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Superconductivity



Physical Background

What is superconductivity?

Superconductivity comprises physical properties of
certain materials which cause the material to lose its
electrical resistance. This causes any magnetic field
to be expelled from the material (Meissner effect).

A material with such property is called
superconductor.
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Physical Background

What is superconductivity?

Superconductivity comprises physical properties of
certain materials which cause the material to lose its
electrical resistance. This causes any magnetic field
to be expelled from the material (Meissner effect).

A material with such property is called
superconductor. We are particularly interested in
high-temperature type-Il superconductors, i.e. those
superconductors in which

- the superconducting state occurs below
—196.2°C (high-temperature)

- the transition between the superconducting and
non-superconducting state is not abrupt (type-Il)

1/20



Type-ll Superconductors
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- |H| the magnetic field

strength

- H¢,, He, the critical

magnetic fields
strengths

- 0 the temperature
- 0. the critical

temperature
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Modelling of Type-Il Superconductors

To model the behaviour of type-Il superconductors we first consider the standard
Maxwell's equations

eOtE—curlH+J=f in (0,7) x Q
poH + curl E =0 in (0,7) x Q.

If the medium Q is a good conductor, we have Ohm'’s law

] =oE.
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Modelling of Type-Il Superconductors

To model the behaviour of type-Il superconductors we first consider the standard
Maxwell's equations
eE—curlH+J=f in (0,7) x Q
poH + curl E =0 in (0,7) x Q.

If the medium Q is a good conductor, we have Ohm'’s law
] =oE.

In the presence of a superconductor Qsc C Q, Ohm’s law needs to be replaced by a
nonlinear and non-smooth constitutive relation between the electric field E and the
current density J.
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Modelling of Type-Il Superconductors

Bean'’s critical state model postulates that

- the current density strength |J| cannot exceed some critical value j. € R
- the electric field E vanishes if |J| < j.
- the electric field E is parallel to J.

Bean's model assumes that j. is a constant.
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Modelling of Type-Il Superconductors

Bean'’s critical state model postulates that

- the current density strength |J| cannot exceed some critical value j. € R
- the electric field E vanishes if |J| < j.
- the electric field E is parallel to J.

Bean's model assumes that j. is a constant. To account for the dependence on 6 and H
(as found through experiments by Kim et al.), we consider a non-negative

jo: QxR xR® = R.
The generalized Bean-Kim model then formalizes to
J(%, 1) - E(x, 1) = je(x, 0(x, t), H(x, t))|E(X, t)] in (0,7T) x Qsc
JOG O] < Je(x, 0(x, 1), H(x, 1)) in (0,7) x Qsc
J(x,t) =0 in (0,T) x (Q\ Qsc).
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Modelling of Type-Il Superconductors @

Including the Bean-Kim model into Maxwell's equations we end up with the following
nonlinear and non-smooth system

eE—curlH+)=f in (0,7) xQ
poH + curl E =0 in(0,7T) xQ
J(x, t) - E(x, t) = je(x, 0(x, t), H(x, t))|E(x, 1) in (0,T) x Qs
IO ] < Jelx,0(x, 1), H(x, 1)) in (0,7) x Qs
J(x,t)=0 in (0,7) x (2\ Qsc)
(

Exn=0 in (0,7) xQ
(E,H)(0) = (Eo, Ho) inQ.
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Modelling of Type-Il Superconductors @

Finally, we formulate our system in a weak sense and end up with the following
hyperbolic QVI of the second kind:

Find (E,H) € W"*>((0,T), L*() x L*()) N L>°((0, T), Ho(curl) x H(curl) N u~"Ho(div=0)) :

/ eBE(t) - (v — E(t)) — curl H(t) - (v — E(t)) dx
Q

+ [ Jel- 000 HONW - [EOD x> [ 8)- (v E(®) ox
Q Q
forae. t € (0,T)and allv e L*(Q),
uoH(t) + curlE(t) =0 forae. te(0,7),
(E,H)(0) = (Eo, Ho).

(Qur)
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Previous Related Work @

Maxwell VI of the second kind

- Well-posedness in the case of a general proper, convex and lower semicontinuous
nonlinearity ¢: L2(Q) x L%(Q) — R satisfying a local boundedness assumption.
(I. Yousept. Hyperbolic Maxwell Variational Inequalities of the Second Kind. ESAIM: COCV, 2020)

- AFEM for the underlying L'-structured elliptic VI.
(M. Winckler, I. Yousept, and J. Zou. Adaptive Edge Element Approximation for H(curl)-elliptic Variational
Inequalities of Second Kind. SIAM J. Numer. Anal., 2020)

- Shape optimization for the underlying L'-structured elliptic VI.
(A. Laurain, M. Winckler, I. Yousept. Shape Optimization for Superconductors Governed by H(curl)-elliptic
Variational Inequalities. SIAM J. Control Optim., 2021)
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Previous Related Work @

Maxwell VI of the first kind

- Well-posedness for the Maxwell obstacle problem, i.e. the case ¢ = Ix.
(1. Yousept. Well-posedness Theory for Electromagnetic Obstacle Problems. J. Differential Equations, 2020)
- Eddy Current approximation of the Maxwell obstacle problem.
(M. Hensel and I. Yousept. Eddy Current Approximation in Maxwell Obstacle Problems. Interfaces Free
Bound., 2022)
- Numerical analysis of the Maxwell obstacle problem.
(M. Hensel and I. Yousept. Numerical Analysis for Maxwell Obstacle Problems in Electric Shielding. SIAM J.
Numer. Anal., 2022)
- Analysis & control of an H(curl)-quasilinear first kind elliptic VI with bilateral
curl-constraints.
(M. Hensel and I. Yousept. Quasilinear Variational Inequalities in Ferromagnetic Shielding:

Well-posedness, Regularity, and Optimal Control. submitted, 2022)
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Previous Related Work

Maxwell QVI of the second kind

- Well-posedness for the introduced QVI.
(1. Yousept. Maxwell Quasi-Variational Inequalities in Superconductivity. ESAIM:M2AN, 2021)

- Efficient solvers and numerical analysis for the introduced QVI.
(M. Hensel, M. Winckler and I. Yousept. Leapfrog Scheme for Hyperbolic Maxwell Quasi-variational

Inequalities. In preparation)
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Previous Related Work

Recent other contributions to QVIs

* A Alphonse, M. Hintermiller and C.N. Rautenberg. Existence, iteration procedures and directional
differentiability for parabolic QVIs. Calc. Var. PDE, 2020

+ A.Alphonse, M. Hintermuller and C.N. Rautenberg. On the differentiability of the minimal and maximal
solution maps of elliptic quasi-variational inequalities. J. Math. Anal. Appl., 2021

* A Alphonse, M. Hintermiller and C.N. Rautenberg. Optimal control and directional differentiability for
elliptic quasi-variational inequalities. Set-Valued Var. Anal., 2022

+ C. Christof and G. Wachsmuth. Lipschitz Stability and Hadamard Directional Differentiability for Elliptic and
Parabolic Obstacle-type Quasi-variational Inequalities. 2021

* G. Wachsmuth. From Resolvents to Generalized Equations and Quasi-variational Inequalities: Existence
and Differentiability. Journal of Nonsmooth Analysis and Optimization, 2022
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Back to (QVI)




Well-posedness of (QVI)

(Qvr)

/ €DE(t) - (v— E(t)) — curl H(t) - (v — E(t)) dx
Q

+ [ I 000 HONI - [EQD &> [ £0)- (v EC2) dx
Q Q
fora.e. t e (0,T)and all v e L*(Q),
udH(t) + curlE(t) =0 forae. te (0,7),
(E, H)(0) = (Eo, Ho)-

- fe H'((0,7),L%(Q)) * jc locally bounded in the 2. variable
- 0 € HI((0,T), L2(Q)) N ([0, T], L°(%2)) and locally Lipschitz in the 2. variable

. (Eo,HQ) S Ho(CUrl) X M_1H0(diV=O)

- Jc globally bounded in the 3. variable
and globally Lipschitz in the 3. variable
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Well-posedness of (QVI)

Theorem (Yousept '21)
There exists a unique solution

(E,H) € W">((0,T), L2() x L*()) N L>((0, T), Ho(curl) x H(curl) N = "Ho(div=0))
to (QVI).

Proof is based on time discretization together with fixed point techniques.
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Numerical Analysis of (QVI)




Mixed FEM and Leapfrog Stepping (instead of implicit Euler)

Actually, why not implicit Euler?
If we discretize in a standard way by implicit Euler, i.e.

- NDy, for the electric field
- DGy, for the magnetic field,

we end up with the following structure:
Find {(E}, H!)IN_, € NDy, x DGy, sit.
a(Eh, vh — Ep) +/Jc(-,9ﬁ, n)(va| — |ER]) = FR(vh — E}) V4 € NDy
Q

Hp = H)™" — 7~ curl E].
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Mixed FEM and Leapfrog Stepping (instead of implicit Euler)

Actually, why not implicit Euler?
If we discretize in a standard way by implicit Euler, i.e.

- NDy, for the electric field
- DGy, for the magnetic field,

we end up with the following structure:
Find {(E}, H!)IN_, € NDy, x DGy, sit.
a(Ep, va — ER) + /ch('ﬂﬁ, m)(IVnl — [ERI) = FR(vh — E}) YV, € ND,
Hp = H)™" — 7~ curl E].

Problem: Elliptic QVI pops up - no uniqueness, no efficient solve
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Mixed FEM and Leapfrog Stepping

In contrast to before:

- DGy, for the electric field

- NDy, for the magnetic field

- discretize the Amperé-Maxwell VI at t,

- discretize the Faraday equation at thoy =th— 3
- Central difference and mean value approximation

d _E(ta) —E(ti)  d _H(thyy) —H(t,—1)
th(tnf%) - T ’ dtH(tn) - T ’
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Mixed FEM and Leapfrog Stepping

; NN N+3 N=1
Find {ER},—; C DG, and {H, ?},Z; C NDj, such that

n

/ eSE] - (v — ET7) — curlH!™F - (v — E17) dx
Q

(QViy,p) 1 inel ho1 ho1 no1
+/Q’C("9 5 H ) (vel — |E] 2|)dx2/ﬂfh ' (vh— E/ ) dx Wy, € DG,

/M6H2+%-whdx+/ hecurlwy,dx=0 Vwy € NDp.
Q Q

with

El —Ep e .
OB = ——"—, OH, = ———, F,

15/20



Mixed FEM and Leapfrog Stepping

(Find {E1}"_, DG, and {H2+%}ﬁj C NDj, such that

Al el i
/eéEﬂ-(vh—Eh 2)—curlH, ?-(vy —E, ?)dx
Q

(QV|N,h) . 1 on_1 A—d n_1 n—1
+/jc(-,0”*i,Hh 2)(|vn| — |E, 2|)d)<z/fh 2. (vp —E, ?)dx Vv, € DGy
Q Q
/MHT% -whdx+/ pecurlwy,dx =0 Vwy € ND.
\ JQ Q
(Eo, Ho)
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Mixed FEM and Leapfrog Stepping

(Find {E1}"_, DG, and {H2+%}ﬁj C NDj, such that

Al el i
/eéEﬂ-(vh—Eh 2)—curlH, ?-(vy —E, ?)dx
Q

(QViy.p) ] g il n_1 n_1 n_1
+/]C(-,0n7f,Hh Z)(|vh|—|l:'h 2|)dXZ/fh 2 ‘(Vh—Eh 2)dx Vv, € DGy
Q Q
/MHT% -whdx+/ pecurlwy,dx =0 Vwy € ND.
\ JQ Q
............ ®
(Eo, Ho)
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Mixed FEM and Leapfrog Stepping

(Find {E1}"_, DG, and {H2+%}ﬁj C NDj, such that

Al el i
/eéEﬂ-(vh—Eh 2)—curlH, ?-(vy —E, ?)dx
Q

(QV|N,h) . 1 on_1 A—d n-1 n—1
+/jc(-,0”*i,Hh 2)(|vn| — |E, 2|)dxz/fh 2. (vp —E, ?)dx Vv, € DGy
Q Q
/MHT% - W dx+/ pecurlwy,dx =0 Vwy € ND.
\ JQ Q
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........... K
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Mixed FEM and Leapfrog Stepping

(Find {E1}"_, DG, and {HZ’L%}ﬁ;1 C NDj, such that

Al el i
/edEﬂ-(vh—Eh 2)—curlH, ?-(vy —E, ?)dx
Q

(QV|N,h) . 1 on_1 A—d n-1 n—1
+/]C(-,0”*2,Hh 2)(lval — |E, 2|)d)<2/fh >-(vy —E, ?)dx Vv, € DGy
Q Q
/MHT% -whdx+/ pecurlwy,dx =0 Vwy € ND.
\ JQ Q
~—
_______ @) ®
........... E
(Eo, Ho)
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Mixed FEM and Leapfrog Stepping

(QVly )

(Eo, Ho)

(Find {E1}"_, DG, and {HZ’L%}ﬁ;1 C NDj, such that

Al el i
/edEﬂ-(vh—Eh 2)—curlH, ?-(vy —E, ?)dx
Q

+/jc(-,O”*%,Hz_%)(|vh|—|EZ_%|)dxz/ff?_%-(vh—Ez_%)dx Vv, € DG,
Q Q

|n
\ JQ

5HZ+%-whdx+/ pecurlwy,dx =0 Vwy € ND.
Q

/\ /\
.................. @& @, ®
............................ U
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Mixed FEM and Leapfrog Stepping

(Find {E1}"_, DG, and {HZ’L%}ﬁ;1 C NDj, such that

Al el i
/ecSEﬂ-(vh—Eh 2)—curlH, ?-(vy —E, ?)dx
Q

(QViy.p) ] g il n_1 n_1 n_1
+/lc(‘,9n777Hh 2)(Ival — |E, 2|)dXZ/fh >-(vp—E, ?)dx Vv, € DGy
Q Q

/M5H2+%-whdx+/ pecurlwy,dx =0 Vwy € ND.
\ JQ Q

T N~
.................. OISO ON
............................ NG Y

(Eo, Ho)
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Mixed FEM and Leapfrog Stepping

(Find {E1}"_, DG, and {HZ’L%}ﬁ;1 C NDj, such that

Al el i
/ecSEﬂ-(vh—Eh 2)—curlH, ?-(vy —E, ?)dx
Q

(QViy.p) ] g il n_1 n_1 n_1
+/lc(‘,9n777Hh 2)(Ival — |E, 2|)dXZ/fh >-(vp—E, ?)dx Vv, € DGy
Q Q

/M5H2+%-whdx+/ pecurlwy,dx =0 Vwy € ND.
\ JQ Q

T N~ o~
------------------ & @ @
............................ e

(Eo, Ho)
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Mixed FEM and Leapfrog Stepping

Theorem

For every h > 0 and N € N, (QVly ) admits a unique solution {E}}N_, c DG, and
1 .

{H]"2}"=1 c NDy,. In particular,

_1 _1 12

n=2E"7 ] wh =y +curlHyF + 6
. 1 _1
-1 Te ! jc(-,92 Z,HZ ?)

(wpp — Pawh)  Powj =

max (|wjJe(-, 0, Hy )
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Mixed FEM and Leapfrog Stepping

Theorem

For every h > 0 and N € N, (QVly ) admits a unique solution {E}}N_, c DG, and
1 .

{H]"2}"=1 c NDy,. In particular,

1 1 _1 2

n=2E"7 ] wh =y +curlHyF + 6
. 1 _1
-1 Te ! jc(-,92 Z,H; ?)

(wpp — Pawh)  Powj =

max (|wjJe(-, 0, Hy )

Benefit: Easily implementable - no iterative solver needed.
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Mixed FEM and Leapfrog Stepping

Additional assumptions for stability and limiting analysis:
- Eo € H'(Q) and a linear CFL-condition of type 7 < Ch

Relaxation of previous assumptions:

- f € BY([0,T], 1%(Q))
* 0 € BV([0, 7], 12()) nc([0, ], L=(Q))
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Mixed FEM and Leapfrog Stepping

Additional assumptions for stability and limiting analysis:
- Eo € H'(Q) and a linear CFL-condition of type 7 < Ch

Relaxation of previous assumptions:

- f € BY([0,T], 1%(Q))
* 0 € BV([0, 7], 12()) nc([0, ], L=(Q))

Theorem
(Eons Hup) = (E H) weakly-* in L((0, T), LX(€) x L(2))
& Eunothun) > S(EH) weakly-* in L=((0, T), LX(€) x L(2))

|(En,p, Hu,p) — (E, H)||C([o,n,L2(n)xL2(Q)) —0
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Numerical Test

For our numerical test, we consider

- the VI case
Jje(,0,H) = (1= 0)’xa.(-) with 6(t,x) =t

- the QVI case ,
(1-9) - _
Je(+,0,H) = T |H|ﬂXQSC( ) with (t,x) =t

with the superconductor Qsc = {(X1,%2,x3) € R® | /X2 + X% +x3 < 0.2}.

M. Ciszek, B.A. Glowacki, S.P. Ashworth, A.M. Campbell, WY. Liang, R. Flikiger, and R.E. Gladyshevskii. AC losses
and critical currents in Ag/(Tl,Pb,Bi)-1223 tape. Physica C: Superconductivity and its Applications, 1996
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Numerical Test UDE

Figure 1: Source term, superconductor and the magnetic field.




Numerical Test

Figure 2: Top row: pure temperature dependence (VI).
Bottom row: temperature and magnetic field dependence (QVI).
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Thank you for your attention!
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