

for a.e. x € Q. Since, for a.e. x € 2, the mapping o(x,-) is Lipschitz continuous with
Lipschitz constant 1, we obtain that

/ |(curl A;)Sd —curl A*|?dz = / [(curl A;)Sd — (curl A*)=42dz
Q ~ Q
| curl A*|<d

:/ ‘g(.7cur1A;)—g(-,curlA*)\deS/ |curlAfY—cur1A*|2dx — 0
@ Q@ (5.17)

as v — co. Therefore, it holds that
(5.23) (curl A;)Sd —curl A* strongly in L*(Q) as y— oo.

Combining (5.23) with (5.21) and the fact that curln* =07 +o7 holds, we obtain
that

(5.24) /Q YPeur1 (D30, (-, curl AY) curl Q%) - (curl A;)dex

%/ oy, -curl A" dx +/ o} -curl A*dz
Q Q
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as 7 — 00. On the other hand, in view of the construction of the cut-off mapping @

(see (5.10) for its definition), the left-hand side of the latter equation can be rewritten
as

/Q YPeur1(Ds0 (-, curl A%) curl Q) - (curl Af/)gd dz

N N curl A%
:/Q’Y]Pcurl(Dsa,Y(~’CuI‘1 A’Y) curl Q»y)X{|curlA:{|>d} mdl’
(5.25) +/Q’yIP’cur1(D307(-,curl A?) curl Q;)X{‘CuﬂA;‘Sd} -curl AZ dz
curl A )
/U'y,d+ A dx+/ 0,4 -curl Adx
| curl A Q
1A*
%/ cur —_— d$+/0'2 -curl A*dz  as v — oo,
url A Q

where the last convergence follows again from (5.17) and (5.22). Then, comparing the
convergences (5.25) and (5.24) concludes the proof for the orthogonality condition
(5.16).

Step 3 (sign condition). Finally, let us prove the sign condition (5.15). For this
last step, we test the adjoint equation in (5.8) with the adjoint state, i.e., v = Q:, to
obtain

(5.26) /QDS.’F(-, curl A*)Tcurl Q - curl Q% dz — /Q(curl A’ — By) -curl Q dx

= —fy/Q D0, (-, curl AY) curl Q’ - curl Q7 dz <0.
Next, let us estimate

(5.27) liminf/QDS]:(~,curl A% Teurl Q% - curl Q% da

Y—00

= liminf [/ DyF(-,curl A;)Tcurl(QfY - Q") -curl(Q; - Q%) dx
Q

y—00

2/ DsF(-,curl A;)Tcurl Q; -curl Q* dx

Q

—/ D F (-, curl A:)Tcurl Q" -curlQ*dzx
Q

> 2liminf/DSF(~7cur1A:)TcurlQ:~curlQ*dx
e

- limsup/ DsF(-,curl A;)Tcurl Q" - curl Q* dz.
Q

y—00
> /DS.’}-'(~,cur1 AN Tcurl Q* - curl Q* du.

~~Ja
(5.19)
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Using the limiting adjoint equation (5.13), we ultimately find that

- / curln* - curl Q* dx
Q

= D, F(-,curl A*)Tcurl Q* - curl Q* dz — / (curl A* — By) - curl Q* dx
) Q
(5.13)

< liminf </ D F(-,curl A:)Tcurl Q) -curl Q7 dx
Q

<~ Yoo
(5.27)
- /Q(curl Al — By)-curl@Q} dx) < 0.
(5.26)
This completes the proof. 0

COROLLARY 5.8. Every optimal solution J* € H(div=0) of (P) enjoys the regu-
larity property J* € Ho(curl) N H(div=0). Furthermore, the following higher regu-
larity results hold true for the associated multipliers ¢+ € H} () and m* € X no:

(i) If d e LP(2) for p€[2,3], then ¢y € Wy (Q) and curl m* € LP(Q).

(it) If d € LP(Q) for p € [2,6], and Q is of class CV1, then ¢+ € Wy'P(Q) and

curl m* € LP(9).

(iii) If d € LP(2) for p € [2,00), and Q is of class C*', then curl m* € L” ().

(iv) Ifde L*°(), v(-,|curl A*|) € C%1(Q), and Q is of class C*!, then curl m* €

L>(Q).

Proof. Let J* € H(div=0) be an optimal solution of (P). Then, Theorem 5.6 im-
plies J* = —A\71Q* so that the optimal solution satisfies J* € Ho(curl) N H (div=0).
Recalling the continuous embeddings (cf. [10, Theorem 2] and [2, Theorem 2.12])

H(curl) N H(div=0) — HY?(Q) — LP(Q) Vpe[2,3],
Hy(curl) N H(div=0) — H'(Q) — LP(Q)  Vpec[2,6] if Qis of class C"*,

the claim follows therefore by applying Theorem 4.4. ]
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