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ABSTRACT 

This research study proposes a novel method for automatic fault prediction from foundry data introducing the so-

called Meta Prediction Function (MPF). Kernel Principal Component Analysis (KPCA) is used for dimension 

reduction. Different algorithms are used for building the MPF such as Multiple Linear Regression (MLR), Adaptive 

Neuro Fuzzy Inference System (ANFIS), Support Vector Machine (SVM) and Neural Network (NN).  We used classical 

machine learning methods such as ANFIS, SVM and NN for comparison with our proposed MPF. Our empirical results 

show that the MPF consistently outperform the classical methods. 
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1. INTRODUCTION 

Automatic fault prediction is an important topic of research in metal industry [1]. Since the beginning of the 

first industrial revolution, industries are striving to produce fault-free products in least possible amount of 

time. Customer expectations are ever-increasing in term of quality and availability of products [2-4]. A fault 

in a product during the production process can be due to a single cause or a combination of causes and 

industries are still using trial and error methods to minimize them [5][6]. Faults in production can be reduced 

by analysis of the production process data [7][8]. Data capturing of the production processes for analysis 

started manually but due to human-errors, the quality of the data captured was compromised. Now, with the 

automation of data capturing using sensors, the noisy data is getting reduced. With the advancement of the 

technology and automation, more and more data is available for analysis to optimise the production 

processes [9].  

In the current globalized industry era with emphasis on automated smart industries, the analysis of measured 

data plays an important role to improve the quality of the products [10]. Large number of parameters have 

an influence on the quality of a product. Deviations of process parameters can have negative effect on the 

production performance. Measuring and evaluating all the appropriate process parameters with a suitable 

method ensure a consistently high quality and productivity in the automated production environment. The 

application of Machine Learning (ML) methods in these processes is motivated mainly by two objectives: 

the prediction of quality properties from the measured data and the identification of key process indicators, 

i.e. the process parameters which have the strongest influence on the outcome. These objectives help to 
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improve the quality of the products and to understand the implicit relations among the parameters in the 

production processes, which in turn result in reducing faulty products during production.  

In this work, we will concentrate on the first objective, namely the prediction of quality properties from the 

measured data by suggesting a novel methodology for automatic fault prediction. The learnt methodology 

will help to reach target predictions, which will ensure stability of the production process regulation and 

repeatability of the process conditions resulting in quality products with minimal scrap. The potential of the 

proposed methodology is demonstrated by using three actual production datasets. 

In our approach, we use three stage process. In first stage, the input data is split into mutually exclusive sets 

of training, validation and test data. In the second stage, Support Vector Machine (SVM) [11][12] and 

Neural Network (NN) [13][14] are trained using the original data whereas Adaptive Neuro Fuzzy Inference 

System (ANFIS) [15] is trained on the data transformed by Kernel Principal Component Analysis (KPCA) 

[16][17]. In the last stage, we utilize a novel fusion method to combine these different prediction functions 

and obtain a “Meta Prediction Function" (MPF). Results during these stages are also collected and 

performance is measured. Figure 1 shows major data processing units of proposed framework. 

 

Figure 1 - Major data processing blocks 

 

The performance of the MPF is compared with the performance of the classical machine learning methods 

such as Neural Networks, SVM and ANFIS.  

 

2. RELATED WORK 

Leha et al proposed a novel integrated method into a production plan realized in a physics-based realistic 

simulator. Supervised machine learning techniques namely Model Trees and Neural Networks were 

integrated. The online learning and on the fly control code modification were allowed by integrating the 

learning capability into the control process. Averaging was used for measuring the produced optimization 

times through learning which outperform times of a production process. [18]  

Ashour et al proposed a method for automated identification for machined surfaces in manufacturing. Image 

processing and computer vision technologies were used for automated identification for reduction in 

inspection time and avoidance of human error due to inconsistency and fatigue. SVM classifier with 

different kernels were investigated for the categorization of machined surfaces into six machining processes. 

The gray level histogram was used as discriminating feature. Experimental results suggested that the SVM 

with the linear kernel outperformed for a dataset consisting of seventy-two workpiece images. [19] 

Yuan et al proposed a novel method for improving the machining quality of thin walled flexible workpieces. 

Machining platform was established for thin-walled flexible workpieces. Sparse Bayesian learning based 

method was used to predict the future deformation. The dual mode predictive controller was developed to 

reduce the machining vibrations and quality of the workpiece surface was improved. Experiments were 

5. Meta-Prediction Function 

2. KPCA and ANFIS 

learning 

3. Support Vector 

Machines (SVM) 

learning 

4. Neural Networks 

(NN) learning 

1. Data Splitting 



performed for thin-walled flexible workpieces and effectiveness of proposed method were demonstrated 

through machining experiments. [20] 

Rostami et al proposed an efficient Equipment Condition Diagnosis (ECD) model for Fault Detection and 

Classification (FDC). Different machine learning techniques such as SVM, K-Means clustering and Self-

Organizing Map (SOM) were used to develop ECD model. Principal Component Analysis (PCA) was used 

to project the abnormal observations into normal models. Experiments were conducted with industry data. 

The proposed Model showed effectiveness for classifying the fault fingerprints to give evident guidelines 

in explaining the detected faults. [21] 

Costa et al used ANFIS and CART (Classification and Regression Tree) for classifying the defects that 

occur during the production process for packing of glass. The database project was named as “Newglass”. 

Different operating variables of the furnace and the percentage defects in the end products of the factory 

model were used in experiments. Finally, ANFIS, CART and glass packing manufacturing results were 

compared. [22] 

 

3. METHODOLOGY 

3.1 Support Vector Machine 

Support Vector Machine (SVM) is a supervised learning method [11][12] which computes a set of 

hyperplanes in a higher dimensional feature space based on the given data for classification and regression 

problems. 

For each dataset, optimal settings for the SVM method were chosen with experimentation. Input training 

and validation data was normalized with z-score normalization. Following kernel functions were considered 

for learning:- 

the Polynomial kernel,  

𝑘(𝑋, 𝑌) = (𝑋𝑇𝑌 + 𝑟)𝑝,                 (1) 

where p is the power of the polynomial and r is a shifting parameter;  

the Gaussian kernel, 

𝑘(𝑋, 𝑌) = 𝑒
−||𝑋−𝑌||2

2𝜎2 ,                 (2) 

where sigma (σ) is an adjustable parameter; 

Sigmoid kernel as shown in equation 3 below, 

𝑘(𝑋, 𝑌) = 𝑡𝑎𝑛ℎ⁡(𝛾𝑋𝑇𝑌 + 𝑟)                 (3) 

where rho (γ) is the scaling parameter of the input data and r is the shifting parameter controlling threshold 

of mapping. 

The performance of the selected optimal settings was calculated on the test data and is shown in the 

experiments section. The predictions from SVM were used as input in the MPF described in section 3.5. 

 

3.2 Neural Networks 

Neural Networks (NN) [13][14] are a non-linear supervised learning method based on a network of so-called 

neurons which are interconnected by weighted links. NN learns by adjusting the weights to optimal values 

based on the given training and validation data.  



In this work, a NN is trained using one of the most popular backpropagation learning algorithm with 

multilayer perceptron topology. The used feedforward NN consisted of three layers: an input layer, one 

hidden layer and an output layer. The number of neurons in the input layer is equal to the total number of 

independent variables and the number of neurons in the output layer is equal to the number of dependent 

variables, whereas the hidden layer contains eight neurons for all considered datasets. The input layer 

receives the input from the independent variables and forwards it to all the neurons in the hidden layer. The 

neurons in the hidden layer apply their activation function to the weighted sum of their inputs and compute 

an output. The output layer then computes the predicted value for the dependent variable(s). 

The back-propagation learning algorithm used here to train the multilayer network consists of two passes. 

In the forward pass, with randomly selected weights and the input given by the training data, the algorithm 

produces an output for the dependent variable(s). An error is then calculated based on the difference between 

predicted and actual output. In the backward pass, this error is propagated backwards through the network 

from the output layer to the input layer and weights in the network are modified using the delta rule. The 

formula used to calculate the change in weights of hidden and output layer neurons are shown in equation 

4 and in equation 5 respectively:-  

∆𝑤𝑖𝑗(𝑝) = ⁡𝛽⁡. ∆𝑤𝑖𝑗(𝑝 − 1) + ⁡𝛼⁡. 𝑥𝑖(𝑝). 𝛿𝑗(𝑝)                              (4) 
∆𝑤𝑗𝑘(𝑝) = ⁡𝛽⁡. ∆𝑤𝑗𝑘(𝑝 − 1) + ⁡𝛼⁡. 𝑦𝑗(𝑝). 𝛿𝑘(𝑝)                (5) 

where the indices i, j, k refer to input, hidden and output layers, 

𝛼 is the learning rate, 

𝛽 is the Momentum with a value between 0 and 1, 

𝑥𝑖(𝑝), 𝑦𝑗(𝑝) are the output of neurons i in the input layer and j in the hidden layer at iteration p, 

𝛿𝑗(𝑝), 𝛿𝑘(𝑝) are the error gradients at the neurons j in hidden layer and k in the output layer at iteration p. 

During training, we used 1000 epochs. Weights of the NN were optimised using settings of learning rate 

0.1 and momentum 0.2. The Unipolar Sigmoid function was used as the activation function. 

During the learning phase, training and validation data is normalised. Then NN is trained and the 

parameter settings which produce best results are preserved and the performance of these settings is 

calculated on the test data.  

The predictions from NN are also used as input in the MPF in section 3.5. 

 

3.3 Kernel Principal Component Analysis 

Kernel Principal Component Analysis (KPCA) is a nonlinear dimension reduction method, introduced by 

Sholkopt et al. [16][17], which maps data from the input space to a lower dimensional feature space while 

retaining maximum possible variance in the data.      

For each dataset, KPCA was applied using the Polynomial kernel and Gaussian kernel, which are defined 

in equations (1) and (2) respectively. For the Polynomial kernel, settings used were p = 1,2,3; r = 0.  For 

Gaussian kernel, the settings used were σ = 0.5, 1.0, 1.5.  

The results are shown for the kernel settings which provided the most accurate prediction results. 

 

3.4 Adaptive Neuro-Fuzzy Inference System 

Adaptive Neuro-Fuzzy Inference System (ANFIS) [15] is a hybrid neuro-fuzzy model which consists of 5 

layers. In the first layer, for the inputs, degree of membership of the chosen membership function is 

computed. In the second layer, firing strength of the rules is calculated using t-norm (product for AND and 

maximum for OR) operators. In the third layer, computed firing strengths are normalized. Forth layer is the 



adaptation layer in which rule consequent parameters are computed. Fifth layer is the summation layer 

which computes sum of all the computed consequents. In learning phase of ANFIS, membership function 

parameters and rules consequent parameters are optimised.  

In our approach, we use the ANFIS, which combines the advantages of fuzzy expert systems with those of 

classical NN, in combination with KPCA. It has already been successfully employed for data prediction in 

a variety of fields. KPCA was used to transform the data because for some of the selected parameter settings 

like input partition method: ‘grid partitioning’, ANFIS was not immediately applicable to the number of 

variables as large as 10. In addition, even in the case of small number of variables, it was observed that 

ANFIS produced comparatively better results for same parameter settings on the transformed data from 

KPCA in comparison to the original data as input. 

Before the training in ANFIS start, a Fuzzy Inference System (FIS) is initialized with information about the 

number of input variables for the selected dataset, the selected number and type of membership functions 

and the number of rules. The rules for the FIS were initialized based on the Grid Partitioning (GP) method 

or Subtractive Clustering (SC) method. In case of GP method, input membership function type as Gaussian 

was selected, output membership function type as Linear was selected and in different independent runs for 

best parameter settings, number of membership functions for input parameters were selected as 2, 3 or 4. 

For SC method, influence radius was tested with inputs 0.1, 0.2, 0.3, 0.4 and 0.5 for different runs. It was 

trained using NN backpropagation algorithm and least square methods. 

In case of KPCA and ANFIS, the training and validation data was collectively normalised and the 

corresponding symmetric kernel matrix was computed. The Eigen-values and Eigen-vectors were computed 

for the computed kernel matrix. Then principal components of the training and validation data were 

computed using the computed kernel matrix and Eigen-vectors. These principal components along with the 

corresponding dependent variable values were used to train ANFIS and parameter settings which produced 

the best result on the validation data were saved. Finally, the performance was calculated on the principal 

components of the test data. These predictions were also saved for later use in the MPF. 

 

3.5 Meta Prediction Function 

Our Meta Prediction Function (MPF) is inspired by the principle of ensemble methods [23]. The ensemble 

method provides an optimized prediction by combining the results obtained from the individual learning 

methods. The main component of our proposed MPF is the combination of KPCA and the accumulator 

module which is implemented using machine learning methods Multiple Linear Regression (MLR) [24], 

NN and SVM. The learning algorithm is given below for MPF. 

Step 1: Apply different ML methods such as SVM, NN and ANFIS as discussed in sections 3.1, 3.2, and 

3.4 and save the prediction to be used as input. 

Step 2: The predictions from the ANFIS, SVM and NN are pre-processed and multicollinearity was removed 

from them by using KPCA as shown in equation 6 

[𝑃𝐶1𝑖, 𝑃𝐶2𝑖, 𝑃𝐶3𝑖] = 𝐾𝑃𝐶𝐴(𝑁𝑁𝑖 , 𝑆𝑉𝑀𝑖, 𝐴𝑁𝐹𝐼𝑆𝑖)                       (6) 

Step 3: The computed principal components obtained from KPCA are used as the independent variables as 

shown in the equations 7, 8 and 9. These independent variables along with the computed predictions are 

used to fit the MLR and to find the optimal settings for the NN and SVM.  

𝑀𝑃𝐹_𝑣𝑎𝑙𝑢𝑒_𝑀𝐿(𝑖) =⁡𝛽0 +⁡𝛽1𝑃𝐶1𝑖 +⁡𝛽2𝑃𝐶2𝑖 + 𝛽3𝑃𝐶3𝑖 + 𝐸𝑟𝑟𝑜𝑟                    (7) 

𝑀𝑃𝐹_𝑣𝑎𝑙𝑢𝑒_𝑁𝑁(𝑖) = ⁡𝑁𝑁_𝑎𝑙𝑔𝑜(𝑃𝐶1𝑖, 𝑃𝐶2𝑖, 𝑃𝐶3𝑖)                      (8) 

𝑀𝑃𝐹_𝑣𝑎𝑙𝑢𝑒_𝑆𝑉𝑀(𝑖) = ⁡𝑆𝑉𝑀_𝑎𝑙𝑔𝑜(𝑃𝐶1𝑖, 𝑃𝐶2𝑖, 𝑃𝐶3𝑖)                          (9) 



 

Figure 2 – Proposed Meta Prediction Function (MPF) 

Then to compute the performance of the MPF on the test data, independent variables of the test data are also 

normalized based on the respective mean and standard deviation of training and validation data variables, 

its kernel matrix is computed and the principal components of the computed kernel matrix are computed 

using the Eigen-vectors of the training and validation data. 

To make a comparison with classical machine learning techniques, the test data results of these three MPFs 

were compared with the best results of the SVM, NN and ANFIS obtained in sections 3.1, 3.2 and 3.4 

respectively.  

 

4. EXPERIMENTS  

In order to evaluate our proposed MPF, we checked its performance on three different datasets related to 

different fields of actual production data.  

The first dataset is related to plastic deformation. It contains 4 variables and 1248 measurements. The 

dependent variable is the measured flow stress, while the three independent variables are the temperature, 

the strain and the strain rate during the plastic deformation. 

The second dataset is related to the pressure strength of green molding sand. It consists of 5 variables and 

1076 measurements. The dependent variable is the green compressive strength, while the 4 independent 

variables are water content, carbon content, bentonite and clay content. 

The third dataset is related to predicting the expected final cost of an ordered product. It consists of 11 

variables and 4878 measurements. The dependent variable is the final cost, while the independent variables 

include delivery weight, material number, length, width, height, molding process, primer, iron ratio and two 

time related parameters. 

To perform the experiments. the input data was divided into three parts. 60% of the input data was used for 

training and 20% was used for validation of the selected machine learning methods to select their respective 

optimal parameter values and 20% of the data was used for testing. The results of these methods for test 

data are shown in section 4.2.  

During testing of MPF, the predictions from ANFIS, SVM and NN were transformed using KPCA. 
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4.1 Performance evaluation measure 

To check the performance of the selected machine learning methods, three different error measures were 

computed namely Root Mean Square Error (RMSE), Relative Root Mean Square Error (RRMSE) and 

Symmetric Mean Absolute Percentage Error (SMAPE), which are defined as  

𝑅𝑀𝑆𝐸 =⁡√
1

𝑛
∑ |𝑂𝑖 − 𝑃𝑖|

2𝑛
𝑖=1              (10) 

𝑅𝑅𝑀𝑆𝐸 =⁡√
1

𝑛
∑

|𝑂𝑖−𝑃𝑖|
2

|𝑂𝑖|
2

𝑛
𝑖=1                           (11) 

𝑆𝑀𝐴𝑃𝐸 =⁡
1

𝑛
∑

|𝑂𝑖−⁡𝑃𝑖|

(|𝑂𝑖|+|𝑃𝑖|)/2
𝑛
𝑖=1                                   (12) 

 

where n is the total number of patterns. 𝑂𝑖⁡is the computed output and 𝑃𝑖⁡is the predicted output from the 

used machine learning method.  

 

4.2 Results and Discussion 

4.2.1 Results for dataset Flow Stress 

First dataset we used to observe our method performance contains actual measurements from metal forming 

experiments.  

For NN, same settings were used as described in the section 3.2 For SVM, Gaussian kernel with sigma (𝜎) 

value of 0.5 produced best results. 

Since the number of independent variables is smaller in this instance, after computing the principal 

components, all three of them were selected, covering 100% of the variance in the data. For ANFIS, Linear 

kernel along with subtractive clustering (radius: 0.2) produced best results as shown in the Table 1 below. 

 

Table 1: Flow stress - Machine learning tool results 

 

Error type 

Learning Methods 

NN SVM ANFIS 

RRMSE 0.0266 0.0336 0.0033 

SMAPE 5.0818 9.4270 0.9259 

RMSE 21.878 26.4546 2.6550 

 

The following Table 2 shows that the results of the MPF as described in Section 3.5. 

 

 

 

 



Table 2: Flow stress - MPF results 

Error Type Kernel: Polynomial 

NN SVM MR 

RRMSE 0.0033 0.0033 0.0033 

SMAPE 0.9569 0.9225 0.9278 

RMSE 2.6397 2.6454 2.6533 

 

 

For all the considered error measures, the results as shown in Figure 3 clearly show that the combination of 

KPCA and ANFIS as well as the MPF with MLR outperformed NN as well as SVM.  

 

  

 

Figure 3: Results of all prediction methods for Flow Stress dataset 

4.2.2 Results for dataset Pressure strength of green molding sand 

Second dataset we used to compare the introduced methodology results is related to computing the pressure 

strength of green molding sand. 

For NN, same settings were used as described in the section 3.2 For SVM, Gaussian kernel with sigma (𝜎) 

value of 5.0 produced best results. 

For this dataset also, all four principal components were selected covering 100% of the variance. For ANFIS, 

Linear kernel along with subtractive clustering (radius: 0.3) produced best results. Computed results are 

shown in Table 3 below. 

 



 

 

Table 3: Pressure shock resistance - Machine learning tools results 

 

Error type 

Learning Methods 

NN SVM ANFIS 

RRMSE 0.0425 0.0449 0.0426 

SMAPE 4.4149 4.5869 4.3690 

RMSE 1.1688 1.2348 1.1708 

 

Again, for appropriate parameters, the results of the MPF as shown in the table 4 outperform all of the 

separate prediction results on the test data. 

 

Table 4: Pressure shock resistance - MPF results 

Error Type Kernel: Polynomial 

NN SVM MR 

RRMSE 0.0481 0.0434 0.0422 

SMAPE 4.9242 4.4232 4.3410 

RMSE 1.3227 1.1944 1.1615 

 

As we can see in the Figure 4, our proposed MPF outperforms all the individual learning methods. 

 

Figure 4: Results of all prediction method for Pressure Strength dataset 



 

4.2.3 Results for dataset Final cost 

Final cost dataset contains data recorded from actual production environment and is used to predict the 

expected final costs of the new ordered product. 

For NN, same settings were used as described in the section 3.2 For SVM, Gaussian kernel with sigma (𝜎) 

value of 5.0 produced best results. 

In this case, seven out of ten principal components were selected covering 95.91% of the variance in the 

original data. For ANFIS, Linear kernel along with subtractive clustering (radius: 0.2) produced best results. 

Results are shown in Table 5 below. 

 

Table 5: Final cost - Machine learning tool results 

 

Error type 

Learning Methods 

NN SVM ANFIS 

RRMSE 0.0143 0.0157 0.0233 

SMAPE 9.9220 21.1273 23.9995 

RMSE 347.7719 382.5654 565.8913 

 

In this case, the prediction provided by the ANFIS in combination with KPCA was not able to achieve the 

accuracy of the classical methods. However, the MPF performed best in comparison with all the individual 

methods as shown in the Table 6 below. The ensemble method with MR produced best predictions. 

           

 

Table 6: Final costs - MPF results 

Error Type Kernel: Polynomial 

NN SVM MR 

RRMSE 0.0139 0.0218 0.0140 

SMAPE 10.9912 66.8833 8.5959 

RMSE 336.4586 529.2121 339.2884 

 

Figure 5 given below shows the effectiveness of the MPF in comparison with the performance of SVM 

and NN. 



 

 

Figure 5: Results of all prediction methods for Final Costs dataset 

For the test data, a random sample of prediction results from all the prediction methods used in this work 

are shown in figure 6. Close observation reveals that the MPF is performing better in comparison with other 

prediction methods. In Figure 7, which only shows the prediction by MPF, clearly indicates that the MPF is 

able to predict the test data very accurately. 

 

 

Figure 6: Predictions of sample of measurements for all prediction methods 

 



 

 

 

Figure 7: Predictions of sample of measurements for Meta-Prediction Function 

 

5. CONCLUSION AND FUTURE WORK 

In this paper, we introduced a novel methodology which combines results of different learning methods for 

quality prediction in production processes. Overall based on RMSE, SMAPE and RRMSE measures, our 

proposed MPF outperformed the other individual learning methods. Results show that the novel approach 

of transforming the results of different machine learning methods using KPCA and again applying learning 

techniques to the obtained data returned very good predictions. Also, it is shown that for the MPF, the 

combination of a linear kernel for KPCA with MLR produced the best results. For future work, the proposed 

methodology can be transferred for real time monitoring of production processes to identify parameter 

deviations which produce faulty parts.  

In the future, we will also explore the use of other machine learning methods such as Decision Trees [25] 

and Bayesian Networks [26] and incorporate them in MPF. Finally, we note that usage of our MPF is not 

only limited for fault prediction of foundry data, but can also be used for forecasting cost, expenditure or 

sales prices of production process. 
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