Numerical Analysis for Maxwell Obstacle Problems in Faraday Shielding jointly with Irwin yousept

Maurice Hensel

February 7, 2022
University of Duisburg-Essen

Obstacle problem in Faraday shielding

Faraday shielding (recap): Effect of redirecting or blocking certain electric fields.

Maxwell obstacle problem

Faraday shielding (recap): Effect of redirecting or blocking certain electric fields.

Measurement of an electric field by an EMF-meter with and without Faraday shielding

Faraday shielding phenomena \rightsquigarrow Evolutionary Maxwell obstacle problems:

Faraday shielding phenomena \rightsquigarrow Evolutionary Maxwell obstacle problems:

- In the free region the electromagnetic field (E, H) satisfies Maxwell's equations:

$$
\left\{\begin{array}{l}
\epsilon \frac{\mathrm{d}}{\mathrm{~d} t} E(t)+\sigma E(t)-\operatorname{curl} H(t)=f(t) \text { for a.e. } t \in(0, T) \\
\mu \frac{\mathrm{d}}{\mathrm{~d} t} H(t)+\operatorname{curl} E(t)=0 \quad \text { for a.e. } t \in(0, T) \\
(E, H)(0)=\left(E_{0}, H_{0}\right)
\end{array}\right.
$$

Faraday shielding phenomena \rightsquigarrow Evolutionary Maxwell obstacle problems:

- In the free region the electromagnetic field (E, H) satisfies Maxwell's equations:

$$
\left\{\begin{array}{l}
\epsilon \frac{\mathrm{d}}{\mathrm{~d} t} E(t)+\sigma E(t)-\operatorname{curl} H(t)=f(t) \text { for a.e. } t \in(0, T) \\
\mu \frac{\mathrm{d}}{\mathrm{~d} t} H(t)+\operatorname{curl} E(t)=0 \quad \text { for a.e. } t \in(0, T) \\
(E, H)(0)=\left(E_{0}, H_{0}\right)
\end{array}\right.
$$

- The electric field E is supposed to satisfy

$$
E(t) \in K:=\left\{v \in L^{2}(\Omega)| | v(x) \mid \leq d \text { for a.e. } x \in \omega\right\}
$$

Faraday shielding phenomena \rightsquigarrow Evolutionary Maxwell obstacle problems:

- In the free region the electromagnetic field (E, H) satisfies Maxwell's equations:

$$
\left\{\begin{array}{l}
\int_{\Omega} \epsilon \frac{d}{d t} E(t) \cdot(v-E(t))+\sigma E(t) \cdot(v-E(t))-\operatorname{curlH}(t) \cdot(v-E(t)) d x \\
=\int_{\Omega} f(t) \cdot(v-E(t)) d x \quad \forall v \in K \cap H_{0}(\operatorname{curl}) \text { for a.e. } t \in(0, T) \\
\mu \frac{d}{d t} H(t)+\operatorname{curl} E(t)=0 \quad \text { for a.e. } t \in(0, T) \\
(E, H)(0)=\left(E_{0}, H_{0}\right),
\end{array}\right.
$$

- The electric field E is supposed to satisfy

$$
E(t) \in K:=\left\{v \in L^{2}(\Omega)| | v(x) \mid \leq d \text { for a.e. } x \in \omega\right\}
$$

Faraday shielding phenomena \rightsquigarrow Evolutionary Maxwell obstacle problems:

- In the free region the electromagnetic field (E, H) satisfies Maxwell's equations:

$$
\left\{\begin{array}{l}
\int_{\Omega} \epsilon \frac{d}{d t} E(t) \cdot(v-E(t))+\sigma E(t) \cdot(v-E(t))-\operatorname{curl} H(t) \cdot(v-E(t)) d x \\
=\int_{\Omega} f(t) \cdot(v-E(t)) d x \quad \forall v \in K \cap H_{0}(\operatorname{curl}) \text { for a.e. } t \in(0, T) \\
\mu \frac{d}{d t} H(t)+\operatorname{curl} E(t)=0 \quad \text { for a.e. } t \in(0, T) \\
(E, H)(0)=\left(E_{0}, H_{0}\right),
\end{array}\right.
$$

- The electric field E is supposed to satisfy

$$
E(t) \in K:=\left\{v \in L^{2}(\Omega)| | v(x) \mid \leq d \text { for a.e. } x \in \omega\right\}
$$

Faraday shielding phenomena \rightsquigarrow Evolutionary Maxwell obstacle problems:

- In the free region the electromagnetic field (E, H) satisfies Maxwell's equations:

$$
\left\{\begin{array}{l}
\int_{\Omega} \epsilon \frac{d}{d t} E(t) \cdot(v-E(t))+\sigma E(t) \cdot(v-E(t))-H(t) \cdot \operatorname{curl}(v-E(t)) d x \\
=\int_{\Omega} f(t) \cdot(v-E(t)) d x \quad \forall v \in K \cap H_{0}(\operatorname{curl}) \text { for a.e. } t \in(0, T) \\
\mu \frac{d}{d t} H(t)+\operatorname{curl} E(t)=0 \quad \text { for a.e. } t \in(0, T) \\
(E, H)(0)=\left(E_{0}, H_{0}\right),
\end{array}\right.
$$

- The electric field E is supposed to satisfy

$$
E(t) \in K:=\left\{v \in L^{2}(\Omega)| | v(x) \mid \leq d \text { for a.e. } x \in \omega\right\}
$$

Faraday shielding phenomena \rightsquigarrow Evolutionary Maxwell obstacle problems:

- In the free region the electromagnetic field (E, H) satisfies Maxwell's equations:

$$
\left\{\begin{array}{l}
\int_{\Omega} \epsilon \frac{d}{d t} E(t) \cdot(v-E(t))+\sigma E(t) \cdot(v-E(t))-H(t) \cdot \operatorname{curl}(v-E(t)) d x \\
=\int_{\Omega} f(t) \cdot(v-E(t)) d x \quad \forall v \in K \cap H_{0}(\text { curl }) \text { for a.e. } t \in(0, T) \\
\mu \frac{d}{d t} H(t)+\operatorname{curl} E(t)=0 \quad \text { for a.e. } t \in(0, T) \\
E(t) \in K \text { for all } t \in[0, T] \text { and }(E, H)(0)=\left(E_{0}, H_{0}\right),
\end{array}\right.
$$

- The electric field E is supposed to satisfy

$$
E(t) \in K:=\left\{v \in L^{2}(\Omega)| | v(x) \mid \leq d \text { for a.e. } x \in \omega\right\}
$$

Faraday shielding phenomena \rightsquigarrow Evolutionary Maxwell obstacle problems:
(P) $\quad\left\{\begin{array}{l}\int_{\Omega} \epsilon \frac{d}{d t} E(t) \cdot(v-E(t))+\sigma E(t) \cdot(v-E(t))-H(t) \cdot \operatorname{curl}(v-E(t)) d x \\ \geq \int_{\Omega} f(t) \cdot(v-E(t)) d x \quad \forall v \in K \cap H_{0}(\operatorname{curl}) \text { for a.e. } t \in(0, T) \\ \mu \frac{d}{d t} H(t)+\operatorname{curl} E(t)=0 \quad \text { for a.e. } t \in(0, T) \\ E(t) \in K \text { for all } t \in[0, T] \text { and }(E, H)(0)=\left(E_{0}, H_{0}\right)\end{array}\right.$

Faraday shielding phenomena \rightsquigarrow Evolutionary Maxwell obstacle problems:
(P)

$$
\left\{\begin{array}{l}
\int_{\Omega} \epsilon \frac{d}{d t} E(t) \cdot(v-E(t))+\sigma E(t) \cdot(v-E(t))-H(t) \cdot \operatorname{curl}(v-E(t)) d x \\
\geq \int_{\Omega} f(t) \cdot(v-E(t)) d x \quad \forall v \in K \cap H_{0}(\text { curl }) \text { for a.e. } t \in(0, T) \\
\mu \frac{d}{d t} H(t)+\operatorname{curl} E(t)=0 \quad \text { for a.e. } t \in(0, T) \\
E(t) \in K \text { for all } t \in[0, T] \text { and }(E, H)(0)=\left(E_{0}, H_{0}\right)
\end{array}\right.
$$

- $\Omega \subset \mathbb{R}^{3}$ and $\omega \subset \subset \Omega$ bounded, polyhedral Lipschitz domains

Faraday shielding phenomena \rightsquigarrow Evolutionary Maxwell obstacle problems:
(P)

$$
\left\{\begin{array}{l}
\int_{\Omega} \epsilon \frac{d}{d t} E(t) \cdot(v-E(t))+\sigma E(t) \cdot(v-E(t))-H(t) \cdot \operatorname{curl}(v-E(t)) d x \\
\geq \int_{\Omega} f(t) \cdot(v-E(t)) d x \quad \forall v \in K \cap H_{0}(\text { curl }) \text { for a.e. } t \in(0, T) \\
\mu \frac{d}{d t} H(t)+\operatorname{curl} E(t)=0 \quad \text { for a.e. } t \in(0, T) \\
E(t) \in K \text { for all } t \in[0, T] \text { and }(E, H)(0)=\left(E_{0}, H_{0}\right)
\end{array}\right.
$$

- $\Omega \subset \mathbb{R}^{3}$ and $\omega \subset \subset \Omega$ bounded, polyhedral Lipschitz domains
- $f \in C^{0,1}\left([0, T], L^{2}(\Omega)\right)$

Faraday shielding phenomena \rightsquigarrow Evolutionary Maxwell obstacle problems:
(P)

$$
\left\{\begin{array}{l}
\int_{\Omega} \epsilon \frac{d}{d t} E(t) \cdot(v-E(t))+\sigma E(t) \cdot(v-E(t))-H(t) \cdot \operatorname{curl}(v-E(t)) d x \\
\geq \int_{\Omega} f(t) \cdot(v-E(t)) d x \quad \forall v \in K \cap H_{0}(\text { curl }) \text { for a.e. } t \in(0, T) \\
\mu \frac{d}{d t} H(t)+\operatorname{curl} E(t)=0 \quad \text { for a.e. } t \in(0, T) \\
E(t) \in K \text { for all } t \in[0, T] \text { and }(E, H)(0)=\left(E_{0}, H_{0}\right)
\end{array}\right.
$$

- $\Omega \subset \mathbb{R}^{3}$ and $\omega \subset \subset \Omega$ bounded, polyhedral Lipschitz domains
- $f \in C^{0,1}\left([0, T], L^{2}(\Omega)\right)$
- $\left(E_{0}, H_{0}\right) \in\left(K \cap H_{0}(\right.$ curl $\left.)\right) \times H($ curl $)$ initial data

Theorem

The obstacle problem (P) admits a unique solution

$$
(E, H) \in W^{1, \infty}\left((0, T), L^{2}(\Omega) \times L^{2}(\Omega)\right) \cap L^{\infty}\left((0, T), H_{0}(\text { curl }) \times L^{2}(\Omega)\right)
$$

satisfying the local magnetic regularity

$$
H_{\mid \Omega \backslash \bar{\omega}} \in L^{\infty}((0, T), H(\operatorname{curl}, \Omega \backslash \bar{\omega})) .
$$

\rightsquigarrow Result by Irwin Yousept ${ }^{1}$

[^0]
Mixed FEM and implicit Euler

- Denote by $\left\{\mathcal{T}_{h}\right\}_{h>0}$ a quasi-uniform family of triangulations, s.t.

$$
\bar{\Omega}=\bigcup_{T \in \mathcal{T}_{h}} T, \quad \bar{\omega}=\bigcup_{T \in \mathcal{T}_{h}^{\omega}} T,
$$

with $\epsilon_{\mid T}, \mu_{\mid T}$ and $\sigma_{\mid T}$ being constant for all $T \in \mathcal{T}_{h}$.

Mixed FEM and implicit Euler

- Denote by $\left\{\mathcal{T}_{h}\right\}_{h>0}$ a quasi-uniform family of triangulations, s.t.

$$
\bar{\Omega}=\bigcup_{T \in \mathcal{T}_{h}} T, \quad \bar{\omega}=\bigcup_{T \in \mathcal{T}_{h}^{\omega}} T,
$$

with $\epsilon_{\mid T}, \mu_{\mid T}$ and $\sigma_{\mid T}$ being constant for all $T \in \mathcal{T}_{h}$.

- $\mathbf{N D}_{h}:=\left\{\boldsymbol{v}_{h} \in H_{0}(\right.$ curl $) \mid \boldsymbol{v}_{\left.h\right|_{T}}=a_{T}+b_{T} \times \cdot$ for some $\left.a_{T}, b_{T} \in \mathbb{R}^{3} \forall T \in \mathcal{T}_{h}\right\}$
- Denote by $\left\{\mathcal{T}_{h}\right\}_{h>0}$ a quasi-uniform family of triangulations, s.t.

$$
\bar{\Omega}=\bigcup_{T \in \mathcal{T}_{h}} T, \quad \bar{\omega}=\bigcup_{T \in \mathcal{T}_{h}^{\omega}} T,
$$

with $\epsilon_{\mid T}, \mu_{\mid T}$ and $\sigma_{\mid T}$ being constant for all $T \in \mathcal{T}_{h}$.

- $\mathbf{N D}_{h}:=\left\{\boldsymbol{v}_{h} \in H_{0}\right.$ (curl) $\mid \boldsymbol{v}_{\left.h\right|_{T}}=a_{T}+b_{T} \times \cdot$ for some $\left.a_{T}, b_{T} \in \mathbb{R}^{3} \forall T \in \mathcal{T}_{h}\right\}$
- $\mathrm{DG}_{h}:=\left\{w_{h} \in L^{2}(\Omega) \mid w_{\left.h\right|_{T}}=a_{T}\right.$ for some $\left.a_{T} \in \mathbb{R}^{3} \forall T \in \mathcal{T}_{h}\right\}$
- Denote by $\left\{\mathcal{T}_{h}\right\}_{h>0}$ a quasi-uniform family of triangulations, s.t.

$$
\bar{\Omega}=\bigcup_{T \in \mathcal{T}_{h}} T, \quad \bar{\omega}=\bigcup_{T \in \mathcal{T}_{h}^{\omega}} T,
$$

with $\epsilon_{\mid T}, \mu_{\mid T}$ and $\sigma_{\mid T}$ being constant for all $T \in \mathcal{T}_{h}$.

- $\mathbf{N D}_{h}:=\left\{\boldsymbol{v}_{h} \in H_{0}(\right.$ curl $) \mid \boldsymbol{v}_{\left.h\right|_{T}}=a_{T}+b_{T} \times \cdot$ for some $\left.a_{T}, b_{T} \in \mathbb{R}^{3} \forall T \in \mathcal{T}_{h}\right\}$
- $\mathrm{DG}_{h}:=\left\{w_{h} \in L^{2}(\Omega) \mid w_{h \mid T}=a_{T}\right.$ for some $\left.a_{T} \in \mathbb{R}^{3} \forall T \in \mathcal{T}_{h}\right\}$
- Time partition:

$$
\tau=\frac{T}{N}, \quad t_{n}=n \tau \quad \forall n \in\{0, \ldots, N\}, \quad N \in \mathbb{N}
$$

- $N D_{h}$ for the electric field E
- ND_{h} for the electric field E
- DG $_{h}$ for the magnetic field H

Mixed FEM and implicit Euler

- ND_{h} for the electric field E
- DG_{h} for the magnetic field H
- Time discretization by an implicit Euler stepping
- ND_{h} for the electric field E
- DG_{h} for the magnetic field H
- Time discretization by an implicit Euler stepping
\rightsquigarrow decoupling techniques:

$$
\left\{\begin{array}{l}
\text { Find }\left\{\left(E_{h}^{n}, H_{h}^{n}\right)\right\}_{n=1}^{N} \subset\left(K \cap N_{h}\right) \times \text { DG }_{h} \text {, s.t. } \\
\int_{\Omega}(\epsilon+\tau \sigma) E_{h}^{n} \cdot\left(v_{h}-E_{h}^{n}\right)+\tau^{2} \mu^{-1} \operatorname{curl} E_{h}^{n} \cdot \operatorname{curl}\left(v_{h}-E_{h}^{n}\right) d x \\
\geq \int_{\Omega}\left(\tau f^{n}+E_{h}^{n-1}\right) \cdot\left(v_{h}-E_{h}^{n}\right)+\tau H_{h}^{n-1} \cdot \operatorname{curl}\left(v_{h}-E_{h}^{n}\right) \quad \forall v_{h} \in K \cap N_{h} \\
H_{h}^{n}=H_{h}^{n-1}-\tau \mu^{-1} \operatorname{curl} E_{h}^{n} .
\end{array}\right.
$$

- ND_{h} for the electric field E
- DG_{h} for the magnetic field H
- Time discretization by an implicit Euler stepping
\rightsquigarrow decoupling techniques:

$$
\left\{\begin{array}{l}
\text { Find }\left\{\left(E_{h}^{n}, H_{h}^{n}\right)\right\}_{n=1}^{N} \subset\left(K \cap N_{h}\right) \times \text { DG }_{h}, \text { s.t. } \\
\int_{\Omega}(\epsilon+\tau \sigma) E_{h}^{n} \cdot\left(v_{h}-E_{h}^{n}\right)+\tau^{2} \mu^{-1} \operatorname{curl} E_{h}^{n} \cdot \operatorname{curl}\left(v_{h}-E_{h}^{n}\right) d x \\
\geq \int_{\Omega}\left(\tau f^{n}+E_{h}^{n-1}\right) \cdot\left(v_{h}-E_{h}^{n}\right)+\tau H_{h}^{n-1} \cdot \operatorname{curl}\left(v_{h}-E_{h}^{n}\right) \quad \forall v_{h} \in K \cap N_{h} \\
H_{h}^{n}=H_{h}^{n-1}-\tau \mu^{-1} \operatorname{curl} E_{h}^{n} .
\end{array}\right.
$$

- ND_{h} for the electric field E
- DG_{h} for the magnetic field H
- Time discretization by an implicit Euler stepping
\rightsquigarrow decoupling techniques:

$$
\left\{\begin{array}{l}
\text { Find }\left\{\left(E_{h}^{n}, H_{h}^{n}\right)\right\}_{n=1}^{N} \subset\left(K \cap \mathbf{N D}_{h}\right) \times \text { DG }_{h} \text {, s.t. } \\
a\left(E_{h}^{n}, \boldsymbol{v}_{h}-E_{h}^{n}\right) \geq F_{h}^{n}\left(\boldsymbol{v}_{h}-E_{h}^{n}\right) \quad \forall \boldsymbol{v}_{h} \in K \cap \mathrm{ND}_{h} \\
\boldsymbol{H}_{h}^{n}=H_{h}^{n-1}-\tau \mu^{-1} \operatorname{curl} E_{h}^{n} .
\end{array}\right.
$$

- ND_{h} for the electric field E
- DG_{h} for the magnetic field H
- Time discretization by an implicit Euler stepping
\rightsquigarrow decoupling techniques:

$$
\left\{\begin{array}{l}
\text { Find }\left\{\left(E_{h}^{n}, H_{h}^{n}\right)\right\}_{n=1}^{N} \subset\left(K \cap \mathbf{N D}_{h}\right) \times \mathbf{D G}_{h} \text {, s.t. } \\
a\left(E_{h}^{n}, \boldsymbol{v}_{h}-E_{h}^{n}\right) \geq F_{h}^{n}\left(\boldsymbol{v}_{h}-E_{h}^{n}\right) \quad \forall \mathbf{v}_{h} \in K \cap \mathrm{ND}_{h} \\
\boldsymbol{H}_{h}^{n}=\boldsymbol{H}_{h}^{n-1}-\tau \mu^{-1} \operatorname{curl} E_{h}^{n} .
\end{array}\right.
$$

\rightsquigarrow Well-posedness by Lions \& Stamppachia '67

- $N D_{h}$ for the electric field E
- DG_{h} for the magnetic field H
- Time discretization by an implicit Euler stepping
\rightsquigarrow decoupling techniques:

$$
\left\{\begin{array}{l}
\text { Find }\left\{\left(E_{h}^{n}, H_{h}^{n}\right)\right\}_{n=1}^{N} \subset\left(K \cap \mathbf{N D}_{h}\right) \times \mathbf{D G}_{h}, \text { s.t. } \\
a\left(E_{h}^{n}, \boldsymbol{v}_{h}-E_{h}^{n}\right) \geq F_{h}^{n}\left(v_{h}-E_{h}^{n}\right) \quad \forall v_{h} \in K \cap \mathrm{ND}_{h} \\
\boldsymbol{H}_{h}^{n}=H_{h}^{n-1}-\tau \mu^{-1} \operatorname{curl} E_{h}^{n} .
\end{array}\right.
$$

\rightsquigarrow Well-posedness by Lions \& Stamppachia '67

Drawback: High computational cost due to the requirement of a nonsmooth solver!

Second Attempt: Mixed FEM and Yee stepping

In contrast to before:

In contrast to before:

- DG_{h} for the electric field E

Mixed FEM and Yee stepping

In contrast to before:

- DG_{h} for the electric field E
- ND_{h} for the magnetic field H

Mixed FEM and Yee stepping

In contrast to before:

- DG_{h} for the electric field E
- ND_{h} for the magnetic field H

$$
\rightsquigarrow \mathrm{ND}_{h}:=\left\{\mathbf{v}_{h} \in \boldsymbol{H}_{0}(\text { curl }) \mid \boldsymbol{v}_{\left.h\right|_{T}}=a_{T}+b_{T} \times \cdot \text { for some } a_{T}, b_{T} \in \mathbb{R}^{3} \forall T \in \mathcal{T}_{h}\right\}
$$

Mixed FEM and Yee stepping

In contrast to before:

- DG h_{h} for the electric field E
- ND_{h} for the magnetic field H

$$
\rightsquigarrow \mathrm{ND}_{h}:=\left\{\boldsymbol{v}_{h} \in \mathrm{H}(\text { curl }) \mid \boldsymbol{v}_{\left.h\right|_{T}}=a_{T}+b_{T} \times \cdot \text { for some } a_{T}, b_{T} \in \mathbb{R}^{3} \forall T \in \mathcal{T}_{h}\right\}
$$

Mixed FEM and Yee stepping

In contrast to before:

- DG_{h} for the electric field E
- ND_{h} for the magnetic field H
- Different time discretization by considering ${ }^{2}$
- the Amperé-Maxwell VI in (P) at $t_{n-\frac{1}{2}}:=t_{n}-\frac{\tau}{2}$
- the Faraday equation in (P) at t_{n}

[^1]
Mixed FEM and Yee stepping

In contrast to before:

- DG h_{h} for the electric field E
- ND_{h} for the magnetic field H
- Different time discretization by considering ${ }^{2}$
- the Amperé-Maxwell VI in (P) at $t_{n-\frac{1}{2}}:=t_{n}-\frac{\tau}{2}$
- the Faraday equation in (P) at t_{n}
- Central difference and mean value approximation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} E\left(t_{n-\frac{1}{2}}\right) \approx \frac{E\left(t_{n}\right)-E\left(t_{n-1}\right)}{\tau}, \frac{\mathrm{d}}{\mathrm{~d} t} H\left(t_{n}\right) \approx \frac{H\left(t_{n+\frac{1}{2}}\right)-H\left(t_{n-\frac{1}{2}}\right)}{\tau}, E\left(t_{n-\frac{1}{2}}\right) \approx \frac{E\left(t_{n}\right)+E\left(t_{n-1}\right)}{2}
$$

[^2]
Mixed FEM and Yee stepping

In contrast to before:

- DG h_{h} for the electric field E
- ND_{h} for the magnetic field H
- Different time discretization by considering ${ }^{2}$
- the Amperé-Maxwell VI in (P) at $t_{n-\frac{1}{2}}:=t_{n}-\frac{\tau}{2}$
- the Faraday equation in (P) at t_{n}
- Central difference and mean value approximation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} E\left(t_{n-\frac{1}{2}}\right) \approx \frac{E\left(t_{n}\right)-E\left(t_{n-1}\right)}{\tau}, \frac{\mathrm{d}}{\mathrm{~d} t} H\left(t_{n}\right) \approx \frac{H\left(t_{n+\frac{1}{2}}\right)-H\left(t_{n-\frac{1}{2}}\right)}{\tau}, E\left(t_{n-\frac{1}{2}}\right) \approx \frac{E\left(t_{n}\right)+E\left(t_{n-1}\right)}{2}
$$

[^3]
Mixed FEM and Yee stepping

In contrast to before:

- DG h_{h} for the electric field E
- ND_{h} for the magnetic field H
- Different time discretization by considering ${ }^{2}$
- the Amperé-Maxwell VI in (P) at $t_{n-\frac{1}{2}}:=t_{n}-\frac{\tau}{2}$
- the Faraday equation in (P) at t_{n}
- Central difference and mean value approximation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} E\left(t_{n-\frac{1}{2}}\right) \approx \frac{E\left(t_{n}\right)-E\left(t_{n-1}\right)}{\tau}, \frac{\mathrm{d}}{\mathrm{~d} t} H\left(t_{n}\right) \approx \frac{H\left(t_{n+\frac{1}{2}}\right)-H\left(t_{n-\frac{1}{2}}\right)}{\tau}, E\left(t_{n-\frac{1}{2}}\right) \approx \frac{E\left(t_{n}\right)+E\left(t_{n-1}\right)}{2}
$$

[^4]
Mixed FEM and Yee stepping

In contrast to before:

- DG h_{h} for the electric field E
- ND_{h} for the magnetic field H
- Different time discretization by considering ${ }^{2}$
- the Amperé-Maxwell VI in (P) at $t_{n-\frac{1}{2}}:=t_{n}-\frac{\tau}{2}$
- the Faraday equation in (P) at t_{n}
- Central difference and mean value approximation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} E\left(t_{n-\frac{1}{2}}\right) \approx \frac{E\left(t_{n}\right)-E\left(t_{n-1}\right)}{\tau}, \frac{\mathrm{d}}{\mathrm{~d} t} H\left(t_{n}\right) \approx \frac{H\left(t_{n+\frac{1}{2}}\right)-H\left(t_{n-\frac{1}{2}}\right)}{\tau}, E\left(t_{n-\frac{1}{2}}\right) \approx \frac{E\left(t_{n}\right)+E\left(t_{n-1}\right)}{2}
$$

[^5]\[

\left(\mathrm{P}_{N, h}\right) \quad\left\{$$
\begin{array}{l}
\text { Find }\left\{\left(E_{h}^{n-\frac{1}{2}}, H_{h}^{n+\frac{1}{2}}\right)\right\}_{n=1}^{N} \subset\left(K \cap D G_{h}\right) \times N D_{h} \text { s.t. } \\
\int_{\Omega} \epsilon \delta E_{h}^{n} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right)+\sigma E_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right)-\operatorname{curl} H_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{dx} \\
\geq \int_{\Omega} f_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{dx} \quad \forall v_{h} \in K \cap D G_{h} \quad \forall n \in\{1, \ldots, N\} \\
\int_{\Omega} \mu \delta H_{h}^{n+\frac{1}{2}} \cdot w_{h}+E_{h}^{n} \cdot \operatorname{curl} w_{h} d x=0 \quad \forall w_{h} \in N D_{h} \quad \forall n \in\{1, \ldots, N\},
\end{array}
$$\right.
\]

with

$$
\delta E_{h}^{n}:=\frac{E_{h}^{n}-E_{h}^{n-1}}{\tau}, \quad \delta H_{h}^{n+\frac{1}{2}}:=\frac{H_{h}^{n+\frac{1}{2}}-H_{h}^{n-\frac{1}{2}}}{\tau}, \quad E_{h}^{n}:=2 E_{h}^{n-\frac{1}{2}}-E_{h}^{n-1} .
$$

$$
\left(P_{N, h}\right) \quad\left\{\begin{array}{l}
\text { Find }\left\{\left(E_{h}^{n-\frac{1}{2}}, H_{h}^{n+\frac{1}{2}}\right)\right\}_{n=1}^{N} \subset\left(K \cap D G_{h}\right) \times N D_{h} \text { s.t. } \\
\int_{\Omega} \epsilon \delta E_{h}^{n} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right)+\sigma E_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right)-\operatorname{curl} H_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{dx} \\
\geq \int_{\Omega} f_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{dx} \quad \forall v_{h} \in K \cap D G_{h} \quad \forall n \in\{1, \ldots, N\} \\
\int_{\Omega} \mu \delta H_{h}^{n+\frac{1}{2}} \cdot w_{h}+E_{h}^{n} \cdot \operatorname{curl} w_{h} d x=0 \quad \forall w_{h} \in N D_{h} \quad \forall n \in\{1, \ldots, N\},
\end{array}\right.
$$

with

$$
\delta E_{h}^{n}:=\frac{E_{h}^{n}-E_{h}^{n-1}}{\tau}, \quad \delta H_{h}^{n+\frac{1}{2}}:=\frac{H_{h}^{n+\frac{1}{2}}-H_{h}^{n-\frac{1}{2}}}{\tau}, \quad E_{h}^{n}:=2 E_{h}^{n-\frac{1}{2}}-E_{h}^{n-1} .
$$

Note: Obstacle discretization at $t_{n-\frac{1}{2}}$ rather than $t_{n} \& L^{2}$-structure

$$
\left(P_{N, h}\right) \quad\left\{\begin{array}{l}
\text { Find }\left\{\left(E_{h}^{n-\frac{1}{2}}, H_{h}^{n+\frac{1}{2}}\right)\right\}_{n=1}^{N} \subset\left(K \cap D G_{h}\right) \times N D_{h} \text { s.t. } \\
\int_{\Omega} \epsilon \delta E_{h}^{n} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right)+\sigma E_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right)-\operatorname{curl} H_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) d x \\
\geq \int_{\Omega} f_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{dx} \quad \forall v_{h} \in K \cap D G_{h} \quad \forall n \in\{1, \ldots, N\} \\
\int_{\Omega} \mu \delta H_{h}^{n+\frac{1}{2}} \cdot w_{h}+E_{h}^{n} \cdot \operatorname{curl} w_{h} d x=0 \quad \forall w_{h} \in N D_{h} \quad \forall n \in\{1, \ldots, N\},
\end{array}\right.
$$

with

$$
\delta E_{h}^{n}:=\frac{E_{h}^{n}-E_{h}^{n-1}}{\tau}, \quad \delta H_{h}^{n+\frac{1}{2}}:=\frac{H_{h}^{n+\frac{1}{2}}-H_{h}^{n-\frac{1}{2}}}{\tau}, \quad E_{h}^{n}:=2 E_{h}^{n-\frac{1}{2}}-E_{h}^{n-1} .
$$

Note: Obstacle discretization at $t_{n-\frac{1}{2}}$ rather than $t_{n} \& L^{2}$-structure

$$
\left(P_{N, h}\right) \quad\left\{\begin{array}{l}
\text { Find }\left\{\left(E_{h}^{n-\frac{1}{2}}, H_{h}^{n+\frac{1}{2}}\right)\right\}_{n=1}^{N} \subset\left(K \cap D G_{h}\right) \times N D_{h} \text { s.t. } \\
\int_{\Omega} \epsilon \delta E_{h}^{n} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right)+\sigma E_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right)-\operatorname{curl} H_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{d} x \\
\geq \int_{\Omega} f_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{dx} \quad \forall v_{h} \in K \cap D G_{h} \quad \forall n \in\{1, \ldots, N\} \\
\int_{\Omega} \mu \delta H_{h}^{n+\frac{1}{2}} \cdot w_{h}+E_{h}^{n} \cdot \operatorname{curl} w_{h} d x=0 \quad \forall w_{h} \in N D_{h} \quad \forall n \in\{1, \ldots, N\},
\end{array}\right.
$$

$$
\left(E_{0}, H_{0}\right)
$$

$$
\left(P_{N, h}\right) \quad\left\{\begin{array}{l}
\text { Find }\left\{\left(E_{h}^{n-\frac{1}{2}}, H_{h}^{n+\frac{1}{2}}\right)\right\}_{n=1}^{N} \subset\left(K \cap D G_{h}\right) \times N D_{h} \text { s.t. } \\
\int_{\Omega} \epsilon \delta E_{h}^{n} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right)+\sigma E_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right)-\operatorname{curl} H_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{dx} \\
\geq \int_{\Omega} f_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{dx} \quad \forall v_{h} \in K \cap D G_{h} \quad \forall n \in\{1, \ldots, N\} \\
\int_{\Omega} \mu \delta H_{h}^{n+\frac{1}{2}} \cdot w_{h}+E_{h}^{n} \cdot \operatorname{curl} w_{h} d x=0 \quad \forall w_{h} \in N D_{h} \quad \forall n \in\{1, \ldots, N\},
\end{array}\right.
$$

$$
\left(P_{N, h}\right) \quad\left\{\begin{array}{l}
\text { Find }\left\{\left(E_{h}^{n-\frac{1}{2}}, H_{h}^{n+\frac{1}{2}}\right)\right\}_{n=1}^{N} \subset\left(K \cap \mathrm{DG}_{h}\right) \times \mathrm{ND}_{h} \text { s.t. } \\
\int_{\Omega} \epsilon \delta E_{h}^{n} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right)+\sigma E_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right)-\operatorname{curl} H_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{d} x \\
\geq \int_{\Omega} f_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{d} x \quad \forall v_{h} \in K \cap \mathrm{DG}_{h} \quad \forall n \in\{1, \ldots, N\} \\
\int_{\Omega} \mu \delta H_{h}^{n+\frac{1}{2}} \cdot w_{h}+E_{h}^{n} \cdot \operatorname{curl} w_{h} \mathrm{~d} x=0 \quad \forall w_{h} \in \mathrm{ND}_{h} \quad \forall n \in\{1, \ldots, N\},
\end{array}\right.
$$

$$
\left(\mathrm{P}_{N, h}\right) \quad\left\{\begin{array}{l}
\text { Find }\left\{\left(E_{h}^{n-\frac{1}{2}}, H_{h}^{n+\frac{1}{2}}\right)\right\}_{n=1}^{N} \subset\left(K \cap D G_{h}\right) \times \mathrm{ND}_{h} \text { s.t. } \\
\int_{\Omega} \epsilon \delta E_{h}^{n} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right)+\sigma E_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right)-\operatorname{curl} H_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{dx} \\
\geq \int_{\Omega} f_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{dx} \quad \forall v_{h} \in K \cap D G_{h} \quad \forall n \in\{1, \ldots, N\} \\
\int_{\Omega} \mu \delta H_{h}^{n+\frac{1}{2}} \cdot w_{h}+E_{h}^{n} \cdot \operatorname{curl} w_{h} d x=0 \quad \forall w_{h} \in N D_{h} \quad \forall n \in\{1, \ldots, N\},
\end{array}\right.
$$

$$
\left(P_{N, h}\right) \quad\left\{\begin{array}{l}
\text { Find }\left\{\left(E_{h}^{n-\frac{1}{2}}, H_{h}^{n+\frac{1}{2}}\right)\right\}_{n=1}^{N} \subset\left(K \cap D G_{h}\right) \times N D_{h} \text { s.t. } \\
\int_{\Omega} \epsilon \delta E_{h}^{n} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right)+\sigma E_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right)-\operatorname{curl} H_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{d} x \\
\geq \int_{\Omega} f_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{dx} \quad \forall v_{h} \in K \cap D G_{h} \quad \forall n \in\{1, \ldots, N\} \\
\int_{\Omega} \mu \delta H_{h}^{n+\frac{1}{2}} \cdot w_{h}+E_{h}^{n} \cdot \operatorname{curl} w_{h} d x=0 \quad \forall w_{h} \in N D_{h} \quad \forall n \in\{1, \ldots, N\},
\end{array}\right.
$$

$$
\left(P_{N, h}\right) \quad\left\{\begin{array}{l}
\text { Find }\left\{\left(E_{h}^{n-\frac{1}{2}}, H_{h}^{n+\frac{1}{2}}\right)\right\}_{n=1}^{N} \subset\left(K \cap D G_{h}\right) \times N D_{h} \text { s.t. } \\
\int_{\Omega} \epsilon \delta E_{h}^{n} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right)+\sigma E_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right)-\operatorname{curl} H_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{dx} \\
\geq \int_{\Omega} f_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{dx} \quad \forall v_{h} \in K \cap D G_{h} \quad \forall n \in\{1, \ldots, N\} \\
\int_{\Omega} \mu \delta H_{h}^{n+\frac{1}{2}} \cdot w_{h}+E_{h}^{n} \cdot \operatorname{curl} w_{h} d x=0 \quad \forall w_{h} \in N D_{h} \quad \forall n \in\{1, \ldots, N\},
\end{array}\right.
$$

$$
\left(P_{N, h}\right) \quad\left\{\begin{array}{l}
\text { Find }\left\{\left(E_{h}^{n-\frac{1}{2}}, H_{h}^{n+\frac{1}{2}}\right)\right\}_{n=1}^{N} \subset\left(K \cap D G_{h}\right) \times N D_{h} \text { s.t. } \\
\int_{\Omega} \epsilon \delta E_{h}^{n} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right)+\sigma E_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right)-\operatorname{curl} H_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) d x \\
\geq \int_{\Omega} f_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{dx} \quad \forall v_{h} \in K \cap D G_{h} \quad \forall n \in\{1, \ldots, N\} \\
\int_{\Omega} \mu \delta H_{h}^{n+\frac{1}{2}} \cdot w_{h}+E_{h}^{n} \cdot \operatorname{curl} w_{h} d x=0 \quad \forall w_{h} \in N D_{h} \quad \forall n \in\{1, \ldots, N\},
\end{array}\right.
$$

Theorem

The problem $\left(P_{N, h}\right)$ admits a unique solution $\left\{\left(E_{h}^{n-\frac{1}{2}}, H_{h}^{n+\frac{1}{2}}\right)\right\}_{n=1}^{N} \subset\left(K \cap D G_{h}\right) \times N D_{h}$ with

$$
E_{h}^{n-\frac{1}{2}}=\left\{\begin{aligned}
\frac{d g_{h}^{n-\frac{1}{2}}}{\left|g_{h}^{n-\frac{1}{2}}\right|} & \text { on } \mathcal{M}_{h}^{n-\frac{1}{2}} \\
\left(\frac{2 \epsilon}{\tau}+\sigma\right)^{-1} g_{h}^{n-\frac{1}{2}} & \text { on } \Omega \backslash \mathcal{M}_{h}^{n-\frac{1}{2}}
\end{aligned}\right.
$$

with right-hand sides and strict superlevel sets
$g_{h}^{n-\frac{1}{2}}:=f_{h}^{n-\frac{1}{2}}+\operatorname{curl}_{h}^{n-\frac{1}{2}}+\frac{2 \epsilon}{\tau} E_{h}^{n-1}$ and $\mathcal{M}_{h}^{n-\frac{1}{2}}:=\left\{\left.x \in \omega\left|\left(\frac{2 \epsilon}{\tau}+\sigma\right)^{-1}\right| g_{h}^{n-\frac{1}{2}}(x) \right\rvert\,>d\right\}$.

Theorem

The problem $\left(P_{N, h}\right)$ admits a unique solution $\left\{\left(E_{h}^{n-\frac{1}{2}}, H_{h}^{n+\frac{1}{2}}\right)\right\}_{n=1}^{N} \subset\left(K \cap D G_{h}\right) \times N D_{h}$ with

$$
E_{h}^{n-\frac{1}{2}}=\left\{\begin{aligned}
\frac{d g_{h}^{n-\frac{1}{2}}}{\left|g_{h}^{n-\frac{1}{2}}\right|} & \text { on } \mathcal{M}_{h}^{n-\frac{1}{2}} \\
\left(\frac{2 \epsilon}{\tau}+\sigma\right)^{-1} g_{h}^{n-\frac{1}{2}} & \text { on } \Omega \backslash \mathcal{M}_{h}^{n-\frac{1}{2}}
\end{aligned}\right.
$$

with right-hand sides and strict superlevel sets
$g_{h}^{n-\frac{1}{2}}:=f_{h}^{n-\frac{1}{2}}+\operatorname{curl}_{h}^{n-\frac{1}{2}}+\frac{2 \epsilon}{\tau} E_{h}^{n-1}$ and $\mathcal{M}_{h}^{n-\frac{1}{2}}:=\left\{\left.x \in \omega\left|\left(\frac{2 \epsilon}{\tau}+\sigma\right)^{-1}\right| g_{h}^{n-\frac{1}{2}}(x) \right\rvert\,>d\right\}$.

Stability

We recall the inverse estimate

$$
\exists C_{\text {inv }}>0 \text { s.t. }\|\operatorname{curl} v\|_{L^{2}(\Omega)} \leq \frac{C_{\text {inv }}}{h}\|v\|_{L^{2}(\Omega)} \quad \forall v \in \operatorname{ND}_{h}
$$

and assume

Stability

We recall the inverse estimate

$$
\exists C_{\mathrm{inv}}>0 \text { s.t. }\|\operatorname{curl} v\|_{L^{2}(\Omega)} \leq \frac{C_{\text {inv }}}{h}\|v\|_{L^{2}(\Omega)} \quad \forall v \in \mathrm{ND}_{h}
$$

and assume

- a linear CFL-condition (to deal with the inverse estimate)

$$
\tau \leq \frac{\sqrt{\underline{\epsilon}} \sqrt{\underline{\mu}}}{2 C_{\text {inv }}} h
$$

Stability

We recall the inverse estimate

$$
\exists C_{i n v}>0 \text { s.t. }\|\operatorname{curl} v\|_{L^{2}(\Omega)} \leq \frac{C_{\text {inv }}}{h}\|v\|_{L^{2}(\Omega)} \quad \forall v \in \mathrm{ND}_{h}
$$

and assume

- a linear CFL-condition (to deal with the inverse estimate)

$$
\tau \leq \frac{\sqrt{\underline{\epsilon}} \sqrt{\underline{\mu}}}{2 C_{\text {inv }}} h
$$

- additional regularity on the initial electric field

$$
E_{0} \in K \cap H_{0}(\text { curl }) \cap H^{1}(\Omega)
$$

\rightsquigarrow Main ingredients for stability.

Stability

Theorem

There exists a constant $C>0$ such that for every $N \in \mathbb{N}$ with $N \geq 2$ and $h>0$ the unique solution to ($\mathrm{P}_{N, h}$) satisfies

$$
\begin{array}{r}
\max _{n \in\{1, \ldots, N\}}\left\|\delta E_{h}^{n}\right\|_{L^{2}(\Omega)}+\max _{n \in\{2, \ldots, N\}}\left\|\delta H_{h}^{n-\frac{1}{2}}\right\|_{L^{2}(\Omega)} \leq C \\
\max _{n \in\{1, \ldots, N\}}\left\|E_{h}^{n}\right\|_{L^{2}(\Omega)}+\left\|H_{h}^{n-\frac{1}{2}}\right\|_{L^{2}(\Omega)} \leq C \\
\max _{n \in\{1, \ldots, N-1\}}\left\|\operatorname{curl} H_{h}^{n-\frac{1}{2}}\right\|_{L^{1}(\omega)}+\left\|\operatorname{curl} H_{h}^{n-\frac{1}{2}}\right\|_{L^{2}(\Omega \backslash \omega)} \leq C
\end{array}
$$

Stability

Theorem

There exists a constant $C>0$ such that for every $N \in \mathbb{N}$ with $N \geq 2$ and $h>0$ the unique solution to ($\mathrm{P}_{N, h}$) satisfies

$$
\begin{array}{r}
\max _{n \in\{1, \ldots, N\}}\left\|\delta E_{h}^{n}\right\|_{L^{2}(\Omega)}+\max _{n \in\{2, \ldots, N\}}\left\|\delta H_{h}^{n-\frac{1}{2}}\right\|_{L^{2}(\Omega)} \leq C \\
\max _{n \in\{1, \ldots, N\}}\left\|E_{h}^{n}\right\|_{L^{2}(\Omega)}+\left\|H_{h}^{n-\frac{1}{2}}\right\|_{L^{2}(\Omega)} \leq C \\
\max _{n \in\{1, \ldots, N-1\}}\left\|\operatorname{curl} H_{h}^{n-\frac{1}{2}}\right\|_{L^{1}(\omega)}+\left\|\operatorname{curl} H_{h}^{n-\frac{1}{2}}\right\|_{L^{2}(\Omega \backslash \omega)} \leq C
\end{array}
$$

Stability

Theorem

There exists a constant $C>0$ such that for every $N \in \mathbb{N}$ with $N \geq 2$ and $h>0$ the unique solution to ($P_{N, h}$) satisfies

$$
\begin{array}{r}
\max _{n \in\{1, \ldots, N\}}\left\|\delta E_{h}^{n}\right\|_{L^{2}(\Omega)}+\max _{n \in\{2, \ldots, N\}}\left\|\delta H_{h}^{n-\frac{1}{2}}\right\|_{L^{2}(\Omega)} \leq C \\
\max _{n \in\{1, \ldots, N\}}\left\|E_{h}^{n}\right\|_{L^{2}(\Omega)}+\left\|H_{h}^{n-\frac{1}{2}}\right\|_{L^{2}(\Omega)} \leq C \\
\max _{n \in\{1, \ldots, N-1\}}\left\|\operatorname{curl} H_{h}^{n-\frac{1}{2}}\right\|_{L^{1}(\omega)}+\left\|\operatorname{curl} H_{h}^{n-\frac{1}{2}}\right\|_{L^{2}(\Omega \backslash \omega)} \leq C
\end{array}
$$

Lack of global L^{2}-stability for curl $H_{h}^{n-\frac{1}{2}}$: Justified by low regularity issue in (P).

We set up the following piecewise linear interpolations

$$
\begin{aligned}
& E_{N, h}:[0, T] \rightarrow \mathrm{DG}_{h}, \quad t \mapsto \begin{cases}E_{h}^{0} & \text { if } t=0 \\
E_{h}^{n-1}+\left(t-t_{n-1}\right) \delta E_{h}^{n} & \text { if } t \in\left(t_{n-1}, t_{n}\right],\end{cases} \\
& H_{N, h}:[0, T] \rightarrow N_{h}, \quad t \mapsto \begin{cases}H_{h}^{\frac{1}{2}} & \text { if } t=0 \\
H_{h}^{n-\frac{1}{2}}+\left(t-t_{n-1}\right) \delta H_{h}^{n+\frac{1}{2}} & \text { if } t \in\left(t_{n-1}, t_{n}\right] \text { for } n \in\{1, \ldots, N-1\} \\
H_{h}^{N-\frac{3}{2}} & \text { if } t \in\left(t_{n-1}, t_{n}\right] \text { for } n=N .\end{cases}
\end{aligned}
$$

Convergence

Theorem

Under the stated CFL-condition, it holds that

$$
\begin{aligned}
\left(E_{N, h}, H_{N, h}\right) \stackrel{*}{*}(E, H) & \text { weakly-* in } L^{\infty}\left((0, T), L^{2}(\Omega) \times L^{2}(\Omega)\right) \text { as } h \rightarrow 0, N \rightarrow \infty \\
\frac{\mathrm{~d}}{\mathrm{~d} t}\left(E_{N, h}, H_{N, h}\right) \stackrel{*}{\rightharpoonup} \frac{\mathrm{~d}}{\mathrm{~d} t}(E, H) & \text { weakly-* in } L^{\infty}\left((0, T), L^{2}(\Omega) \times L^{2}(\Omega)\right) \text { as } h \rightarrow 0, N \rightarrow \infty,
\end{aligned}
$$

where (E, H) is the unique solution to (P). Assume additionally that

$$
H \in L^{1}((0, T), H(\text { curl })) \quad \text { and } \max _{n \in\{1, \ldots, N-1\}}\left\|\operatorname{curl} H_{h}^{n-\frac{1}{2}}\right\|_{L^{2}(\omega)} \leq C .
$$

Then it holds that

$$
\left(E_{N, h}, H_{N, h}\right) \rightarrow(E, H) \quad \text { in } C\left([0, T], L^{2}(\Omega) \times L^{2}(\Omega)\right) \text { as } h \rightarrow 0 \text {. }
$$

Convergence proof

- Stability estimates \Rightarrow Existence of weakly-star converging subsequences
- Stability estimates \Rightarrow Existence of weakly-star converging subsequences
- Derivation of the following system for the weak limit:

$$
\left(P_{\text {weak }}\right) \quad\left\{\begin{array}{l}
\int_{0}^{T} \int_{\Omega} \epsilon \frac{d}{d t} E(t) \cdot(v-E(t))+\sigma E(t) \cdot(v-E(t))-H(t) \cdot \operatorname{curl}(v-E(t)) d x d t \\
\geq \int_{0}^{T} \int_{\Omega} f(t) \cdot(v-E(t)) d x d t \quad \forall v \in K \cap C_{0}^{\infty}(\Omega) \\
\mu \frac{d}{d t} H(t)+\operatorname{curl} E(t)=0 \quad \text { for a.e. } t \in(0, T) \\
(E, H) \in W^{1, \infty}\left((0, T), L^{2}(\Omega) \times L^{2}(\Omega)\right) \cap L^{\infty}\left((0, T), H_{0}(\operatorname{curl}) \times L^{2}(\Omega)\right) \\
E(t) \in K \text { for all } t \in[0, T] \text { and }(E, H)(0)=\left(E_{0}, H_{0}\right) .
\end{array}\right.
$$

- Stability estimates \Rightarrow Existence of weakly-star converging subsequences
- Derivation of the following system for the weak limit:

$$
\left(P_{\text {weak }}\right)\left\{\begin{array}{l}
\int_{0}^{T} \int_{\Omega} \epsilon \frac{d}{d t} E(t) \cdot(v-E(t))+\sigma E(t) \cdot(v-E(t))-H(t) \cdot \operatorname{curl}(v-E(t)) d x d t \\
\geq \int_{0}^{T} \int_{\Omega} f(t) \cdot(v-E(t)) d x d t \quad \forall v \in K \cap C_{0}^{\infty}(\Omega) \\
\mu \frac{d}{d t} H(t)+\operatorname{curl} E(t)=0 \quad \text { for a.e. } t \in(0, T) \\
(E, H) \in W^{1, \infty}\left((0, T), L^{2}(\Omega) \times L^{2}(\Omega)\right) \cap L^{\infty}\left((0, T), H_{0}(\operatorname{curl}) \times L^{2}(\Omega)\right) \\
E(t) \in K \text { for all } t \in[0, T] \text { and }(E, H)(0)=\left(E_{0}, H_{0}\right) .
\end{array}\right.
$$

- Stability estimates \Rightarrow Existence of weakly-star converging subsequences
- Derivation of the following system for the weak limit:

$$
\left(P_{\text {weak }}\right)\left\{\begin{array}{l}
\int_{0}^{T} \int_{\Omega} \epsilon \frac{\mathrm{d}}{\mathrm{~d} t} E(t) \cdot(v-E(t))+\sigma E(t) \cdot(v-E(t))-H(t) \cdot \operatorname{curl}(v-E(t)) \mathrm{d} x \mathrm{~d} t \\
\geq \int_{0}^{T} \int_{\Omega} f(t) \cdot(v-E(t)) \mathrm{d} x \mathrm{dt} \quad \forall v \in K \cap C_{0}^{\infty}(\Omega) \\
\mu \frac{\mathrm{d}}{\mathrm{~d} t} H(t)+\operatorname{curl} E(t)=0 \quad \text { for a.e. } t \in(0, T) \\
(E, H) \in W^{1, \infty}\left((0, T), L^{2}(\Omega) \times L^{2}(\Omega)\right) \cap L^{\infty}\left((0, T), H_{0}(\operatorname{curl}) \times L^{2}(\Omega)\right) \\
E(t) \in K \text { for all } t \in[0, T] \text { and }(E, H)(0)=\left(E_{0}, H_{0}\right) .
\end{array}\right.
$$

Main idea: Bypass missing stability by exploiting properties of piecewise constant interpolation operator for $v \in K \cap C_{0}^{\infty}(\Omega)$.

- $\left(P_{\text {weak }}\right) \Rightarrow(P)$ reduces to enlarging the set of test functions

$$
K \cap C_{0}^{\infty}(\Omega) \rightsquigarrow \quad K \cap H_{0}(\text { curl })
$$

Convergence proof - main ideas

- $\left(P_{\text {weak }}\right) \Rightarrow(P)$ reduces to enlarging the set of test functions

$$
K \cap C_{0}^{\infty}(\Omega) \quad \rightsquigarrow \cap H_{0}(\text { curl })
$$

Question: Does there exist a mollification operator \boldsymbol{M}_{δ}, s.t.

$$
v \in K \cap H_{0}(\mathrm{curl}) \stackrel{?}{\Rightarrow} \quad\left\{\begin{array}{l}
M_{\delta} v \in C_{0}^{\infty}(\Omega) \\
M_{\delta} v \in K .
\end{array}\right.
$$

Convergence proof - main ideas

- $\left(\mathrm{P}_{\text {weak }}\right) \Rightarrow(\mathrm{P})$ reduces to enlarging the set of test functions

$$
K \cap C_{0}^{\infty}(\Omega) \quad \rightsquigarrow \cap H_{0}(\text { curl })
$$

Question: Does there exist a mollification operator \boldsymbol{M}_{δ}, s.t.

$$
v \in K \cap H_{0}(\text { curl }) \stackrel{?}{\Rightarrow} \quad\left\{\begin{array}{l}
M_{\delta} v \in C_{0}^{\infty}(\Omega)^{3,4} \\
M_{\delta} v \in K .
\end{array}\right.
$$

[^6]
Convergence proof - main ideas

- $\left(\mathrm{P}_{\text {weak }}\right) \Rightarrow(\mathrm{P})$ reduces to enlarging the set of test functions

$$
K \cap C_{0}^{\infty}(\Omega) \quad \rightsquigarrow \cap H_{0}(\text { curl })
$$

Question: Does there exist a mollification operator \boldsymbol{M}_{δ}, s.t.

$$
v \in K \cap H_{0}(\text { curl }) \stackrel{?}{\Rightarrow} \quad\left\{\begin{array}{l}
M_{\delta} v \in C_{0}^{\infty}(\Omega)^{3,4} \\
M_{\delta} v \in K .
\end{array}\right.
$$

[^7]Idea of Ern and Guermond: $v \in H_{0}$ (curl).

Idea of Ern and Guermond: $v \in H_{0}$ (curl).

- Expand Ω by a transversal vector field

Idea of Ern and Guermond: $v \in H_{0}$ (curl).

- Expand Ω by a transversal vector field

Idea of Ern and Guermond: $v \in H_{0}$ (curl).

- Expand Ω by a transversal vector field
- Cut off vector field

Idea of Ern and Guermond: $v \in H_{0}$ (curl).

- Expand Ω by a transversal vector field
- Cut off vector field
\rightsquigarrow Mollify resulting field $\Rightarrow M_{\delta} v \in C_{0}^{\infty}(\Omega)$

Idea of Ern and Guermond: $v \in H_{0}$ (curl).

- Expand Ω by a transversal vector field
- Cut off vector field
\rightsquigarrow Mollify resulting field $\Rightarrow M_{\delta} v \in C_{0}^{\infty}(\Omega)$
Q: And what about points in ω ?

Idea of Ern and Guermond: $v \in H_{0}$ (curl).

Q: And what about points in ω ?

Idea of Ern and Guermond: $v \in H_{0}($ curl $)$.

- Expand Ω by a transversal vector field

Q: And what about points in ω ?

Convergence proof - constraint preserving mollification

Idea of Ern and Guermond: $v \in H_{0}$ (curl).

- Expand Ω by a transversal vector field

Q: And what about points in ω ?

Idea of Ern and Guermond: $v \in H_{0}($ curl $)$.

- Expand Ω by a transversal vector field
- Cut off vector field

Q: And what about points in ω ?

Idea of Ern and Guermond: $v \in H_{0}($ curl $)$.

- Expand Ω by a transversal vector field
- Cut off vector field

Q: And what about points in ω ?
A: Could get pushed outside of ω.

Workaround:

Convergence proof - constraint preserving mollification

Workaround:

- This time expand $\Omega \backslash \bar{\omega}$

Convergence proof - constraint preserving mollification

Workaround:

- This time expand $\Omega \backslash \bar{\omega}$

Convergence proof - constraint preserving mollification

Workaround:

- This time expand $\Omega \backslash \bar{\omega}$
\rightsquigarrow Possible, since $\Omega \backslash \bar{\omega}$ Lipschitz 5

[^8]

Convergence proof - constraint preserving mollification

Workaround:

- This time expand $\Omega \backslash \bar{\omega}$
\rightsquigarrow Possible, since $\Omega \backslash \bar{\omega}$ Lipschitz 5
- Cut off vector field near the boundary

[^9]
Convergence proof - constraint preserving mollification

Workaround:

- This time expand $\Omega \backslash \bar{\omega}$
\rightsquigarrow Possible, since $\Omega \backslash \bar{\omega}$ Lipschitz 5
- Cut off vector field near the boundary
\rightsquigarrow Mollify resulting vector field

[^10]
Convergence proof - constraint preserving mollification

Workaround:

- This time expand $\Omega \backslash \bar{\omega}$
\rightsquigarrow Possible, since $\Omega \backslash \bar{\omega}$ Lipschitz 5
- Cut off vector field near the boundary
\rightsquigarrow Mollify resulting vector field
Techniques from geometrical analysis:

$$
v \in K \cap H_{0}(\text { curl }) \Rightarrow M_{\delta} v \in K
$$

[^11]Numerical test using FEniCS

Applied current source and obstacle

Free electric field and obstacle

Numerical test

Free and shielded electric field

Reference parameters:

$$
\widetilde{h}=1 / 2^{6}, \quad \widetilde{N}=5 \cdot 2^{6} \quad \rightsquigarrow \quad E:=E_{\widetilde{N}, \tilde{h}}
$$

Define:

$$
\operatorname{RelErr} r_{N, h}(E):=\frac{\left\|E_{N, h}-E\right\|_{C\left([0, T], L^{2}(\Omega)\right)}}{\|E\|_{C\left([0, T], L^{2}(\Omega)\right)}} \approx \frac{\max _{n \in\{0, \ldots, N\}}\left\|E_{N, h}\left(t_{n}\right)-E\left(t_{n}\right)\right\|_{L^{2}(\Omega)}}{\max _{n \in\{0, \ldots, N\}}\left\|E\left(t_{n}\right)\right\|_{L^{2}(\Omega)}}
$$

N	$5 \cdot 2^{2}$	$5 \cdot 2^{3}$	$5 \cdot 2^{4}$	$5 \cdot 2^{5}$	$5 \cdot 2^{6}$
h	$1 / 2^{2}$	$1 / 2^{3}$	$1 / 2^{4}$	$1 / 2^{5}$	$1 / 2^{6}$
$\operatorname{dim}\left(\mathrm{DG}_{h}\right)$	1.152	9.216	31.024	589.824	4.718 .592
$\operatorname{dim}\left(\mathrm{ND}_{h}\right)$	604	4.184	73.728	238.688	1.872 .064
$\operatorname{RelErr}_{N, h}(E)$	0.3832	0.1070	0.0591	0.0248	-
$\operatorname{RelErr}_{N, h}(H)$	0.3556	0.2083	0.1480	0.1086	-

Thank you for your attention!

[^0]: ${ }^{1}$ I. Yousept. Well-posedness theory for electromagnetic obstacle problems. J. Differential Equations, 269(10):8855-8881, 2020

[^1]: ${ }^{2} \mathrm{~K}$. Yee. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on Antennas and Propagation, 14(3):302-307, 1966

[^2]: ${ }^{2}$ K. Yee. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on Antennas and Propagation, 14(3):302-307, 1966

[^3]: ${ }^{2}$ K. Yee. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on Antennas and Propagation, 14(3):302-307, 1966

[^4]: ${ }^{2}$ K. Yee. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on Antennas and Propagation, 14(3):302-307, 1966

[^5]: ${ }^{2}$ K. Yee. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on Antennas and Propagation, 14(3):302-307, 1966

[^6]: ${ }^{3}$ A. Ern and J.-L. Guermond. Mollification in strongly Lipschitz domains with application to continuous and discrete de Rham complexes. Comput. Methods Appl. Math., 16(1):51-75, 2016
 ${ }^{4}$ S.H. Christiansen and R. Winther, Smoothed projections in finite element exterior calculus, Math. Comp. 77 (2008), no. 262, 813-829

[^7]: ${ }^{3}$ A. Ern and J.-L. Guermond. Mollification in strongly Lipschitz domains with application to continuous and discrete de Rham complexes. Comput. Methods Appl. Math., 16(1):51-75, 2016
 ${ }^{4}$ S.H. Christiansen and R. Winther, Smoothed projections in finite element exterior calculus, Math. Comp. 77 (2008), no. 262, 813-829

[^8]: ${ }^{5}$ S. Hofmann, M. Mitrea, and M. Taylor. Geometric and transformational properties of Lipschitz domains,... J. Geom. Anal., 17(4):593-647, 2007

[^9]: ${ }^{5}$ S. Hofmann, M. Mitrea, and M. Taylor. Geometric and transformational properties of Lipschitz domains,... J. Geom. Anal., 17(4):593-647, 2007

[^10]: ${ }^{5}$ S. Hofmann, M. Mitrea, and M. Taylor. Geometric and transformational properties of Lipschitz domains,... J. Geom. Anal., 17(4):593-647, 2007

[^11]: ${ }^{5}$ S. Hofmann, M. Mitrea, and M. Taylor. Geometric and transformational properties of Lipschitz domains,... J. Geom. Anal., 17(4):593-647, 2007

