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Superconductivity



Physical Background

What is superconductivity?
Superconductivity comprises physical properties of
certain materials which cause the material to lose its
electrical resistance. This causes any magnetic field
to be expelled from the material (Meissner effect).
A material with such property is called
superconductor.

We are particularly interested in
high-temperature type-II superconductors, i.e. those
superconductors in which

• the superconducting state occurs below
−196.2◦C (high-temperature)

• the transition between the superconducting and
non-superconducting state is not abrupt (type-II)
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Type-II Superconductors

θ
θc

|H|

Hc1

Hc2

• |H| the magnetic field
strength

• Hc1 ,Hc2 the critical
magnetic fields
strengths

• θ the temperature
• θc the critical
temperature

2/20



Modelling of Type-II Superconductors

To model the behaviour of type-II superconductors we first consider the standard
Maxwell’s equations {

ϵ∂tE− curlH+ J = f in (0, T)× Ω

µ∂tH+ curl E = 0 in (0, T)× Ω.

If the medium Ω is a good conductor, we have Ohm’s law

J = σE.

In the presence of a superconductor Ωsc ⊂ Ω, Ohm’s law needs to be replaced by a
nonlinear and non-smooth constitutive relation between the electric field E and the
current density J.
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Modelling of Type-II Superconductors

Bean’s critical state model postulates that

• the current density strength |J| cannot exceed some critical value jc ∈ R+

• the electric field E vanishes if |J| < jc
• the electric field E is parallel to J.

Bean’s model assumes that jc is a constant.

To account for the dependence on θ and H
(as found through experiments by Kim et al.), we consider a non-negative

jc : Ω× R× R3 → R.

The generalized Bean-Kim model then formalizes to
J(x, t) · E(x, t) = jc(x, θ(x, t),H(x, t))|E(x, t)| in (0, T)× Ωsc

|J(x, t)| ≤ jc(x, θ(x, t),H(x, t)) in (0, T)× Ωsc

J(x, t) = 0 in (0, T)× (Ω \ Ωsc).
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Modelling of Type-II Superconductors

Including the Bean-Kim model into Maxwell’s equations we end up with the following
nonlinear and non-smooth system

ϵ∂tE− curlH+ J = f in (0, T)× Ω

µ∂tH+ curl E = 0 in (0, T)× Ω.

J(x, t) · E(x, t) = jc(x, θ(x, t),H(x, t))|E(x, t)| in (0, T)× Ωsc

|J(x, t)| ≤ jc(x, θ(x, t),H(x, t)) in (0, T)× Ωsc

J(x, t) = 0 in (0, T)× (Ω \ Ωsc)

E× n = 0 in (0, T)× Ω

(E,H)(0) = (E0,H0) in Ω.
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Modelling of Type-II Superconductors

Finally, we formulate our system in a weak sense and end up with the following
hyperbolic QVI of the second kind:

Find (E,H) ∈ W1,∞((0, T), L2(Ω)× L2(Ω)) ∩ L∞((0, T),H0(curl)× H(curl) ∩ µ−1H0(div=0)) :

(QVI)



∫
Ω

ϵ∂tE(t) · (v− E(t))− curlH(t) · (v− E(t))dx

+

∫
Ω

jc(·, θ(t),H(t))(|v| − |E(t)|)dx ≥
∫
Ω

f(t) · (v− E(t)) dx

for a.e. t ∈ (0, T) and all v ∈ L2(Ω),
µ∂tH(t) + curl E(t) = 0 for a.e. t ∈ (0, T),
(E,H)(0) = (E0,H0).
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Previous Related Work

Maxwell VI of the second kind

• Well-posedness in the case of a general proper, convex and lower semicontinuous
nonlinearity ψ : L2(Ω)× L2(Ω) → R satisfying a local boundedness assumption.
(I. Yousept. Hyperbolic Maxwell Variational Inequalities of the Second Kind. ESAIM: COCV, 2020)

• AFEM for the underlying L1-structured elliptic VI.
(M. Winckler, I. Yousept, and J. Zou. Adaptive Edge Element Approximation for H(curl)-elliptic Variational
Inequalities of Second Kind. SIAM J. Numer. Anal., 2020)

• Shape optimization for the underlying L1-structured elliptic VI.
(A. Laurain, M. Winckler, I. Yousept. Shape Optimization for Superconductors Governed by H(curl)-elliptic
Variational Inequalities. SIAM J. Control Optim., 2021)
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Previous Related Work

Maxwell VI of the first kind

• Well-posedness for the Maxwell obstacle problem, i.e. the case ψ = IK.
(I. Yousept. Well-posedness Theory for Electromagnetic Obstacle Problems. J. Differential Equations, 2020)

• Eddy Current approximation of the Maxwell obstacle problem.
(M. Hensel and I. Yousept. Eddy Current Approximation in Maxwell Obstacle Problems. Interfaces Free
Bound., 2022)

• Numerical analysis of the Maxwell obstacle problem.
(M. Hensel and I. Yousept. Numerical Analysis for Maxwell Obstacle Problems in Electric Shielding. SIAM J.
Numer. Anal., 2022)

• Analysis & control of an H(curl)-quasilinear first kind elliptic VI with bilateral
curl-constraints.
(M. Hensel and I. Yousept. Quasilinear Variational Inequalities in Ferromagnetic Shielding:
Well-posedness, Regularity, and Optimal Control. submitted, 2022)
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Previous Related Work

Maxwell QVI of the second kind

• Well-posedness for the introduced QVI.
(I. Yousept. Maxwell Quasi-Variational Inequalities in Superconductivity. ESAIM:M2AN, 2021)

• Efficient solvers and numerical analysis for the introduced QVI.
(M. Hensel, M. Winckler and I. Yousept. Leapfrog Scheme for Hyperbolic Maxwell Quasi-variational
Inequalities. In preparation)
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Previous Related Work

Recent other contributions to QVIs

• A. Alphonse, M. Hintermüller and C.N. Rautenberg. Existence, iteration procedures and directional
differentiability for parabolic QVIs. Calc. Var. PDE, 2020

• A. Alphonse, M. Hintermüller and C.N. Rautenberg. On the differentiability of the minimal and maximal
solution maps of elliptic quasi-variational inequalities. J. Math. Anal. Appl., 2021

• A. Alphonse, M. Hintermüller and C.N. Rautenberg. Optimal control and directional differentiability for
elliptic quasi-variational inequalities. Set-Valued Var. Anal., 2022

• C. Christof and G. Wachsmuth. Lipschitz Stability and Hadamard Directional Differentiability for Elliptic and
Parabolic Obstacle-type Quasi-variational Inequalities. 2021

• G. Wachsmuth. From Resolvents to Generalized Equations and Quasi-variational Inequalities: Existence
and Differentiability. Journal of Nonsmooth Analysis and Optimization, 2022
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Back to (QVI)



Well-posedness of (QVI)

(QVI)



∫
Ω

ϵ∂tE(t) · (v− E(t))− curlH(t) · (v− E(t))dx

+

∫
Ω

jc(·, θ(t),H(t))(|v| − |E(t)|)dx ≥
∫
Ω

f(t) · (v− E(t)) dx

for a.e. t ∈ (0, T) and all v ∈ L2(Ω),
µ∂tH(t) + curl E(t) = 0 for a.e. t ∈ (0, T),
(E,H)(0) = (E0,H0).

• f ∈ H1((0, T), L2(Ω))

• θ ∈ H1((0, T), L2(Ω)) ∩ C([0, T], L∞(Ω))

• (E0,H0) ∈ H0(curl)× µ−1H0(div=0)

• jc locally bounded in the 2. variable
and locally Lipschitz in the 2. variable

• jc globally bounded in the 3. variable
and globally Lipschitz in the 3. variable
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Well-posedness of (QVI)

Theorem (Yousept ’21)
There exists a unique solution

(E,H) ∈ W1,∞((0, T), L2(Ω)× L2(Ω)) ∩ L∞((0, T),H0(curl)× H(curl) ∩ µ−1H0(div=0))

to (QVI).

Proof is based on time discretization together with fixed point techniques.
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Numerical Analysis of (QVI)



Mixed FEM and Leapfrog Stepping (instead of implicit Euler)

Actually, why not implicit Euler?
If we discretize in a standard way by implicit Euler, i.e.

• NDh for the electric field
• DGh for the magnetic field,

we end up with the following structure:
Find {(Enh,Hn

h)}Nn=1 ⊂ NDh ×DGh, s.t.

a(Enh, vh − Enh) +
∫
Ω

jc(·, θnh,Hn
h)(|vh| − |Enh|) ≥ Fnh(vh − Enh) ∀vh ∈ NDh

Hn
h = Hn−1

h − τµ−1 curl Enh.

Problem: Elliptic QVI pops up - no uniqueness, no efficient solve
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Mixed FEM and Leapfrog Stepping

In contrast to before:

• DGh for the electric field
• NDh for the magnetic field
• discretize the Amperé-Maxwell VI at tn
• discretize the Faraday equation at tn− 1

2
:= tn − τ

2

• Central difference and mean value approximation

d
dtE(tn− 1

2
) ≈ E(tn)− E(tn−1)

τ
,

d
dtH(tn) ≈

H(tn+ 1
2
)− H(tn− 1

2
)

τ
,

E(tn− 1
2
) ≈ E(tn) + E(tn−1)

2
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Mixed FEM and Leapfrog Stepping

(QVIN,h)



Find {Enh}Nn=1 ⊂ DGh and {Hn+ 1
2

h }N−1
n=1 ⊂ NDh such that∫

Ω

ϵδEnh · (vh − En−
1
2

h )− curlHn− 1
2

h · (vh − En−
1
2

h )dx

+

∫
Ω

jc(·, θn−
1
2 ,Hn− 1

2
h )(|vh| − |En−

1
2

h |)dx ≥
∫
Ω

f n−
1
2

h · (vh − En−
1
2

h )dx ∀vh ∈ DGh∫
Ω

µδHn+ 1
2

h · wh dx+
∫
Ω

Enh · curlwh dx = 0 ∀wh ∈ NDh .

with

δEnh :=
Enh − En−1

h
τ

, δHn+ 1
2

h :=
Hn+ 1

2
h − Hn− 1

2
h

τ
, En−

1
2

h :=
Enh + En−1

h
2 .
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H
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h H

3
2
h H

5
2
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Mixed FEM and Leapfrog Stepping

Theorem
For every h > 0 and N ∈ N, (QVIN,h) admits a unique solution {Enh}Nn=1 ⊂ DGh and
{Hn+ 1

2
h }N−1

n=1 ⊂ NDh. In particular,

Enh = 2En−
1
2

h − Enh wn
h = f n−

1
2

h + curlHn− 1
2

h +
2ϵ
τ
En−1
h

En−
1
2

h =
τϵ−1

2 (wn
h − P∂wn

h) P∂wn
h =

jc(·, θ
n− 1

2
h ,Hn− 1

2
h )

max
(
|wn

h|, jc(·, θ
n− 1

2
h ,Hn− 1

2
h )

) .

Benefit: Easily implementable - no iterative solver needed.
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Mixed FEM and Leapfrog Stepping

Additional assumptions for stability and limiting analysis:

• E0 ∈ H1(Ω) and a linear CFL-condition of type τ ≤ Ch

Relaxation of previous assumptions:

• f ∈ BV([0, T], L2(Ω))
• θ ∈ BV([0, T], L2(Ω)) ∩ C([0, T], L∞(Ω))

Theorem

(EN,h,HN,h)
∗
⇀ (E,H) weakly-* in L∞((0, T), L2(Ω)× L2(Ω))

d
dt (EN,h,HN,h)

∗
⇀

d
dt (E,H) weakly-* in L∞((0, T), L2(Ω)× L2(Ω))

∥(EN,h,HN,h)− (E,H)∥C([0,T],L2(Ω)×L2(Ω)) → 0
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Numerical Test

For our numerical test, we consider

• the VI case
jc(·, θ,H) = (1− θ)2χΩsc(·) with θ(t, x) = t

• the QVI case
jc(·, θ,H) =

(1− θ)2

1+ |H|β χΩsc(·) with θ(t, x) = t

with the superconductor Ωsc = {(x1, x2, x3) ∈ R3 |
√
x21 + x22 + x23 ≤ 0.2}.

1M. Ciszek, B.A. Glowacki, S.P. Ashworth, A.M. Campbell, W.Y. Liang, R. Flükiger, and R.E. Gladyshevskii. AC losses
and critical currents in Ag/(Tl,Pb,Bi)-1223 tape. Physica C: Superconductivity and its Applications, 1996
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Numerical Test

Figure 1: Source term, superconductor and the magnetic field.
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Numerical Test

Figure 2: Top row: pure temperature dependence (VI).
Bottom row: temperature and magnetic field dependence (QVI).
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Thank you for your attention!
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