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Einleitung

Das Ziel dieser Diplomarbeit ist es, die Arbeit von Herrn Yin Xi Huang
LA note on the asymptotic behavior of positive solutions for some elliptic equation® [12]

auf Situationen zu erweitern, in denen ein Gebiet Q des R™ nicht mehr mit einer
euklidischen Norm sondern mit einer allgemeinen Minkowski-Norm ausgestattet ist.

Diese Arbeit ist in drei Kapitel gegliedert:

e Das erste Kapitel beinhaltet eine Einfiihrung in das Randwertproblem. Dieses be-
inhaltet den p-Laplace Operator, einen im allgemeinen nichtlinearen, elliptischen
Differentialoperator, der fiir p = 2 in den gewthnlichen Laplace Operator iiber-
geht. Zudem werden Situationen aufgezeigt, in denen dieses Randwertproblem zur
Beschreibung von nichtlinearer Physik von Nutzen ist.

e Das zweite Kapitel beschéftigt sich mit der Ausarbeitung der Resultate der Arbeit
von Herrn Yin Xi Huang.

e Im dritten Kapitel befindet sich dann die Erweiterung der Resultate auf den
Minkowski Raum. Dies fiihrt zu einem verallgemeinerten p-Laplace Operator. Es
hat sich gezeigt, dass sich alle Ergebnisse auch im Falle einer Minkowski Norm
beweisen lassen. Von grofem Nutzen war dabei die Aquivalenz aller Normen auf
dem RY.






1 Einfiihrung und physikalische
Motivation

1.1 Das Randwertproblem

In der Arbeit ,A note on the asymptotic behavior of positive solutions for some elliptic
equation® [12] beschéftigt sich Herr Yin Xi Huang mit dem Randwertproblem

(1.1)

—Apu=A(q)|ul"?u fiir z € Q,
u=20 fiir « € 00.

Dabei ist Q@ € RN, N > 1 ein beschrinktes Gebiet mit glattem Rand, p € (1, 00) und
AeR.

Bemerkung 1.1.1: Die partielle Differentialgleichung ist die Euler-Lagrange-Gleichung
zu folgendem Energiefunktional

B = [ 2 1u@p - 22 ) as (12)

mit der Randbedinung v = 0 fiir alle x € 0f2.

Definition 1.1.2: Die erste Variation von v in Richtung v ist definiert durch:

O0F (u,v) := %E (u+ tv)
t=0

Eine notwendige Bedingung fiir ein Minimum ist das Verschwinden der ersten Variation:
0= 6E (u,v), fiir alle v € C5° ()

Sei also v € C§° () beliebig

d
0= aE(u—i-tv)

t=0

= / <|Vu|p_2 Vu- Vo —Aq) |ulf%u- v) dx.
Q



1 Einfithrung und physikalische Motivation

Dies ist zunifchst die schwache Form der Euler-Lagrange-Gleichung. Durch partielle
Integration (vorausgesetzt u sei differenzierbar) und mit anschlieflender Verwendung
des Fundamentallemmas der Variationsrechnung erhélt man die starke Form der Euler-
Lagrange-Gleichung:

—Apu=A(q)|u|"?u (1.3)
Definition 1.1.3: Der p-Laplace Operator ist definiert durch:

N
Apu = div <|Vu|p_2 Vu) = Z aik (|Vu|p_2 $>
k=1

Bemerkungen 1.1.4:

e Der p-Laplace Operator ist im Allgemeinen nichtlinear und positiv homogen vom
Grade (p — 1), d.h. fiir alle o > 0 gilt:

A, (o (x)) = P Apu () (1.4)

e Fiir den Fall p = 2 geht er in den herkdmmlichen, linearen Laplace Operator
Au = div (grad u) tber.

e Fiir p < 2 wird der Exponent von |Vu (z)[P~? negativ. Damit divergiert der
p-Laplace Operator an den Stellen, an denen |Vu (x)| verschwindet oder unendlich
grol wird, denn:

Ayu = div (yvu\P—Q w)

N
=Y (er 38“)
=1 Tk Tk
N

R T R
= |VulP™" Au+ ; 02y D2y <\Vu]p )

1.2 Anwendungen in der Physik

Der p-Laplace Operator taucht in verschiedenen Bereichen der Physik auf, zum Bei-
spiel in der Plasmaphysik, bei nicht linearen Diffusionsproblemen, Fliissen durch pordse
Medien, so wie in nicht-Newtonschen Fliissigkeiten [7].



1.2 Anwendungen in der Physik

1.2.1 Newtonsche- und nicht-Newtonsche Fliissigkeiten

Im Wesentlichen gibt es bei der Beschreibung von Fliissigkeiten zwei diverse Ansétze: Die
diskrete Theorie, bei der man die molekulare Struktur der untersuchten Materie beriick-
sichtigt oder die Kontinuumstheorie, auf welcher die folgenden Uberlegungen basieren.
Um nicht-Newtonsche Fliissigkeiten von Newtonschen Fliissigkeiten abzugrenzen braucht
man zunéchst folgende Definition:

Definition 1.2.1: Eine Newtonsche Fliissigkeit ist dadurch charakterisiert, dass dessen
Scherspannung proportional zur Scherrate ist. Ein Newtonsches Medium ist daher ein
lineares Medium.

In der folgenden Situation beschrénke ich mich auf den ebenen Fall [21]:

o

\/

Abbildung 1.1: Schematisches Diagramm zur Scherspannung verursacht durch einen
Geschwindigkeitsgradienten

Eine Fliissigkeit fliefst entlang der y Richtung mit einer Geschwindigkeit u. Jedoch ist die
Geschwindigkeit eines jeden Fliissigkeitstropfens von der entsprechenden x-Koordinate
des Tropfens abhingig. Die Geschwindigkeit ist damit eine Funktion der z-Koordinate:
u = u(z). Betrachtet man nun eine beliebige Gerade g parallel zur y-Achse, so stellt
man fest, dass entlang dieser eine (Scher-)Spannung wirkt: Rechts von der Geraden
ist die Fliissigkeit schneller als links davon. Die schnellen Fliissigkeitstropfen werden die
langsamen vorwérts ziehen und die langsameren Tropfen ziehen die schnellere Fliissigkeit



1 Einfithrung und physikalische Motivation

zuriick. Damit wirken gleichgrofse aber entgegengesetzte Krifte auf die Fliissigkeitstropfen
auf der Geraden wie in der Abbildung 1.1 ersichtlich ist.

In einer Newtonschen Fliissigkeit ist wie schon erwdhnt die Scherspannung direkt pro-

portional zur Scherrate. Diese wird in der Physik oft mit 4 bezeichnet und ist der
Gradient des Geschwindigkeitsfeldes, also %. Wiirde man sich nicht auf den obigen

Fall beschrianken, so ist die Geschwindigkeit im Allgemeinen eine vektorielle Gréfe und
damit die Scherrate 4 ein Tensor zweiter Stufe [15]:

591 aay a@z

S e Uy Uy Uy

7= Vi = ox oy 0z (15)
Ou, Our Ju:
ox oy 0z

Bezeichnet man mit 7 die Kraft pro Einheitsfliche, so erfiillt eine Newtonsche Fliissigkeit
im ebenen Fall folgende Gleichung:

du

Diese Gleichung wurde fiir laminare, nicht turbulente Strémungen empirisch ermittelt.
Man bezeichnet sie auch als Newtonschen Reibungsansatz [15].

In (1.6) ist n der Viskositédtskoeffizient, der oft einfach nur Viskositdt genannt wird.
Die Viskositat ist ein Mak fiir die Zahfliissigkeit eines Fluids. Die Scherspannung 7, als
Kraft pro Fliche, hat die Dimension eines Drucks. Jedoch wirkt bei der Scherspannung
die Kraft nicht senkrecht zur Fliche sondern entlang dieser.

Mit anderen Worten ist ein Newtonsches Fluid eine Fliissigkeit, dessen Viskositat konstant
bleibt, wenn sich die auf das Medium einwirkenden Scherkréfte dndern. Die Viskositét
einer Newtonschen Fliissigkeit darf sich jedoch mit der Temperatur (was gewohnlich der
Fall ist) und mit dem Druck (was selten auftritt) dndern.

Die meisten Fliissigkeiten (und Gase) mit kleinen Molekiilen, die nur auf einfache Weise
miteinander wechselwirken, verhalten sich in etwa Newtonsch. Ein simples Beispiel fiir
eine Fliissigkeit, die in guter Naherung bei Zimmertemperatur und laminarem Fliefszu-
stand ein Newtonsches Fluid ist, ist Wasser [15]. Die Viskositdt von Wasser bei 20 °C
betrégt 1,00 mPa-s [19].

Uber hundert Jahre lang war es iiblich Gleichung (1.6) als grundlegendes Modell fiir
die Dynamik von Fliissigkeiten zu betrachten (siehe [9]). Dennoch gibt es eine Viel-
zahl von Medien bei denen dies nicht so ist. Diese nennt man nicht-Newtonsch.
Nicht-Newtonsches Verhalten tritt insbesondere bei Fliissigkeiten mit langen Molekiilen
(Polymeren) auf. Die Ursache fiir dieses Verhalten ist eine Anderung der Stirke der
Wechselwirkungen in der Fliissigkeit infolge einer verdnderten mikroskopischen Struk-
tur. Nicht-Newtonsche Fliissigkeiten werden im Gebiet der Rheologie behandelt. Das

10



1.2 Anwendungen in der Physik

Wort ’Rheologie’ stammt aus dem Griechischen und heifst iibersetzt Fliefskunde. In ihr
werden daher das Fliefs- und Verformungsverhalten deformierbarer Materie unter der
Einwirkung duferer Kréfte untersucht [16].

Man teilt nicht-Newtonsche Fluide in drei Gruppen ein [15]:

1. Zeitunabhingige (bzw. viskose) nicht-Newtonsche Fluide: Fliissigkeiten, bei denen
die Scherrate eine eindeutige Funktion der Scherspannung ist.

2. Zeitabhingige nicht-Newtonsche Fluide: Komplexere Systeme, fiir die die Relation
zwischen der Scherrate und der Scherspannung von der Vorgeschichte des Systems
abhéngt.

3. Viskoelastische Fluide: Systeme, die sowohl charakteristische Merkmale von Fliissig-
keiten als auch von Festkorpern besitzen.

Im Folgenden werde ich nur die erste Gruppe der nicht-Newtonschen Fluide betrachten.
Diese konnen durch eine Gleichung der Form 7 = f (%) mit 4 = g—; beschrieben werden.

Eine der bekanntesten und meist genutzen empirischen Relation fiir solche Fluide ist das
Potenzgesetz von Ostwald und de Waele [5]:

2 du p=2
n=ml|yF" =m| , mitm>0 und p>1 (1.7)
x
Hierbei sind m, dessen physikalische Dimension N T‘;—pg ist, und p, welches dimensionslos

ist, fiir das jeweilige Fluid charakteristische Materialkonstanten. In Gleichung (1.7)
taucht nur der Betrag der Scherrate auf, da man aus Symmetriegriinden erwartet, dass
die Viskositdt nur von der Gréfse der Scherrate nicht aber von deren Richtung abhéngt.

Somit hat man Gleichung (1.6) auf folgendes rheologisches Potenzgesetz verallgemeinert:

p—2 dj
dx

d7u
dr

T=m

(1.8)

Fiir p = 2 erhilt man den Spezialfall der Newtonschen Fliissigkeit, weshalb p hiufig
nicht-Newtonscher Index genannt wird.

Viskose Fliissigkeiten unterteilt man noch einmal entsprechend ihren Fliefseigenschaften
in zwei Gruppen [15]:

e Medien mit p > 2 heifsen dilatante Fliissigkeiten. Diese weisen unter héherem

Druck eine héhere Viskositdt auf. Ein Beispiel hierfiir ist eine Stéirke-Wasser-
Mischung.

11



1 Einfithrung und physikalische Motivation

e Medien mit p < 2 heifen pseudoplastische Fliissigkeiten. Unter groferem Druck
weisen sie eine niedrigere Viskositit auf. Eine pseudoplastische Fliissigkeit ist zum
Beispiel Blut.

Im sogenannten Fliefidiagramm, welches die Abhéngigkeit der Scherspannung von der
Scherrate darstellt, ergeben sich damit folgende drei, schematisch verschiedene Graphen:

Scherspannung

\

Schergeschwindigkeit

Abbildung 1.2: Schematische Darstellung der Fliekurven fiir ein Newtonsches, ein
dilatantes und ein pseudoplastisches Fluid

Bei der Newtonschen Fliissigkeit ergibt sich aufgrund des linearen Zusammenhangs
zwischen Scherspannung und Scherrate eine Gerade mit der Steigung 7.

Das Potenzgesetz von Ostwald und de Waele wurde empirisch aufgestellt und ist nicht
immer anwendbar. Zum Beispiel wird es unbrauchbar, wenn man Systeme in der Nihe
von ¥ = 0 betrachtet. Denn entsprechend Gleichung (1.7) wére dann n ~ 0 anstelle einer
positiven Konstanten ng. Hier sind andere Modelle besser geeignet, wie zum Beispiel das
Potenzgesetz von Spriggs oder auch das vier parametrige Carreau Modell [5].

Multipliziert man 7 mit der Scherrate % und integriert {iber das Gebiet 2 so erhilt man
den zur Viskositat gehdrenden Energieanteil:
P2 du du /
—-—dx= [ m
dx dx Q

du (1.8)/
Emsu:/T'd(E: m
(u) R ;

Addiert man zum viskosen Energiefunktional ein kinetisches Energiefunktional, welches

p

d
Y dx

dzx

12



1.2 Anwendungen in der Physik

typischer Weise (bei einer auf eins normierten Masse) die Gestalt
L o
Egin (u) = | zu”dz
Q2

annimmt, so ergibt sich die Gesamtenergie zu:

du

L |
% +U2> dx

E (u) = Eyis (u) + Bgin (u) = /Q (m 2

Dies ist im Wesentlichen die eindimensionale Form des Energiefunktionals (1.2) fiir ¢ = 2.

Um die Euler-Lagrange-Gleichung herzuleiten, setze ich die erste Variation von E (u) in
Richtung v fiir alle v € C§° () gleich Null:

1 d
= —F t
0 g (u+tv) »
—/ m d—up Qd—u @—i—u v| dx
- Ja pdx dx dz

d7u
dzx

—/ —-m i p_Qd—u +ul| -vdx
- Ja pd:n dx

Mit Hilfe des Fundamentallemmas der Variationsrechung erhdlt man folgende Euler-
Lagrange-Gleichung:

_ @
dr

Verallgemeinert man die Herleitung auf hohere Dimensionen so erhdlt man statt (1.9)

—2
P2 du

1
du ) FAu=0, mit\=— (1.9)

dzr

dzx mp

—div (\Vu|p72 Vu) +Au=0

und damit Gleichung (1.3) fiir ¢ = 2.

1.2.2 Elastische Membran

Im Fall p = ¢ kann man sich zum Beispiel eine isotrope, elastische Membran vorstellen
(siehe [3]), die auf dem Rand O2 eines ebenen Gebietes Q) fixiert ist. Bezeichnet man
mit u () die vertikale Verschiebung und sei [, [Vulf dz die nichtlineare Deformations-
Energie so 16st ein Minimierer des sogenanten Rayleigh-Quotienten

Jo IVul? da
Jo lul? da

13



1 Einfithrung und physikalische Motivation

auf I/VO1 P (Q) die Euler-Lagrange-Gleichung
—Apu =X\ (p)|ulP?u fiir alle z € Q. (1.10)

Gleichung (1.10) ist der Spezialfall von Gleichung (1.3) fiir ¢ = p.

Diese beiden Beispiele zeigen, dass das betrachtete Randwertproblem (1.1) nicht nur von
mathematischer sondern auch von physikalischer Signifikanz ist.

In Kapitel 3 betrachtet man anstelle der euklidischen Norm im Zahler des Rayleigh-
Quotienten eine allgemeine Norm. Dies wére beispielsweise dann von Nutzen, wenn die
elastische Membran nicht isotrop, sondern etwa aus verschiedenen Materialien gewebt
ist. Die sich ergebende anisotrope Deformationsenergie kann man so interpretieren, dass
der euklidische Abstand in €2 verzerrt ist. Durch Verwendung einer geeigneteren Norm
ist es moglich diese besser zu beschreiben.

14



2 Das elliptische Randwertproblem im
Euklidischen Raum

Herr Yin Xi Huang betrachtet positive Losungen, die man durch Minimierung von

I (u) :;/Q\Vu|pd:v (2.1)

Fq:{uEW&’p(Q):/|u|qd1‘:1}
Q

auf der Menge

erhalt.

2.1 Der Sobolevraum W, ” (Q)

Definition 2.1.1: Der Sobolevraum Wol’p (€) ist der Abschluss von C§° (2) beziiglich
der WP Norm:

Jull = (| (P + 90 dx);

und C§° (£2) die Menge aller unendlich oft differenzierbaren Funktionen mit kompaktem
Tréger in Q.

Anders ausgedriickt, minimiert Herr Yin Xi Huang das Funktional auf der Menge der
Funktionen u mit kompaktem Tréger, die in L? () liegen, sowie eine schwache Ableitung
in LP (§2) besitzen. Zudem sind sie beziiglich der L9-Norm normiert. Sie liegen damit auch
in L9(Q).

Bezeichnung 2.1.2: Normen in Wol’p (©) werden mit || - || bezeichnet; Normen in L4 (€2)
mit || -],

Satz 2.1.3: Fiir beschrianktes ) gilt in LP Raumen:

0<pi <p2<oo= LP?(Q)CLP(Q) (2.2)

15



2 Das elliptische Randwertproblem im FEuklidischen Raum

Beweis: Fiir eine Funktion f € LP (Q) definiere die Mengen Q7 und Q9 mit Q = Q1 UQs
folgender Mafen:

D ={zecQ:|f(x)| <1} und Qo ={z e Q:|f(x)]>1}

Fiir jedes p € (0,00) gilt

/ffﬁdx=i/ Ude+l/ quxg\Qﬂ+3/ 1P d,
Q Q4 Qo Qo

wobei das Integral {iber {29 monoton wachsend in p ist.

o Fiir p; < pz < oo gilt: Sei f € LP2 (), d.h. es gilt [, |f|"* dz < co. Betrachte nun:

p1<p:
/!f\pldx§|91|+/ | fIP* dx 1§291|+/ | FIP? do < oo
Q Q2 Qo

= € LM (Q)

e Fiir p; < pa = oo benutzt man die Abschitzung |f (x)| < || f|, fiir fast alle 2 € :

/UMMQWW@<m = e lh (@)
Q

O]

Bemerkung 2.1.4: Fiir ¢ < p ist [lul[, = 1 keine wesentliche Zusatzvoraussetzung.

Denn fiir u € Wol’p (Q) gilt uw € L1 (Q) aufgrund von (2.2). Durch Skalierung von wu lasst
sich [|ul[, = 1 gewdhrleisten. Konkret heiit das: Sei u eine Losung des Randwertproblems
(1.1), dann 16st die skalierte Funktion au ( mit o € R\ {0}) eine von der Struktur her
gleiche Identitét, jedoch mit einem skalierten A = A (a) = A- o~ Mit u ist —u ebenfalls
eine Losung. Sei daher ohne Beschrankung der Allgemeinheit a > 0

—A, (au) = — div (\v (au)P 2V (au)) (2.3)
= —aP T Apu =P I\ |u|' % u
=X |(aw)|" % (au), mit A= AaPC.
Fiir ¢ > p ist [[ull, = 1 jedoch eine zusétzliche Bedingung. Die Lésung u des Rand-

wertproblems (1.1) muss nicht nur in LP () sondern in dem kleineren Raum L7 ()
liegen.

Fiigt man die einschrdnkenden Bedingungen aus I'; mit einem Lagrange-Multiplikator
A (q) zum Funktional I (u) hinzu so erhélt man durch Nullsetzen der ersten Variation
das Randwertproblem (1.1).

16



2.2 Der kritische Sobolev-Exponent und die Poincaré-Ungleichung

2.2 Der kritische Sobolev-Exponent und die
Poincaré-Ungleichung

Definition 2.2.1: Der kritische Sobolev-Exponent p* ist definiert durch:
o= NN—_’;} flirp< N
o0 firp> N

Bemerkung 2.2.2: Fiir festes p > 1 gilt:

o p<p*<oo firalle N

x N—o00
*p — D

e p* trigt den Namen kritischer Sobolev-Exponent, da (zum Beispiel nach [8]) fiir alle
q € [1,p*) der folgende Satz, der unter dem Namen Sobolevscher Einbettungs-
satz bekannt ist, gilt:

Satz 2.2.3: Sei Q C RY offen, beschrinkt und 0 sei von der Klasse C'. Ferner sei
1 <p < N.Dann gilt
WP (Q) cc L1 (Q)

fiir alle ¢ aus [1,p*). Dies bedeutet, dass W1 (Q) kompakt eingebettet ist in L7 ().
Insbesondere existiert also fiir alle ¢ mit 1 < ¢ < p* eine Konstante K mit

Jull, < K- Jjul].
Zusatz: Es gilt natiirlich auch
W, P (Q) cc L1(Q).

Jedoch kann hierbei auf die Voraussetzung an 02 verzichtet werden.

Satz 2.2.4: Fiir ein beschriinktes Gebiet Q € RY existiert eine Konstante C' > 0, die
nur von {2 abhéngt, so dass
[ull, < C{[[Vull, (2.4)

fiir alle u € Wol’p (Q) gilt. Hierbei ist 1 < p < oo beliebig. Diese Relation ist unter dem
Namen Poincaré-Ungleichung bekannt.

Beweis durch Widerspruch:

1. Fiir den Fall p € (1, 00):
Angenommen (2.4) gilt nicht, dann existiert eine Folge (un), o aus VVO1 P (Q) mit:

[unll, > n- [IVunlll,

17



2 Das elliptische Randwertproblem im FEuklidischen Raum

18

Un

llun Hp

Setze v, = . Dann gilt:

1= |lonll, >n

Un,
Vi =n|[[Vunll],
)|,

1
= |||V < —
19l <

Somit konvergiert (Vou,), o in LP (Q2) gegen Null.

Vo, — 0in LP ()

= (Un),c I8t beschrinkt in Wy® (). Da Wy () in LP () kompakt eingebettet

ist, existiert eine Teilfolge (vnj)n-E]N die gegen ein v aus LP () in der LP-Norm
J

konvergiert:

vp; — v in LP ()

Da W&’p () fiir p € (1,00) reflexiv ist, besitzt (vy), oy eine schwach konvergente
Teilfolge (vn,),,, o mit Grenzwert w € WoP (Q): vn, — w in WyP (Q) [24]:

LU in LP (Q)
Vuy, = Vw in LP(Q)

Aus der Eindeutigkeit des schwachen Grenzwertes folgt nun, dass v = w und
Vw = 0 gilt. Hieraus ergibt sich, dass w fast iiberall konstant sein muss. Mit den
Nullranddaten erh&lt man: w = 0 in I/VO1 P (Q). Andererseits gilt jedoch

il = llol, = Jim ffon, ], = 1,

was zum Widerspruch fiihrt.
Dieser Beweis klappt nicht fiir p = 1 oder p = oo, da W1 (Q) und W1 (Q) nicht
reflexiv sind.

. Fiir den Fall p = oc:

1

Da Wol’p Q) = C§° (Q)W ’ gilt, geniigt es u € C{° () zu betrachten. Jedes
beschriinkte Gebiet 2 aus RY lisst sich in einem Quader der Kantenlinge (b — a)
unterbringen.



2.2 Der kritische Sobolev-Exponent und die Poincaré-Ungleichung

v

Abbildung 2.1: Beschrénktes Gebiet {2 im Quader

T
fu (z)] < / g, (1, oy Bt Yo i 1s e )|y
a

b
< / tay (1, oo i1, Yy Tis 1, ooy )| Ay < (b= @) - [ty ]|
a

<usill

= [lulloe = sup |u(2)| < (b= a) |uz,ll o < Cll[Vulll,
€N
Fiir eine geeignete Konstante C' > 0.

3. Fiir den Fall p = 1:
Betrachte v € Cg° (). Wie im Fall p = oo gilt |u (x)| < f: |ug,| dy und somit:

ol = [ s < [ ([ 1wtar)as
Froins /ab </Q\u$i|dx>dy < /ab (/Q\vuydx> dy

N —
=|[||Vul||;=konst.

= (=al[Vull = Cll[Vullly

19



2 Das elliptische Randwertproblem im FEuklidischen Raum

2.3 Positivitdat der ersten Eigenfunktion

Definition 2.3.1: Eine Funktion u € Wol’p (©), u # 0 heift Eigenfunktion des Rand-
wertproblems (1.1), falls

/|Vu\p_2Vu-V¢d:U:)\(q)/ w7 u- ¢ da (2.5)
Q Q

fiir alle ¢ € C§° () gilt. A (¢) € R heifit Eigenwert.

Aufgrund der Regularitétstheorie [20] weif man, dass schwache Losungen von (2.5) in
C1@ (Q) liegen. Sie sind damit insbesondere stetig.

Lemma 2.3.2: Die erste Figenfunktion, die dem ersten Figenwert entspricht, wechselt
ihr Vorzeichen nicht.

Beweis des Lemmas: Zunéchst einmal sieht man an Formel (1.2), dass sich die Energie
E (u) des Systems unter der Transformation v — —u nicht andert. Setzt man v = |u|
so erfiillt v offensichtlich die Nullrandbedingung, d.h. v = 0 fiir alle x € £ und mit
u, —u € WP (Q) ist auch v € WP (Q). Zudem gilt:

1:/ |ul? dx:/qumz/ |v|? dz
Q Q Q

=vely

Damit ist v eine zuldssige Funktion zur Minimierung des Funktionals (2.1). Es gilt also
E (u) = E(|u|) = E (v) mit v > 0. D.h. falls v die Energie minimiert, so ist sie auch fiir
—u und v minimal.

Entsprechend des schwachen Minimumprinzips [18] nimmt die Funktion ihr Minimum
auf dem Rand an. Das starke Minimumprinzip [18] besagt im Wesentlichen Folgendes:
Nimmt eine Funktion v ihr Minimum im Inneren von €2 an, so ist sie auf ganz {2 konstant.
Auf 09 gilt jedoch v = 0 und damit wiirde v = 0 in VVO1 P (Q) folgen. Dies steht jedoch
im Widerspruch dazu, dass v eine Eigenfunktion bzw. dass [, [v]|?dz = 1 sein soll.

= v >0 fiir fast alle x € Q@ = |u| > 0 fiir fast alle z € Q.

Ein alternativer Beweis dazu, dass v > 0 fiir fast alle z € Q (statt v > 0) gilt, ist mittels
Harnackscher Ungleichung:
Fiir die Funktion v (x) gilt die Harnacksche Ungleichung [10], [22]. Dies bedeutet, dass
ein C > 0 existiert, so dass

max v (z) < Cminw (z)

T B,
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2.4 Existenz des Rayleigh-Quotienten

ist, falls Bg, C Q) gilt. B, und Bs, sind Kugeln in RY mit den Radien r und 2r. Die
Konstante C hingt nur von p und N, der Dimension des Raumes, ab. Da v > 0 gilt,
folgt aus der Harnackschen Ungleichung, dass v (z) > 0 fast iiberall sein muss. Denn
angenommen es existiert ein € B, mit v () = 0 so ist ming_ v (z) = 0.

=0< H}Baxv(x) < C’I%inv(az) =0

= I%&TXU(IE) =0

=v(x)=0 fir alle x € B,

Als Gebiet lasst sich ©Q durch Kugeln iiberdecken und mit v () = 0 fiir alle z € 99
folgt:
=v(x)=0 fiir fast alle x € Q

Dies steht jedoch im Widerspruch dazu, dass v eine Eigenfunktion bzw. dass v aus I
sein soll und damit [, [v|?dz = 1 gelten muss.

= v (z) >0 fir fast alle z € Q = |u(x)| > O fiir fast alle x € Q.

Damit ist die Behauptung, dass die erste Eigenfunktion ihr Vorzeichen nicht wechselt,
bewiesen. 0

Bemerkung 2.3.3: Da mit u auch —u eine erste Eigenfunktion ist, reicht es positive
Loésungen zu betrachten. Fiir v > 0 lautet (1.1):

—Apu=A(q)u(g)™ (2.6)

Ein positiver Minimierer u € VVO1 P (Q) des Energiefunktionals (1.2) muss damit Gleichung
(2.6) erfiillen.

2.4 Existenz des Rayleigh-Quotienten

Satz 2.4.1: Es existiert ein A(¢) > 0 und ein u(q) € I'y, u(q) > 0, die der Bedingung
(1.1) gentigen, mit
Vul? d
AMg)=  inf W (2.7)
ueWy ?(@),u0 ([, [ul? dz)”?
A (¢) heifst Rayleigh-Quotient.

Definition 2.4.2: Ein Funktional F' : WP () — R heikt unterhalbstetig genau
dann, wenn fiir jede stark konvergente Folge u, —— u € WP (Q)

liminf F' (u,) > F (u) gilt.|6]

n—oo
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2 Das elliptische Randwertproblem im FEuklidischen Raum

Analog definiert man die schwache Unterhalbstetigkeit [6]:

Definition 2.4.3: Ein Funktional F : WP () — R heifit schwach unterhalbstetig
genau dann, wenn fiir jede schwach konvergente Folge u, —— u € WP (Q)

liminf F' (u,) > F (u) gilt.

n—oo

Beweis des Satzes 2.4.1: Es sind insgesamt drei Eigenschaften zu zeigen:

(1)

(i)
(i)

Zu (i):

22

Das Infimum existiert, d.h. es gibt eine Funktion u bei der A (g) sein Minimum
annimmt.

Das Minimum ist gréfer als Null.

Die Funktion, bei der das Minimum angenommen wird, ist eine Losung des Rand-
wertproblems (1.1).

Definiere die Funktion B, (u) folgender Mafen:

. |Vul? dz )
Ag) = inf fﬂp/q =: inf By (u)
weWy P (Q),u#0 (fQ |u’q d:z;) ueW, P (Q),u#0

Ziel ist es B, (u) auf der Menge A= {u |ue Wol’p (Q), u# 0} zu minimieren.
Dies ist dquivalent dazu Z (u) auf der Menge
A= {u ’ ue Wy? (), / |u|?dz = 1}
Q

zu minimieren. Hierbei ist By (u) := ng(&))? wobei Z (u) = [, [Vulf dz der Zéhler

und Ny (v) = (Jq |u\qu)p/q der Nenner des Bruches B, (u) ist.

Um (i) zu beweisen, muss man daher zeigen, dass min,ec4 Z (u) existiert. Per
Definition ist A (g) nicht negativ. Ebenso ist Z (u) > 0 und damit nach unten
beschrénkt. Folglich existiert eine Minimalfolge (uy),cn C A mit

lim Z (u,) = inijZ(u) > 0.

n— oo ue

Da Z (uy,) konvergiert, ist es durch eine Konstante K nach oben beschrinkt:
(2.4)
K > Z (un) =/ Vun|P do = [[[Vun|l; = C”[lunlly
Q

Damit sind die LP-Normen von u,, und Vu,, beschriankt.

= u, ist beschriinkt in W, ? (Q).



2.4 Existenz des Rayleigh-Quotienten

Da VVO1 P(Q) fiir p € (1,00) reflexiv ist, existiert eine Teilfolge (Uny ), ey und ein
U € Wy () mit:

njg— 00

Un, 720 schwach in WP (Q)  [24]

k—

Insbesondere gilt damit auch u,, —=—— & schwach in L? ().

Ziel ist es zu zeigen, dass w einen Minimierer von Z (u) auf der Menge A darstellt.
Zeige daher zunéchst, dass u € A gilt.

Nutze hierzu, dass nach Satz 2.2.3 Wy () kompakt in L7 (€2) eingebettet ist fiir
alle ¢ aus [1,p"). Daher existiert fiir alle ¢ aus [1, p*) eine Teilfolge (un,),, < und
ein u € L7(Q), so dass

Up, £ 4 stark in L9 () konvergiert.

Da up, € A und damit [jup, ||, = 1 fiir alle n;, € IN gilt, iibertrigt sich aufgrund
der starken Konvergenz in L4 () und der Stetigkeit der Norm diese Eigenschaft
auf w: [[ull, =1, = ueA
Wegen Bemerkung 2.2.2 ist p > p* und damit gilt insbesondere, dass

WP (Q) cc L7 (Q).
Dies bedeutet, dass eine Teilfolge (un,),, v existiert mit u € LP (Q), so dass

Up,, 725y stark in LP ()

konvergiert. Da aus starker Konvergenz schwache Konvergenz folgt, gilt auch

nj— 00

u schwach in L? (Q).

U,

Die Eindeutigkeit des schwachen Grenzwertes impliziert, dass u in LP (§2) gleich u
ist. Damit ist u € A bewiesen. Zeige nun, dass u einen Minimierer darstellt.

Das Funktional Z (u) = [, [Vul” dz erfillt folgende Eigenschaften:
> Es ist als Verkettung stetiger Funktionen stetig in u.
> Z (u) ist konvex, d.h. fiir alle ¢ € (0,1) gilt:
Z{tu+(1—-t)v) <tZ(u)+(1—1t)Z(v)

Der Beweis hierzu ist in Lemma 2.5.4 enthalten.
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2 Das elliptische Randwertproblem im FEuklidischen Raum

Zu (ii):

Zu (iii):

Aus den beiden Eigenschaften folgt, dass Z (u) schwach unterhalbstetig ist. Da
% schwach in Wol’p (Q) konvergiert, gilt Z (u) < liminf,, o Z (un, ).

Unpy
Mit der Ungleichungskette

inf Z (u) < Z(u) <liminf Z (uy,) = inf Z (u)

u€A N —00 u€A

erhélt man, dass Z (u) = infye4 Z (u) und somit @ ein Minimierer von Z (u) auf
der Menge A ist.

Es gilt Z (u) > 0. Denn angenommen Z (u) = 0, dann ist |Vu| = 0 fast iiberall in €,
woraus u = 0 fast {iberall in 2 folgt. Dies ist jedoch ein Widerspruch zu u € A.

Da Z (u) > 0 und N, (u) = 1 aufgrund der Definition der Menge A gilt, ist B, (u)
fiir einen Minimierer u positiv. Damit ist A (¢) > 0.

Fiir einen Minimierer u von By (u) muss 0By (u, v) = 0 fiir alle v aus C§° (Q2)gelten.
Dies ist aufgrund der Quotientenregel dquivalent zu:

Ny (u)8Z (u,v) — Z (u) Ny (u,v) =0 fiir alle v € C5° ()
& 0Z (u,v) = By (u) N, (u,v) fiir alle v € C§° () (2.8)

Fiir einen Minimierer u von By (u) gilt A (q) = By (u). Berechnet man die in (2.8)
vorkommenden Funktionale explizit und nutzt, dass u ein Minimierer von B, (u)
ist, so erhilt man folgende Gleichung:

/|Vup Vu-Vudr =\ g (/ |u]qu> /|u|q 2u-vda

Fiir v € I'y gilt damit:

/|Vu|p2Vu-Vvdac:)\(q)/|u|q2u-vdm
Q Q

U LP(Q
GWO ( ) —Apu — )\ (q) |U|q—2 u

2.5 Eindeutigkeit der Losung fiir ¢ <p

Lemma 2.5.1: \(q) ist beschrankt, falls ¢ aus einer beschrankten Menge ist.
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2.5 Eindeutigkeit der Lésung fiir ¢ < p

Beweis: Dies ldsst sich anhand von (2.7) direkt zeigen, denn man muss nur eine Funktion
0 € WP (Q), ¢ # 0 finden, fiir die A (q) < oo gilt. Fiir B(0, R) C Q gibt Herr Yin Xi
Huang in seiner Arbeit folgende Funktionen an:

(1) firl<p< N :

(5)<p—N>/<p—1> — Re=M/@=) fiir 0 < |a] < &

2
o (x) = |x’(p—N)/(p—1) — Rp—N)/(p—1) fiir % <|z|<R
0 fir |z| > R
(1) fiirp= N :
(In2) NV -D/N fiir 0 < || < &
¢(z) =14 (R —Inlz)(n2) ™Y  fiir £ < |z[ <R
0 fir |z| > R
(791) fir p > N :
RO=N)/(p=1) _ (By=/D fiir 0 < || < §
o () = { RO/ _|a (p=N) [ (p—1) fiir £ < o] < R
0 fir |z| > R
O
Satz 2.5.2: Fiir ¢ < p ist die positive Losung von (1.1) eindeutig.
Bemerkung 2.5.3: Fiir ¢ = p hat man folgenden Spezialfall:
—Apu = \(p) [ulP~2u fiir x € Q, (2.9)
u=0 fiir z € 092

Hierbei sieht man sofort oder an (2.3), dass mit u auch au fiir « € R\ {0} eine Losung
des Randwertproblems ist. (2.9) ist die Euler-Lagrange-Gleichung des speziellen Mini-
mierungsproblems: Minimiere

J() = p1(v) = /Q Vol dz

auf der Menge I'), := {v € Wol’p (Q) | Hv||Lp(Q) = 1}.

Herr Yin Xi Huang beweist den Satz (2.5.2) mittels Maximumprinzips. Er nutzt, dass
die Normalenableitung einer Losungsfunktion auf dem Rande von €2 negativ sein muss.
Ein alternativer Beweis [2] basiert im Wesentlichen auf folgendem Lemma:
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2 Das elliptische Randwertproblem im FEuklidischen Raum

Lemma 2.5.4: Fiir ¢ < p ist das Funktional J (v) = [, |Vv[” dz konvex in |v]?.

Beweis des Lemmas: Setzt man w = |v|?, so folgt

Vuw = q- o] ER Y

|
_1
Vol =g- "0 (90l
1
= q-w' "1 [Vl
_1
VP = ¢ w1 73) [vop,
woraus man dann |Vo|? als Funktion von w bekommt:

1 P(1—
= Vol = 2 w7 |\ Twl? = f (w)

Man muss daher die Konvexitit der Abbildung f : RT™ — R™, w — f (w) in w zeigen,
d.h. fiir wy,wy € RY, a € (0,1) gilt:

flawr + (1 - a)wz) < af (wi) + (1 —a) f (ws)

ubstituiert man z = ~* so i aquivalent zu zeigen
Substituiert ma Vq“’so st es & alent eigen, dass

1
k(w,z) = wp<1 ‘1) 1z]P in (w,2) € RT x RY
konvex ist.
Dies zeigt man am besten in zwei Schritten (vergleiche [13]):

1.) Man betrachte zunéchst das eindimensionale Problem und zeigt, dass

1

hwy) =g in () € RY x R
konvex ist.

2.) Nun zeigt man mit Hilfe von 1.), dass k konvex ist.

zu 1.) Da die Funktion h (w,y) differenzierbar ist, geniigt es zu zeigen, dass die Hesse-
matrix D?h positiv semidefinit ist, d.h. dass die Eigenwerte );, i = 1,2 der Hesse-
matrix nicht negativ sind.

Behauptung: Bei einer 2 x 2 Matrix ist dies dquivalent dazu zu zeigen, dass die
Spur und die Determinante der Hessematrix nicht negativ sind.
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2.5 Eindeutigkeit der Lésung fiir ¢ < p

Dies ergibt sich aus folgenden Uberlegungen: Die allgemeine Form einer 2 x 2

Hessematrix ist die Folgende:

"= (5 )

Denn aufgrund der Vertauschbarkeit partieller Ableitungen ist H symmetrisch.

Nehme H # 0 an, andernfalls ist H trivialer Weise positiv semidefinit.

Berechnung der Eigenwerte von H:

1|l A—a —b oy N2
0—‘ _b )\_d‘—()\ a)(A—d)—b
a+d\? , a? d?

Die Eigenwerte von H sind also:

a+d / a? d?
Ao = +4/b2+ —+ —
1,2 5 + 1 + 1

Die Eigenwerte A1 o sind genau dann nicht negativ, wenn

at+d! | a?  d?
> 24 - 4
2_b+4+4>0

gilt. Dies ist dquivalent zu (7) und (#3):

(i) <4 >0
=Sp(H)=a+d>0

= det (H) = ad — b*> > 0

Damit ist die Behauptung bewiesen.

Durch direkte Berechnung der Eintriige aus D?h bekommt man:

q q
P
hyy (w,y) =p(p—1way” 2

p P
hwy(w7y):hyw:p<q_p) wer P 1yp 1
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2 Das elliptische Randwertproblem im FEuklidischen Raum

Da p > 1 ist folgt, dass hyy (w,y) > 0 in RT x R ist. Zudem gilt

(1—1?(])2>0>q—q27 da p>1und ¢ > 1 bzw. ¢* > ¢ ist.

2
Durch Multiplikation mit q% > ( erhilt man (% - p> > (g - p) und damit

(p—p> <p—p—1> >0 =  hye(w,y)>0in RT x RT.
q q

Womit gezeigt ist, dass die Spur von D?h positiv in Rt x Rt ist.

det (D?h) = huwhyy — ha,

q q

2
—p? (2 _p> w? (5777 2

- (p - p) § [ — ap? —ap—p+ap+a—p? + ) w37 200

q

Dennesgilt 1 <¢<p = L <pbzw. £ —p<0sowieq—p<0.Somit ist der
erste Teil bewiesen.

zu 2.) Sei nun a € (0,1) und (w;, z;) € RT x RY, fiir i = 1,2. Mit Hilfe der Dreiecks-
ungleichung fiir die z; bekommt man
lazr + (1 — @) 22| < alz1|+ (1 — «) |z2]. (2.10)

Die Funktion h ist monoton wachsend in y somit erhélt man mit (2.10) und 1.)
folgende Ungleichungskette:

k(awr 4+ (1 — ) wa, 21 + (1 — @) 22)

= h(aw + (1 — a)ws, |az + (1 — a) 22])
(2.10)
<

h(awy + (1 — @) wa, a|z1| + (1 — @) |22])
2 a-h(wi,|z1]) + (1 — ) - h(wz, |22])
= ak(wy,z) 4+ (1—a) - k(ws,22) (2.11)
O

Bemerkung 2.5.5: Gleichheit gilt in (2.11) nur genau dann, wenn in beiden Un-
gleichungen Gleichheit gilt. Fiir (2.10) bedeutet dies, dass z; parallel zu zy sein muss,
d.h. 21 = B29. Da « beliebig ist, impliziert 1.), dass § =1 gilt.
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2.5 Eindeutigkeit der Lésung fiir ¢ < p

Beweis des Satzes 2.5.2: Zunichst fiir ¢ = p:
Angenommen es gibt zwei positive Losungen v und z des Randwertproblems (2.9).
Definiere die Funktionen n := % (uP + 2P) und w = n*/P. Dann gilt

1
/wpdm:</upd:t—|—/zpd:r>:1.
Q 2 \Ja Q

= w € I',. Berechne nun J (w):
1
Zuniachst gilt Vw = % 775_1 (p uPIVu 4 p z”flv,z), so dass:

1 p
5 (up_IVu + zp_IVz)

<uqu szz>
77_1_77
nou n z

P Vu uP+2P—-uPVz
uP + 2P ubP 4 zP z

= s 2 (- s

mit s(z) = =—¢c(0,1)
Sn[é’(w) Vol sy |V

1
)

= 3 (lul? +127) (212)

1
/ |Vw|P do < = </ |Vul? dac+/ |V z|? daj) (2.13)
0 2 \Ja 0

Nach Annahme minimieren v und z das Funktional J (v), folglich muss in (2.13) Gleich-
heit gelten:

V" =5'="

p

1
2
p

p

v
4 + 2P

vz

Damit ergibt sich:

1
/ |Vw|[P — 3 (|Vul? + |Vz|P)dz =0
Q

Da in der Rechnung (2.12) nur eine Ungleichung vorhanden ist, muss in dieser Gleichheit
gelten. In dieser hat man die Konvexitét des Funktionals J (v) in vP also Lemma 2.5.4
angewendet.

Damit in der Konvexitatsungleichung Gleichheit gilt, muss nach Bemerkung 2.5.5 gelten:
Vz

Vu _ fast tiberall in (2.14)
u z

Aus (2.14) folgt z- Vu —u-Vz = 0 fast iiberall in 2 und mit z # 0 ist

\Y% <E> = M =0 fast tiberall in €.

2

z z

29



2 Das elliptische Randwertproblem im FEuklidischen Raum

= u = konstant -z =:¢-z fast iiberall in Q. (2.15)

Beide Funktionen sind aus I', und deshalb beziiglich der L? -Norm normiert. Dem-

entsprechend gilt:

(2.15)
2]l = llull =" llez|| = le] - [|=]l

=lc=1 =c=4=1
Da u und z nach Annahme positiv waren folgt ¢ = +1 und damit

= u =z fast iiberall in Q. =u=2z inLP(Q).

Im Falle p = ¢ ist damit die Eindeutigkeit bewiesen.
Die Grundidee des Beweises die Konvextitdt des Funktionals J (v) in vP zu verwenden
funktioniert, wie in [2] erlautert wird, auch in folgendem allgemeineren Fall:

Positive (schwache) Losungen von

Apu+ f(z,u) =0 firzeQ,
u=0 fiir x € 092

sind eindeutig vorausgesetzt f : Q x [0,00) geniigt den Bedingungen:
1. Die Abbildung r'=Pf (x,r) ist streng monoton fallend in r € [0, ).

2. Es existiert eine positive Konstante C, so dass f (z,r) < C (7’1"_1 + 1) fiir fast alle
x € Qund r € [0,00) gilt.

Damit lasst sich die Eindeutigkeit der positiven Losung im Fall ¢ < p des Randwert-
problems (1.1) zeigen. Hier ist f (z,u) = A (¢) u (z)?". Zu zeigen ist, dass dieses f den
Bedingungen 1. und 2. geniigt: Sei r € [0, c0).

Zu 1.: Die Abbildung 7'7Pf (z,7) = A(¢)r' P r?~t = X(q)r97P ist strikt monoton
fallend in 7, denn fiir r < s mit 7, s € [0,00) ist P79 < sP~7, da fiir ¢ < p die Differenz
p — q positiv ist. Invertiert man diese Ungleichung und multipliziert mit der positiven
Konstanten A (g) so erhdlt man das Gewiinschte:

r<s = Xq@riP>X(qg)s?

Zu 2.: f(z,r) = X(q)r? L. Ist v > 1 so liisst sich f(x,r) durch A (q) 7P~! nach oben hin
abschitzen. Ist 0 < 7 < 1 so gilt 79~! < 1. Somit ist 2. fiir jede positive Konstante C
erfiillt, die grofer oder gleich A (q) ist:

flx,r)=X(q) ri—t < A (q) (’I“p_l + 1) <C (rp_l + 1)

Damit ist die Eindeutigkeit im Fall ¢ < p ebenfalls bewiesen. [
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2.6 Konvergenzverhalten

2.6 Konvergenzverhalten des Rayleigh-Quotienten
und der Losung des Randwertproblems

Satz 2.6.1: Sei ¢ < p*. Da p < p* gilt, gibt es fiir ¢ zwel mogliche Fille:

(a) Fiir ¢ — qo < p gilt: A(¢) — A(go) und u(q) — u(qo) in Wol’p (©). D.h., dass
A (q) und u (q) stetig in ¢ sind, falls ¢ < p ist.

(b) Fiir ¢ — qo > p gibt es (Ao, up), so dass (A(q),u(q)) — (Ao, uo), mit Ag > X (qo),

ug > 0 und (Ao, ug) eine Losung von (1.1) ist. Dies bedeutet insbesondere, dass
A (¢) in g oberhalbstetig ist, fiir ¢ > p.

o= ( [ 19 rpdx) 2.16)

Behauptung: Die durch (2.16) definierte Abbildung ist eine Norm in I/VO1 P (Q).

Bezeichnung 2.6.2:

Beweis: (2.16) stellt sicherlich eine Halbnorm in Wol’p (©) dar. Die Eigenschaft, die noch
zu iiberpriifen ist, ist die Folgende

lullg, =0 = u=0in Wy"(Q).

Sei also 0 = [|ul|y , = (Jo [Vul? dx) Da |Vu|P nicht negativ ist, kann das Integral nur
dann Null werden, wenn |Vu| = 0 fiir fast alle z € 2 gilt.
= w ist fast iiberall konstant. Da u = 0 auf 99 gilt, folgt also u = 0 fast iiberall. O

Lemma 2.6.3: Sei u (q) eine Losung des Randwertproblems (1.1) mit beschranktem g,
dann ist u (¢) beschrinkt in W,? (Q) beziiglich der W'?-Norm.

Beweis:

'p

=

lu(q) " = (/Q uff + ywm)

= / |u|pdw+/ \VulP2 Vu - Vu dx
Q Q
part. Integration / |ul? dz — / div <|Vu|p72 Vu) ‘udr
Q Q

(L /]u\pda?—&-/)\(qﬂu]q_zwuda;
Q Q
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2 Das elliptische Randwertproblem im FEuklidischen Raum

= Jlu(@ly + IIVu(@Il; = llu (@Il + A (a) [u ()l
Da u € Iy ist, gilt |Jul|{ =1 und damit

[IVu (@)l = A(q) - (2.17)

Ist ¢ beschrinkt, so folgt aus Lemma (2.5.1), dass A (¢) beschrankt ist und man erhélt
zunéchst: u (¢) ist in Wol’p (Q2) beziiglich der Norm | - ||, beschrénkt.

Dass u (q) in I/VO1 P (Q) beziiglich der WP-Norm beschrinkt ist, bekommt man aus der
folgenden Ungleichungskette:

(2.4) 2.17)

lu @I = llu@IE+ [IVu (@[ < (€ + 1) [IVu@ll; *= (€ + 1) Alg) < oo

O]

Lemma 2.6.4: Seien a,b zwei Vektoren aus RY und (-, -) das Standardskalarprodukt
in L? (), dann gilt folgende Abschiitzung:

(Il = o~ b,a = 0) = (llall, — Il,) - (lally™ = loliz ™) (2.18)

Beweis: Multipliziert man die Terme im Skalarprodukt aus, so ergibt sich:
A = (|a|p_2a PP 2b,a — b)

= (]a\p_Q a, a) — (]a\p_Q a, b) — (|b\p_2 b, a) + (]b|p_2 b, b)
<|a|p_2 a, a) = /Q lafP 2 a-ade = /Q |al” dz = ||a|[}

und die gemischten Terme lassen sich mit der Hélderschen Ungleichung abschéitzen:

Hierbel ist

- Holder _
(laP2ab) "< o o - b,
p—1
p=1
1P p
= ([f1ar#Fras) " o,
_ p—1
= Alallz - [l0ll,
Insgesamt lasst sich A nach unten abschétzen zu:

—1 —1
A> ally = llally™ - lloll, = lolly = - llall, + (ol

= (HGHp - ||b||p) (Haugfl B Hb”571>
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2.6 Konvergenzverhalten

Beweis des Satzes 2.6.1: Dieser erfolgt in mehreren Schritten:

I:

II:

Sei (qn) ey €ine gegen o konvergente Folge. Wegen Lemma (2.6.3) ist u (¢n) 1= uy,
eine beschrankte Folge und besitzt somit eine in WO1 P (Q) schwach konvergente
Teilfolge mit einem Grenzwert ug < oo. Ohne Beschrinkung der Allgemeinheit
gelte also:

Gn — q0, A (gn) 2725 Ao und u,, L7 4y schwach in W, P (Q), stark in L% (Q)

Die starke Konvergenz von u (g, ) gegen ug in L% () gilt aufgrund des Sobolevschen
Einbettungssatzes (Satz 2.2.3). Insbesondere ist damit (u(gn)),,cy in L% (£2) eine
Cauchyfolge.

Zeige dass u (gn) =2 ug stark in Wol’p (Q) konvergiert, d.h. dass ||u(gn) — uol|

flir ¢, — qo gegen Null konvergiert. Betrachte deswegen:

[u(gn) —uoll® = llu(gn) — uolly + IV (gn) = Vuolll}

@9 P p
< (CP+ 1) [[Vu(gn) = Vuolll,

Daher ist es dquivalent zu zeigen, dass [[|Vu (gn) — Vuol|, BB, gilt.
Hierfiir ist es ausreichend folgende Eigenschaften nachzuweisen [1]:

(i) Vu(gn) 2= Vg in LP (Q)

(i) IV (gn)lll, === [[|Vuoll, in R

dn—4q0

Zu (i): Da u (gn,) — up schwach in I/VO1 P (Q) konvergiert, gilt insbesondere:

Vu (gn) 272 Vg in LP (Q)

Zu (ii): Zeige zunéchst, dass (Vu (¢,)),,cy eine Cauchyfolge in LP () bildet, d.h. dass

Folgendes gilt:

11V () = Vu (gm)ll, = [1(Vu (gn) = Vau (gm)) — O], 42— 0

Es reicht wiederum aus die Eigenschaften (i) und (ii) fiir diesen Fall nach-

zuweisen. Aus
Vau (gn) 222 Vg in LP (Q)

und
YV (gm) 222 Yy in LP (Q)

folgt

Vu (gn) — Vau (gn) T2 0 Gug — Vug =0 in LP ().
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2 Das elliptische Randwertproblem im FEuklidischen Raum

Damit ist (i) erfiillt. Um zu zeigen, dass

11V (ga)1l, = 1V (@) [l === 0 in R (2.19)
gilt, betrachtet man ¢y, ¢, in der Ndhe von qo. u (g,) und wu (g,,) erfiillen die
Gleichung:

A= [ {I9u(@)P Vula) = [Vu g Vu (o)}
V(u(gn) —u(gm)) dz
= [ —aiv {IVu @)l Vula) = [Vu (g Vu o)}
(u(gn) —u(gm)) dx
= [ ~{ )~ Apulan) } )~ ulan) da
2.6 _ _
D[ ua) ! - A ulan) )
Q
(u(gn) —u(gm)) dz (2.20)
Die rechte Seite der Gleichung konvergiert fiir n, m — oo gegen Null, denn es
gilt:
/Q{)‘ (qn)u (qﬂ)qn_l — Agm)u (Qm)qm_l } (“ (qn) —u (Qm)) dx
Holder gn—1
< ) = wlamlly, - ([ o u

q0—1

%
0=t daz) b

Der erste Faktor [lu(gn) —u(gm)|,, konvergiert gegen Null fiir n,m — oo,
da u (gn) in L% (Q) eine Cauchyfolge ist. Zu zeigen ist noch, dass der zweite
Faktor beschrankt ist. Fiir jedes z €  ldsst sich die Differenz im Integral
durch das Maximum der beiden (positiven) Beitrage abschitzen:

—A (Qm) u (Qm)qmil

q0

Agn) w(gn)™ = Xgm) u (gm)™ 17" < max KA (qj)u(qj)q"_l)qo}qo11

j=n,m

A (g;) konvergiert fiir j — oo gegen Ag und ist damit beschrénkt. u (g;) ist auf-
grund der starken Konvergenz in L% () gleichméfig beschrénkt in L% ().

A, das heikt der erste Ausdruck aus Gleichung (2.20) lasst sich mit Hilfe des
Lemmas 2.6.4 und a = Vu (g,), b = Vu (gy,) wie folgt nach unten abschétzen:

/Q {19 (42) 72 Y (g) = [V () P> Vet (gm) } V (1 (g0) = w (gn)) d

< (¥ u @l = 190 @n)lll,) - (19w @) 15 = 19 @) 15
=B>0
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2.6 Konvergenzverhalten

I11:

IV:

Fiir n, m — oo konvergiert A gegen Null, daher muss auch der kleinere
(positive) Ausdruck B in diesem Grenzwert gegen Null gehen. Damit folgt
(2.19) und es ist bewiesen, dass (Vu (¢n)),, e eine Cauchyfolge in LP (€) ist.

Da L? () ein Banachraum ist, ist er insbesondere vollstindig. Somit existiert
eine Grenzfunktion, die aufgrund der Eindeutigkeit des schwachen Grenz-
wertes mit Vug iibereinstimmen muss,

= [V (gu)lll, = [ Vuolll, == 0.

[,

Damit sind (i) und (i) erfiillt und es gilt u (¢,) == ug stark in W, ? (Q).

Aufgrund der starken Konvergenz iibertrigt sich auf ug die Eigenschaft ug > 0.

Die Stetigkeit der Norm sorgt fiir [luol|,, = 1. Daher ist ug nicht identisch Null.

Zusiitzlich impliziert u (¢,) =% ug stark in W, ? (Q) dass ug eine schwache

Lésung des folgenden Randwertproblems ist:

—Apup = )\Ougo_l fir z € Q,
ug =0 fiir x € 990

Positivitat von ug folgt erneut aus dem Minimumprinzip [18].

Es gilt: A (go) < Ag- Denn (Mg, ug) ist eine Losung von (1.1) und damit ist Ag nach
Satz 2.4.1 durch folgenden Ausdruck gegeben:

fQ |Vug|P de
(Jy luo| dar)/

Und somit gilt:

2.7) L Jo IVul? da - Jo [Vuol|P dx

u€Wy P (Q),u0 (fQ |u|? da:)p/qO B (fQ lug|?° dav)p/qO B

Hiermit ist Fall (b) aus Satz 2.6.1 bewiesen.

: Fiir ¢ < p ist die Losung des Randwertproblems (1.1) eindeutig. Damit folgt fiir

qg— qo <p,dass up =u(q) und A\g = A (qo) gilt, womit auch (a) aus Satz 2.6.1
bewiesen ist.
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2 Das elliptische Randwertproblem im FEuklidischen Raum

2.7 Der Fall ¢ konvergiert gegen p

Insbesondere studiert Herr Yin Xi Huang das Randwertproblem (1.1) fir den Fall, dass
der Exponent ¢ der rechten Seite der Differentialgleichung gegen die Konstante p des
p-Laplace Operators konvergiert.

Satz 2.7.1: Sei o) 1/(q—p)
v =(52)" e >

fir ein A > 0. Falls entweder
(1) A< A(p) und ¢ — p* oder
(i) A> A(p) und ¢ — p~

erfiillt ist, dann gilt [|v (¢)]| 2 co.

Beweis: Da u(q), A und A (q) positiv sind, ist auch v (q) positiv. Fiir v (¢q) gilt:

()
(1.4 <A§q)>‘ - (=1) Apu(q)

20 (@) Mg) ulg)

w2 (MDY () e

2 xe@r!

2.21
—Apv(q) (2:21) -A,

Nebenrechnungen zu (%): Es ist
P p = q—p

p=l_g-1 p—l—gtl _gq-p
Mgy~ = A (g) T=Mg) e =1

und
_ +qfl —pt+l+qg—1 q—p
A apqgp =)\ 4q-p = \9—p = \.

Damit gentigt v (q) der Gleichung:

—Ap0(q) = Av(g)"" (2.22)
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2.7 Der Fall q konvergiert gegen p

1/(q—
Zudem gilt v (q) = (@) )

(1.1) ist.

u(q) = 0 auf dem Rand von €, da u eine Losung von

Angenommen ||v (g)|| divergiert nicht fiir ¢ — p. Dies bedeutet, dass v (¢) beschrinkt
ist. Folglich besitzt v (¢q) fiir ¢ — p eine in VVO1 P (Q) schwach konvergente Teilfolge mit

einem schwachen Grenzwert v, der ebenfalls in VVO1 P (Q) liegt. Sei ohne Beschrinkung

der Allgemeinheit v (g,) == vy schwach konvergent in WO1 P (Q).

Analog zu Schritt 2 im Beweis des Satzes 2.6.1 erhdlt man, dass v (¢,) — vp stark in
I/VO1 P (Q) konvergiert. Hieraus ergibt sich ebenfalls analog (mit qo = p), dass vy positiv
und eine schwache Losung der folgenden Gleichung ist:

{Apvo = )\vgfl fiir z € Q,

) (2.23)
v =0 fiir x € 99

Zu Fall (i): A < X(p) und ¢ — p*, d.h. insbesondere gilt ¢ > p. Nach Satz 2.4.1 ist
Vul? d
Ap = e JalVulldz “Zl .
wewg? @0 (Jo lul” dz)

der kleinste Eigenwert, welcher eine nicht triviale Losung von (2.23) ermoglicht.
Daher folgt fiir A < A (p) dass vop =0 in Wol’p (Q) gelten muss,

= v(g) — 0in W7 (Q).

Insbesondere konvergiert v (¢) punktweise gegen die Nullfunktion und es geniigt
ohne Beschrankung der Allgemeinheit v(q) < 1 fast iiberall in  zu betrachten.
Firg>p, A< X(p),v(q) <1 gilt:

2.22 _ _
— A () P2 (@) < (g

Da mit u (p) auch a-u(p) eine Losung von (2.9) ist, kann man v (q) < u(p) fir
geniigend kleines 5 := (¢ — p) > 0 annehmen. Dann gilt:

~Au () A @) u P =A@ v > M (@

Zusammengefasst hat man also:
v(g) <u(p) und
—Ap (g) < W ()" < —Ayu(p)

Hieraus ldsst sich ableiten [17], [23], dass ein u € Wol’p (©2) mit v(q) <u < u(p)
existiert, so dass u folgende Gleichung 16st:

~Ayu= APt

Dies steht jedoch im Widerspruch dazu, dass (A (p),u (p)) die eindeutige Losung

des Randwertproblems (2.9) ist. Damit ergibt sich im Fall (i): [|v (¢)]] 2 oo.
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2 Das elliptische Randwertproblem im FEuklidischen Raum

Zu Fall (ii): A > A (p) und ¢ — p~, d.h. insbesondere ¢ < p. Fiir p = ¢ gilt nach [14] folgendes

38

Lemma: Fiir A > A (p) gibt es keine positiven Eigenfunktionen mit Eigenwert A.
Mit anderen Worten ist jede positive Figenfunktion ein Minimierer des Rayleigh-
Quotienten. Da hier A > A (p) gilt, muss also vp = 0 in Wol’p (Q) sein, d.h. v (q)
konvergiert in VVO1 P (Q) gegen die Nullfunktion:

=v(q) L2 0in W, (Q).

Insbesondere konvergiert v (¢q) punktweise gegen die Nullfunktion und es geniigt
ohne Beschrinkung der Allgemeinheit v (¢) < 1 fast tiberall in © zu betrachten:

p>q = p—q>0 = v '<1?P =1 = v()T">1

Mit A > A (p) bzw. ﬁ > 1 folgt durch Multiplikation beider Ungleichungen

A
A(p)

Fiir kleines 3 kann man durch Skalierung von u analog zur Argumentation im
ersten Fall v (q) < u(p) annehmen.

(@ >1 = M(g)T>A(p) .

Zudem gilt folgende Ungleichungskette:
(%) P_ p
0 = / <_Apv @) W) i
Q

v(q
Y NS C)lCA (O B
/n ( Aot () u(p)! !
B w(p)P1 v (q)” —u(p)’ T
[ (pouyr 2
= /Q (M (TP =X(p)) - (v(9) —u(p)?)dz <0
NG <0

Aus dieser ergibt sich dann auch im Fall (i7) ein Widerspruch:

= [lo (@) = o0

Zu (%): Definiere u := u? und

K () ::/Q‘V(ﬂ)zlﬂpd:r::/Q|Vu]pd:c:p-I(u).

Nach Lemma 2.5.4 ist [, [Vv|” dz konvex in |v|? fiir ¢ < p. Insbesondere ist K ()
konvex in . Damit ist K’ () monoton wachsend und dies impliziert

K (@) (@ -7) - K'(0) (i - 9) = (K' (@) — K' (8)) (@-9) 2 0.



2.7 Der Fall q konvergiert gegen p

K'(u) - (u—") ist die erste Variation von K in @ in Richtung (u — v). Daher
berechne ich nun die erste Variation von K in eine beliebige Richtung ¢:

d_.
aK(u+1tgo)‘

d 1
:(ﬁ/ﬂ‘v(ﬁﬂgp)i pdm‘

_/Q\V(mw)i

:/Q‘v(a)é

:/ |VulP~2 Vu-V(u' P p)dr  mit u=uP
Q

t=0 t=0

e [V @+ 10)3] ¥ (@ +t0)7 o) do

t=0
v @)V (@7 ) do

:/ —Apu~u1_p-cpdx
Q

Analog erhilt man fiir v

d ~ 1
@K (v +tp) ‘t:O = /Q —Apv- pro dz.

Nutzt man nun als Testfunktion ¢ = (@ — v) so ergibt sich (3¥):

0< (K' (@) — K' () (@ — )
(vt ML Y [ (g MY

O]

Bemerkung 2.7.2: Satz 2.7.1 besagt, dass Lésungen der partiellen Differentialgleichung
(2.22) - bzw. skalierte Losungen von (2.9) - unter der Bedingung (i) oder (ii) im Grenz-
wert ¢ gegen p divergieren. Sie liegen damit nicht mehr in VVO1 P(Q).
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3 Das elliptische Randwertproblem im
Minkowski Raum

Nun sei Q C RY nicht mehr mit einer Euklidischen Norm sondern mit einer allgemeinen,
zweimal stetig differenzierbaren Norm H ausgestattet.

Die Abbildung H : RY — R aus C? (R" \ {0}) geniige daher den Eigenschaften:
1.) H sei nicht negativ: H (¢) >0, fiir alle ¢ € RY und H (§) =0« ¢ =0,

2.) H sei positiv homogen vom Grad eins, d.h. es gilt: H (t§) = [t| H (§) fiir alle
teR, &€ RY und

3.) H geniige der Dreiecksungleichung: H (¢ + ) < H (€)+H (¢¥) fiir alle ¢, € € RV,

Bemerkungen 3.0.3: Insbesondere gilt dann:

H ist konvex, d.h. fiir alle t € (0,1), £, ¢ € RV gilt:
HtE+(1—1)y) <tH(§) + (1 —1t) H (¢), denn

w
s

H(t8) + H ((1-1)v)
tH (&) + (1 —1) H (¥)

H{t§+ (1 -1)y)

I1E A

Fiir linear unabhingige &, 1 € RY ist H sogar strikt konvex. Dies liegt daran,
dass in der Dreiecksungleichung nur genau dann Gleichheit gilt, wenn die beiden
Variablen linear abhingig sind.

H ist aufgrund von 2.) eine gerade Funktion in &: H (=€) = H (&) fiir alle £ € RV,

e H nimmt bei £ = 0 ein eindeutiges Minimum an, denn es ist H (0) = 0 und
H(£#0)>0.Da H e C*(R"\ {0}) gilt somit
d
d—ngk:o =0 fiir alle j = 1,..., N.

Zudem ist die Hessematrix von H an der Stelle ¢ = 0 positiv definit.
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3 Das elliptische Randwertproblem im Minkowski Raum

Beispiel: Man stattet den RY mit der [,-Norm aus:

S

N
Sl | mits e (1,00
j=1

Fiir s = 2 entspricht dies der Euklidischen Norm und man kann die Ergebnisse aus
Kapitel 2 benutzen.

Definition 3.0.4: In einem Vektorraum V heiffen zwei Normen || - ||; und || - ||;; dquivalent,
wenn reelle, positive Konstanten C, C' existieren, so dass fiir alle z € V gilt:

Cllzlly < ll=ll;r < Cllzll

Satz 3.0.5: Im R” ist jede Norm H (-) dquivalent zur Euklidischen Norm |- | = || - ||,.

Beweis:

A) Zeige, dass eine Konstante C' > 0 existiert, so dass
H (z) < Cllzlly (3.1)

fiir alle z € RV gilt. Sei z € RN beliebig und e/ mit j = 1, ..., N die Standardbasis
im RY, d.h. die k-te Komponente des j-ten Einheitsvektors sei gegeben durch

i — 1 firk=yjy
“T N0 fir k£ 5.

In dieser Basis ldsst sich x wie folgt darstellen:
N
T = Z:vjej wobel z; = (x,ej) eR

und (-, -) das Standardskalarprodukt im R sein soll. Es ist

3.

N
E : od

x e <
Jj=1

N

M-

H (mjej)

J

| [\

MZ =
=

)

N
—Z |z H (e7)

< Ozl

N
2
>l
=1

<
Il
-

fiir ein C' > Zévzl H (ej)Q. In (%) wurde die Cauchy-Schwarzsche Ungleichung
fiir das Standardskalarprodukt auf RY benutzt.
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3.1 Das verallgemeinerte Randwertproblem

B) Zeige, dass eine Konstante C > 0 existiert, so dass fiir alle z € RY
H (z) > Cllz], (3.2)

gilt. Fiir z = 0 ist dies trivialer Weise erfiillt. Beweise die Behauptung zuerst fiir
alle v € RY mit Hx\|2 = 1. Dann ist zu zeigen, dass eine Konstante C' > 0 existiert,
so dass H (z) > C gilt. Definiere daher die Menge S und die Konstante C folgender
Mafsen: ~

S:={ze RY|||z|ly, = 1} und C:= inf H (z)
Die Teilbehauptung lasst sich leicht durch einen Wlderspruchsbewels zeigen.
Angenommen C = 0. Dann existiert eine Folge (z,,),cn C S mit H (z,) —— 0.
Wegen (2n,),cn C S gilt ||z,]|, = 1 fiir alle n € IN. Damit ist (2,,),,cy beschrankt
beziiglich der Euklidischen Norm. Nach Bolzano-Weierstraf existiert eine Teilfolge
(Tny ), e die beziiglich [ - [|, gegen ein € S konvergiert. Also gilt ||zfly = 1 und
folglich insbesondere = # 0. Es ist:

3) A)
H(z) = H(x = n, +on,) < H (2 — ;) + H (2n,) < Cllz =20, [y + H (20,)

Die rechte Seite der Ungleichung konvergiert im Grenzwert ni — oo gegen Null,
was H (r) = 0 impliziert. Aufgrund von 1.) folgt * = 0. Dies steht jedoch im
Widerspruch zu x € S bzw. x # 0. = C > 0.

Nun ist die Ungleichung (3.2) fiir alle z € S gezeigt. Sei y € RV \ {0} beliebig.

Dann ist = := m € Sund y = z- ||ly|,- Aus der folgenden Ungleichungskette

ergibt sich die Behauptung fiir jeden Vektor y € RV:

~ ~ 2) ~ 2.)
Cliylly = Cllz- lyllall, = Cllyllz llzlly < llylly H (x) = H (ylly -2) = H (y)

Korollar 3.0.6: Alle Normen auf dem RY sind dquivalent.

3.1 Das verallgemeinerte Randwertproblem

Statt des von Herrn Yin Xi Huang betrachteten Funktionals I (u) muss man nun in
Gleichung (2.1) den Euklidischen Betrag |Vu| durch die allgemeine Norm H (u) ersetzen.
Daher betrachte ich das Funktional

1
I (u) = & / H (Va))? da (3.3)
P Ja
und minimiere es ebenfalls auf der Menge
Iy =T, = {UGWOLP(Q) :/ |u|qd1::1}. (3.4)
Q
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3 Das elliptische Randwertproblem im Minkowski Raum

Fiigt man die einschréinkenden Bedingungen aus I'y, mit dem Lagrange-Multiplikator
Af(q) zum Funktional Iy (u) hinzu, so erhdlt man folgendes Energiefunktional:

By () = [ 218 (% <x>>}p—Aﬂf‘”|u<x>|qczx (3.5)

Dabei ist wie zuvor p € (1,00), Af (¢) € Rund Q@ C RY, N > 1 ein beschriéinktes Gebiet
mit glattem Rand. Zudem gilt v = 0 fiir alle x € 09.

Um die entsprechende Euler-Lagrange-Gleichung zu erhalten, muss man die erste Variation
in eine beliebige Richtung v € C§° (2) gleich Null setzen:

0= dEf (u,v) fiir alle v € C§° (Q)
Sei also v € C§° () beliebig

!

d
0= —E (u+tv)

dt -

d 1 Ay (q) >
= S IH (Vu+tVo)? — 2 4 o)) de

i | Gy 200 sy ]

N
OH ov ou

_ p—1 _ =2, . i = _
_ /Q (;1: (H (V)P G (V) 5o = g )l 2 v>d:c, mit g = 7

(%)

Dies ist zun#ichst die schwache Form der Euler-Lagrange-Gleichung. Da H € C? (RY \ {0})
ist, ist der Ausdruck in (x) flir geniigend glattes u differenzierbar und man kann diesen
partiell integrieren. Mit u () = 0 fiir alle € 9 erhélt man:

N
L N 9 up—laﬂ u) s v — ul?2u-v | do
0/9( ;axk{[H(V )] 2%, (V )} Ar (@) |ul )d

Durch Verwendung des Fundamentallemmas der Variationsrechung bekommt man die
starke Form der Euler-Lagrange-Gleichung:

N
B Z (f)ik {[H (V)P Z‘Z (Vu)} =X\ (q) [ul!%u (3.6)
k=1

Bemerkung 3.1.1: Der zweite Teil des Energiefunktionals ist von der Struktur her
identisch zu dem aus Kapitel 1 (siehe Formel (1.2)). Somit sind auch die rechten Seiten
der Euler-Lagrange-Gleichungen (3.6) und (1.1) von der Struktur her gleich.

Definition 3.1.2:

N
-3 2 w(z))P? on u(x mit § = u
Quia)i= 32 g0 {UH (Tu@)P ™ G (Tula)} mitee= 2 @7

Im Folgenden bezeichne ich den Operator, der durch Gleichung (3.7) definiert ist, als
Q)-Laplace Operator.
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3.1 Das verallgemeinerte Randwertproblem

Das zu (1.1) verallgemeinerte Randwertproblem lautet damit:

(3.8)

—Qu = Af (q) [uliu fiir x € Q,
u=0 fir x € 0Q

Bemerkung 3.1.3: Der Q-Laplace Operator ist eine Verallgemeinerung des p-Laplace
Operators, in dem Sinne, dass die Norm im R” nicht zwangsliufig die Euklidische sein
muss. Im Fall der Euklidischen Norm, d.h.

N :
H()= <Z |§k|2> = [1€lly = €]
k=1

gilt ndmlich:

Beispiel:

Durch direkte Herleitung der Euler-Lagrange-Gleichung aus dem speziellen Energie-
funktional

S S—Muqu
. lu(z)|* d

N

Ef(U)Z/Q]l9 >

=1

ou
87334 (z)

oder auch mittels Verwendung der allgemeinen Formel (3.7) fiir Q (u) erhélt man fiir die
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3 Das elliptische Randwertproblem im Minkowski Raum

spezielle Wahl von H (£) den folgenden Q-Laplace Operator:
_ _—
Yo [ Kloul) T 0 [Koul
Qu(z) = kzzl Oy, (; BX O ]Z_; oz
- p—1 14
X o [ Koul) 1 ([ Kou)” ‘3u8_1(98;k
_;8% ]2 Ox; s ; Ox; s oxy ‘8%;
- s
_f: 0 EN: oul®\ " | oul? ou (3.9)
1 8xk = a.’I}j &wk 8xk .

An diesem Beispiel erkennt man erneut, dass im Fall der Euklidischen Norm (s = 2) der
Q-Laplace Operator in den p-Laplace Operator iibergeht, also Qu = A,u gilt.

Definition 3.1.4: Der Pseudo-p-Laplace Operator ist definiert durch
N —2
~ 0 ou [P7° Ou
Apu = — _— .
P ; a:lik ( al’k>

dzy,
An (3.9) sieht man, dass der Pseudo-p-Laplace Operator ebenfalls als Spezialfall im
@-Laplace Operator s = p enthalten ist.

Bemerkung 3.1.5: Da Q (—u) = —Q (u) gilt, ist mit v auch —u eine Losung des
Randwertproblems (3.8).

Sei u € I'y, ein Minimierer des Funktionals (3.3), d.-h. u € Wol’p (), Jqlul?dz =1 und
u 16st —Qu = As (q) lu|7? u. Sei a € R*. Betrachte die skalierte Funktion v = au:

—Quv = —Q (au)
N
_ N 9 au -1 0H au mi a:é?(ozu)
=3 g 7 e G (7 G i = O
N
— i o -1 ul\r pilajH ulx
_ ;axk{ P (Vu @) e (V (>)}

= —a?' Qu= ")y (g) [ul"
= a? 0y (g) [0 20
= X (@) ol

Damit 16st die skalierte Funktion v ein von der Struktur her gleiches Randwertproblem
wie (3.8), jedoch mit einem skalierten \f(¢q) = 79 Ay (g). Somit gilt analog zu Be-
merkung 2.1.4, dass fiir ¢ < p die Bedingung |[lul|, = 1 keine wesentliche Zusatz-
voraussetzung darstellt.
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3.2 Positivitdt der ersten Eigenfunktion

Bemerkung 3.1.6: Aus obiger Rechnung ist ersichtlich, dass der @)-Laplace Operator
homogen vom Grad p — 1 ist, d.h. fiir alle o € R geniigt er der Gleichung

Q(a) = a"'Q (u). (3.10)

3.2 Positivitdt der ersten Eigenfunktion

Definition 3.2.1: Eine Funktion u € Wol’p (Q), u # 0 heift Eigenfunktion zur
partiellen Differentialgleichung (3.8), falls

/Q (Z [H (Vu)]P! gZ(VU) ({%) dr = )y (q)/Q|uq—2u.¢dx (3.11)
k=1

fiir alle ¢ € C§° () gilt. Hierbei ist &, = 8871;‘ Ar () € R heikt Eigenwert.

Aufgrund der Regularitétstheorie [20] weifs man, dass schwache Losungen von (3.11) in
C1@ (Q) liegen. Sie sind damit insbesondere stetig. Es lisst sich beim verallgemeinerten
Randwertproblem (analog zu Kapitel 2) folgendes Lemma zeigen:

Lemma 3.2.2: Die erste Eigenfunktion zu (3.8), die dem ersten Eigenwert entspricht,
wechselt ihr Vorzeichen nicht.

Beweis: An (3.5) erkennt man, dass sich die Energie Ef (u) des Systems unter der Trans-
formation u — —wu nicht dndert. Setzt man wieder v = |u| so gilt mit u, —u € Wol’p (Q)
auch v € Wol’p (€2). Zudem zeigt man wie zuvor v € I'y . Damit ist v eine zur Mini-
mierung des Funktionals (3.3) zuléssige Funktion. Es gilt also: Minimiert u die Energie,
so auch —u und v. Angenommen v wiirde im Inneren von §2 Null werden, also sein Mini-
mum annehmen, so miisste entsprechend des starken Minimumprinzips [11] v = 0 sein.
Dies steht jedoch im Widerspruch dazu, dass v eine Eigenfunktion sein soll bzw. dass
Jo Iv|%dx =1 gelten soll.

= v >0 fiir fast alle x € Q@ = |u| > 0 fiir fast alle z € Q.

Damit ist die Behauptung, dass die erste Figenfunktion ihr Vorzeichen nicht wechselt,
bewiesen. O

Bemerkung 3.2.3: Da mit v auch —u eine erste Figenfunktion ist, geniigt es positive
Lésungen zu betrachten. Fiir u > 0 lautet (3.8):

{—Qu =N u(g)? firzeq,

. (3.12)
u=0 fir z € 992

Ein positiver Minimierer u € I/VO1 P (Q) des Energiefunktionals (3.5) muss damit Gleichung
(3.12) erfiillen.
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3 Das elliptische Randwertproblem im Minkowski Raum

3.3 Existenz des Rayleigh-Quotienten

Es lésst sich ein verallgemeinerter Rayleigh-Quotient fiir das Randwertproblem (3.8)
definieren:

Definition 3.3.1: )
H (Vu)|" dzx
T O

ueWyP (€2),u0 (f |u\qdaz)

(3.13)

Satz 3.3.2: Es existiert ein Ay (¢) > 0 und ein u(q) € I'y, , u(q) > 0, welches das
verallgemeinerte Randwertproblem (3.8) mit Af (¢) als Rayleigh-Quotient (3.13) 16st.

Dieser Satz ist vollig analog zum Satz 2.4.1. Der Beweis l&sst sich dhnlich durchfiihren.
Zunichst ist es jedoch niitzlich folgendes Lemma zu beweisen:

Lemma 3.3.3: Sei v eine positive Funktion und ¢ < p. Unter diesen Annahmen ist das
Funktional Jy (v) = [ [H (Vv)]” dz konvex in v7.

Beweis: Sei also v > 0 und ¢ < p. Setzt man w = v4, so folgt:

Vw=q-v9" 1 Vo

1 1
Vo=--v"1Vu=—.
q q

1—¢q

w ¢ -Vw,

woraus man dann [H (Vv)]? als Funktion von w bekommt:

= [H (Vo)) = [H <; w V“’)]p
2.) g P w9 [H (Vw)P = g (w)

Man muss daher die Konvexitit der Abbildung g : R™ — R*, w — g (w) in w zeigen,
d.h. zu zeigen ist, dass fiir wy,wy € RT, a € (0, 1) folgende Ungleichung gilt:

g (awr + (1 — a)wa) < ag(w1) + (1 — @) g (w)
v

Substituiert man z = T“’ so ist es dquivalent zu zeigen, dass die Funktion

1

kf(w,z) = wp(l_g) [H (2)]"  in (w,z) € RT x RY
konvex ist. Sei nun o € (0,1) und (w;, z;) € R* x RY, i = 1,2. Da H konvex ist gilt

H(az1+(1—a)z) <aH(z)+ (1 —a)H(2). (3.14)
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3.3 Existenz des Rayleigh-Quotienten

Aus dem Beweis des Lemmas 2.5.4 weifl man, dass

hwy) =g i () e RE xR

konvex und monoton wachsend in y ist. Damit ergibt sich folgende Ungleichungskette:

k:f(aw1 + (1 - a)ws,az; + (1 — «) 22)

h(awi + (1 — @) wa, H (az1 + (1 — @) 22))

(3.14)

IN =

h(aw1 +(1-a)ws,aH (z21) +(1—a)H (22))

IN

a-h(wi, H(z1))+ (1 —a) -h(ws, H(22))

a-kf(wy,z1) + (1 —a) -kf(we, 22)

Beweis des Satzes 3.3.2:  Es sind wieder die drei Eigenschaften zu zeigen:

(1)

(i)
(iif)

Zu (i):

Das Infimum existiert, d.h. es existiert eine Funktion u bei der Ay (¢) sein Minimum
annimmt.

Das Minimum ist gréfer als Null.

Die Funktion, bei der das Minimum angenommen wird, ist eine Losung des Rand-
wertproblems (3.8).

Definiere die Funktion By, (u) folgender Mafen:

H (Vu)|d
Ap(g) = inf JoH (Ve o g (u)
J 1 p/q 1 fa
ueW, " (Q),u0 (fQ ’u‘q dl‘) ueWy P (Q),uz0

Ziel ist es By, (u) auf der Menge Af = A= {u |ue Wol’p (Q), u# O} zu mini-

mieren. Dies ist dquivalent dazu das Funktional Zy (u) auf der Menge

Ap:=A= {u’ueWol’p(Q), /\u|qdm:1}
Q

zu minimieren. Hierbei ist By, (u) := ]\Z,Jf(g;)), wobei Zj (u) := [, [H (Vu)]P dx der
q

Zihler und Ny, (u) :== Ny (u) = ([q [ul? da:)p/q der Nenner des Bruches By, (u) ist.

Um (i) zu beweisen, muss man daher zeigen, dass minyea, Zy (u) existiert. Per
Definition ist Ay (¢) nicht negativ. Ebenso ist Zy (u) > 0 und damit nach unten
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3 Das elliptische Randwertproblem im Minkowski Raum

beschrinkt. Folglich existiert eine Minimalfolge (un),, ey € Ay mit
lim Z¢ (un) = 1nf Zf( u) > 0.

n—oo

Da Z¢ (uy) konvergiert, ist es durch eine Konstante K nach oben beschrénkt:

K > Zp(up) = /Q (H (V) da

(3.2) - ~
S /(C|Vun|)pda::C’p/ V| da
Q Q

~ (2.4) -
= CPlIVullly = C%-CPlunl;
Damit sind die LP-Normen von u,, und Vu, beschrinkt.
= uy, ist beschriinkt in W, (Q)
Da VVO1 P (Q) fiir p € (1,00) reflexiv ist, existiert eine Teilfolge (Uny)p, ey und ein
u € Wol’p (©) mit:

Up, 2= 7 schwach in Wo (©2) (siehe [24])

N —00

Dies impliziert insbesondere: wy, u schwach in LP (Q2). Dass u € Ay gilt,
zeigt man auf identische Weise wie im Beweis des Satzes 2.4.1.

Zeige nun, dass u ein Minimierer von Zy (u) auf der Menge Ay ist. Nutze hierzu,
dass das Funktional Z¢ (u fﬂ (Vu)]? dx folgende Eigenschaften erfiillt:

> Zr (u) ist als Verkettung stetiger Funktionen stetig in u.
> Z (u) ist nach Lemma 3.3.3 konvex.

Aus den beiden Eigenschaften folgt, dass Z; (u) schwach unterhalbstetig ist. Da

ng—00

Un,, @ schwach in W, () konvergiert, gilt Z; (@) < liminf,, oo Zf (tn,)-
Mit der Ungleichungskette

< < =
ulenj Zy (u) < Zy (u) < liminf Zy (up, ) = ulenjf Zy (u)

erhilt man, dass Zy (u) = infyea,; Zy (u) und somit u ein Minimierer von Zy (u)
auf der Menge Ay darstellt.

Zu (ii): Esgilt Zy (u) > 0. Denn angenommen Z; (u) = 0, dann ist H (Vu) = 0 fast iiberall
in Q. Da H eine Norm ist, impliziert dies, dass Vu = 0 fast iiberall in £ gilt und
mit u = 0 auf 0f2 folgt u = 0 fast {iberall in 2. Dies ist jedoch ein Widerspruch zu
u e Af.

Da Z; (u) > 0 und Ny, (u)

=1 fiir u € Ay gilt, ist By, (u) fiir einen Minimierer u
positiv. Damit ist Ay (¢) > 0.
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3.4 Eindeutigkeit der Losung fiir ¢ < p

Zu (iii): Fiir einen Minimierer u von By, (u) muss 6By, (u,v) = 0 fiir alle v € C§° ()
gelten. Dies ist aufgrund der Quotientenregel dquivalent zu:
Ny, (u)0Zy (u,v) — Zy (u) 0Ny, (u,v) =0 fiir alle v € C° ()
& 0Zf(u,v) = By, (u) 6Ny, (u,v) fiir alle v € Cg° ()

Es ist
0Zy (u,v) {Zf u—i—tv)}‘t_o
d
== {/ [H(Vu—l—t-Vv)]pdm}
t=0
OH ov
e AV I |

/Q“ Vo e (Vu) - 5 do

und

Ny (u,v) = i{Nq (u+tv)}‘ .

== (/ |u+tv|qd:1:>
</ ]uqdw) /\u]q 2u-vde.

Fiir einen Minimierer u € I'y von By (u) gilt Ay (¢) = By, (u). Mit

oOH ov
pﬁl-— Vu) - —F de = \ /uq2u-vd:c
/le S (V) -5 dr =2 (0) [

folgt, dass u eine schwache Losung der Gleichung

—Qu=As(q) |u|"?u

ist, was (iii) nachweist.

3.4 Eindeutigkeit der Losung fiir ¢ <p

Lemma 3.4.1: As(q) ist beschrénkt, falls ¢ aus einer beschrénkten Menge ist.
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3 Das elliptische Randwertproblem im Minkowski Raum

Beweis: Sei g aus einer beschréankten Menge, dann ist nach Lemma 2.5.1 X (¢) beschrénkt.
Zudem gilt

/Q[ (V)P dx < CcP. /\Vu|pdx

Dies impliziert:

Jo [H (Vu)]? dz

Ar(g) = in
weWy P (@).uz0 ( [o |ul? dx)p/q
§ inf C’p . M
ueWy P (2)uz0 (Jo lul? dx)p/q

=CP-Ar(g) <00

O
Satz 3.4.2: Fiir ¢ = p ist die positive Losung von (3.8) eindeutig.
Bemerkung 3.4.3: Fiir ¢ = p hat man folgenden Spezialfall:
—Qu = As(p)uP! fiirz € Q, (3.15)
u=0 fir x € 09Q2.

Hierbei sieht man sofort oder an (3.10), dass mit u auch au fiir jedes a € R\ {0} eine
Losung des Randwertproblems ist. (3.15) ist die Euler-Lagrange-Gleichung des speziellen
Minimierungsproblems: Minimiere

Jp(v) == p-Is (v) = /Q [H (Vo) dw (3.16)

auf der Menge T'y, := {v € Wol’p Q)| ||1;HLP(Q) — 1}_

Beweis des Satzes 3.4.2:
Analog zum Beweis des Satzes 2.5.2 nehme ich an, dass es zwei positive Minimierer u
und z des Funktionals (3.16) gibt, wobei u, z € I'y, gilt.

Wie in [4] definiere ich fiir t € (0,1) die Funktionen 1 :=t-u? + (1 — t) 2P und w := n'/?.
Dann ist w ebenfalls eine zur Minimierung zuléssige Funktion, denn es gilt:

/wpdwzt-/updw—l—(l—t)-/zpda::t+1—t:1
Q Q Q
= w € I'y,. Berechne nun J (w). Betrachte dazu:
Vw =V (77%>
1 1
= - 77117 ! (t-puI’*qu—#— (1—-1t)-p zpflv,z)
p

1<t~up Vu (1—1t)-2P Vz)
:’]’]P 7_1_7

n U n z
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3.4 Eindeutigkeit der Losung fiir ¢ < p

Dan > 0und H positiv homogen vom Grad eins ist, gilt:

H (Vw)=n*H

1 <t-up Vu (1—1t)- 2P Vz)

u n z
Definiere s (z) := % Offensichtlich ist s (z) positiv. Zudem gilt:

t-uP 1—1¢)- 2P 1—t 2P
AL k) RS o
t-upP t uP

[s ()]

Ce(a)) = _t-up:(l—t)zp
= s(x)€(0,1) und (1 () =1 p p

Damit ergibt sich

z

H(Vw)znéH(s(x) -%—I—(l—s(m)) VZ).

Nach Lemma 3.3.3 ist das Funktional J; (v) insbesondere konvex in vP. Wendet man
zunéchst die Konvextitdt und anschliefend die Homogenitét von H an, so erhélt man:

z

cofonfr (S v fn (%)
) R

=t [H(Va)P + (1 —t) - [H (V)] (3.17)

Nach Annahme minimieren v und z das Funktional Jy (v), d.h. es gilt:
[ Sy ds = [ G2 de = 0)
Q Q

Hiermit folgt, dass auch w das Funktional Jy (v) minimieren muss, denn es ist:

/Q (H (V)P de < t- /Q H (Vo)) do + (1) - / (H (V2)]" da

Q
:t~/\f(q)+(1—t) ~/\f(q)
= (@) (3.15)

Dies bedeutet, dass in (3.17) bzw. in (3.18) Gleichheit gelten muss. Beide Funktionen
sind aus I'y, = I'p und deshalb beziiglich der L” -Norm normiert. Dementsprechend folgt
wie im Beweis des Satzes 2.5.2 u = z in LP (). Im Falle p = ¢ ist damit die Eindeutigkeit
bewiesen.

O]
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3 Das elliptische Randwertproblem im Minkowski Raum

Lemma 3.4.4: Seien a,b € RY und a # b Dann gilt:
N

/ (Z {[H @P S @) - e o (b)} (g - m)) dz > 0

k=1

Beweis: Sei t € RYN. Die Funktion

F ) = HOF
ist strikt konvex in ¢. Daher ist
k=1 =a =
fiir a # b. Es ist:
Uy 20

Somit ergibt sich nach Integration iiber Q2 und mit der abgekiirzten Schreibweise

OH(t)|  oH
6tk N Ba;k

() firz=a,b
t=x

die Behauptung. O
Satz 3.4.5: Fiir Ay > A\f(p) gibt es keine positiven Eigenfunktionen von (3.8) mit

Eigenwert Ay. Mit anderen Worten ist jede positive Eigenfunktion von (3.8) ein Mini-
mierer des Rayleigh-Quotienten.

Beweis durch Widerspruch: Sei Ay > Ay (p). Angenommen es existiert eine positive
Eigenfunktion v von (3.8) mit Eigenwert A¢. Sei v, die entsprechende Eigenfunktion
zu Ay (q). Dann ist v, insbesondere stetig und v, = 0 auf 0§2. Da v positiv ist, lésst sich
vp durch Multiplikation mit einer geniigend kleinen Konstante so skalieren, dass

vp (z) < wv(x) fir allex € Q

gilt. Definiere
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3.4 Eindeutigkeit der Losung fiir ¢ < p

Esist 0 < k < 1. Sei ¢ eine positive Testfunktion, dann gilt mit p = Vo, und ¢ = V (kv):

/Q (Z H (Vo) 2 (v, ;Z) dz

P Opk
A ) [ o
< (p)/ P16 da

Q
=\ "od
f/Q(mJ) ¢ dx

N

= KV 1 00 KV 9 x
—/Q<Z[H<v< W G (Y >>amk>d

k=1

N
1 0H 1 0H 0¢
p—1 Y44 o p—1 Y55 _ <
- (kz i (Tt S (F0) — 11 (7 (o) 5 (9 ()} M) dr <0
Wiihle nun als Testfunktion ¢ = (v, — xv) . Dann ergibt sich:
N

p—18£v_ HUp_laiﬁv Mw
/vp>m;{[H(vvpﬂ oy (Vo) ~ [H (1)) 8¢k(v)} b <0

Nach Lemma 3.4.4 gilt jedoch mit Vv, = a und V (kv) = b, dass dieser Ausdruck fiir
Vo, # kv positiv ist. Folglich ist (v, — m))+ = 0, was bedeutet, dass Vv, < kv gilt.

Zusammengefasst heift das: Aus v, < v folgt —Qu, < —Q (kv) und dies impliziert
v, < Kkv. Wiederholt man nun das Argument fiir kv anstelle von v so erhiilt man v, < xv.
Fiir den j — ten Schritt ergibt sich daher

Ogvpgﬁjv.

Die rechte Seite konvergiert fiir j — oo gegen Null, woraus v, = 0 folgt. Dies steht im
Widerspruch zur Annahme, dass v, eine positive Eigenfunktion ist. O

Satz 3.4.6: Positive (schwache) Losungen von

{Qu—i—f(x,u)zo fir x € Q,

i (3.19)
u=0 fir x € 902

sind eindeutig vorausgesetzt f : Q x [0, 00) geniigt den Bedingungen:
1. Die Abbildung r'~Pf (x,r) ist streng monoton fallend in r € [0, 00).

2. Es existiert eine positive Konstante C, so dass f (z,r) < C (rp_l + 1) fiir fast alle
x € Q und fiir alle r € [0, 00) gilt.
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3 Das elliptische Randwertproblem im Minkowski Raum

Beweis: Losungen von (3.19) sind kritische Punkte des Funktionals

H(v) = /Q {; (H (Vo) — F (m,v)} do

mit F (z,v) := [; f (2,|s]) ds. Aufgrund von 2. ist H auf W, P () wohldefiniert. Zudem
ist H per Konstruktlon ein gerades Funktional in v, d.h. es gilt H (v) = H (—v). Der
erste Teil ist nach Lemma 3.3.3 konvex in v”. Der zweite Teil — [, F (x,v) dx ist sogar
strikt konvex in vP. Denn mit w := vP gilt

F(x,w>:/0w f (, |2]) ds

Differenziert man diesen Ausdruck nach w so erhalt man

g—i:f(x,w%) ]l)w1 == f(acv) 1=p,

Dies ist aufgrund von 1. strikt monoton fallend in v. Somit ist —8—p strikt monoton
wachsend in v, was die strikte Konvexitit von — fQ x,v) dx in vP beweist. Zusammen-
genommen impliziert dies, dass das Funktional H maximal einen kritischen Punkt haben
kann. O

Mit Hilfe des Satzes 3.4.6 1asst sich nun Folgendes beweisen:

Satz 3.4.7: Fiir ¢ < pist die positive Lésung des folgenden Randwertproblems eindeutig:

—Qu = s (q) [u|"?u fiir x € Q,
u=20 fiir x € 00

Beweis: Hier ist f (z,u) = Af (@) u(z)?'. Dass dieses f den Bedingungen 1. und 2.
geniigt wurde bereits im Beweis des Satzes 2.5.2 gezeigt. Damit ist die Eindeutigkeit im
Fall ¢ < p ebenfalls bewiesen. O

Bemerkung 3.4.8: Aus den Sitzen 3.4.2 und 3.4.7 folgt, wie in der Uberschrift dieses
Abschnittes angedeutet, die Eindeutigkeit der Losung von (3.8) fiir ¢ < p.

3.5 Konvergenzverhalten im allgemeineren Fall
Satz 3.5.1: Sei ¢ < p*. Da p < p* gilt, gibt es fiir ¢ zwel mogliche Fille:

(a) Fiir ¢ — qo < p gilt: A\f(¢) — Af(qo) und u(q) — u(qo) in Wol’p (€2). Dies
bedeutet, dass A\f (¢) und u(q) stetig in ¢ sind, falls ¢ < p ist.
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3.5 Konvergenzverhalten

(b) Fiir ¢ — qo > pgibt es (Ag,, uo), so dass (A (q) ,u(q)) — (Ag, uo), mit Ag = A(qo),
up > 0 und (Ay,,up) eine Losung von (3.8) ist. Dies bedeutet insbesondere, dass
Ar (¢) in ¢ oberhalbstetig fiir ¢ > p ist.

Lemma 3.5.2: Es gilt die folgende Identitét:

H(§) = ZELH (&) &k (3.20)

Hierbei ist £ = Vu.

Beweis: Da H positiv homogen vom Grad eins ist, gilt insbesondere
H (t€) = tH (€) fiir alle positiven, reellen ¢ und fiir alle £ € RY.

Differenziert man diese Gleichung beziiglich ¢ und wertet sie anschlieffend bei ¢t = 1 aus,
so erhélt man einerseits

d X oH 0(t)| <= 0H
Mﬂ@\;;mmwaéﬁhlgh#@@
und andererseits
d
S ©)| = H(©).
Zusammen ergibt sich die Behauptung. O

Lemma 3.5.3: Sei u (q) eine Losung des Randwertproblems (3.8) mit beschranktem g,
dann ist u (q) beziiglich der W!P-Norm beschrinkt in Wol’p (Q).

Beweis:

'p

3=

lu(@l” = </Q\u|p+|wpdx>

(3.2) 1
gwwm+&4wmwm
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1 / [H (Vu)|P dx
= G / [H (V)P - H (Vu) da
N
(3.20) N OH v Ou d
/Q (2‘1 & (Vu) Oxy, v
311) 1 _9
=" =X (g) / uFu-ude

= =A@ u(a)llg

IN

= [[IVu(a)lll;

Dau € Iy, ist [Jul|{ = 1 und damit

Ve (gl < ép’)‘f (9)- (3.21)

Ist ¢ beschrinkt, so folgt aus Lemma (3.4.1), dass Ay (¢) beschrinkt ist und man erhalt,
dass u (q) in Wol’p (2) beziiglich der Norm | - ||y, beschréinkt ist. Dass u (¢) beschrénkt

in T/VO1 P (Q) beziiglich der WP-Norm ist, beweist man wie in Kapitel 2 mit folgender
Ungleichungskette

(2.4)
lu (DI = llu (D)l + 11V (]Il < (C + 1) [[Vu (@2 2" (C7 +1) s (g) < oo,

O]

Beweis des Satzes 3.5.1:

I: Der erste Teil funktioniert analog zu dem ersten Schritt des Beweises von Satz 2.6.1:
Sei (¢n),cn eine gegen qo konvergente Folge. Wegen Lemma (3.5.3) ist u (gn) := u,
eine beschrankte Folge und besitzt somit eine in VVO1 P (Q) schwach konvergente

Teilfolge mit einem Grenzwert ug < oco. Ohne Beschrinkung der Allgemeinheit

gelte also ¢, — qo, Af (qn) 0, A, und

Uy 78 4 schwach in W P(Q), stark in L% (Q).
Insbesondere ist damit (u(gn)),,cn in L% (2) eine Cauchyfolge.

II: Zeige, dass u (¢n) =—2 ug stark in W™ (€) konvergiert.

Entsprechend des Beweises von Satz 2.6.1 geniigt es die beiden Eigenschaften

(i) Vu(gn) 2= Vg in LP (Q)
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3.5 Konvergenzverhalten

(i) 1Vu (@), == ll[Vuolll, in R
nachzuweisen.
Zu (i): Da u (gn) L= 4 schwach in W& P (Q) konvergiert, gilt insbesondere
Vu (qn) 2= Yy in LP ().
Zu (ii): Zeige zunéchst, dass (Vu (qn)), ey €ine Cauchyfolge in LP (£2) bildet. Wobei es
wiederum ausreicht die Eigenschaften (i) und (ii) fiir diesen Fall nachzuweisen.

Aus der schwachen Konvergenz in LP (Q2) von Vu(gy,) gegen Vug folgt wie
zuvor (i). Um zu zeigen, dass

11V (ga)lll, = 11V (@), <= 0 in R (3.22)
gilt, betrachtet man gy, ¢, in der Ndhe von qg. u (¢,) und u (gy,,) erfiillen die
Gleichung:

p—1 OH
/Qk 1{ Vem)] 0k (Vin)
OH 0
—[H (Vup)|? -1 8Ck (Vum)} a—xk (Up, — Up) dx
0 1 OH
=30 2 i @up S v
1 OH
— [H (V)P 9, (Vum)} (Up — up,) dx
= [ ~{eu@) - Quan)} (i) ~ v @
(3.8)

= /Q {)\f (gn) ud ™" = Xs (gm) u?{{l_l} (Up, — Upy,) dx (3.23)

Hierbei steht & als Abkiirzung fiir g“” und ¢ fiir aum . Die rechte Seite der
Gleichung konvergiert wie in (2.20) fiir n,m — oo gegen Null.

Multipliziert man M, d.h. den ersten Ausdruck aus Gleichung (3.23) aus, so
erhilt man qualitativ zwei verschiedene Terme:

oOH 0
1. n’”—vn Uy d
) /Q a5, (Vin) - g n o

k=1

[ (Fu) o = 1 (Vu)]
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OH 0
2. / up) P 1— V) - —Um dz

Q

Holder H H Vun)]p 1

0
p }j}i<Vum-ck

p—1

N
oOH
— (Vuy) - (
12 e

p

= [[H (Vu)|P” !

p

(®) b1
< H V)l [H (Vum)ll,

Hierbei gilt die Abschitzung (%), denn es ist:

Das heifit lequl g—g (&) - Ck ist die erste Variation von H in & in Richtung (.

Zudem gilt { [H (§+1C) — H (§)] < §[H (&) +tH (¢) — H (§)] =
jede positive, reelle Zahl t. Insgesamt erhélt man

—5 ) -G = lim [ (6 +1C) — H (€)] < H (0

gﬂz

£
Il

und damit die Abschitzung ()

<[ Oll, = I1H (Vum)]l,,-

p

H (¢) fur



3.5 Konvergenzverhalten

I11:

Die anderen beiden Terme ergeben sich analog. Damit folgt:

vo- [y {ttr (uy 5 (v

Qp=1
— [H (V)P gg (Vum)} £k (tn — ) da

> (V)5 — | H (w57 [ H (Tun)],
| () = |H (V) [57 [ H (),
= H ()57 (1 (), = 1H (V)] )
18 (Fun) 57 (15 (V) — | H (Tun)]], )

= (1 (Va)lZ = 1 (Fan) ) - (1H (Vun)ll, = 1H (Vum)l, )
= N2>0

Fiir n, m — oo konvergiert M gegen Null, daher muss auch der kleinere
(positive) Ausdruck N in diesem Grenzwert gegen Null gehen:

= | H (Vua)ll, = 1H (Vun)||, === 0in R

Da H eine stetige Norm ist und aufgrund der Aquivalenz aller Normen in RY
folgt damit (3.22) und es ist gezeigt, dass (Vu (qn)), <y €ine Cauchyfolge in
LP (Q) ist.

Als Banachraum ist LP (€2) insbesondere vollstéindig. Somit existiert eine
Grenzfunktion, die aufgrund der Eindeutigkeit des schwachen Grenzwertes
mit Vug iibereinstimmen muss:

= [1Vu(ga)lll, = 1 Vuol |, == 0

[,

Damit sind (i) und (ii) erfiillt und es gilt u (gn) =—2> ug stark in Wol’p (Q).

Aufgrund der starken Konvergenz iibertrigt sich auf ug die Figenschaft ug > 0.
Die Stetigkeit der Norm sorgt fiir [luol[,, = 1. Daher ist ug nicht identisch Null.
Zusiitzlich impliziert u (g,) 2% ug stark in Wy (), dass ug eine schwache

Lésung des folgenden Randwertproblems ist:

—Qug = )\fougo_l fiir z € Q,
ug =0 fir x € 09.

Positivitat von ug folgt erneut aus dem Minimumprinzip [11].
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IV: Es gilt A (go) < Agy. Denn (Mg, up) ist eine Losung von (3.8) und damit ist Ay,
nach Satz 3.3.2 durch folgenden Ausdruck gegeben:

fQ (Vug))F dx
(Jiy o] diar)”/

A

0

Somit gilt:

(Vug) d (Vug)P d
inf fﬂ uo)l” de = fQ uo)|” da =

(3.13)
ueW, P (Q),u0 (f |u|®0 da:)p/qo (fQ |ug| % da:)p/qo

Ar (q0)

Hiermit ist Fall (b) aus Satz 3.5.1 bewiesen.
V: Fiir ¢ < p ist die Losung des Randwertproblems (3.8) eindeutig. Damit folgt aus

der Eindeutigkeit der Losung fiir ¢ — qo < p , dass ug = u (qo) und Ay, = Ar (qo)
gilt. Damit ist auch (a) aus Satz 3.5.1 gezeigt.

3.6 Der Fall ¢ konvergiert gegen p
Konvergiert der Exponent g der rechten Seite der partiellen Differentialgleichung gegen
die Konstante p des Q-Laplace Operators, so gilt folgender Satz:

Satz 3.6.1: Sei

1/(g—p)
v(g) = <W> w(q) (3.24)

fiir ein Ay > 0. Falls entweder
(i) Ay < As(p) und ¢ — p* oder
(’LZ) )\f > )\f (p) und q—p

erfiillt ist, dann gilt [|v (¢)]] 2 co.
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3.6 Der Fall q konvergiert gegen p

Beweis: Da u(q), Ay und Ay (q) positiv sind, ist auch v (¢) positiv. Fiir v (¢) gilt:

1/(q—p)
“ouie) %2 g [(W> o u(q>]

P g—1
(3.24) <)\f ((ﬂ)” ( < Af )“ g—1
= q) - v (q)
Af Ar(g)
= Apv(g)?
Nebenrechnungen zu (%): Es ist
p=1_g—1 p—1l—g+1 _(a=p)
)\f (q)q—p sl — )‘f (q) ap 11 _ )‘f (q)l —p = )\f (q)O =1
und
_p=1l,g-1 —p+1+qg—1 (¢—p)
q—p q—p __ q—p — q—p __
)\f =A; = )\f Af
Damit gentigt v (q) der Gleichung
—Ap(g) = Apv ()", (3.25)

Zudem gilt v (q) = <>‘f—(q) u (q) = 0 auf dem Rand von 2, da u eine Losung von

1/(q—p)
A )
(3.8) ist.
Angenommen ||v (q)|| divergiert nicht fiir ¢ — p. Dies bedeutet, dass v (q) beschrinkt
ist. Folglich besitzt v (¢q) fiir ¢ — p eine in I/VO1 P (Q) schwach konvergente Teilfolge mit

einem schwachen Grenzwert vy, der ebenfalls in VVO1 P (Q) liegt. Sei ohne Beschrinkung

der Allgemeinheit v (gn) =—2 vy schwach konvergent in VVO1 P(Q).

Analog zu Schritt IT im Beweis des Satzes 3.5.1 erhilt man, dass v (¢,) — vo stark in
VVO1 P (Q) konvergiert. Hieraus ergibt sich ebenfalls analog zum Beweis des Satzes 3.5.1
(mit go = p), dass vy positiv und eine schwache Losung der folgenden Gleichung ist:

(3.26)

—Quo = A\pub !t fiirz € Q,
vo=0 fiir x € 990

Zu Fall (i): Ay < A (p) und ¢ — p*, d.h. insbesondere gilt ¢ > p. Nach Satz 3.3.2 ist

H(Vuw)Pd
)\f(p): inf fQ[ ( ;L)] v
u€Wy P (Q),u#0 (fﬂ |ul dﬂf)
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Zu Fall (ii):

64

der kleinste Eigenwert, welcher eine nicht triviale Losung von (3.26) ermdglicht.
Daher folgt fiir Ay < Af(p), dass vo = 0 in Wol’p () gelten muss.

= v (g) — 0in W7 (Q).

Insbesondere konvergiert v (¢) punktweise gegen die Nullfunktion und es gentigt
ohne Beschrankung der Allgemeinheit v (¢) < 1 fast {iberall in Q zu betrachten.
Fir ¢ > p, Ap < Af(p), v(q) <1 gilt:

(3.25)

~Qu (q) Ao (q) "t < Apo (g

Da mit u (p) auch a-u (p) eine Lésung von (3.15) ist, kann man v (¢) < u (p) fiir
geniigend kleines 5 := (¢ — p) > 0 annehmen. Dann gilt:

—Qup) " A @) u )P 2 A () v (@ > Ao (g

Zusammengefasst hat man also:

v(g) <u(p) wund

—Qu(q) < Apv ()" < —Qu(p)
Hieraus ldsst sich nach [17], [23]| ableiten, dass ein u € Wol’p (Q) existiert mit
v(q) <u < u(p), so dass u folgende Gleichung 16st:

—Qii= ;P!

Dies steht jedoch im Widerspruch dazu, dass (Af (p),u (p)) die eindeutige Losung

des Randwertproblems (3.15) ist. Damit ergibt sich im Fall (4): ||v (q)|| 2 cc.

Ar > A (p) und ¢ — p~, d.h. insbesondere ¢ < p. Nach Satz 3.4.5 gibt es fiir
p = q keine positiven Eigenfunktionen von (3.8) mit Eigenwert Ay > Af (p). Daher
muss vp = 0 in Wol’p (Q) gelten. Dies bedeutet, dass v (q) in Wol’p (Q) gegen die
Nullfunktion konvergiert:

v(g) £ 0in Wol’p Q)

Insbesondere konvergiert v (¢) punktweise gegen die Nullfunktion und es gentigt
ohne Beschriankung der Allgemeinheit v (¢) < 1 fast tiberall in € zu betrachten.
p>q = p—q>0 = v(MT<1?Pi=1 = v(g@)"?>1.

Af

s (p)
Af
Ar(p)

Mit Ay > Af (p) bzw. > 1 folgt durch Multiplikation beider Ungleichungen

v(@)T>1 = A (P> A (p).



3.6 Der Fall q konvergiert gegen p

Zudem gilt folgende Ungleichungskette:

0 (? /Q <—Qv (q) -W) dx

- /Q (—Qu () - 1 (qiip‘)p“ fp)p) do

(3.25),(3.8) / ()\fv (@)1 ,”(Q)p_u(p)p> dx
Q

v(g)!

—/Q <)‘f (p)u(p)’~! 'W> dzx

= [ Q@ T =N ) - @ —u ) ds <o
>0 <0

Aus dieser ergibt sich dann auch im Fall (i7) ein Widerspruch:
q—p

= [lv (@)l == o0

Zu (3%): Definiere u := u” und

K () ;—/Q[H (V(a)éﬂpdx—A[H(vu)]de—p.zf(u).

Nach Lemma 3.3.3 ist [, [H (Vv)]” dz konvex in v? fiir ¢ < p. Insbesondere ist
daher Ky () konvex in 4. Damit ist K} () monoton wachsend und dies impliziert:

K} (@) (@ —0) — K} (9) (@ —0) = (K} (@) - K} (9)) (@—10) >0

K (@) - (u— ) ist die erste Variation von K in @ in Richtung (¢ — v). Um diese

zu berechnen definiere ich zuniichst die Hilfsgrofen x® und y:

0 —v(u 7
X" =V (u+tp)r und
x =V (u)r
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Damit ergibt sich die erste Variation von Ky in eine beliebige Richtung ¢ zu:

d -
— Ky (u+tg0)‘

= [H (V(mw)%)}pdx\

t=0 :% Q

:/QZN:p [H (v (a+w)%)}p’l ;’H (Xa))

t
k=1 Xl(q)

p

t=0

t=0
N _ -
[ @] B (7 o)

N
—/ Z [H (Vu)]P~ on (Vu) - é)aa:k (u' P p) dz, mit & = uP

Analog erhélt man fiir v

d 1
KT+t ( — [ —Qu- -0 dz.
dt f(v+ ()0) t:() /Q QU ’Up_l ()0 x

Nutzt man nun als Testfunktion ¢ = (u — v) so ergibt sich (3¥):

0 < (K} (@) — K7 (9)) (u—7)
= /Q (—Qv (q) - L (qv)]zq_)pul(l’)p> da —/Q <—Qu (p) - L <q12p(p_)pu£p)l’> dz

O]

Bemerkung 3.6.2: Satz 3.6.1 besagt, dass Losungen der partiellen Differentialgleichung
(3.25) - bzw. skalierte Losungen von (3.15) - unter der Bedingung (i) oder (ii) im Grenz-
wert ¢ gegen p divergieren. Sie liegen damit nicht mehr in VVO1 P(Q).
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