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Obstacle Problem in Ferromagnetic Shielding



Shielding of EM-waves @

Electromagnetic shielding
Effect of redirecting or blocking electromagnetic fields by barriers made of conductive or
magnetic materials.
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Shielding of EM-waves @

Electromagnetic shielding
Effect of redirecting or blocking electromagnetic fields by barriers made of conductive or

magnetic materials.

Ferromagnetic shielding
Special case of Electromagnetic shielding: redirecting or blocking magnetic fields by
ferromagnetic materials. Ferromagnetic materials are materials with high (relative)

magnetic permeability, for example:

- Iron (p/ uo ~ 200.000)
- Permalloy  (u/po =~ 100.000)
- Mu-metal  (u/po ~ 50.000)
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The obstacle problem @

To model the ferromagnetic shielding effect, we combine a Maxwell-structured elliptic VI
of the first kind with a nonlinearity v = p=": Q x R{ — R, resulting in the problem

Find (A, ¢) € K x H)(Q), st.
(V1) /Qu(.,|curlA|)curlA-curl(v—A)+/ﬂv¢.(v_A)Z/Q].(V_A) W e K
/A~v¢:o Vi) € Hy(Q)
Q

& K= {v € Ho(curl): |curlv| < d(-) a.e. on Q}.
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The obstacle problem @

To model the ferromagnetic shielding effect, we combine a Maxwell-structured elliptic VI
of the first kind with a nonlinearity v = p=": Q x R{ — R, resulting in the problem

Find (A, ¢) € K x H)(Q), st.
i / u(-, | curl A]) curl A - curl(v — A) +/ Vo (v—A) > /]-(v—A) W e K
Q Q Q
/A-v¢:o Vep € HY(Q)
Q
& K= {v € Ho(curl): | curlv| < d(-) a.e. on Q}.
- Q C R? open, bounded, Lipschitz, - vis ‘'standard’, i.e. Carathéodory,
simply connected strictly positive, bounded, strongly

- (J,d) € LA(Q) x L2(Q) monotone and Lipschitz
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The obstacle problem

We investigate:

- Is (VI) well-posed?
- How regular is its dual multiplier?
- Optimal control of (VI)

Main ingredient: A Moreau-Yosida type penalization of (VI).
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Regularization of the Variational Inequality



Vector-valued penalization and smoothing

For v > 0 we define

max(|s| - d(x),0)§—|, S#£0

0:QxR" > R", (x,5)—
07 SZO.
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The regularized VI

For v > 0, we consider the regularized (unconstrained) problem
Find A, € Xy,0 == Ho(curl) N H(div=0), s.t.
(VE,SYO‘) /Qu(-, | curlA,|)curlA, - curlv+fy/997(-,curlA7) ~curly = /stol Vv

Vv e )(fV,O‘
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The regularized Vi

For v > 0, we consider the regularized (unconstrained) problem

Find A, € Xy,0 == Ho(curl) N H(div=0), s.t.

(VES) /z/(-,|curlA7|)curlA7-curlv+fy/97(-,curlA7)-curlv :/Isol'v
Q <2 @
Yv e )(N,O‘
Lemma

For every Jso € H(div=0), the regularized problem (VE§°‘) admits a unique solution A.,.

Left-hand side induces a monotone and coercive operator Xy,o — Xy o-
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Convergence property of the regularization

Theorem

For Jso € H(div=0), the unique solution A, of (VE?;’[) converges strongly in Xy to the
unique solution of the problem

Find A € KN H(div=0), st.

(Visol)
! /z/(-,|curlA|)curlA~curl(v—A)2/1501-(V—A) Vv € KN H(div=0).
Q Q
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Well-Posedness and Regularity




Well-posedness and dual formulation @

Corollary
For every J € L%(Q2), there exists a unique solution (A, ¢) € K x H}(Q) to (VI). Moreover,
there exists a unique multiplier m € Xy o such that the solution (A, ¢) is characterized by
the dual formulation
/ v(-, | curlA])curlA - curlv+ V¢ - v+ curlm - curlv = /J -V Vv € Hy(curl)
Q Q
/A.w):o Vip € H(Q)
Q

/ curlm - curl(v—A) <0 VYveKk.
Q
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Well-posedness and dual formulation @

Corollary

For every J € L%(Q2), there exists a unique solution (A, ¢) € K x H}(Q) to (VI). Moreover,
there exists a unique multiplier m € Xy o such that the solution (A, ¢) is characterized by
the dual formulation

/u(-,|curlA|)curlA-curlv+V¢-v+ curlm-curlv:/]-v Vv € Ho(curl)
Q Q

/A-w):o Vi) € Hy(Q)

Q

/ curlm - curl(v—A) <0 VYveKk.
Q

How regular are the appearing multipliers?
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Multiplier regularity @

Theorem

Let 09 be connected. For J € L2(Q), let (A, ¢, m) € Xy o x H)(Q) x Xno denote the unique

solution to the previous dual formulation. Then, the following multiplier reqularity
results hold true:

p€[2,3],) € LP(Q), d e LP(Q) = ¢ € WiP(Q), curlm e LP(Q)

J € Ho(curl), d € L=(Q), v(-, | curlA]) € C*'(Q), Q of class C>" = curlm € L>=(Q)
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Multiplier regularity @

Theorem

Let 09 be connected. For J € L2(Q), let (A, ¢, m) € Xy o x H)(Q) x Xno denote the unique

solution to the previous dual formulation. Then, the following multiplier reqularity
results hold true:

p€[2,3],) € LP(Q), d e LP(Q) = ¢ € WiP(Q), curlm e LP(Q)

J € Ho(curl), d € L=(Q), v(-, | curlA]) € C*'(Q), Q of class C>" = curlm € L>=(Q)

The proof is mainly based on an LP-Helmholz-decomposition and elliptic regularity
theory.
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Optimal Control




The optimal control problem

¢ 1 A
i ~|| curl A — By||? 2112
L l dllz) + 5 Wil

subject to

/u(',|curlA|)curlA-curl(v—A)+/V¢'(V—A)2/]-(V—A) W e K
Q Q Q

/A~V1/J:O Vep € Hy(Q).
Q
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The optimal control problem

( 1 A A
i ~|l curlA — By||? _ ; v
LI L dllz@) + 5 Wsollliz @) + 5 1Vl e
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The optimal control problem

. 1 ) A 5 b ,
L 5l eurlA =Byl ) + 5 Msolllize) + 5 1Vl
(P) subject to

/z/(-,|curlA|)curlA-curl(v—A)2/]'(V—A) W € K H(div=0).
Q Q
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The optimal control problem

1 A

i —|| curl A — By|)? 22
U’A)GH(TJEQO)XXN’O 3 l dlliz) + 5 W@
(P) subject to

/u(-,|curlA|)curlA-curl(v—A)2/]-(v—A) Vv € KN H(div=0).
Q Q
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Analysis of (P)

Theorem
There exists an optimal solution J* € H(div=0) to the problem (P).
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Analysis of (P)

Theorem
There exists an optimal solution J* € H(div=0) to the problem (P).

The solution mapping
G: H(div=0) = X}, J—A

is weak-strong continuous.

Task: Find optimality conditions for optimal controls J*.
Problem: The mapping G is not directionally differentiable.

10/17



The regularized optimal control problem

= 1 2 }\ 2 }\ * (|2
U Ao )EH(dN=0) < Xo. o 7l eurtAy = Ballioq) + 3 iy + 71y =S lliea)

subject to

/V(~,|curlA7|)curlA7-curlv+7/07(-,curlA7)~curlv:/]7-v
Q Q Q

Yv e )(N,O~

17



The regularized optimal control problem

. 1 5 A A )
(]W’Aw)eﬁ?d'i'\):o)xxm §|| curlA, — Byllizq) + §||]w||LZ(Q) + ZH]«/ —J iz
subject to
(P,)
/ v(-,| curlA,|) curlA, - curlv+7/ 0,(-,curlA,) - curlv = /]7 -V
Q Q Q
Yv e )(N,O~

The solution mapping
G, : H(div=0) — Xyo, J,+ A,

is weak-strong continuous, i.e. there exists a minimizer (J,,A,) € H(div=0) x Xy o for (P,).
Especially, as a result of our smoothing process, G, is weakly Gateaux differentiable.
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Optimality system for (P.,)

Theorem
J, € H(div=0) optimal control for (P,). Then, there exists (A, Q) € Xu,0 X Xu,o, S:t.

/u(~,|curlA7|)curlAW-curlv+7/07(-,curlA7)~curlv:/]W-V YV € Xno
Q Q Q
/(Ds[zx(~,|s|)s] [curlAy])TcurlQW-curlv+7/ Ds@.,(-, curlA,)curlQ, - curlv
Q Q
:/(curlA,y—Bd)-curlv Vv € X0

Q

2. 1,
by =—=3770 + 5"
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Optimality system for (P.,)

Theorem
J, € H(div=0) optimal control for (P,). Then, there exists (A, Q) € Xu,0 X Xu,o, S:t.

/y(-,|curlA7|)curlA1-curlv+/707(-,curlA7)-curlv:/]7-v YV € Xno
Q Q— Q

=&,

/(Ds[u(-,|s|)s] [curlA,y])TcurlQA,-curlv+/7D507(~,curlA7)cur107-curlv
Q Q

:::J\,Y

:/(curlAV—Bd)-curlv Vv € Xno
Q

2 1.,
]yz—g)\ 1ny+§]-
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Limiting Analysis of (P,)

Given an optimal control J* € H(div=0) of (P), we obtain
- a sequence {J*},50 € H(div=0) of minimizers to (P,) satisfying

J5 —J* strongly in L*(Q) as y — oo.
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Limiting Analysis of (P.)

Given an optimal control J* € H(div=0) of (P), we obtain
- a sequence {J*},50 € H(div=0) of minimizers to (P,) satisfying

J5 —J* strongly in L*(Q) as y — oo.

* asequence

{(45,Q5,€5, X))} Lo S Xno x Xno x L(Q) x L*(Q)

of states and multipliers as well as limiting fields, s.t.
AL — A" strongly in Xy,o asy — oo
Q; —~ Q" weakly —in Xy,o asy — oo
(Peurtx,, &5 Peurtxy o AS) — (curlm*, curln*) weakly — in L*(Q) x L*(Q) as y — oo.
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Optimality system for (P) @

Theorem
The limiting fields (A*,Q*, curlm*, curln*) € Xy o x Xy,0 x curlXy,o x curlXy,o satisfy

/ v(-, | curl A*|) curlA* - curlv + /
Q

curlm*-curlv:/j*-v W e Xj,
Q Q

/curlm*'curl(v—A*)go Y eK

Q

/(Ds[y(-,|s|)s] [curlA*])TcurlQ*-curlv-l-/curln*~curlv
Q

Q
=/(curlA*—Bd)-curlv v e Xy
Q

I* _ _)\—10*.
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Further characterization of the adjoint multiplier curl n*

In the scalar H'-setting (without an additional quasilinearity) with an obstacle set
K={veH)(Q):v>0 ae onQ}

it is known that the adjoint multiplier is characterized' by

/ (adjoint multiplier) - (state) = 0
Q

/ (adjoint multiplier) - (adjoint state) > 0.
Q

TF. Mignot and J.P. Puel. Optimal Control in Some Variational Inequalities. SIAM Journal on Control and
Optimization, 1984
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Further characterization of the adjoint multiplier curl n*

In the scalar H'-setting (without an additional quasilinearity) with an obstacle set
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Further characterization of the adjoint multiplier curl n*
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Further characterization of the adjoint multiplier curl n*

/ag (a4 rar) = o,
Q °F | curl Ax|
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Further characterization of the adjoint multiplier curl n*

Theorem
The adjoint multiplier curln* is additionally characterized by

N curlA* N
|\ di === —curlA* | =0
/Qad+ (d| curlas] <
curln* =03, +o7 .

If v =1, i.e. the nonlinearity is not present, then

/ curln* - curl@* > 0.
Q
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Thank you for your attention!
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