P22: Multi-Physics Phenomena in High-Temperature Superconductivity: Analysis, Numerics and Optimization

Research Group of Irwin Yousept

Maurice Hensel

SPP 1962 Annual Meeting
24.10-26.10, 2022

University of Duisburg-Essen

Superconductivity

Physical Background

What is superconductivity?

Superconductivity comprises physical properties of certain materials which cause the material to lose its electrical resistance. This causes any magnetic field to be expelled from the material (Meissner effect). A material with such property is called superconductor.

Physical Background

What is superconductivity?

Superconductivity comprises physical properties of certain materials which cause the material to lose its electrical resistance. This causes any magnetic field to be expelled from the material (Meissner effect). A material with such property is called superconductor. We are particularly interested in high-temperature type-II superconductors, i.e. those superconductors in which

- the superconducting state occurs below $-196.2^{\circ} \mathrm{C}$ (high-temperature)
- the transition between the superconducting and
 non-superconducting state is not abrupt (type-II)

- $|\boldsymbol{H}|$ the magnetic field strength
- $H_{C_{1}}, H_{c_{2}}$ the critical magnetic fields strengths
- θ the temperature
- θ_{c} the critical temperature

Modelling of Type-II Superconductors

To model the behaviour of type-II superconductors we first consider the standard Maxwell's equations

$$
\left\{\begin{aligned}
\epsilon \partial_{\mathrm{t}} E-\operatorname{curl} H+J=f & \text { in }(0, T) \times \Omega \\
\mu \partial_{\mathrm{t}} H+\operatorname{curl} E=0 & \text { in }(0, T) \times \Omega .
\end{aligned}\right.
$$

If the medium Ω is a good conductor, we have Ohm's law

$$
J=\sigma E .
$$

Modelling of Type-II Superconductors

To model the behaviour of type-II superconductors we first consider the standard Maxwell's equations

$$
\left\{\begin{aligned}
\epsilon \partial_{\mathrm{t}} E-\operatorname{curl} H+J=f & \text { in }(0, T) \times \Omega \\
\mu \partial_{t} H+\operatorname{curl} E=0 & \text { in }(0, T) \times \Omega .
\end{aligned}\right.
$$

If the medium Ω is a good conductor, we have Ohm's law

$$
J=\sigma E .
$$

In the presence of a superconductor $\Omega_{s c} \subset \Omega$, Ohm's law needs to be replaced by a nonlinear and non-smooth constitutive relation between the electric field E and the current density J.

Modelling of Type-II Superconductors

Bean's critical state model postulates that

- the current density strength $|J|$ cannot exceed some critical value $j_{c} \in \mathbb{R}^{+}$
- the electric field E vanishes if $|J|<j_{c}$
- the electric field E is parallel to J.

Bean's model assumes that j_{c} is a constant.

Bean's critical state model postulates that

- the current density strength $|\||$ cannot exceed some critical value $j_{c} \in \mathbb{R}^{+}$
- the electric field E vanishes if $|J|<j_{c}$
- the electric field E is parallel to J.

Bean's model assumes that j_{c} is a constant. To account for the dependence on θ and H (as found through experiments by Kim et al.), we consider a non-negative

$$
j_{c}: \Omega \times \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}
$$

The generalized Bean-Kim model then formalizes to

$$
\left\{\begin{array}{rlrl}
J(x, t) \cdot E(x, t) & =j_{c}(x, \theta(x, t), H(x, t))|E(x, t)| & & \text { in }(0, T) \times \Omega_{\mathrm{sc}} \\
|J(x, t)| \leq j_{c}(x, \theta(x, t), H(x, t)) & & \text { in }(0, T) \times \Omega_{\mathrm{sc}} \\
J(x, t) & =0 & & \text { in }(0, T) \times\left(\Omega \backslash \Omega_{\mathrm{sc}}\right) .
\end{array}\right.
$$

Including the Bean-Kim model into Maxwell's equations we end up with the following nonlinear and non-smooth system

$$
\left\{\begin{aligned}
\epsilon \partial_{\mathrm{t}} E-\operatorname{curl} H+J & =f & & \text { in }(0, T) \times \Omega \\
\mu \partial_{\mathrm{t}} H+\operatorname{curl} E & =0 & & \text { in }(0, T) \times \Omega . \\
J(x, t) \cdot E(x, t) & =j_{c}(x, \theta(x, t), H(x, t))|E(x, t)| & & \text { in }(0, T) \times \Omega_{\mathrm{sc}} \\
|J(x, t)| & \leq j_{c}(x, \theta(x, t), H(x, t)) & & \text { in }(0, T) \times \Omega_{\mathrm{sc}} \\
J(x, t) & =0 & & \text { in }(0, T) \times(\Omega \backslash \\
E \times n & =0 & & \text { in }(0, T) \times \Omega \\
(E, H)(0) & =\left(E_{0}, H_{0}\right) & & \text { in } \Omega .
\end{aligned}\right.
$$

Finally, we formulate our system in a weak sense and end up with the following hyperbolic QVI of the second kind:

Find $(E, H) \in W^{1, \infty}\left((0, T), L^{2}(\Omega) \times L^{2}(\Omega)\right) \cap L^{\infty}\left((0, T), H_{0}(\right.$ curl $) \times H($ curl $\left.) \cap \mu^{-1} H_{0}(\operatorname{div}=0)\right):$
(QVI)

$$
\left\{\begin{array}{l}
\int_{\Omega} \epsilon \partial_{\mathrm{t}} E(t) \cdot(v-E(t))-\operatorname{curl} H(t) \cdot(v-E(t)) \mathrm{d} x \\
\quad+\int_{\Omega} j_{c}(\cdot, \theta(t), H(t))(|v|-|E(t)|) \mathrm{d} x \geq \int_{\Omega} f(t) \cdot(v-E(t)) \mathrm{d} x \\
\text { for a.e. } t \in(0, T) \text { and all } v \in L^{2}(\Omega) \\
\mu \partial_{t} H(t)+\operatorname{curl} E(t)=0 \text { for a.e. } t \in(0, T), \\
(E, H)(0)=\left(E_{0}, H_{0}\right) .
\end{array}\right.
$$

Maxwell VI of the second kind

- Well-posedness in the case of a general proper, convex and lower semicontinuous nonlinearity $\psi: L^{2}(\Omega) \times L^{2}(\Omega) \rightarrow \mathbb{R}$ satisfying a local boundedness assumption.
(I. Yousept. Hyperbolic Maxwell Variational Inequalities of the Second Kind. ESAIM: COCV, 2020)
- AFEM for the underlying L¹-structured elliptic VI.
(M. Winckler, I. Yousept, and J. Zou. Adaptive Edge Element Approximation for H(curl)-elliptic Variational Inequalities of Second Kind. SIAM J. Numer. Anal., 2020)
- Shape optimization for the underlying L^{1}-structured elliptic VI.
(A. Laurain, M. Winckler, I. Yousept. Shape Optimization for Superconductors Governed by H(curl)-elliptic Variational Inequalities. SIAM J. Control Optim., 2021)

Previous Related Work

Maxwell VI of the first kind

- Well-posedness for the Maxwell obstacle problem, i.e. the case $\psi=I_{\text {K }}$. (I. Yousept. Well-posedness Theory for Electromagnetic Obstacle Problems. J. Differential Equations, 2020)
- Eddy Current approximation of the Maxwell obstacle problem.
(M. Hensel and I. Yousept. Eddy Current Approximation in Maxwell Obstacle Problems. Interfaces Free Bound., 2022)
- Numerical analysis of the Maxwell obstacle problem. (M. Hensel and I. Yousept. Numerical Analysis for Maxwell Obstacle Problems in Electric Shielding. SIAM J. Numer. Anal., 2022)
- Analysis \& control of an $\mathrm{H}(\mathrm{curl})$-quasilinear first kind elliptic VI with bilateral curl-constraints.
(M. Hensel and I. Yousept. Quasilinear Variational Inequalities in Ferromagnetic Shielding: Well-posedness, Regularity, and Optimal Control. submitted, 2022)

Previous Related Work

Maxwell QVI of the second kind

- Well-posedness for the introduced QVI.
(I. Yousept. Maxwell Quasi-Variational Inequalities in Superconductivity. ESAIM:M2AN, 2021)
- Efficient solvers and numerical analysis for the introduced QVI.
(M. Hensel, M. Winckler and I. Yousept. Leapfrog Scheme for Hyperbolic Maxwell Quasi-variational Inequalities. In preparation)

Previous Related Work

Recent other contributions to QVIs

- A. Alphonse, M. Hintermüller and C.N. Rautenberg. Existence, iteration procedures and directional differentiability for parabolic QVIs. Calc. Var. PDE, 2020
- A. Alphonse, M. Hintermüller and C.N. Rautenberg. On the differentiability of the minimal and maximal solution maps of elliptic quasi-variational inequalities. J. Math. Anal. Appl., 2021
- A. Alphonse, M. Hintermüller and C.N. Rautenberg. Optimal control and directional differentiability for elliptic quasi-variational inequalities. Set-Valued Var. Anal., 2022
- C. Christof and G. Wachsmuth. Lipschitz Stability and Hadamard Directional Differentiability for Elliptic and Parabolic Obstacle-type Quasi-variational Inequalities. 2021
- G. Wachsmuth. From Resolvents to Generalized Equations and Quasi-variational Inequalities: Existence and Differentiability. Journal of Nonsmooth Analysis and Optimization, 2022

Back to (QVI)

(QVI)

$$
\left\{\begin{array}{l}
\int_{\Omega} \epsilon \partial_{t} E(t) \cdot(v-E(t))-\operatorname{curl} H(t) \cdot(v-E(t)) d x \\
\quad+\int_{\Omega} j_{c}(\cdot, \theta(t), H(t))(|v|-|E(t)|) d x \geq \int_{\Omega} f(t) \cdot(v-E(t)) d x \\
\text { for a.e. } t \in(0, T) \text { and all } v \in L^{2}(\Omega), \\
\mu \partial_{t} H(t)+\operatorname{curl}(E(t)=0 \quad \text { for a.e. } t \in(0, T), \\
(E, H)(0)=\left(E_{0}, H_{0}\right) .
\end{array}\right.
$$

- $f \in H^{1}\left((0, T), L^{2}(\Omega)\right)$
- $\theta \in H^{1}\left((0, T), L^{2}(\Omega)\right) \cap \mathcal{C}\left([0, T], L^{\infty}(\Omega)\right)$
- $\left(E_{0}, H_{0}\right) \in H_{0}($ curl $) \times \mu^{-1} H_{0}($ div=0 $)$
- j_{c} locally bounded in the 2 . variable and locally Lipschitz in the 2. variable
- j_{c} globally bounded in the 3 . variable and globally Lipschitz in the 3. variable

Theorem (Yousept '21)

There exists a unique solution

$$
(E, H) \in W^{1, \infty}\left((0, T), L^{2}(\Omega) \times L^{2}(\Omega)\right) \cap L^{\infty}\left((0, T), H_{0}(\text { curl }) \times H(\text { curl }) \cap \mu^{-1} H_{0}(\text { div=0 })\right)
$$

to (QVI).
Proof is based on time discretization together with fixed point techniques.

Numerical Analysis of (QVI)

Mixed FEM and Leapfrog Stepping (instead of implicit Euler)

Actually, why not implicit Euler?

If we discretize in a standard way by implicit Euler, i.e.

- $N D_{h}$ for the electric field
- DG $_{h}$ for the magnetic field,
we end up with the following structure:

$$
\left\{\begin{array}{l}
\text { Find }\left\{\left(E_{h}^{n}, \boldsymbol{H}_{h}^{n}\right)\right\}_{n=1}^{N} \subset \mathbf{N D}_{h} \times \mathbf{D G}_{h}, \text { s.t. } \\
a\left(E_{h}^{n}, \boldsymbol{v}_{h}-E_{h}^{n}\right)+\int_{\Omega} j_{c}\left(\cdot, \theta_{h}^{n}, \boldsymbol{H}_{h}^{n}\right)\left(\left|\boldsymbol{v}_{h}\right|-\left|E_{h}^{n}\right|\right) \geq F_{h}^{n}\left(\boldsymbol{v}_{h}-E_{h}^{n}\right) \quad \forall \boldsymbol{v}_{h} \in \mathbf{N D}_{h} \\
\boldsymbol{H}_{h}^{n}=\boldsymbol{H}_{h}^{n-1}-\tau \mu^{-1} \operatorname{curl} E_{h}^{n} .
\end{array}\right.
$$

Mixed FEM and Leapfrog Stepping (instead of implicit Euler)

Actually, why not implicit Euler?

If we discretize in a standard way by implicit Euler, i.e.

- $N D_{h}$ for the electric field
- DG_{h} for the magnetic field,
we end up with the following structure:

$$
\left\{\begin{array}{l}
\text { Find }\left\{\left(E_{h}^{n}, \boldsymbol{H}_{h}^{n}\right)\right\}_{n=1}^{N} \subset \mathbf{N D}_{h} \times \text { DG }_{h}, \text { s.t. } \\
a\left(E_{h}^{n}, \boldsymbol{v}_{h}-E_{h}^{n}\right)+\int_{\Omega} j_{c}\left(\cdot, \theta_{h}^{n}, \boldsymbol{H}_{h}^{n}\right)\left(\left|\boldsymbol{v}_{h}\right|-\left|E_{h}^{n}\right|\right) \geq F_{h}^{n}\left(\boldsymbol{v}_{h}-E_{h}^{n}\right) \quad \forall \boldsymbol{v}_{h} \in \mathrm{ND}_{h} \\
\boldsymbol{H}_{h}^{n}=\boldsymbol{H}_{h}^{n-1}-\tau \mu^{-1} \operatorname{curl} E_{h}^{n} .
\end{array}\right.
$$

Problem: Elliptic QVI pops up - no uniqueness, no efficient solve

Mixed FEM and Leapfrog Stepping

In contrast to before:

- DG $_{h}$ for the electric field
- ND_{h} for the magnetic field
- discretize the Amperé-Maxwell VI at t_{n}
- discretize the Faraday equation at $t_{n-\frac{1}{2}}:=t_{n}-\frac{\tau}{2}$
- Central difference and mean value approximation

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} E\left(t_{n-\frac{1}{2}}\right) & \approx \frac{E\left(t_{n}\right)-E\left(t_{n-1}\right)}{\tau}, \quad \frac{\mathrm{d}}{\mathrm{dt}} H\left(t_{n}\right) \approx \frac{H\left(t_{n+\frac{1}{2}}\right)-H\left(t_{n-\frac{1}{2}}\right)}{\tau}, \\
E\left(t_{n-\frac{1}{2}}\right) & \approx \frac{E\left(t_{n}\right)+E\left(t_{n-1}\right)}{2}
\end{aligned}
$$

$$
\left(\left.\mathrm{QV}\right|_{N, h}\right)\left\{\begin{array}{l}
\text { Find }\left\{E_{h}^{n}\right\}_{n=1}^{N} \subset D G_{h} \text { and }\left\{H_{h}^{n+\frac{1}{2}}\right\}_{n=1}^{N-1} \subset N D_{h} \text { such that } \\
\int_{\Omega} \epsilon \delta E_{h}^{n} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right)-\operatorname{curl} H_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{dx} \\
+\int_{\Omega} j_{c}\left(\cdot, \theta^{n-\frac{1}{2}}, H_{h}^{n-\frac{1}{2}}\right)\left(\left|v_{h}\right|-\left|E_{h}^{n-\frac{1}{2}}\right|\right) \mathrm{dx} \geq \int_{\Omega} f_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-\right. \\
\int_{\Omega} \mu \delta H_{h}^{n+\frac{1}{2}} \cdot w_{h} \mathrm{dx}+\int_{\Omega} E_{h}^{n} \cdot \operatorname{curl} w_{h} \mathrm{~d} x=0 \quad \forall w_{h} \in \mathrm{ND}_{h} .
\end{array}\right.
$$

with

$$
\delta E_{h}^{n}:=\frac{E_{h}^{n}-E_{h}^{n-1}}{\tau}, \quad \delta H_{h}^{n+\frac{1}{2}}:=\frac{H_{h}^{n+\frac{1}{2}}-H_{h}^{n-\frac{1}{2}}}{\tau}, \quad E_{h}^{n-\frac{1}{2}}:=\frac{E_{h}^{n}+E_{h}^{n-1}}{2} .
$$

$$
\left(\left.\mathrm{QVI}\right|_{N, h}\right)\left\{\begin{array}{l}
\text { Find }\left\{E_{h}^{n}\right\}_{n=1}^{N} \subset D G_{h} \text { and }\left\{H_{h}^{n+\frac{1}{2}}\right\}_{n=1}^{N-1} \subset \mathrm{ND}_{h} \text { such that } \\
\int_{\Omega} \epsilon \delta E_{h}^{n} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right)-\operatorname{curl} H_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{d} x \\
+\int_{\Omega} j_{c}\left(\cdot, \theta^{n-\frac{1}{2}}, H_{h}^{n-\frac{1}{2}}\right)\left(\left|v_{h}\right|-\left|E_{h}^{n-\frac{1}{2}}\right|\right) \mathrm{d} x \geq \int_{\Omega} f_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{d} x \quad \forall v_{h} \in \mathrm{DG} G_{h} \\
\int_{\Omega} \mu \delta H_{h}^{n+\frac{1}{2}} \cdot w_{h} \mathrm{~d} x+\int_{\Omega} E_{h}^{n} \cdot \operatorname{curl} w_{h} \mathrm{~d} x=0 \quad \forall w_{h} \in \mathrm{ND}_{h} .
\end{array}\right.
$$

$$
\left(E_{0}, H_{0}\right)
$$

$$
\left(\left.\mathrm{QVI}\right|_{N, h}\right)\left\{\begin{array}{l}
\text { Find }\left\{E_{h}^{n}\right\}_{n=1}^{N} \subset \mathrm{DG}_{h} \text { and }\left\{H_{h}^{n+\frac{1}{2}}\right\}_{n=1}^{N-1} \subset \mathrm{ND}_{h} \text { such that } \\
\int_{\Omega} \epsilon \delta E_{h}^{n} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right)-\operatorname{curl} H_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{d} x \\
+\int_{\Omega} j_{c}\left(\cdot, \theta^{n-\frac{1}{2}}, H_{h}^{n-\frac{1}{2}}\right)\left(\left|v_{h}\right|-\left|E_{h}^{n-\frac{1}{2}}\right|\right) \mathrm{d} x \geq \int_{\Omega} f_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{d} x \quad \forall v_{h} \in \mathrm{DG} G_{h} \\
\int_{\Omega} \mu \delta H_{h}^{n+\frac{1}{2}} \cdot w_{h} \mathrm{~d} x+\int_{\Omega} E_{h}^{n} \cdot \operatorname{curl} w_{h} \mathrm{~d} x=0 \quad \forall w_{h} \in \mathrm{ND}_{h} .
\end{array}\right.
$$

$$
\left(\left.\mathrm{QV}\right|_{N, h}\right)\left\{\begin{array}{l}
\text { Find }\left\{E_{h}^{n}\right\}_{n=1}^{N} \subset D G_{h} \text { and }\left\{H_{h}^{n+\frac{1}{2}}\right\}_{n=1}^{N-1} \subset \mathrm{ND}_{h} \text { such that } \\
\int_{\Omega} \epsilon \delta E_{h}^{n} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right)-\operatorname{curl} H_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{d} x \\
+\int_{\Omega} j_{c}\left(\cdot, \theta^{n-\frac{1}{2}}, H_{h}^{n-\frac{1}{2}}\right)\left(\left|v_{h}\right|-\left|E_{h}^{n-\frac{1}{2}}\right|\right) \mathrm{d} x \geq \int_{\Omega} f_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{d} x \quad \forall v_{h} \in \mathrm{DG} G_{h} \\
\int_{\Omega} \mu \delta H_{h}^{n+\frac{1}{2}} \cdot w_{h} \mathrm{~d} x+\int_{\Omega} E_{h}^{n} \cdot \operatorname{curl} w_{h} \mathrm{~d} x=0 \quad \forall w_{h} \in \mathrm{ND}_{h} .
\end{array}\right.
$$

$$
\left(\left.\mathrm{QVI}\right|_{N, h}\right)\left\{\begin{array}{l}
\text { Find }\left\{E_{h}^{n}\right\}_{n=1}^{N} \subset \mathrm{DG}_{h} \text { and }\left\{H_{h}^{n+\frac{1}{2}}\right\}_{n=1}^{N-1} \subset \mathrm{ND}_{h} \text { such that } \\
\int_{\Omega} \epsilon \delta E_{h}^{n} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right)-\operatorname{curl} H_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{d} x \\
+\int_{\Omega} j_{c}\left(\cdot, \theta^{n-\frac{1}{2}}, H_{h}^{n-\frac{1}{2}}\right)\left(\left|v_{h}\right|-\left|E_{h}^{n-\frac{1}{2}}\right|\right) \mathrm{d} x \geq \int_{\Omega} f_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{d} x \quad \forall v_{h} \in \mathrm{DG} G_{h} \\
\int_{\Omega} \mu \delta H_{h}^{n+\frac{1}{2}} \cdot w_{h} \mathrm{~d} x+\int_{\Omega} E_{h}^{n} \cdot \operatorname{curl} w_{h} \mathrm{~d} x=0 \quad \forall w_{h} \in \mathrm{ND}_{h} .
\end{array}\right.
$$

$$
\left(\left.\mathrm{QVI}\right|_{N, h}\right)\left\{\begin{array}{l}
\text { Find }\left\{E_{h}^{n}\right\}_{n=1}^{N} \subset \mathrm{DG}_{h} \text { and }\left\{H_{h}^{n+\frac{1}{2}}\right\}_{n=1}^{N-1} \subset \mathrm{ND}_{h} \text { such that } \\
\int_{\Omega} \epsilon \delta E_{h}^{n} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right)-\operatorname{curl} H_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{d} x \\
+\int_{\Omega} j_{c}\left(\cdot, \theta^{n-\frac{1}{2}}, H_{h}^{n-\frac{1}{2}}\right)\left(\left|v_{h}\right|-\left|E_{h}^{n-\frac{1}{2}}\right|\right) \mathrm{d} x \geq \int_{\Omega} f_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{d} x \quad \forall v_{h} \in \mathrm{DG} G_{h} \\
\int_{\Omega} \mu \delta H_{h}^{n+\frac{1}{2}} \cdot w_{h} \mathrm{~d} x+\int_{\Omega} E_{h}^{n} \cdot \operatorname{curl} w_{h} \mathrm{~d} x=0 \quad \forall w_{h} \in \mathrm{ND}_{h} .
\end{array}\right.
$$

$$
\left(\left.\mathrm{QV}\right|_{N, h}\right)\left\{\begin{array}{l}
\text { Find }\left\{E_{h}^{n}\right\}_{n=1}^{N} \subset \mathrm{DG} G_{h} \text { and }\left\{H_{h}^{n+\frac{1}{2}}\right\}_{n=1}^{N-1} \subset \mathrm{ND}_{h} \text { such that } \\
\int_{\Omega} \epsilon \delta E_{h}^{n} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right)-\operatorname{curl} H_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{dx} \\
+\int_{\Omega} j_{c}\left(\cdot, \theta^{n-\frac{1}{2}}, H_{h}^{n-\frac{1}{2}}\right)\left(\left|V_{h}\right|-\left|E_{h}^{n-\frac{1}{2}}\right|\right) \mathrm{dx} \geq \int_{\Omega} f_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{dx} \forall \mathrm{~V}_{h} \in \mathrm{DG} G_{h} \\
\int_{\Omega} \mu \delta H_{h}^{n+\frac{1}{2}} \cdot w_{h} \mathrm{dx}+\int_{\Omega} E_{h}^{n} \cdot \operatorname{curl} w_{h} \mathrm{~d} x=0 \quad \forall w_{h} \in \mathrm{ND}_{h} .
\end{array}\right.
$$

$$
\left(\left.\mathrm{QVI}\right|_{N, h}\right)\left\{\begin{array}{l}
\text { Find }\left\{E_{h}^{n}\right\}_{n=1}^{N} \subset D G_{h} \text { and }\left\{H_{h}^{n+\frac{1}{2}}\right\}_{n=1}^{N-1} \subset \mathrm{ND}_{h} \text { such that } \\
\int_{\Omega} \epsilon \delta E_{h}^{n} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right)-\operatorname{curl} H_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{d} x \\
+\int_{\Omega} j_{c}\left(\cdot, \theta^{n-\frac{1}{2}}, H_{h}^{n-\frac{1}{2}}\right)\left(\left|v_{h}\right|-\left|E_{h}^{n-\frac{1}{2}}\right|\right) \mathrm{d} x \geq \int_{\Omega} f_{h}^{n-\frac{1}{2}} \cdot\left(v_{h}-E_{h}^{n-\frac{1}{2}}\right) \mathrm{d} x \quad \forall v_{h} \in \mathrm{DG}_{h} \\
\int_{\Omega} \mu \delta H_{h}^{n+\frac{1}{2}} \cdot w_{h} \mathrm{~d} x+\int_{\Omega} E_{h}^{n} \cdot \operatorname{curl} w_{h} \mathrm{~d} x=0 \quad \forall w_{h} \in \mathrm{ND}_{h} .
\end{array}\right.
$$

Mixed FEM and Leapfrog Stepping

Theorem

For every $h>0$ and $N \in \mathbb{N},\left(\mathrm{QVI}_{N, h}\right)$ admits a unique solution $\left\{E_{h}^{n}\right\}_{n=1}^{N} \subset \mathrm{DG}_{h}$ and $\left\{\boldsymbol{H}_{h}^{n+\frac{1}{2}}\right\}_{n=1}^{N-1} \subset N_{h}$. In particular,

$$
\begin{aligned}
E_{h}^{n} & =2 E_{h}^{n-\frac{1}{2}}-E_{h}^{n} & w_{h}^{n} & =f_{h}^{n-\frac{1}{2}}+\operatorname{curl} H_{h}^{n-\frac{1}{2}}+\frac{2 \epsilon}{\tau} E_{h}^{n-1} \\
E_{h}^{n-\frac{1}{2}} & =\frac{\tau \epsilon^{-1}}{2}\left(w_{h}^{n}-P_{\partial} w_{h}^{n}\right) & P_{\partial} w_{h}^{n} & =\frac{j_{c}\left(\cdot, \theta_{h}^{n-\frac{1}{2}}, H_{h}^{n-\frac{1}{2}}\right)}{\max \left(\left|w_{h}^{n}\right|, j_{c}\left(\cdot, \theta_{h}^{n-\frac{1}{2}}, H_{h}^{n-\frac{1}{2}}\right)\right)} .
\end{aligned}
$$

Mixed FEM and Leapfrog Stepping

Theorem

For every $h>0$ and $N \in \mathbb{N},\left(\mathrm{QVI}_{N, h}\right)$ admits a unique solution $\left\{E_{h}^{n}\right\}_{n=1}^{N} \subset \mathrm{DG}_{h}$ and $\left\{H_{h}^{n+\frac{1}{2}}\right\}_{n=1}^{N-1} \subset N D_{h}$. In particular,

$$
\begin{aligned}
E_{h}^{n} & =2 E_{h}^{n-\frac{1}{2}}-E_{h}^{n} & w_{h}^{n} & =f_{h}^{n-\frac{1}{2}}+\operatorname{curl} H_{h}^{n-\frac{1}{2}}+\frac{2 \epsilon}{\tau} E_{h}^{n-1} \\
E_{h}^{n-\frac{1}{2}} & =\frac{\tau \epsilon^{-1}}{2}\left(w_{h}^{n}-P_{\partial} w_{h}^{n}\right) & P_{\partial} w_{h}^{n} & =\frac{j_{c}\left(\cdot, \theta_{h}^{n-\frac{1}{2}}, H_{h}^{n-\frac{1}{2}}\right)}{\max \left(\left|w_{h}^{n}\right|, j_{c}\left(\cdot, \theta_{h}^{n-\frac{1}{2}}, H_{h}^{n-\frac{1}{2}}\right)\right)} .
\end{aligned}
$$

Benefit: Easily implementable - no iterative solver needed.

Mixed FEM and Leapfrog Stepping

Additional assumptions for stability and limiting analysis:

- $E_{0} \in H^{1}(\Omega)$ and a linear CFL-condition of type $\tau \leq C h$

Relaxation of previous assumptions:

- $f \in \operatorname{BV}\left([0, T], L^{2}(\Omega)\right)$
- $\theta \in \operatorname{BV}\left([0, T], L^{2}(\Omega)\right) \cap \mathcal{C}\left([0, T], L^{\infty}(\Omega)\right)$

Mixed FEM and Leapfrog Stepping

Additional assumptions for stability and limiting analysis:

- $E_{0} \in H^{1}(\Omega)$ and a linear CFL-condition of type $\tau \leq C h$

Relaxation of previous assumptions:

- $f \in \operatorname{BV}\left([0, T], L^{2}(\Omega)\right)$
- $\theta \in \operatorname{BV}\left([0, T], L^{2}(\Omega)\right) \cap \mathcal{C}\left([0, T], L^{\infty}(\Omega)\right)$

Theorem

$$
\begin{array}{ll}
\left(E_{N, h}, H_{N, h}\right) \stackrel{*}{\rightharpoonup}(E, H) & \text { weakly-* in } L^{\infty}\left((0, T), L^{2}(\Omega) \times L^{2}(\Omega)\right) \\
\frac{d}{d t}\left(E_{N, h}, H_{N, h}\right) \stackrel{*}{\rightharpoonup} \frac{d}{d t}(E, H) & \text { weakly-* in } L^{\infty}\left((0, T), L^{2}(\Omega) \times L^{2}(\Omega)\right) \\
\left\|\left(E_{N, h}, H_{N, h}\right)-(E, H)\right\|_{\mathcal{C}\left([0, T], L^{2}(\Omega) \times L^{2}(\Omega)\right)} \rightarrow 0 &
\end{array}
$$

Numerical Test

For our numerical test, we consider

- the VI case

$$
j_{c}(\cdot, \theta, H)=(1-\theta)^{2} \chi_{\Omega_{\mathrm{sc}}}(\cdot) \quad \text { with } \theta(t, x)=t
$$

- the QVI case

$$
j_{c}(\cdot, \theta, H)=\frac{(1-\theta)^{2}}{1+|H|^{\beta}} \chi_{\Omega_{s c}}(\cdot) \quad \text { with } \theta(t, x)=t
$$

with the superconductor $\Omega_{\mathrm{sc}}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid \sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}} \leq 0.2\right\}$.

[^0]

Figure 1: Source term, superconductor and the magnetic field.

Figure 2: Top row: pure temperature dependence (VI).
Bottom row: temperature and magnetic field dependence (QVI).

Thank you for your attention!

[^0]: ${ }^{1}$ M. Ciszek, B.A. Glowacki, S.P. Ashworth, A.M. Campbell, W.Y. Liang, R. Flükiger, and R.E. Gladyshevskii. AC losses and critical currents in Ag/(Tl,Pb,Bi)-1223 tape. Physica C: Superconductivity and its Applications, 1996

