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Einleitung

Das Ziel dieser Diplomarbeit ist es, die Arbeit von Herrn Yin Xi Huang

�A note on the asymptotic behavior of positive solutions for some elliptic equation� [12]

auf Situationen zu erweitern, in denen ein Gebiet Ω des RN nicht mehr mit einer
euklidischen Norm sondern mit einer allgemeinen Minkowski-Norm ausgestattet ist.

Diese Arbeit ist in drei Kapitel gegliedert:

• Das erste Kapitel beinhaltet eine Einführung in das Randwertproblem. Dieses be-
inhaltet den p-Laplace Operator, einen im allgemeinen nichtlinearen, elliptischen
Di�erentialoperator, der für p = 2 in den gewöhnlichen Laplace Operator über-
geht. Zudem werden Situationen aufgezeigt, in denen dieses Randwertproblem zur
Beschreibung von nichtlinearer Physik von Nutzen ist.

• Das zweite Kapitel beschäftigt sich mit der Ausarbeitung der Resultate der Arbeit
von Herrn Yin Xi Huang.

• Im dritten Kapitel be�ndet sich dann die Erweiterung der Resultate auf den
Minkowski Raum. Dies führt zu einem verallgemeinerten p-Laplace Operator. Es
hat sich gezeigt, dass sich alle Ergebnisse auch im Falle einer Minkowski Norm
beweisen lassen. Von groÿem Nutzen war dabei die Äquivalenz aller Normen auf
dem RN .
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1 Einführung und physikalische

Motivation

1.1 Das Randwertproblem

In der Arbeit �A note on the asymptotic behavior of positive solutions for some elliptic

equation� [12] beschäftigt sich Herr Yin Xi Huang mit dem Randwertproblem{
−∆pu = λ (q) |u|q−2u für x ∈ Ω,

u = 0 für x ∈ ∂Ω.
(1.1)

Dabei ist Ω ⊂ RN , N ≥ 1 ein beschränktes Gebiet mit glattem Rand, p ∈ (1,∞) und
λ ∈ R.

Bemerkung 1.1.1: Die partielle Di�erentialgleichung ist die Euler-Lagrange-Gleichung
zu folgendem Energiefunktional

E (u) =
∫

Ω

1
p
|∇u (x)|p − λ (q)

q
|u(x)|q dx (1.2)

mit der Randbedinung u = 0 für alle x ∈ ∂Ω.

De�nition 1.1.2: Die erste Variation von u in Richtung v ist de�niert durch:

δE (u, v) :=
d

dt
E (u+ tv)

∣∣∣∣
t=0

Eine notwendige Bedingung für ein Minimum ist das Verschwinden der ersten Variation:

0 != δE (u, v) , für alle v ∈ C∞0 (Ω)

Sei also v ∈ C∞0 (Ω) beliebig

0 !=
d

dt
E (u+ tv)

∣∣∣∣
t=0

=
∫

Ω

(
|∇u|p−2∇u · ∇v − λ(q) |u|q−2 u · v

)
dx.
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1 Einführung und physikalische Motivation

Dies ist zunächst die schwache Form der Euler-Lagrange-Gleichung. Durch partielle
Integration (vorausgesetzt u sei di�erenzierbar) und mit anschlieÿender Verwendung
des Fundamentallemmas der Variationsrechnung erhält man die starke Form der Euler-
Lagrange-Gleichung:

−∆pu = λ (q) |u|q−2 u (1.3)

De�nition 1.1.3: Der p-Laplace Operator ist de�niert durch:

∆pu := div
(
|∇u|p−2∇u

)
=

N∑
k=1

∂

∂xk

(
|∇u|p−2 ∂u

∂xk

)

Bemerkungen 1.1.4:

• Der p-Laplace Operator ist im Allgemeinen nichtlinear und positiv homogen vom
Grade (p− 1), d.h. für alle α > 0 gilt:

∆p (αu (x)) = αp−1∆pu (x) (1.4)

• Für den Fall p = 2 geht er in den herkömmlichen, linearen Laplace Operator
∆u = div (gradu) über.

• Für p < 2 wird der Exponent von |∇u (x)|p−2 negativ. Damit divergiert der
p-Laplace Operator an den Stellen, an denen |∇u (x)| verschwindet oder unendlich
groÿ wird, denn:

∆pu = div
(
|∇u|p−2∇u

)
=

N∑
k=1

∂

∂xk

(
|∇u|p−2 ∂u

∂xk

)

= |∇u|p−2 ∆u+
N∑
k=1

∂u

∂xk

∂

∂xk

(
|∇u|p−2

)

1.2 Anwendungen in der Physik

Der p-Laplace Operator taucht in verschiedenen Bereichen der Physik auf, zum Bei-
spiel in der Plasmaphysik, bei nicht linearen Di�usionsproblemen, Flüssen durch poröse
Medien, so wie in nicht-Newtonschen Flüssigkeiten [7].
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1.2 Anwendungen in der Physik

1.2.1 Newtonsche- und nicht-Newtonsche Flüssigkeiten

ImWesentlichen gibt es bei der Beschreibung von Flüssigkeiten zwei diverse Ansätze: Die
diskrete Theorie, bei der man die molekulare Struktur der untersuchten Materie berück-
sichtigt oder die Kontinuumstheorie, auf welcher die folgenden Überlegungen basieren.
Um nicht-Newtonsche Flüssigkeiten von Newtonschen Flüssigkeiten abzugrenzen braucht
man zunächst folgende De�nition:

De�nition 1.2.1: Eine Newtonsche Flüssigkeit ist dadurch charakterisiert, dass dessen
Scherspannung proportional zur Scherrate ist. Ein Newtonsches Medium ist daher ein
lineares Medium.

In der folgenden Situation beschränke ich mich auf den ebenen Fall [21]:

Abbildung 1.1: Schematisches Diagramm zur Scherspannung verursacht durch einen
Geschwindigkeitsgradienten

Eine Flüssigkeit �ieÿt entlang der y Richtung mit einer Geschwindigkeit u. Jedoch ist die
Geschwindigkeit eines jeden Flüssigkeitstropfens von der entsprechenden x-Koordinate
des Tropfens abhängig. Die Geschwindigkeit ist damit eine Funktion der x-Koordinate:
u = u(x). Betrachtet man nun eine beliebige Gerade g parallel zur y-Achse, so stellt
man fest, dass entlang dieser eine (Scher-)Spannung wirkt: Rechts von der Geraden
ist die Flüssigkeit schneller als links davon. Die schnellen Flüssigkeitstropfen werden die
langsamen vorwärts ziehen und die langsameren Tropfen ziehen die schnellere Flüssigkeit
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1 Einführung und physikalische Motivation

zurück. Damit wirken gleichgroÿe aber entgegengesetzte Kräfte auf die Flüssigkeitstropfen
auf der Geraden wie in der Abbildung 1.1 ersichtlich ist.

In einer Newtonschen Flüssigkeit ist wie schon erwähnt die Scherspannung direkt pro-
portional zur Scherrate. Diese wird in der Physik oft mit γ̇ bezeichnet und ist der
Gradient des Geschwindigkeitsfeldes, also du

dx . Würde man sich nicht auf den obigen
Fall beschränken, so ist die Geschwindigkeit im Allgemeinen eine vektorielle Gröÿe und
damit die Scherrate γ̇ ein Tensor zweiter Stufe [15]:

γ̇ = ∇~u =


∂ux
∂x

∂ux
∂y

∂ux
∂z

∂uy

∂x
∂uy

∂y
∂uy

∂z
∂uz
∂x

∂uz
∂y

∂uz
∂z

 (1.5)

Bezeichnet man mit τ die Kraft pro Einheits�äche, so erfüllt eine Newtonsche Flüssigkeit
im ebenen Fall folgende Gleichung:

τ = η
du

dx
(1.6)

Diese Gleichung wurde für laminare, nicht turbulente Strömungen empirisch ermittelt.
Man bezeichnet sie auch als Newtonschen Reibungsansatz [15].

In (1.6) ist η der Viskositätskoe�zient, der oft einfach nur Viskosität genannt wird.
Die Viskosität ist ein Maÿ für die Zäh�üssigkeit eines Fluids. Die Scherspannung τ , als
Kraft pro Fläche, hat die Dimension eines Drucks. Jedoch wirkt bei der Scherspannung
die Kraft nicht senkrecht zur Fläche sondern entlang dieser.

Mit anderenWorten ist ein Newtonsches Fluid eine Flüssigkeit, dessen Viskosität konstant
bleibt, wenn sich die auf das Medium einwirkenden Scherkräfte ändern. Die Viskosität
einer Newtonschen Flüssigkeit darf sich jedoch mit der Temperatur (was gewöhnlich der
Fall ist) und mit dem Druck (was selten auftritt) ändern.

Die meisten Flüssigkeiten (und Gase) mit kleinen Molekülen, die nur auf einfache Weise
miteinander wechselwirken, verhalten sich in etwa Newtonsch. Ein simples Beispiel für
eine Flüssigkeit, die in guter Näherung bei Zimmertemperatur und laminarem Flieÿzu-
stand ein Newtonsches Fluid ist, ist Wasser [15]. Die Viskosität von Wasser bei 20 ◦C
beträgt 1, 00 mPa · s [19].

Über hundert Jahre lang war es üblich Gleichung (1.6) als grundlegendes Modell für
die Dynamik von Flüssigkeiten zu betrachten (siehe [9]). Dennoch gibt es eine Viel-
zahl von Medien bei denen dies nicht so ist. Diese nennt man nicht-Newtonsch.
Nicht-Newtonsches Verhalten tritt insbesondere bei Flüssigkeiten mit langen Molekülen
(Polymeren) auf. Die Ursache für dieses Verhalten ist eine Änderung der Stärke der
Wechselwirkungen in der Flüssigkeit infolge einer veränderten mikroskopischen Struk-
tur. Nicht-Newtonsche Flüssigkeiten werden im Gebiet der Rheologie behandelt. Das
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1.2 Anwendungen in der Physik

Wort 'Rheologie' stammt aus dem Griechischen und heiÿt übersetzt Flieÿkunde. In ihr
werden daher das Flieÿ- und Verformungsverhalten deformierbarer Materie unter der
Einwirkung äuÿerer Kräfte untersucht [16].

Man teilt nicht-Newtonsche Fluide in drei Gruppen ein [15]:

1. Zeitunabhängige (bzw. viskose) nicht-Newtonsche Fluide: Flüssigkeiten, bei denen
die Scherrate eine eindeutige Funktion der Scherspannung ist.

2. Zeitabhängige nicht-Newtonsche Fluide: Komplexere Systeme, für die die Relation
zwischen der Scherrate und der Scherspannung von der Vorgeschichte des Systems
abhängt.

3. Viskoelastische Fluide: Systeme, die sowohl charakteristische Merkmale von Flüssig-
keiten als auch von Festkörpern besitzen.

Im Folgenden werde ich nur die erste Gruppe der nicht-Newtonschen Fluide betrachten.
Diese können durch eine Gleichung der Form τ = f (γ̇) mit γ̇ = du

dx beschrieben werden.

Eine der bekanntesten und meist genutzen empirischen Relation für solche Fluide ist das
Potenzgesetz von Ostwald und de Waele [5]:

η = m |γ̇|p−2 = m

∣∣∣∣dudx
∣∣∣∣p−2

, mit m > 0 und p > 1 (1.7)

Hierbei sind m, dessen physikalische Dimension N sp

m2 ist, und p, welches dimensionslos
ist, für das jeweilige Fluid charakteristische Materialkonstanten. In Gleichung (1.7)
taucht nur der Betrag der Scherrate auf, da man aus Symmetriegründen erwartet, dass
die Viskosität nur von der Gröÿe der Scherrate nicht aber von deren Richtung abhängt.

Somit hat man Gleichung (1.6) auf folgendes rheologisches Potenzgesetz verallgemeinert:

τ = m

∣∣∣∣dudx
∣∣∣∣p−2 du

dx
(1.8)

Für p = 2 erhält man den Spezialfall der Newtonschen Flüssigkeit, weshalb p häu�g
nicht-Newtonscher Index genannt wird.

Viskose Flüssigkeiten unterteilt man noch einmal entsprechend ihren Flieÿeigenschaften
in zwei Gruppen [15]:

• Medien mit p > 2 heiÿen dilatante Flüssigkeiten. Diese weisen unter höherem
Druck eine höhere Viskosität auf. Ein Beispiel hierfür ist eine Stärke-Wasser-
Mischung.
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1 Einführung und physikalische Motivation

• Medien mit p < 2 heiÿen pseudoplastische Flüssigkeiten. Unter gröÿerem Druck
weisen sie eine niedrigere Viskosität auf. Eine pseudoplastische Flüssigkeit ist zum
Beispiel Blut.

Im sogenannten Flieÿdiagramm, welches die Abhängigkeit der Scherspannung von der
Scherrate darstellt, ergeben sich damit folgende drei, schematisch verschiedene Graphen:

Abbildung 1.2: Schematische Darstellung der Flieÿkurven für ein Newtonsches, ein
dilatantes und ein pseudoplastisches Fluid

Bei der Newtonschen Flüssigkeit ergibt sich aufgrund des linearen Zusammenhangs
zwischen Scherspannung und Scherrate eine Gerade mit der Steigung η.

Das Potenzgesetz von Ostwald und de Waele wurde empirisch aufgestellt und ist nicht
immer anwendbar. Zum Beispiel wird es unbrauchbar, wenn man Systeme in der Nähe
von γ̇ = 0 betrachtet. Denn entsprechend Gleichung (1.7) wäre dann η ≈ 0 anstelle einer
positiven Konstanten η0. Hier sind andere Modelle besser geeignet, wie zum Beispiel das
Potenzgesetz von Spriggs oder auch das vier parametrige Carreau Modell [5].

Multipliziert man τ mit der Scherrate du
dx und integriert über das Gebiet Ω so erhält man

den zur Viskosität gehörenden Energieanteil:

Evis (u) =
∫

Ω
τ · du
dx

dx
(1.8)
=
∫

Ω
m

∣∣∣∣dudx
∣∣∣∣p−2 du

dx
· du
dx

dx =
∫

Ω
m

∣∣∣∣dudx
∣∣∣∣p dx

Addiert man zum viskosen Energiefunktional ein kinetisches Energiefunktional, welches
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1.2 Anwendungen in der Physik

typischer Weise (bei einer auf eins normierten Masse) die Gestalt

Ekin (u) =
∫

Ω

1
2
u2 dx

annimmt, so ergibt sich die Gesamtenergie zu:

E (u) = Evis (u) + Ekin (u) =
∫

Ω

(
m

∣∣∣∣dudx
∣∣∣∣p +

1
2
u2

)
dx

Dies ist imWesentlichen die eindimensionale Form des Energiefunktionals (1.2) für q = 2.

Um die Euler-Lagrange-Gleichung herzuleiten, setze ich die erste Variation von E (u) in
Richtung v für alle v ∈ C∞0 (Ω) gleich Null:

0 !=
d

dt
E (u+ tv)

∣∣∣∣
t=0

=
∫

Ω

[
m · p

∣∣∣∣dudx
∣∣∣∣p−2 du

dx
· dv
dx

+ u · v

]
dx

=
∫

Ω

[
−m · p d

dx

(∣∣∣∣dudx
∣∣∣∣p−2 du

dx

)
+ u

]
· v dx

Mit Hilfe des Fundamentallemmas der Variationsrechung erhält man folgende Euler-
Lagrange-Gleichung:

− d

dx

(∣∣∣∣dudx
∣∣∣∣p−2 du

dx

)
+ λu = 0, mit λ =

1
mp

(1.9)

Verallgemeinert man die Herleitung auf höhere Dimensionen so erhält man statt (1.9)

−div
(
|∇u|p−2∇u

)
+ λu = 0

und damit Gleichung (1.3) für q = 2.

1.2.2 Elastische Membran

Im Fall p = q kann man sich zum Beispiel eine isotrope, elastische Membran vorstellen
(siehe [3]), die auf dem Rand ∂Ω eines ebenen Gebietes Ω �xiert ist. Bezeichnet man
mit u (x) die vertikale Verschiebung und sei

∫
Ω |∇u|

p dx die nichtlineare Deformations-
Energie so löst ein Minimierer des sogenanten Rayleigh-Quotienten∫

Ω |∇u|
p dx∫

Ω |u|
p dx

13



1 Einführung und physikalische Motivation

auf W 1,p
0 (Ω) die Euler-Lagrange-Gleichung

−∆pu = λ (p) |u|p−2 u für alle x ∈ Ω. (1.10)

Gleichung (1.10) ist der Spezialfall von Gleichung (1.3) für q = p.

Diese beiden Beispiele zeigen, dass das betrachtete Randwertproblem (1.1) nicht nur von
mathematischer sondern auch von physikalischer Signi�kanz ist.

In Kapitel 3 betrachtet man anstelle der euklidischen Norm im Zähler des Rayleigh-
Quotienten eine allgemeine Norm. Dies wäre beispielsweise dann von Nutzen, wenn die
elastische Membran nicht isotrop, sondern etwa aus verschiedenen Materialien gewebt
ist. Die sich ergebende anisotrope Deformationsenergie kann man so interpretieren, dass
der euklidische Abstand in Ω verzerrt ist. Durch Verwendung einer geeigneteren Norm
ist es möglich diese besser zu beschreiben.
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2 Das elliptische Randwertproblem im

Euklidischen Raum

Herr Yin Xi Huang betrachtet positive Lösungen, die man durch Minimierung von

I (u) =
1
p

∫
Ω
|∇u|p dx (2.1)

auf der Menge

Γq =
{
u ∈W 1,p

0 (Ω) :
∫

Ω
|u|q dx = 1

}
erhält.

2.1 Der Sobolevraum W 1,p
0 (Ω)

De�nition 2.1.1: Der SobolevraumW 1,p
0 (Ω) ist der Abschluss von C∞0 (Ω) bezüglich

der W 1,p Norm:

‖u‖ =
(∫

Ω
(|u|p + |∇u|p) dx

) 1
p

und C∞0 (Ω) die Menge aller unendlich oft di�erenzierbaren Funktionen mit kompaktem
Träger in Ω.

Anders ausgedrückt, minimiert Herr Yin Xi Huang das Funktional auf der Menge der
Funktionen umit kompaktem Träger, die in Lp (Ω) liegen, sowie eine schwache Ableitung
in Lp (Ω) besitzen. Zudem sind sie bezüglich der Lq-Norm normiert. Sie liegen damit auch
in Lq (Ω).

Bezeichnung 2.1.2: Normen inW 1,p
0 (Ω) werden mit ‖ · ‖ bezeichnet; Normen in Lq (Ω)

mit ‖ · ‖q.

Satz 2.1.3: Für beschränktes Ω gilt in Lp Räumen:

0 < p1 < p2 ≤ ∞ =⇒ Lp2 (Ω) ⊂ Lp1 (Ω) (2.2)
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2 Das elliptische Randwertproblem im Euklidischen Raum

Beweis: Für eine Funktion f ∈ Lp (Ω) de�niere die Mengen Ω1 und Ω2 mit Ω = Ω1∪Ω2

folgender Maÿen:

Ω1 = {x ∈ Ω : |f (x)| ≤ 1} und Ω2 = {x ∈ Ω : |f (x)| > 1}

Für jedes p ∈ (0,∞) gilt∫
Ω
|f |p dx =

∫
Ω1

|f |p dx+
∫

Ω2

|f |p dx ≤ |Ω1|+
∫

Ω2

|f |p dx,

wobei das Integral über Ω2 monoton wachsend in p ist.

• Für p1 < p2 <∞ gilt: Sei f ∈ Lp2 (Ω), d.h. es gilt
∫

Ω |f |
p2 dx <∞. Betrachte nun:∫

Ω
|f |p1 dx ≤ |Ω1|+

∫
Ω2

|f |p1 dx
p1<p2
≤ |Ω1|+

∫
Ω2

|f |p2 dx <∞

⇒ f ∈ Lp1 (Ω)

• Für p1 < p2 =∞ benutzt man die Abschätzung |f (x)| ≤ ‖f‖∞ für fast alle x ∈ Ω:∫
Ω
|f |p1 dx ≤ |Ω| ‖f‖p1∞ <∞ ⇒ f ∈ Lp1 (Ω)

Bemerkung 2.1.4: Für q ≤ p ist ‖u‖q = 1 keine wesentliche Zusatzvoraussetzung.

Denn für u ∈W 1,p
0 (Ω) gilt u ∈ Lq (Ω) aufgrund von (2.2). Durch Skalierung von u lässt

sich ‖u‖q = 1 gewährleisten. Konkret heiÿt das: Sei u eine Lösung des Randwertproblems
(1.1), dann löst die skalierte Funktion αu ( mit α ∈ R \ {0}) eine von der Struktur her
gleiche Identität, jedoch mit einem skalierten λ̃ = λ̃ (α) = λ ·αp−q. Mit u ist −u ebenfalls
eine Lösung. Sei daher ohne Beschränkung der Allgemeinheit α > 0

−∆p (αu) = −div
(
|∇ (αu)|p−2∇ (αu)

)
(2.3)

= −αp−1∆pu = αp−1λ |u|q−2 u

= λ̃ · |(αu)|q−2 (αu) , mit λ̃ = λαp−q.

Für q > p ist ‖u‖q = 1 jedoch eine zusätzliche Bedingung. Die Lösung u des Rand-
wertproblems (1.1) muss nicht nur in Lp (Ω) sondern in dem kleineren Raum Lq (Ω)
liegen.

Fügt man die einschränkenden Bedingungen aus Γq mit einem Lagrange-Multiplikator
λ (q) zum Funktional I (u) hinzu so erhält man durch Nullsetzen der ersten Variation
das Randwertproblem (1.1).
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2.2 Der kritische Sobolev-Exponent und die Poincaré-Ungleichung

2.2 Der kritische Sobolev-Exponent und die

Poincaré-Ungleichung

De�nition 2.2.1: Der kritische Sobolev-Exponent p∗ ist de�niert durch:

p∗ =

{
Np
N−p für p < N

∞ für p ≥ N

Bemerkung 2.2.2: Für festes p > 1 gilt:

• p < p∗ ≤ ∞ für alle N

• p∗ N→∞−→ p.

• p∗ trägt den Namen kritischer Sobolev-Exponent, da (zum Beispiel nach [8]) für alle
q ∈ [1, p∗) der folgende Satz, der unter dem Namen Sobolevscher Einbettungs-
satz bekannt ist, gilt:

Satz 2.2.3: Sei Ω ⊂ RN o�en, beschränkt und ∂Ω sei von der Klasse C1. Ferner sei
1 ≤ p < N . Dann gilt

W 1,p (Ω) ⊂⊂ Lq (Ω)

für alle q aus [1, p∗). Dies bedeutet, dass W 1,p (Ω) kompakt eingebettet ist in Lq (Ω).
Insbesondere existiert also für alle q mit 1 ≤ q < p∗ eine Konstante K mit

‖u‖q ≤ K · ‖u‖ .

Zusatz: Es gilt natürlich auch

W 1,p
0 (Ω) ⊂⊂ Lq (Ω) .

Jedoch kann hierbei auf die Voraussetzung an ∂Ω verzichtet werden.

Satz 2.2.4: Für ein beschränktes Gebiet Ω ∈ RN existiert eine Konstante C > 0, die
nur von Ω abhängt, so dass

‖u‖p ≤ C ‖|∇u|‖p (2.4)

für alle u ∈ W 1,p
0 (Ω) gilt. Hierbei ist 1 ≤ p ≤ ∞ beliebig. Diese Relation ist unter dem

Namen Poincaré-Ungleichung bekannt.

Beweis durch Widerspruch:

1. Für den Fall p ∈ (1,∞):
Angenommen (2.4) gilt nicht, dann existiert eine Folge (un)n∈N aus W 1,p

0 (Ω) mit:

‖un‖p > n · ‖|∇un|‖p

17



2 Das elliptische Randwertproblem im Euklidischen Raum

Setze vn = un
‖un‖p

. Dann gilt:

1 = ‖vn‖p > n

∥∥∥∥∥
∣∣∣∣∣∇
(

un
‖un‖p

)∣∣∣∣∣
∥∥∥∥∥
p

= n ‖|∇vn|‖p

⇒ ‖|∇vn|‖p <
1
n

Somit konvergiert (∇vn)n∈N in Lp (Ω) gegen Null.

∇vn → 0 in Lp (Ω)

⇒ (vn)n∈N ist beschränkt inW 1,p
0 (Ω). DaW 1,p

0 (Ω) in Lp (Ω) kompakt eingebettet
ist, existiert eine Teilfolge

(
vnj

)
nj∈N

die gegen ein v aus Lp (Ω) in der Lp-Norm

konvergiert:

vnj → v in Lp (Ω)

Da W 1,p
0 (Ω) für p ∈ (1,∞) re�exiv ist, besitzt (vn)n∈N eine schwach konvergente

Teilfolge (vnk
)nk∈N mit Grenzwert w ∈W 1,p

0 (Ω): vnk
⇀ w in W 1,p

0 (Ω) [24]:

⇒

{
vnk

⇀ w in Lp (Ω)
∇vnk

⇀ ∇w in Lp (Ω)

Aus der Eindeutigkeit des schwachen Grenzwertes folgt nun, dass v = w und
∇w = 0 gilt. Hieraus ergibt sich, dass w fast überall konstant sein muss. Mit den
Nullranddaten erhält man: w ≡ 0 in W 1,p

0 (Ω). Andererseits gilt jedoch

‖w‖p = ‖v‖p = lim
k→∞

‖vnk
‖p = 1,

was zum Widerspruch führt.
Dieser Beweis klappt nicht für p = 1 oder p =∞, da W 1,1 (Ω) und W 1,∞ (Ω) nicht
re�exiv sind.

2. Für den Fall p =∞:

Da W 1,p
0 (Ω) = C∞0 (Ω)

W 1,p

gilt, genügt es u ∈ C∞0 (Ω) zu betrachten. Jedes
beschränkte Gebiet Ω aus RN lässt sich in einem Quader der Kantenlänge (b− a)
unterbringen.
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2.2 Der kritische Sobolev-Exponent und die Poincaré-Ungleichung

Abbildung 2.1: Beschränktes Gebiet Ω im Quader

|u (x)| ≤
∫ xi

a
|uxi (x1, ..., xi−1, y, xi+1, ..., xn)| dy

≤
∫ b

a
|uxi (x1, ..., xi−1, y, xi+1, ..., xn)|︸ ︷︷ ︸

≤‖uxi‖∞

dy ≤ (b− a) · ‖uxi‖∞

⇒ ‖u‖∞ = sup
x∈Ω
|u (x)| ≤ (b− a) ‖uxi‖∞ ≤ C ‖|∇u|‖∞

Für eine geeignete Konstante C > 0.

3. Für den Fall p = 1:
Betrachte u ∈ C∞0 (Ω). Wie im Fall p =∞ gilt |u (x)| ≤

∫ b
a |uxi | dy und somit:

‖u‖1 =
∫

Ω
|u (x)| dx ≤

∫
Ω

(∫ b

a
|uxi | dy

)
dx

Fubini=
∫ b

a

(∫
Ω
|uxi | dx

)
dy ≤

∫ b

a

(∫
Ω
|∇u| dx

)
︸ ︷︷ ︸
=‖|∇u|‖1=konst.

dy

= (b− a) ‖|∇u|‖1 =: C ‖|∇u|‖1

19



2 Das elliptische Randwertproblem im Euklidischen Raum

2.3 Positivität der ersten Eigenfunktion

De�nition 2.3.1: Eine Funktion u ∈W 1,p
0 (Ω) , u 6= 0 heiÿt Eigenfunktion des Rand-

wertproblems (1.1), falls∫
Ω
|∇u|p−2∇u · ∇φ dx = λ (q)

∫
Ω
|u|q−2 u ·φ dx (2.5)

für alle φ ∈ C∞0 (Ω) gilt. λ (q) ∈ R heiÿt Eigenwert.

Aufgrund der Regularitätstheorie [20] weiÿ man, dass schwache Lösungen von (2.5) in
C1,α (Ω) liegen. Sie sind damit insbesondere stetig.

Lemma 2.3.2: Die erste Eigenfunktion, die dem ersten Eigenwert entspricht, wechselt
ihr Vorzeichen nicht.

Beweis des Lemmas: Zunächst einmal sieht man an Formel (1.2), dass sich die Energie
E (u) des Systems unter der Transformation u → −u nicht ändert. Setzt man v = |u|
so erfüllt v o�ensichtlich die Nullrandbedingung, d.h. v = 0 für alle x ∈ Ω und mit
u,−u ∈W 1,p (Ω) ist auch v ∈W 1,p (Ω). Zudem gilt:

1 =
∫

Ω
|u|q dx =

∫
Ω
vqdx =

∫
Ω
|v|q dx

⇒ v ∈ Γq

Damit ist v eine zulässige Funktion zur Minimierung des Funktionals (2.1). Es gilt also
E (u) = E (|u|) = E (v) mit v ≥ 0. D.h. falls u die Energie minimiert, so ist sie auch für
−u und v minimal.

Entsprechend des schwachen Minimumprinzips [18] nimmt die Funktion ihr Minimum
auf dem Rand an. Das starke Minimumprinzip [18] besagt im Wesentlichen Folgendes:
Nimmt eine Funktion v ihr Minimum im Inneren von Ω an, so ist sie auf ganz Ω konstant.
Auf ∂Ω gilt jedoch v = 0 und damit würde v ≡ 0 in W 1,p

0 (Ω) folgen. Dies steht jedoch
im Widerspruch dazu, dass v eine Eigenfunktion bzw. dass

∫
Ω |v|

q dx = 1 sein soll.

⇒ v > 0 für fast alle x ∈ Ω ⇒ |u| > 0 für fast alle x ∈ Ω.

Ein alternativer Beweis dazu, dass v > 0 für fast alle x ∈ Ω (statt v ≥ 0) gilt, ist mittels
Harnackscher Ungleichung:
Für die Funktion v (x) gilt die Harnacksche Ungleichung [10], [22]. Dies bedeutet, dass
ein C > 0 existiert, so dass

max
Br

v (x) ≤ C min
Br

v (x)
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2.4 Existenz des Rayleigh-Quotienten

ist, falls B2r ⊂ Ω gilt. Br und B2r sind Kugeln in RN mit den Radien r und 2r. Die
Konstante C hängt nur von p und N , der Dimension des Raumes, ab. Da v ≥ 0 gilt,
folgt aus der Harnackschen Ungleichung, dass v (x) > 0 fast überall sein muss. Denn
angenommen es existiert ein x ∈ Br mit v (x) = 0 so ist minBr v (x) = 0.

⇒ 0 ≤ max
Br

v (x) ≤ C min
Br

v (x) = 0

⇒ max
Br

v (x) = 0

⇒ v (x) ≡ 0 für alle x ∈ Br

Als Gebiet lässt sich Ω durch Kugeln überdecken und mit v (x) = 0 für alle x ∈ ∂Ω
folgt:

⇒ v (x) ≡ 0 für fast alle x ∈ Ω

Dies steht jedoch im Widerspruch dazu, dass v eine Eigenfunktion bzw. dass v aus Γq
sein soll und damit

∫
Ω |v|

q dx = 1 gelten muss.

⇒ v (x) > 0 für fast alle x ∈ Ω ⇒ |u (x)| > 0 für fast alle x ∈ Ω.

Damit ist die Behauptung, dass die erste Eigenfunktion ihr Vorzeichen nicht wechselt,
bewiesen.

Bemerkung 2.3.3: Da mit u auch −u eine erste Eigenfunktion ist, reicht es positive
Lösungen zu betrachten. Für u > 0 lautet (1.1):

−∆pu = λ (q)u (q)q−1 (2.6)

Ein positiver Minimierer u ∈W 1,p
0 (Ω) des Energiefunktionals (1.2) muss damit Gleichung

(2.6) erfüllen.

2.4 Existenz des Rayleigh-Quotienten

Satz 2.4.1: Es existiert ein λ (q) > 0 und ein u (q) ∈ Γq , u (q) > 0, die der Bedingung
(1.1) genügen, mit

λ (q) = inf
u∈W 1,p

0 (Ω),u6=0

∫
Ω |∇u|

p dx(∫
Ω |u|

q dx
)p/q . (2.7)

λ (q) heiÿt Rayleigh-Quotient.

De�nition 2.4.2: Ein Funktional F : W 1,p (Ω) → R heiÿt unterhalbstetig genau
dann, wenn für jede stark konvergente Folge un

n→∞−−−→ u ∈W 1,p (Ω)

lim inf
n→∞

F (un) ≥ F (u) gilt.[6]
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2 Das elliptische Randwertproblem im Euklidischen Raum

Analog de�niert man die schwache Unterhalbstetigkeit [6]:

De�nition 2.4.3: Ein Funktional F : W 1,p (Ω)→ R heiÿt schwach unterhalbstetig

genau dann, wenn für jede schwach konvergente Folge un
n→∞−−−⇀ u ∈W 1,p (Ω)

lim inf
n→∞

F (un) ≥ F (u) gilt.

Beweis des Satzes 2.4.1: Es sind insgesamt drei Eigenschaften zu zeigen:

(i) Das In�mum existiert, d.h. es gibt eine Funktion u bei der λ (q) sein Minimum
annimmt.

(ii) Das Minimum ist gröÿer als Null.

(iii) Die Funktion, bei der das Minimum angenommen wird, ist eine Lösung des Rand-
wertproblems (1.1).

Zu (i): De�niere die Funktion Bq (u) folgender Maÿen:

λ(q) = inf
u∈W 1,p

0 (Ω),u6=0

∫
Ω |∇u|

p dx(∫
Ω |u|

q dx
)p/q =: inf

u∈W 1,p
0 (Ω),u6=0

Bq (u)

Ziel ist es Bq (u) auf der Menge Ã :=
{
u
∣∣ u ∈W 1,p

0 (Ω) , u 6= 0
}
zu minimieren.

Dies ist äquivalent dazu Z (u) auf der Menge

A :=
{
u
∣∣∣ u ∈W 1,p

0 (Ω) ,
∫

Ω
|u|q dx = 1

}
zu minimieren. Hierbei ist Bq (u) := Z(u)

Nq(u) , wobei Z (u) =
∫

Ω |∇u|
p dx der Zähler

und Nq (u) =
(∫

Ω |u|
q dx

)p/q
der Nenner des Bruches Bq (u) ist.

Um (i) zu beweisen, muss man daher zeigen, dass minu∈A Z (u) existiert. Per
De�nition ist λ (q) nicht negativ. Ebenso ist Z (u) ≥ 0 und damit nach unten
beschränkt. Folglich existiert eine Minimalfolge (un)n∈N ⊂ A mit

lim
n→∞

Z (un) = inf
u∈A

Z (u) ≥ 0.

Da Z (un) konvergiert, ist es durch eine Konstante K nach oben beschränkt:

K ≥ Z (un) =
∫

Ω
|∇un|p dx = ‖|∇un|‖pp

(2.4)

≥ Cp ‖un‖pp

Damit sind die Lp-Normen von un und ∇un beschränkt.

⇒ un ist beschränkt in W 1,p
0 (Ω) .
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2.4 Existenz des Rayleigh-Quotienten

Da W 1,p
0 (Ω) für p ∈ (1,∞) re�exiv ist, existiert eine Teilfolge (unk

)nk∈N und ein

ũ ∈W 1,p
0 (Ω) mit:

unk

nk→∞−−−−⇀ ũ schwach in W 1,p
0 (Ω) [24]

Insbesondere gilt damit auch unk

nk→∞−−−−⇀ ũ schwach in Lp (Ω).

Ziel ist es zu zeigen, dass ũ einen Minimierer von Z (u) auf der Menge A darstellt.
Zeige daher zunächst, dass ũ ∈ A gilt.

Nutze hierzu, dass nach Satz 2.2.3 W 1,p
0 (Ω) kompakt in Lq (Ω) eingebettet ist für

alle q aus [1, p∗). Daher existiert für alle q aus [1, p∗) eine Teilfolge (unk
)nk∈N und

ein u ∈ Lq (Ω), so dass

unk

nk→∞−−−−→ u stark in Lq (Ω) konvergiert.

Da unk
∈ A und damit ‖unk

‖q = 1 für alle nk ∈ N gilt, überträgt sich aufgrund
der starken Konvergenz in Lq (Ω) und der Stetigkeit der Norm diese Eigenschaft
auf u: ‖u‖q = 1, ⇒ u ∈ A.

Wegen Bemerkung 2.2.2 ist p > p∗ und damit gilt insbesondere, dass

W 1,p (Ω) ⊂⊂ Lp (Ω) .

Dies bedeutet, dass eine Teilfolge (unk
)nk∈N existiert mit u ∈ Lp (Ω), so dass

unk

nk→∞−−−−→ u stark in Lp (Ω)

konvergiert. Da aus starker Konvergenz schwache Konvergenz folgt, gilt auch

unk

nk→∞−−−−⇀ u schwach in Lp (Ω) .

Die Eindeutigkeit des schwachen Grenzwertes impliziert, dass u in Lp (Ω) gleich ũ
ist. Damit ist ũ ∈ A bewiesen. Zeige nun, dass ũ einen Minimierer darstellt.

Das Funktional Z (u) =
∫

Ω |∇u|
p dx erfüllt folgende Eigenschaften:

â Es ist als Verkettung stetiger Funktionen stetig in u.

â Z (u) ist konvex, d.h. für alle t ∈ (0, 1) gilt:

Z (tu+ (1− t) v) ≤ tZ (u) + (1− t)Z (v)

Der Beweis hierzu ist in Lemma 2.5.4 enthalten.
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2 Das elliptische Randwertproblem im Euklidischen Raum

Aus den beiden Eigenschaften folgt, dass Z (u) schwach unterhalbstetig ist. Da
unk

nk→∞−−−−⇀ ũ schwach in W 1,p
0 (Ω) konvergiert, gilt Z (ũ) ≤ lim infnk→∞ Z (unk

).

Mit der Ungleichungskette

inf
u∈A

Z (u) ≤ Z (ũ) ≤ lim inf
nk→∞

Z (unk
) = inf

u∈A
Z (u)

erhält man, dass Z (ũ) = infu∈A Z (u) und somit ũ ein Minimierer von Z (u) auf
der Menge A ist.

Zu (ii): Es gilt Z (u) > 0. Denn angenommen Z (u) = 0, dann ist |∇u| = 0 fast überall in Ω,
woraus u = 0 fast überall in Ω folgt. Dies ist jedoch ein Widerspruch zu u ∈ A.

Da Z (u) > 0 und Nq (u) = 1 aufgrund der De�nition der Menge A gilt, ist Bq (u)
für einen Minimierer u positiv. Damit ist λ (q) > 0.

Zu (iii): Für einen Minimierer u von Bq (u) muss δBq (u, v) = 0 für alle v aus C∞0 (Ω)gelten.
Dies ist aufgrund der Quotientenregel äquivalent zu:

Nq (u) δZ (u, v)− Z (u) δNq (u, v) = 0 für alle v ∈ C∞0 (Ω)
⇔ δZ (u, v) = Bq (u) δNq (u, v) für alle v ∈ C∞0 (Ω) (2.8)

Für einen Minimierer u von Bq (u) gilt λ (q) = Bq (u). Berechnet man die in (2.8)
vorkommenden Funktionale explizit und nutzt, dass u ein Minimierer von Bq (u)
ist, so erhält man folgende Gleichung:

p ·
∫

Ω
|∇u|p−2∇u · ∇v dx = λ (q) · p

q
·
(∫

Ω
|u|q dx

) p
q
−1

· q ·
∫

Ω
|u|q−2 u · v dx

Für u ∈ Γq gilt damit:∫
Ω
|∇u|p−2∇u · ∇v dx = λ (q)

∫
Ω
|u|q−2 u · v dx

u∈W 1,p
0 (Ω)

=======⇒ −∆pu = λ (q) |u|q−2 u

2.5 Eindeutigkeit der Lösung für q ≤ p

Lemma 2.5.1: λ (q) ist beschränkt, falls q aus einer beschränkten Menge ist.
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2.5 Eindeutigkeit der Lösung für q ≤ p

Beweis: Dies lässt sich anhand von (2.7) direkt zeigen, denn man muss nur eine Funktion
ϕ ∈ W 1,p

0 (Ω) , ϕ 6= 0 �nden, für die λ (q) < ∞ gilt. Für B(0, R) ⊂ Ω gibt Herr Yin Xi
Huang in seiner Arbeit folgende Funktionen an:

(i) für 1 < p < N :

ϕ (x) =


(
R
2

)(p−N)/(p−1) −R(p−N)/(p−1) für 0 ≤ |x| ≤ R
2

|x|(p−N)/(p−1) −R(p−N)/(p−1) für R
2 < |x| ≤ R

0 für |x| > R

(ii) für p = N :

ϕ (x) =


(ln 2)(N−1)/N für 0 ≤ |x| ≤ R

2

(lnR− ln |x|) (ln 2)−1/N für R
2 < |x| ≤ R

0 für |x| > R

(iii) für p > N :

ϕ (x) =


R(p−N)/(p−1) −

(
R
2

)(p−N)/(p−1)
für 0 ≤ |x| ≤ R

2

R(p−N)/(p−1) − |x| (p−N) / (p− 1) für R
2 < |x| ≤ R

0 für |x| > R

Satz 2.5.2: Für q ≤ p ist die positive Lösung von (1.1) eindeutig.

Bemerkung 2.5.3: Für q = p hat man folgenden Spezialfall:{
−∆pu = λ (p) |u|p−2u für x ∈ Ω,

u = 0 für x ∈ ∂Ω
(2.9)

Hierbei sieht man sofort oder an (2.3), dass mit u auch αu für α ∈ R \ {0} eine Lösung
des Randwertproblems ist. (2.9) ist die Euler-Lagrange-Gleichung des speziellen Mini-
mierungsproblems: Minimiere

J (v) := p · I (v) =
∫

Ω
|∇v|p dx

auf der Menge Γp :=
{
v ∈W 1,p

0 (Ω) | ‖v‖Lp(Ω) = 1
}
.

Herr Yin Xi Huang beweist den Satz (2.5.2) mittels Maximumprinzips. Er nutzt, dass
die Normalenableitung einer Lösungsfunktion auf dem Rande von Ω negativ sein muss.
Ein alternativer Beweis [2] basiert im Wesentlichen auf folgendem Lemma:
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2 Das elliptische Randwertproblem im Euklidischen Raum

Lemma 2.5.4: Für q ≤ p ist das Funktional J (v) =
∫

Ω |∇v|
p dx konvex in |v|q.

Beweis des Lemmas: Setzt man w = |v|q, so folgt

∇w = q · |v|q−1 v

|v|
∇v

|∇w| = q · |v|q
(

1− 1
q

)
|∇v|

= q ·w1− 1
q |∇v|

|∇w|p = qp ·wp
(

1− 1
q

)
|∇v|p ,

woraus man dann |∇v|p als Funktion von w bekommt:

⇒ |∇v|p =
1
qp
·w

p
q

(1−q) |∇w|p =: f (w)

Man muss daher die Konvexität der Abbildung f : R+ → R+, w 7→ f (w) in w zeigen,
d.h. für w1, w2 ∈ R+, α ∈ (0, 1) gilt:

f (αw1 + (1− α)w2) ≤ αf (w1) + (1− α) f (w2)

Substituiert man z = ∇w
q so ist es äquivalent zu zeigen, dass

k (w, z) = w
p
(

1− 1
q

)
|z|p in (w, z) ∈ R+ ×RN

konvex ist.

Dies zeigt man am besten in zwei Schritten (vergleiche [13]):

1.) Man betrachte zunächst das eindimensionale Problem und zeigt, dass

h (w, y) = w
p
(

1− 1
q

)
yp in (w, y) ∈ R+ ×R+

0

konvex ist.

2.) Nun zeigt man mit Hilfe von 1.), dass k konvex ist.

zu 1.) Da die Funktion h (w, y) di�erenzierbar ist, genügt es zu zeigen, dass die Hesse-
matrix D2h positiv semide�nit ist, d.h. dass die Eigenwerte λi, i = 1, 2 der Hesse-
matrix nicht negativ sind.

Behauptung: Bei einer 2× 2 Matrix ist dies äquivalent dazu zu zeigen, dass die
Spur und die Determinante der Hessematrix nicht negativ sind.
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2.5 Eindeutigkeit der Lösung für q ≤ p

Dies ergibt sich aus folgenden Überlegungen: Die allgemeine Form einer 2 × 2
Hessematrix ist die Folgende:

H =
(
a b
b d

)
Denn aufgrund der Vertauschbarkeit partieller Ableitungen ist H symmetrisch.
Nehme H 6= 0 an, andernfalls ist H trivialer Weise positiv semide�nit.

Berechnung der Eigenwerte von H:

0 !=
∣∣∣∣ λ− a −b
−b λ− d

∣∣∣∣ = (λ− a) (λ− d)− b2

⇒
(
λ− a+ d

2

)2

= b2 +
a2

4
+
d2

4
> 0

Die Eigenwerte von H sind also:

λ1,2 =
a+ d

2
±
√
b2 +

a2

4
+
d2

4

Die Eigenwerte λ1,2 sind genau dann nicht negativ, wenn

a+ d

2
!
≥
√
b2 +

a2

4
+
d2

4
> 0

gilt. Dies ist äquivalent zu (i) und (ii):

(i) a+d
2 > 0

⇒ Sp (H) = a+ d > 0

(ii)
(
a+d

2

)2 ≥ b2 + a2

4 + d2

4

⇒ det (H) = ad− b2 > 0

Damit ist die Behauptung bewiesen.

Durch direkte Berechnung der Einträge aus D2h bekommt man:

hww (w, y) =
(
p

q
− p
)(

p

q
− p− 1

)
w

p
q
−p−2

yp

hyy (w, y) = p (p− 1)w
p
q yp−2

hwy (w, y) = hyw = p

(
p

q
− p
)
w

q
p
−p−1

yp−1
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2 Das elliptische Randwertproblem im Euklidischen Raum

Da p > 1 ist folgt, dass hyy (w, y) > 0 in R+ ×R+ ist. Zudem gilt

(1− pq)2 > 0 > q − q2, da p > 1 und q > 1 bzw. q2 > q ist.

Durch Multiplikation mit p
q2
> 0 erhält man

(
p
q − p

)2
>
(
p
q − p

)
und damit(

p

q
− p
)(

p

q
− p− 1

)
> 0 ⇒ hww (w, y) > 0 in R+ ×R+.

Womit gezeigt ist, dass die Spur von D2h positiv in R+ ×R+ ist.

det
(
D2h

)
= hwwhyy − h2

wy

=
(
p

q
− p
)(

p

q
− p− 1

)
p (p− 1)w

p
q
−p−2+ p

q yp+p−2

− p2

(
p

q
− p
)2

w
2
(

q
p
−p−1

)
y2(p−1)

=
(
p

q
− p
)
p

q

[
p2 − qp2 − qp− p+ qp+ q − p2 + qp2

]
w

2
(

q
p
−p−1

)
y2(p−1)

=
(
p

q
− p
)
p

q
(p− q)w2

(
q
p
−p−1

)
y2(p−1) ≥ 0 in R+ ×R+.

Denn es gilt 1 < q ≤ p ⇒ p
q < p bzw. pq − p < 0 sowie q − p ≤ 0. Somit ist der

erste Teil bewiesen.

zu 2.) Sei nun α ∈ (0, 1) und (wi, zi) ∈ R+ × RN , für i = 1, 2. Mit Hilfe der Dreiecks-
ungleichung für die zi bekommt man

|αz1 + (1− α) z2| ≤ α |z1|+ (1− α) |z2| . (2.10)

Die Funktion h ist monoton wachsend in y somit erhält man mit (2.10) und 1.)
folgende Ungleichungskette:

k
(
αw1 + (1− α)w2, αz1 + (1− α) z2

)
= h

(
αw1 + (1− α)w2, |αz1 + (1− α) z2|

)
(2.10)

≤ h
(
αw1 + (1− α)w2, α |z1|+ (1− α) |z2|

)
1.)

≤ α ·h (w1, |z1|) + (1− α) ·h (w2, |z2|)

= α · k (w1, z1) + (1− α) · k (w2, z2) (2.11)

Bemerkung 2.5.5: Gleichheit gilt in (2.11) nur genau dann, wenn in beiden Un-
gleichungen Gleichheit gilt. Für (2.10) bedeutet dies, dass z1 parallel zu z2 sein muss,
d.h. z1 = βz2. Da α beliebig ist, impliziert 1.), dass β = 1 gilt.
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2.5 Eindeutigkeit der Lösung für q ≤ p

Beweis des Satzes 2.5.2: Zunächst für q = p:
Angenommen es gibt zwei positive Lösungen u und z des Randwertproblems (2.9).
De�niere die Funktionen η := 1

2 (up + zp) und w = η1/p. Dann gilt∫
Ω
wp dx =

1
2

(∫
Ω
up dx+

∫
Ω
zp dx

)
= 1.

⇒ w ∈ Γp. Berechne nun J (w):

Zunächst gilt ∇w = 1
2p η

1
p
−1 (

p up−1∇u+ p zp−1∇z
)
, so dass:

|∇w|p = η1−p
∣∣∣∣12 (up−1∇u+ zp−1∇z

)∣∣∣∣p
= η

∣∣∣∣12
(
up

η

∇u
u

+
zp

η

∇z
z

)∣∣∣∣p
= η

∣∣∣∣ up

up + zp
∇u
u

+
up + zp − up

up + zp
∇z
z

∣∣∣∣p
= η

∣∣∣∣s(x)
∇u
u

+ (1− s(x))
∇z
z

∣∣∣∣p mit s(x) =
up

up + zp
=
up

2η
∈ (0, 1)

≤ η
[
s(x)

∣∣∣∣∇uu
∣∣∣∣p + (1− s(x))

∣∣∣∣∇zz
∣∣∣∣p]

=
1
2

(
up
∣∣∣∣∇uu

∣∣∣∣p + zp
∣∣∣∣∇zz

∣∣∣∣p)
=

1
2

(|u|p + |z|p) (2.12)

Damit ergibt sich: ∫
Ω
|∇w|p dx ≤ 1

2

(∫
Ω
|∇u|p dx+

∫
Ω
|∇z|p dx

)
(2.13)

Nach Annahme minimieren u und z das Funktional J (v), folglich muss in (2.13) Gleich-
heit gelten: ∫

Ω
|∇w|p − 1

2
(|∇u|p + |∇z|p) dx = 0

Da in der Rechnung (2.12) nur eine Ungleichung vorhanden ist, muss in dieser Gleichheit
gelten. In dieser hat man die Konvexität des Funktionals J (v) in vp also Lemma 2.5.4
angewendet.
Damit in der Konvexitätsungleichung Gleichheit gilt, muss nach Bemerkung 2.5.5 gelten:

∇u
u

=
∇z
z

fast überall in Ω (2.14)

Aus (2.14) folgt z · ∇u− u · ∇z = 0 fast überall in Ω und mit z 6= 0 ist

∇
(u
z

)
=
z∇u− u∇z

z2
= 0 fast überall in Ω.
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2 Das elliptische Randwertproblem im Euklidischen Raum

⇒ u = konstant · z =: c · z fast überall in Ω. (2.15)

Beide Funktionen sind aus Γp und deshalb bezüglich der Lp -Norm normiert. Dem-
entsprechend gilt:

‖z‖ = ‖u‖ (2.15)
= ‖cz‖ = |c| · ‖z‖

⇒ |c| = 1 ⇒ c = ±1

Da u und z nach Annahme positiv waren folgt c = +1 und damit

⇒ u = z fast überall in Ω. ⇒ u = z in Lp (Ω) .

Im Falle p = q ist damit die Eindeutigkeit bewiesen.
Die Grundidee des Beweises die Konvextität des Funktionals J (v) in vp zu verwenden
funktioniert, wie in [2] erläutert wird, auch in folgendem allgemeineren Fall:

Positive (schwache) Lösungen von{
∆pu+ f (x, u) = 0 für x ∈ Ω,

u = 0 für x ∈ ∂Ω

sind eindeutig vorausgesetzt f : Ω× [0,∞) genügt den Bedingungen:

1. Die Abbildung r1−pf (x, r) ist streng monoton fallend in r ∈ [0,∞).

2. Es existiert eine positive Konstante C, so dass f (x, r) ≤ C
(
rp−1 + 1

)
für fast alle

x ∈ Ω und r ∈ [0,∞) gilt.

Damit lässt sich die Eindeutigkeit der positiven Lösung im Fall q < p des Randwert-
problems (1.1) zeigen. Hier ist f (x, u) = λ (q)u (x)q−1. Zu zeigen ist, dass dieses f den
Bedingungen 1. und 2. genügt: Sei r ∈ [0,∞).

Zu 1.: Die Abbildung r1−pf (x, r) = λ (q) r1−p rq−1 = λ (q) rq−p ist strikt monoton
fallend in r, denn für r < s mit r, s ∈ [0,∞) ist rp−q < sp−q, da für q < p die Di�erenz
p − q positiv ist. Invertiert man diese Ungleichung und multipliziert mit der positiven
Konstanten λ (q) so erhält man das Gewünschte:

r < s ⇒ λ (q) rq−p > λ (q) sq−p

Zu 2.: f(x, r) = λ (q) rq−1. Ist r > 1 so lässt sich f(x, r) durch λ (q) rp−1 nach oben hin
abschätzen. Ist 0 ≤ r < 1 so gilt rq−1 ≤ 1. Somit ist 2. für jede positive Konstante C
erfüllt, die gröÿer oder gleich λ (q) ist:

f(x, r) = λ (q) rq−1 ≤ λ (q)
(
rp−1 + 1

)
≤ C

(
rp−1 + 1

)
Damit ist die Eindeutigkeit im Fall q < p ebenfalls bewiesen.
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2.6 Konvergenzverhalten

2.6 Konvergenzverhalten des Rayleigh-Quotienten

und der Lösung des Randwertproblems

Satz 2.6.1: Sei q < p∗. Da p < p∗ gilt, gibt es für q zwei mögliche Fälle:

(a) Für q → q0 < p gilt: λ (q) → λ (q0) und u (q) → u (q0) in W 1,p
0 (Ω). D.h., dass

λ (q) und u (q) stetig in q sind, falls q < p ist.

(b) Für q → q0 > p gibt es (λ0, u0), so dass (λ (q) , u (q)) → (λ0, u0), mit λ0 ≥ λ (q0),
u0 > 0 und (λ0, u0) eine Lösung von (1.1) ist. Dies bedeutet insbesondere, dass
λ (q) in q oberhalbstetig ist, für q > p.

Bezeichnung 2.6.2:

‖ · ‖∇,p :=
(∫

Ω
|∇ · |p dx

) 1
p

(2.16)

Behauptung: Die durch (2.16) de�nierte Abbildung ist eine Norm in W 1,p
0 (Ω).

Beweis: (2.16) stellt sicherlich eine Halbnorm inW 1,p
0 (Ω) dar. Die Eigenschaft, die noch

zu überprüfen ist, ist die Folgende

‖u‖∇,p = 0 ⇒ u = 0 in W 1,p
0 (Ω) .

Sei also 0 = ‖u‖∇,p =
(∫

Ω |∇u|
p dx

) 1
p . Da |∇u|p nicht negativ ist, kann das Integral nur

dann Null werden, wenn |∇u| = 0 für fast alle x ∈ Ω gilt.
⇒ u ist fast überall konstant. Da u = 0 auf ∂Ω gilt, folgt also u = 0 fast überall.

Lemma 2.6.3: Sei u (q) eine Lösung des Randwertproblems (1.1) mit beschränktem q,
dann ist u (q) beschränkt in W 1,p

0 (Ω) bezüglich der W 1,p-Norm.

Beweis:

‖u (q)‖p =
(∫

Ω
|u|p + |∇u|p dx

) 1
p
· p

=
∫

Ω
|u|p dx+

∫
Ω
|∇u|p−2∇u · ∇u dx

part. Integration
=

∫
Ω
|u|p dx−

∫
Ω

div
(
|∇u|p−2∇u

)
·u dx

(1.1)
=

∫
Ω
|u|p dx+

∫
Ω
λ (q) |u|q−2 u ·u dx
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2 Das elliptische Randwertproblem im Euklidischen Raum

⇒ ‖u (q)‖pp + ‖|∇u (q)|‖pp = ‖u (q)‖pp + λ (q) ‖u (q)‖qq
Da u ∈ Γq ist, gilt ‖u‖qq = 1 und damit

‖|∇u (q)|‖pp = λ (q) . (2.17)

Ist q beschränkt, so folgt aus Lemma (2.5.1), dass λ (q) beschränkt ist und man erhält
zunächst: u (q) ist in W 1,p

0 (Ω) bezüglich der Norm ‖ · ‖∇,p beschränkt.

Dass u (q) in W 1,p
0 (Ω) bezüglich der W 1,p-Norm beschränkt ist, bekommt man aus der

folgenden Ungleichungskette:

‖u (q)‖p = ‖u (q)‖pp + ‖|∇u (q)|‖pp
(2.4)

≤ (Cp + 1) ‖|∇u (q)|‖pp
(2.17)

= (Cp + 1)λ (q) <∞

Lemma 2.6.4: Seien a, b zwei Vektoren aus RN und ( · , · ) das Standardskalarprodukt
in L2 (Ω), dann gilt folgende Abschätzung:(

|a|p−2 a− |b|p−2 b, a− b
)
≥
(
‖a‖p − ‖b‖p

)
·
(
‖a‖p−1

p − ‖b‖p−1
p

)
(2.18)

Beweis: Multipliziert man die Terme im Skalarprodukt aus, so ergibt sich:

A :=
(
|a|p−2 a− |b|p−2 b, a− b

)
=

(
|a|p−2 a, a

)
−
(
|a|p−2 a, b

)
−
(
|b|p−2 b, a

)
+
(
|b|p−2 b, b

)
Hierbei ist (

|a|p−2 a, a
)

=
∫

Ω
|a|p−2 a · a dx =

∫
Ω
|a|p dx = ‖a‖pp

und die gemischten Terme lassen sich mit der Hölderschen Ungleichung abschätzen:(
|a|p−2 a, b

) Hölder
≤

∥∥ap−1
∥∥

p
p−1
· ‖b‖p

=
(∫

Ω
|a|p−1 p

p−1 dx

) p−1
p

· ‖b‖p

= ‖a‖p−1
p · ‖b‖p

Insgesamt lässt sich A nach unten abschätzen zu:

A ≥ ‖a‖pp − ‖a‖
p−1
p · ‖b‖p − ‖b‖

p−1
p · ‖a‖p + ‖b‖pp

=
(
‖a‖p − ‖b‖p

)(
‖a‖p−1

p − ‖b‖p−1
p

)
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2.6 Konvergenzverhalten

Beweis des Satzes 2.6.1: Dieser erfolgt in mehreren Schritten:

I: Sei (qn)n∈N eine gegen q0 konvergente Folge. Wegen Lemma (2.6.3) ist u (qn) := un
eine beschränkte Folge und besitzt somit eine in W 1,p

0 (Ω) schwach konvergente
Teilfolge mit einem Grenzwert u0 < ∞. Ohne Beschränkung der Allgemeinheit
gelte also:

qn → q0, λ (qn)
qn→q0−−−−→ λ0 und un

qn→q0−−−−⇀ u0 schwach in W 1,p
0 (Ω) , stark in Lq0 (Ω)

Die starke Konvergenz von u (qn) gegen u0 in Lq0 (Ω) gilt aufgrund des Sobolevschen
Einbettungssatzes (Satz 2.2.3). Insbesondere ist damit (u (qn))n∈N in Lq0 (Ω) eine
Cauchyfolge.

II: Zeige dass u (qn)
qn→q0−−−−→ u0 stark in W 1,p

0 (Ω) konvergiert, d.h. dass ‖u (qn)− u0‖
für qn → q0 gegen Null konvergiert. Betrachte deswegen:

‖u (qn)− u0‖p = ‖u (qn)− u0‖pp + ‖|∇u (qn)−∇u0|‖pp
(2.4)

≤ (Cp + 1) ‖|∇u (qn)−∇u0|‖pp

Daher ist es äquivalent zu zeigen, dass ‖|∇u (qn)−∇u0|‖p
qn→q0−−−−→ 0 gilt.

Hierfür ist es ausreichend folgende Eigenschaften nachzuweisen [1]:

(i) ∇u (qn)
qn→q0−−−−⇀ ∇u0 in Lp (Ω)

(ii) ‖|∇u (qn)|‖p
qn→q0−−−−→ ‖|∇u0|‖p in R

Zu (i): Da u (qn)
qn→q0−−−−⇀ u0 schwach in W 1,p

0 (Ω) konvergiert, gilt insbesondere:

∇u (qn)
qn→q0−−−−⇀ ∇u0 in Lp (Ω)

Zu (ii): Zeige zunächst, dass (∇u (qn))n∈N eine Cauchyfolge in Lp (Ω) bildet, d.h. dass
Folgendes gilt:

‖|∇u (qn)−∇u (qm)|‖p = ‖|(∇u (qn)−∇u (qm))− 0|‖p
qn,qm→q0−−−−−−→ 0

Es reicht wiederum aus die Eigenschaften (i) und (ii) für diesen Fall nach-
zuweisen. Aus

∇u (qn)
qn→q0−−−−⇀ ∇u0 in Lp (Ω)

und
∇u (qm)

qm→q0−−−−⇀ ∇u0 in Lp (Ω)

folgt
∇u (qn)−∇u (qm)

qn,qm→q0−−−−−−⇀ ∇u0 −∇u0 = 0 in Lp (Ω) .
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2 Das elliptische Randwertproblem im Euklidischen Raum

Damit ist (i) erfüllt. Um zu zeigen, dass

‖|∇u (qn)|‖p − ‖|∇u (qm)|‖p
qn,qm→q0−−−−−−→ 0 in R (2.19)

gilt, betrachtet man qn, qm in der Nähe von q0. u (qn) und u (qm) erfüllen die
Gleichung:

Ã :=
∫

Ω

{
|∇u (qn)|p−2∇u (qn)− |∇u (qm)|p−2∇u (qm)

}
· ∇ (u (qn)− u (qm)) dx

=
∫

Ω
−div

{
|∇u (qn)|p−2∇u (qn)− |∇u (qm)|p−2∇u (qm)

}
· (u (qn)− u (qm)) dx

=
∫

Ω
−
{

∆pu (qn)−∆pu (qm)
}

(u (qn)− u (qm)) dx

(2.6)
=

∫
Ω

{
λ (qn)u (qn)qn−1 − λ (qm)u (qm)qm−1

}
· (u (qn)− u (qm)) dx (2.20)

Die rechte Seite der Gleichung konvergiert für n,m→∞ gegen Null, denn es
gilt: ∫

Ω

{
λ (qn)u (qn)qn−1 − λ (qm)u (qm)qm−1

}(
u (qn)− u (qm)

)
dx

Hölder
≤ ‖u (qn)− u (qm)‖q0 ·

(∫
Ω

∣∣∣λ (qn)u (qn)qn−1

−λ (qm)u (qm)qm−1
∣∣∣ q0

q0−1
dx

) q0−1
q0

Der erste Faktor ‖u (qn)− u (qm)‖q0 konvergiert gegen Null für n,m → ∞,
da u (qn) in Lq0 (Ω) eine Cauchyfolge ist. Zu zeigen ist noch, dass der zweite
Faktor beschränkt ist. Für jedes x ∈ Ω lässt sich die Di�erenz im Integral
durch das Maximum der beiden (positiven) Beiträge abschätzen:∣∣∣λ (qn)u (qn)qn−1 − λ (qm)u (qm)qm−1

∣∣∣ q0
q0−1 ≤ max

j=n,m

[(
λ (qj)u (qj)

qj−1
)q0] 1

q0−1

λ (qj) konvergiert für j →∞ gegen λ0 und ist damit beschränkt. u (qj) ist auf-
grund der starken Konvergenz in Lq0 (Ω) gleichmäÿig beschränkt in Lq0 (Ω).

Ã, das heiÿt der erste Ausdruck aus Gleichung (2.20) lässt sich mit Hilfe des
Lemmas 2.6.4 und a = ∇u (qn), b = ∇u (qm) wie folgt nach unten abschätzen:∫

Ω

{
|∇u (qn)|p−2∇u (qn)− |∇u (qm)|p−2∇u (qm)

}
∇ (u (qn)− u (qm)) dx

≤
(
‖|∇u (qn)|‖p − ‖|∇u (qm)|‖p

)
·
(
‖|∇u (qn)|‖p−1

p − ‖|∇u (qm)|‖p−1
p

)
=: B ≥ 0
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2.6 Konvergenzverhalten

Für n, m → ∞ konvergiert Ã gegen Null, daher muss auch der kleinere
(positive) Ausdruck B in diesem Grenzwert gegen Null gehen. Damit folgt
(2.19) und es ist bewiesen, dass (∇u (qn))n∈N eine Cauchyfolge in Lp (Ω) ist.

Da Lp (Ω) ein Banachraum ist, ist er insbesondere vollständig. Somit existiert
eine Grenzfunktion, die aufgrund der Eindeutigkeit des schwachen Grenz-
wertes mit ∇u0 übereinstimmen muss,

⇒ ‖|∇u (qn)|‖p − ‖|∇u0|‖p
qn→q0−−−−→ 0.

Damit sind (i) und (ii) erfüllt und es gilt u (qn)
qn→q0−−−−→ u0 stark in W 1,p

0 (Ω).

III: Aufgrund der starken Konvergenz überträgt sich auf u0 die Eigenschaft u0 ≥ 0.
Die Stetigkeit der Norm sorgt für ‖u0‖q0 = 1. Daher ist u0 nicht identisch Null.

Zusätzlich impliziert u (qn)
qn→q0−−−−→ u0 stark in W 1,p

0 (Ω) dass u0 eine schwache
Lösung des folgenden Randwertproblems ist:

{
−∆pu0 = λ0u

q0−1
0 für x ∈ Ω,

u0 = 0 für x ∈ ∂Ω

Positivität von u0 folgt erneut aus dem Minimumprinzip [18].

IV: Es gilt: λ (q0) ≤ λ0. Denn (λ0, u0) ist eine Lösung von (1.1) und damit ist λ0 nach
Satz 2.4.1 durch folgenden Ausdruck gegeben:

λ0 =

∫
Ω |∇u0|p dx(∫

Ω |u0|q0 dx
)p/q0

Und somit gilt:

λ (q0)
(2.7)
= inf

u∈W 1,p
0 (Ω),u 6=0

∫
Ω |∇u|

p dx(∫
Ω |u|

q0 dx
)p/q0 ≤

∫
Ω |∇u0|p dx(∫

Ω |u0|q0 dx
)p/q0 = λ0

Hiermit ist Fall (b) aus Satz 2.6.1 bewiesen.

V: Für q ≤ p ist die Lösung des Randwertproblems (1.1) eindeutig. Damit folgt für
q → q0 < p , dass u0 = u (q0) und λ0 = λ (q0) gilt, womit auch (a) aus Satz 2.6.1
bewiesen ist.

35
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2.7 Der Fall q konvergiert gegen p

Insbesondere studiert Herr Yin Xi Huang das Randwertproblem (1.1) für den Fall, dass
der Exponent q der rechten Seite der Di�erentialgleichung gegen die Konstante p des
p-Laplace Operators konvergiert.

Satz 2.7.1: Sei

v (q) =
(
λ (q)
λ

)1/(q−p)
u (q) (2.21)

für ein λ > 0. Falls entweder

(i) λ < λ (p) und q → p+ oder

(ii) λ > λ (p) und q → p−

erfüllt ist, dann gilt ‖v (q)‖ q→p−−−→∞.

Beweis: Da u (q) , λ und λ (q) positiv sind, ist auch v (q) positiv. Für v (q) gilt:

−∆pv (q)
(2.21)

= −∆p

[(
λ (q)
λ

)1/(q−p)
·u (q)

]
(1.4)
=

(
λ (q)
λ

) p−1
q−p

· (−1) ∆pu (q)

(2.6)
=

(
λ (q)
λ

) p−1
q−p

λ (q) u (q)q−1

(2.21)
=

(
λ (q)
λ

) p−1
q−p

λ (q) ·
(

λ

λ (q)

) q−1
q−p

v (q)q−1

(O)
= λ v (q)q−1

Nebenrechnungen zu (O): Es ist

λ (q)
p−1
q−p
− q−1

q−p
+1 = λ (q)

p−1−q+1
q−p

+1 = λ (q)1− q−p
q−p = 1

und
λ
− p−1

q−p
+ q−1

q−p = λ
−p+1+q−1

q−p = λ
q−p
q−p = λ.

Damit genügt v (q) der Gleichung:

−∆pv (q) = λ v (q)q−1 (2.22)
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Zudem gilt v (q) =
(
λ(q)
λ

)1/(q−p)
u (q) = 0 auf dem Rand von Ω, da u eine Lösung von

(1.1) ist.

Angenommen ‖v (q)‖ divergiert nicht für q → p. Dies bedeutet, dass v (q) beschränkt
ist. Folglich besitzt v (q) für q → p eine in W 1,p

0 (Ω) schwach konvergente Teilfolge mit
einem schwachen Grenzwert v0, der ebenfalls in W

1,p
0 (Ω) liegt. Sei ohne Beschränkung

der Allgemeinheit v (qn)
qn→p−−−⇀ v0 schwach konvergent in W 1,p

0 (Ω).

Analog zu Schritt 2 im Beweis des Satzes 2.6.1 erhält man, dass v (qn) → v0 stark in
W 1,p

0 (Ω) konvergiert. Hieraus ergibt sich ebenfalls analog (mit q0 = p), dass v0 positiv
und eine schwache Lösung der folgenden Gleichung ist:{

−∆pv0 = λvp−1
0 für x ∈ Ω,

v0 = 0 für x ∈ ∂Ω
(2.23)

Zu Fall (i): λ < λ (p) und q → p+, d.h. insbesondere gilt q > p. Nach Satz 2.4.1 ist

λ (p) = inf
u∈W 1,p

0 (Ω),u 6=0

∫
Ω |∇u|

p dx(∫
Ω |u|

p dx
)

der kleinste Eigenwert, welcher eine nicht triviale Lösung von (2.23) ermöglicht.
Daher folgt für λ < λ (p) dass v0 = 0 in W 1,p

0 (Ω) gelten muss,

⇒ v (q)→ 0 in W 1,p
0 (Ω) .

Insbesondere konvergiert v (q) punktweise gegen die Nullfunktion und es genügt
ohne Beschränkung der Allgemeinheit v (q) < 1 fast überall in Ω zu betrachten.
Für q > p, λ < λ (p) , v (q) < 1 gilt:

−∆pv (q)
(2.22)

= λv (q)q−1 < λv (q)p−1

Da mit u (p) auch α ·u (p) eine Lösung von (2.9) ist, kann man v (q) ≤ u (p) für
genügend kleines β := (q − p) > 0 annehmen. Dann gilt:

−∆pu (p)
(2.9)
= λ (p)u (p)p−1 ≥ λ (p) v (q)p−1 > λv (q)p−1

Zusammengefasst hat man also:

v (q) ≤ u (p) und

−∆pv (q) < λv (q)p−1 < −∆pu (p)

Hieraus lässt sich ableiten [17], [23], dass ein ũ ∈ W 1,p
0 (Ω) mit v (q) ≤ ũ ≤ u (p)

existiert, so dass ũ folgende Gleichung löst:

−∆pũ = λ ũ p−1

Dies steht jedoch im Widerspruch dazu, dass (λ (p) , u (p)) die eindeutige Lösung
des Randwertproblems (2.9) ist. Damit ergibt sich im Fall (i): ‖v (q)‖ q→p−−−→∞.
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2 Das elliptische Randwertproblem im Euklidischen Raum

Zu Fall (ii): λ > λ (p) und q → p−, d.h. insbesondere q < p. Für p = q gilt nach [14] folgendes
Lemma: Für λ > λ (p) gibt es keine positiven Eigenfunktionen mit Eigenwert λ.
Mit anderen Worten ist jede positive Eigenfunktion ein Minimierer des Rayleigh-
Quotienten. Da hier λ > λ (p) gilt, muss also v0 = 0 in W 1,p

0 (Ω) sein, d.h. v (q)
konvergiert in W 1,p

0 (Ω) gegen die Nullfunktion:

⇒ v (q)
q→p−−−→ 0 in W 1,p

0 (Ω) .

Insbesondere konvergiert v (q) punktweise gegen die Nullfunktion und es genügt
ohne Beschränkung der Allgemeinheit v (q) < 1 fast überall in Ω zu betrachten:

p > q ⇒ p− q > 0 ⇒ v (q)p−q < 1p−q = 1 ⇒ v (q)q−p > 1

Mit λ > λ (p) bzw. λ
λ(p) > 1 folgt durch Multiplikation beider Ungleichungen

λ

λ (p)
v (q)p−q > 1 ⇒ λv (q)p−q > λ (p) .

Für kleines β kann man durch Skalierung von u analog zur Argumentation im
ersten Fall v (q) < u (p) annehmen.

Zudem gilt folgende Ungleichungskette:

0
(U)

≤
∫

Ω

(
−∆pv (q) · v (q)p − u (p)p

v (q)p−1

)
dx

−
∫

Ω

(
−∆pu (p) · v (q)p − u (p)p

u (p)p−1

)
dx

(2.22),(1.1)
=

∫
Ω

(
λv (q)q−1 · v (q)p − u (p)p

v (q)p−1

)
dx

−
∫

Ω

(
λ (p)u (p)p−1 · v (q)p − u (p)p

u (p)p−1

)
dx

=
∫

Ω

(
λv (q)q−p − λ (p)

)︸ ︷︷ ︸
>0

· (v (q)p − u (p)p)︸ ︷︷ ︸
<0

dx < 0

Aus dieser ergibt sich dann auch im Fall (ii) ein Widerspruch:

⇒ ‖v (q)‖ q→p−−−→∞

Zu (U): De�niere ũ := up und

K (ũ) :=
∫

Ω

∣∣∣∇ (ũ)
1
p

∣∣∣p dx =
∫

Ω
|∇u|p dx = p · I (u) .

Nach Lemma 2.5.4 ist
∫

Ω |∇v|
p dx konvex in |v|q für q ≤ p. Insbesondere ist K (ũ)

konvex in ũ. Damit ist K ′ (ũ) monoton wachsend und dies impliziert

K ′ (ũ) (ũ− ṽ)−K ′ (ṽ) (ũ− ṽ) =
(
K ′ (ũ)−K ′ (ṽ)

)
(ũ− ṽ) ≥ 0 .
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2.7 Der Fall q konvergiert gegen p

K ′ (ũ) · (ũ− ṽ) ist die erste Variation von K in ũ in Richtung (ũ− ṽ). Daher
berechne ich nun die erste Variation von K in eine beliebige Richtung ϕ:

d

dt
K (ũ+ tϕ)

∣∣∣
t=0

=
d

dt

∫
Ω

∣∣∣∇ (ũ+ tϕ)
1
p

∣∣∣p dx∣∣∣
t=0

=
∫

Ω

∣∣∣∇ (ũ+ tϕ)
1
p

∣∣∣p−2 [
∇ (ũ+ tϕ)

1
p

]
∇
(

(ũ+ tϕ)
1
p
−1
ϕ
)
dx

∣∣∣∣
t=0

=
∫

Ω

∣∣∣∇ (ũ)
1
p

∣∣∣p−2
· ∇ (ũ)

1
p · ∇

(
(ũ)

1−p
p ·ϕ

)
dx

=
∫

Ω
|∇u|p−2 · ∇u · ∇

(
u1−p ·ϕ

)
dx mit ũ = up

=
∫

Ω
−∆pu ·u1−p ·ϕ dx

Analog erhält man für ṽ

d

dt
K (ṽ + tϕ)

∣∣∣
t=0

=
∫

Ω
−∆pv ·

1
vp−1

·ϕ dx.

Nutzt man nun als Testfunktion ϕ = (ũ− ṽ) so ergibt sich (U):

0 ≤
(
K ′ (ũ)−K ′ (ṽ)

)
(ũ− ṽ)

=
∫

Ω

(
−∆pv (q) · v (q)p − u (p)p

v (q)p−1

)
dx−

∫
Ω

(
−∆pu (p) · v (q)p − u (p)p

u (p)p−1

)
dx

Bemerkung 2.7.2: Satz 2.7.1 besagt, dass Lösungen der partiellen Di�erentialgleichung
(2.22) - bzw. skalierte Lösungen von (2.9) - unter der Bedingung (i) oder (ii) im Grenz-
wert q gegen p divergieren. Sie liegen damit nicht mehr in W 1,p

0 (Ω).
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3 Das elliptische Randwertproblem im

Minkowski Raum

Nun sei Ω ⊂ RN nicht mehr mit einer Euklidischen Norm sondern mit einer allgemeinen,
zweimal stetig di�erenzierbaren Norm H ausgestattet.

Die Abbildung H : RN → R aus C2
(
RN \ {0}

)
genüge daher den Eigenschaften:

1.) H sei nicht negativ: H (ξ) ≥ 0, für alle ξ ∈ RN und H (ξ) = 0⇔ ξ = 0,

2.) H sei positiv homogen vom Grad eins, d.h. es gilt: H (tξ) = |t|H (ξ) für alle
t ∈ R, ξ ∈ RN und

3.) H genüge der Dreiecksungleichung: H (ξ + ψ) ≤ H (ξ)+H (ψ) für alle ψ, ξ ∈ RN .

Bemerkungen 3.0.3: Insbesondere gilt dann:

• H ist konvex, d.h. für alle t ∈ (0, 1), ξ, ψ ∈ RN gilt:

H (tξ + (1− t)ψ) ≤ tH (ξ) + (1− t)H (ψ) , denn

H (tξ + (1− t)ψ)
3.)

≤ H (tξ) +H ((1− t)ψ)
2.)
= tH (ξ) + (1− t)H (ψ)

• Für linear unabhängige ξ, ψ ∈ RN ist H sogar strikt konvex. Dies liegt daran,
dass in der Dreiecksungleichung nur genau dann Gleichheit gilt, wenn die beiden
Variablen linear abhängig sind.

• H ist aufgrund von 2.) eine gerade Funktion in ξ: H (−ξ) = H (ξ) für alle ξ ∈ RN .

• H nimmt bei ξ = 0 ein eindeutiges Minimum an, denn es ist H (0) = 0 und
H (ξ 6= 0) > 0. Da H ∈ C2

(
RN \ {0}

)
gilt somit

d

dξj
H|ξ=0 = 0 für alle j = 1, ..., N .

Zudem ist die Hessematrix von H an der Stelle ξ = 0 positiv de�nit.
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3 Das elliptische Randwertproblem im Minkowski Raum

Beispiel: Man stattet den RN mit der ls-Norm aus:

H (ξ) =

 N∑
j=1

|ξj |s
 1

s

mit s ∈ [1,∞)

Für s = 2 entspricht dies der Euklidischen Norm und man kann die Ergebnisse aus
Kapitel 2 benutzen.

De�nition 3.0.4: In einem Vektorraum V heiÿen zwei Normen ‖ · ‖I und ‖ · ‖II äquivalent,
wenn reelle, positive Konstanten C, C̃ existieren, so dass für alle x ∈ V gilt:

C ‖x‖I ≤ ‖x‖II ≤ C̃ ‖x‖I

Satz 3.0.5: Im RN ist jede Norm H ( · ) äquivalent zur Euklidischen Norm | · | = ‖ · ‖2.

Beweis:

A) Zeige, dass eine Konstante C > 0 existiert, so dass

H (x) ≤ C ‖x‖2 (3.1)

für alle x ∈ RN gilt. Sei x ∈ RN beliebig und ej mit j = 1, ..., N die Standardbasis
im RN , d.h. die k-te Komponente des j-ten Einheitsvektors sei gegeben durch

ejk =

{
1 für k = j

0 für k 6= j.

In dieser Basis lässt sich x wie folgt darstellen:

x =
N∑
j=1

xje
j wobei xj =

(
x, ej

)
∈ R

und ( · , · ) das Standardskalarprodukt im RN sein soll. Es ist

H (x) = H

 N∑
j=1

xje
j

 3.)

≤
N∑
j=1

H
(
xje

j
)

2.)
=

N∑
j=1

|xj |H
(
ej
) (?)

≤

√√√√ N∑
j=1

H (ej)2 ·

√√√√ N∑
j=1

|xj |2

≤ C ‖x‖2

für ein C ≥
√∑N

j=1H (ej)
2. In (?) wurde die Cauchy-Schwarzsche Ungleichung

für das Standardskalarprodukt auf RN benutzt.
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3.1 Das verallgemeinerte Randwertproblem

B) Zeige, dass eine Konstante C̃ > 0 existiert, so dass für alle x ∈ RN

H (x) ≥ C̃ ‖x‖2 (3.2)

gilt. Für x = 0 ist dies trivialer Weise erfüllt. Beweise die Behauptung zuerst für
alle x ∈ RN mit ‖x‖2 = 1. Dann ist zu zeigen, dass eine Konstante C̃ ≥ 0 existiert,
so dass H (x) ≥ C̃ gilt. De�niere daher die Menge S und die Konstante C̃ folgender
Maÿen:

S :=
{
x ∈ RN | ‖x‖2 = 1

}
und C̃ := inf

x∈S
H (x)

Die Teilbehauptung lässt sich leicht durch einen Widerspruchsbeweis zeigen.
Angenommen C̃ = 0. Dann existiert eine Folge (xn)n∈N ⊂ S mit H (xn) n→∞−−−→ 0.
Wegen (xn)n∈N ⊂ S gilt ‖xn‖2 = 1 für alle n ∈ N. Damit ist (xn)n∈N beschränkt
bezüglich der Euklidischen Norm. Nach Bolzano-Weierstraÿ existiert eine Teilfolge
(xnk

)nk∈N, die bezüglich ‖ · ‖2 gegen ein x ∈ S konvergiert. Also gilt ‖x‖2 = 1 und
folglich insbesondere x 6= 0. Es ist:

H (x) = H (x− xnk
+ xnk

)
3.)

≤ H (x− xnk
) +H (xnk

)
A)

≤ C ‖x− xnk
‖2 +H (xnk

)

Die rechte Seite der Ungleichung konvergiert im Grenzwert nk → ∞ gegen Null,
was H (x) = 0 impliziert. Aufgrund von 1.) folgt x = 0. Dies steht jedoch im
Widerspruch zu x ∈ S bzw. x 6= 0. ⇒ C̃ > 0.

Nun ist die Ungleichung (3.2) für alle x ∈ S gezeigt. Sei y ∈ RN \ {0} beliebig.
Dann ist x := y

‖y‖2
∈ S und y = x · ‖y‖2. Aus der folgenden Ungleichungskette

ergibt sich die Behauptung für jeden Vektor y ∈ RN :

C̃ ‖y‖2 = C̃
∥∥x · ‖y‖2∥∥2

2.)
= C̃ ‖y‖2 ‖x‖2 ≤ ‖y‖2H (x)

2.)
= H (‖y‖2 ·x) = H (y)

Korollar 3.0.6: Alle Normen auf dem RN sind äquivalent.

3.1 Das verallgemeinerte Randwertproblem

Statt des von Herrn Yin Xi Huang betrachteten Funktionals I (u) muss man nun in
Gleichung (2.1) den Euklidischen Betrag |∇u| durch die allgemeine Norm H (u) ersetzen.
Daher betrachte ich das Funktional

If (u) =
1
p

∫
Ω

[H (∇u)]p dx (3.3)

und minimiere es ebenfalls auf der Menge

Γfq := Γq =
{
u ∈W 1,p

0 (Ω) :
∫

Ω
|u|q dx = 1

}
. (3.4)
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3 Das elliptische Randwertproblem im Minkowski Raum

Fügt man die einschränkenden Bedingungen aus Γfq mit dem Lagrange-Multiplikator
λf (q) zum Funktional If (u) hinzu, so erhält man folgendes Energiefunktional:

Ef (u) =
∫

Ω

1
p

[H (∇u (x))]p −
λf (q)
q
|u(x)|q dx (3.5)

Dabei ist wie zuvor p ∈ (1,∞), λf (q) ∈ R und Ω ⊂ RN , N ≥ 1 ein beschränktes Gebiet
mit glattem Rand. Zudem gilt u = 0 für alle x ∈ ∂Ω.

Um die entsprechende Euler-Lagrange-Gleichung zu erhalten, muss man die erste Variation
in eine beliebige Richtung v ∈ C∞0 (Ω) gleich Null setzen:

0 != δEf (u, v) für alle v ∈ C∞0 (Ω)

Sei also v ∈ C∞0 (Ω) beliebig

0 !=
d

dt
Ef (u+ tv)

∣∣∣∣
t=0

=
d

dt

∫
Ω

(
1
p

[H (∇u+ t∇v)]p −
λf (q)
q
|u+ tv|q

)
dx

∣∣∣∣
t=0

=
∫

Ω

(
N∑
k=1

[H (∇u)]p−1 ∂H

∂ξk
(∇u)︸ ︷︷ ︸

(∗)

∂v

∂xk
− λf (q) |u|q−2 u · v

)
dx, mit ξk =

∂u

∂xk
.

Dies ist zunächst die schwache Form der Euler-Lagrange-Gleichung. DaH ∈ C2
(
RN \ {0}

)
ist, ist der Ausdruck in (∗) für genügend glattes u di�erenzierbar und man kann diesen
partiell integrieren. Mit u (x) = 0 für alle x ∈ ∂Ω erhält man:

0 !=
∫

Ω

(
−

N∑
k=1

∂

∂xk

{
[H (∇u)]p−1 ∂H

∂ξk
(∇u)

}
v − λf (q) |u|q−2 u · v

)
dx

Durch Verwendung des Fundamentallemmas der Variationsrechung bekommt man die
starke Form der Euler-Lagrange-Gleichung:

−
N∑
k=1

∂

∂xk

{
[H (∇u)]p−1 ∂H

∂ξk
(∇u)

}
= λf (q) |u|q−2 u (3.6)

Bemerkung 3.1.1: Der zweite Teil des Energiefunktionals ist von der Struktur her
identisch zu dem aus Kapitel 1 (siehe Formel (1.2)). Somit sind auch die rechten Seiten
der Euler-Lagrange-Gleichungen (3.6) und (1.1) von der Struktur her gleich.

De�nition 3.1.2:

Qu (x) :=
N∑
k=1

∂

∂xk

{
[H (∇u (x))]p−1 ∂H

∂ξk
(∇u (x))

}
mit ξk =

∂u

∂xk
. (3.7)

Im Folgenden bezeichne ich den Operator, der durch Gleichung (3.7) de�niert ist, als
Q-Laplace Operator.
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3.1 Das verallgemeinerte Randwertproblem

Das zu (1.1) verallgemeinerte Randwertproblem lautet damit:

{
−Qu = λf (q) |u|q−2u für x ∈ Ω,

u = 0 für x ∈ ∂Ω
(3.8)

Bemerkung 3.1.3: Der Q-Laplace Operator ist eine Verallgemeinerung des p-Laplace
Operators, in dem Sinne, dass die Norm im RN nicht zwangsläu�g die Euklidische sein
muss. Im Fall der Euklidischen Norm, d.h.

H (ξ) =

(
N∑
k=1

|ξk|2
) 1

2

= ‖ξ‖2 = |ξ|

gilt nämlich:

Qu (x) =
N∑
k=1

∂

∂xk

{
[H (∇u (x))]p−1 ∂H

∂ξk
(∇u (x))

}
, mit ξk =

∂u

∂xk

=
N∑
k=1

∂

∂xk

{
|∇u (x)|p−1 1

|∇u (x)|
∂u (x)
∂xk

}

=
N∑
k=1

∂

∂xk

{
|∇u (x)|p−2 ∂u (x)

∂xk

}
= div

(
|∇u (x)|p−2∇u (x)

)
= ∆pu

Beispiel:

H (ξ) =

 N∑
j=1

|ξj |s
 1

s

Durch direkte Herleitung der Euler-Lagrange-Gleichung aus dem speziellen Energie-
funktional

Ef (u) =
∫

Ω

1
p

 N∑
j=1

∣∣∣∣ ∂u∂xj (x)
∣∣∣∣s


p
s

−
λf (q)
q
|u(x)|q dx

oder auch mittels Verwendung der allgemeinen Formel (3.7) für Q (u) erhält man für die
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3 Das elliptische Randwertproblem im Minkowski Raum

spezielle Wahl von H (ξ) den folgenden Q-Laplace Operator:

Qu (x) =
N∑
k=1

∂

∂xk


 N∑
j=1

∣∣∣∣ ∂u∂xj
∣∣∣∣s


p−1
s

· ∂
∂ξk

 N∑
j=1

∣∣∣∣ ∂u∂xj
∣∣∣∣s
 1

s


=

N∑
k=1

∂

∂xk


 N∑
j=1

∣∣∣∣ ∂u∂xj
∣∣∣∣s


p−1
s

· 1
s
·

 N∑
j=1

∣∣∣∣ ∂u∂xj
∣∣∣∣s
 1

s
−1

s ·
∣∣∣∣ ∂u∂xk

∣∣∣∣s−1 ∂u
∂xk∣∣∣ ∂u∂xk

∣∣∣


=
N∑
k=1

∂

∂xk


 N∑
j=1

∣∣∣∣ ∂u∂xj
∣∣∣∣s


p−s
s ∣∣∣∣ ∂u∂xk

∣∣∣∣s−2 ∂u

∂xk

 (3.9)

An diesem Beispiel erkennt man erneut, dass im Fall der Euklidischen Norm (s = 2) der
Q-Laplace Operator in den p-Laplace Operator übergeht, also Qu = ∆pu gilt.

De�nition 3.1.4: Der Pseudo-p-Laplace Operator ist de�niert durch

∆̃pu =
N∑
k=1

∂

∂xk

(∣∣∣∣ ∂u∂xk
∣∣∣∣p−2 ∂u

∂xk

)
.

An (3.9) sieht man, dass der Pseudo-p-Laplace Operator ebenfalls als Spezialfall im
Q-Laplace Operator s = p enthalten ist.

Bemerkung 3.1.5: Da Q (−u) = −Q (u) gilt, ist mit u auch −u eine Lösung des
Randwertproblems (3.8).

Sei u ∈ Γfq ein Minimierer des Funktionals (3.3), d.h. u ∈W 1,p
0 (Ω) ,

∫
Ω |u|

q dx = 1 und
u löst −Qu = λf (q) |u|q−2 u. Sei α ∈ R+. Betrachte die skalierte Funktion v = αu:

−Qv = −Q (αu)

= −
N∑
k=1

∂

∂xk

{
[H (∇ (αu))]p−1 ∂H

∂ξαk
(∇ (αu))

}
, mit ξαk =

∂ (αu)
∂xk

= −
N∑
k=1

∂

∂xk

{
αp−1 [H (∇u (x))]p−1 ∂H

∂ξk
(∇u (x))

}
= −αp−1 Qu = αp−1λf (q) |u|q−2 u

= αp−qλf (q) |v|q−2 v

=: λ̃f (q) |v|q−2 v

Damit löst die skalierte Funktion v ein von der Struktur her gleiches Randwertproblem
wie (3.8), jedoch mit einem skalierten λ̃f (q) = αp−q ·λf (q). Somit gilt analog zu Be-
merkung 2.1.4, dass für q ≤ p die Bedingung ‖u‖q = 1 keine wesentliche Zusatz-
voraussetzung darstellt.
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3.2 Positivität der ersten Eigenfunktion

Bemerkung 3.1.6: Aus obiger Rechnung ist ersichtlich, dass der Q-Laplace Operator
homogen vom Grad p− 1 ist, d.h. für alle α ∈ R genügt er der Gleichung

Q (α) = αp−1Q (u) . (3.10)

3.2 Positivität der ersten Eigenfunktion

De�nition 3.2.1: Eine Funktion u ∈ W 1,p
0 (Ω) , u 6= 0 heiÿt Eigenfunktion zur

partiellen Di�erentialgleichung (3.8), falls∫
Ω

(
N∑
k=1

[H (∇u)]p−1 ∂H

∂ξk
(∇u)

∂φ

∂xk

)
dx = λf (q)

∫
Ω
|u|q−2 u ·φ dx (3.11)

für alle φ ∈ C∞0 (Ω) gilt. Hierbei ist ξk = ∂u
∂xk

. λf (q) ∈ R heiÿt Eigenwert.

Aufgrund der Regularitätstheorie [20] weiÿ man, dass schwache Lösungen von (3.11) in
C1,α (Ω) liegen. Sie sind damit insbesondere stetig. Es lässt sich beim verallgemeinerten
Randwertproblem (analog zu Kapitel 2) folgendes Lemma zeigen:

Lemma 3.2.2: Die erste Eigenfunktion zu (3.8), die dem ersten Eigenwert entspricht,
wechselt ihr Vorzeichen nicht.

Beweis: An (3.5) erkennt man, dass sich die Energie Ef (u) des Systems unter der Trans-
formation u→ −u nicht ändert. Setzt man wieder v = |u| so gilt mit u,−u ∈ W 1,p

0 (Ω)
auch v ∈ W 1,p

0 (Ω). Zudem zeigt man wie zuvor v ∈ Γfq . Damit ist v eine zur Mini-
mierung des Funktionals (3.3) zulässige Funktion. Es gilt also: Minimiert u die Energie,
so auch −u und v. Angenommen v würde im Inneren von Ω Null werden, also sein Mini-
mum annehmen, so müsste entsprechend des starken Minimumprinzips [11] v ≡ 0 sein.
Dies steht jedoch im Widerspruch dazu, dass v eine Eigenfunktion sein soll bzw. dass∫

Ω |v|
q dx = 1 gelten soll.

⇒ v > 0 für fast alle x ∈ Ω ⇒ |u| > 0 für fast alle x ∈ Ω.

Damit ist die Behauptung, dass die erste Eigenfunktion ihr Vorzeichen nicht wechselt,
bewiesen.

Bemerkung 3.2.3: Da mit u auch −u eine erste Eigenfunktion ist, genügt es positive
Lösungen zu betrachten. Für u > 0 lautet (3.8):{

−Qu = λ (q)u (q)q−1 für x ∈ Ω,
u = 0 für x ∈ ∂Ω

(3.12)

Ein positiver Minimierer u ∈W 1,p
0 (Ω) des Energiefunktionals (3.5) muss damit Gleichung

(3.12) erfüllen.
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3 Das elliptische Randwertproblem im Minkowski Raum

3.3 Existenz des Rayleigh-Quotienten

Es lässt sich ein verallgemeinerter Rayleigh-Quotient für das Randwertproblem (3.8)
de�nieren:

De�nition 3.3.1:

λf (q) := inf
u∈W 1,p

0 (Ω),u 6=0

∫
Ω [H (∇u)]p dx(∫

Ω |u|
q dx

)p/q (3.13)

Satz 3.3.2: Es existiert ein λf (q) > 0 und ein u (q) ∈ Γfq , u (q) > 0, welches das
verallgemeinerte Randwertproblem (3.8) mit λf (q) als Rayleigh-Quotient (3.13) löst.

Dieser Satz ist völlig analog zum Satz 2.4.1. Der Beweis lässt sich ähnlich durchführen.
Zunächst ist es jedoch nützlich folgendes Lemma zu beweisen:

Lemma 3.3.3: Sei v eine positive Funktion und q ≤ p. Unter diesen Annahmen ist das
Funktional Jf (v) =

∫
Ω [H (∇v)]p dx konvex in vq.

Beweis: Sei also v ≥ 0 und q ≤ p. Setzt man w = vq, so folgt:

∇w = q · vq−1 · ∇v

∇v =
1
q
· v1−q · ∇w =

1
q
·w

1−q
q · ∇w,

woraus man dann [H (∇v)]p als Funktion von w bekommt:

⇒ [H (∇v)]p =
[
H

(
1
q
·w

1−q
q · ∇w

)]p
2.)
= q−p ·w

p
q

(1−q) [H (∇w)]p =: g (w)

Man muss daher die Konvexität der Abbildung g : R+ → R+, w 7→ g (w) in w zeigen,
d.h. zu zeigen ist, dass für w1, w2 ∈ R+, α ∈ (0, 1) folgende Ungleichung gilt:

g (αw1 + (1− α)w2) ≤ αg (w1) + (1− α) g (w2)

Substituiert man z = ∇w
q so ist es äquivalent zu zeigen, dass die Funktion

kf (w, z) := w
p
(

1− 1
q

)
[H (z)]p in (w, z) ∈ R+ ×RN

konvex ist. Sei nun α ∈ (0, 1) und (wi, zi) ∈ R+ ×RN , i = 1, 2. Da H konvex ist gilt

H (αz1 + (1− α) z2) ≤ αH (z1) + (1− α)H (z2) . (3.14)
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3.3 Existenz des Rayleigh-Quotienten

Aus dem Beweis des Lemmas 2.5.4 weiÿ man, dass

h (w, y) = w
p
(

1− 1
q

)
yp in (w, y) ∈ R+ ×R+

0

konvex und monoton wachsend in y ist. Damit ergibt sich folgende Ungleichungskette:

kf
(
αw1 + (1− α)w2, αz1 + (1− α) z2

)
= h

(
αw1 + (1− α)w2, H (αz1 + (1− α) z2)

)
(3.14)

≤ h
(
αw1 + (1− α)w2, αH (z1) + (1− α)H (z2)

)
≤ α ·h (w1, H (z1)) + (1− α) ·h (w2, H (z2))

= α · kf (w1, z1) + (1− α) · kf (w2, z2)

Beweis des Satzes 3.3.2: Es sind wieder die drei Eigenschaften zu zeigen:

(i) Das In�mum existiert, d.h. es existiert eine Funktion u bei der λf (q) sein Minimum
annimmt.

(ii) Das Minimum ist gröÿer als Null.

(iii) Die Funktion, bei der das Minimum angenommen wird, ist eine Lösung des Rand-
wertproblems (3.8).

Zu (i): De�niere die Funktion Bfq (u) folgender Maÿen:

λf (q) = inf
u∈W 1,p

0 (Ω),u 6=0

∫
Ω [H (∇u)]p dx(∫

Ω |u|
q dx

)p/q =: inf
u∈W 1,p

0 (Ω),u6=0
Bfq (u)

Ziel ist es Bfq (u) auf der Menge Ãf := Ã =
{
u
∣∣ u ∈W 1,p

0 (Ω) , u 6= 0
}
zu mini-

mieren. Dies ist äquivalent dazu das Funktional Zf (u) auf der Menge

Af := A =
{
u
∣∣∣ u ∈W 1,p

0 (Ω) ,
∫

Ω
|u|q dx = 1

}
zu minimieren. Hierbei ist Bfq (u) := Zf (u)

Nfq (u) , wobei Zf (u) :=
∫

Ω [H (∇u)]p dx der

Zähler und Nfq (u) := Nq (u) =
(∫

Ω |u|
q dx

)p/q
der Nenner des Bruches Bfq (u) ist.

Um (i) zu beweisen, muss man daher zeigen, dass minu∈Af
Zf (u) existiert. Per

De�nition ist λf (q) nicht negativ. Ebenso ist Zf (u) ≥ 0 und damit nach unten
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3 Das elliptische Randwertproblem im Minkowski Raum

beschränkt. Folglich existiert eine Minimalfolge (un)n∈N ⊂ Af mit

lim
n→∞

Zf (un) = inf
u∈Af

Zf (u) ≥ 0.

Da Zf (un) konvergiert, ist es durch eine Konstante K nach oben beschränkt:

K ≥ Zf (un) =
∫

Ω
[H (∇un)]p dx

(3.2)

≥
∫

Ω

(
C̃ |∇un|

)p
dx = C̃p

∫
Ω
|∇un|p dx

= C̃p ‖|∇un|‖pp
(2.4)

≥ C̃p ·Cp ‖un‖pp
Damit sind die Lp-Normen von un und ∇un beschränkt.

⇒ un ist beschränkt in W 1,p
0 (Ω)

Da W 1,p
0 (Ω) für p ∈ (1,∞) re�exiv ist, existiert eine Teilfolge (unk

)nk∈N und ein

ũ ∈W 1,p
0 (Ω) mit:

unk

nk→∞−−−−⇀ ũ schwach in W 1,p
0 (Ω) (siehe [24])

Dies impliziert insbesondere: unk

nk→∞−−−−⇀ ũ schwach in Lp (Ω). Dass ũ ∈ Af gilt,
zeigt man auf identische Weise wie im Beweis des Satzes 2.4.1.

Zeige nun, dass ũ ein Minimierer von Zf (u) auf der Menge Af ist. Nutze hierzu,
dass das Funktional Zf (u) =

∫
Ω [H (∇u)]p dx folgende Eigenschaften erfüllt:

â Zf (u) ist als Verkettung stetiger Funktionen stetig in u.

â Zf (u) ist nach Lemma 3.3.3 konvex.

Aus den beiden Eigenschaften folgt, dass Zf (u) schwach unterhalbstetig ist. Da

unk

nk→∞−−−−⇀ ũ schwach in W 1,p
0 (Ω) konvergiert, gilt Zf (ũ) ≤ lim infnk→∞ Zf (unk

).
Mit der Ungleichungskette

inf
u∈Af

Zf (u) ≤ Zf (ũ) ≤ lim inf
nk→∞

Zf (unk
) = inf

u∈Af

Zf (u)

erhält man, dass Zf (ũ) = infu∈Af
Zf (u) und somit ũ ein Minimierer von Zf (u)

auf der Menge Af darstellt.

Zu (ii): Es gilt Zf (u) > 0. Denn angenommen Zf (u) = 0, dann istH (∇u) = 0 fast überall
in Ω. Da H eine Norm ist, impliziert dies, dass ∇u = 0 fast überall in Ω gilt und
mit u = 0 auf ∂Ω folgt u = 0 fast überall in Ω. Dies ist jedoch ein Widerspruch zu
u ∈ Af .

Da Zf (u) > 0 und Nfq (u) = 1 für u ∈ Af gilt, ist Bfq (u) für einen Minimierer u
positiv. Damit ist λf (q) > 0.
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3.4 Eindeutigkeit der Lösung für q ≤ p

Zu (iii): Für einen Minimierer u von Bfq (u) muss δBfq (u, v) = 0 für alle v ∈ C∞0 (Ω)
gelten. Dies ist aufgrund der Quotientenregel äquivalent zu:

Nfq (u) δZf (u, v)− Zf (u) δNfq (u, v) = 0 für alle v ∈ C∞0 (Ω)
⇔ δZf (u, v) = Bfq (u) δNfq (u, v) für alle v ∈ C∞0 (Ω)

Es ist

δZf (u, v) =
d

dt

{
Zf (u+ tv)

}∣∣∣
t=0

=
d

dt

{∫
Ω

[H (∇u+ t · ∇v)]p dx
} ∣∣∣∣∣

t=0

=
∫

Ω

N∑
k=1

p · [H (∇u)]p−1 · ∂H
∂ξk

(∇u) · ∂vk
∂xk

dx

und

δNq (u, v) =
d

dt

{
Nq (u+ tv)

}∣∣∣
t=0

=
d

dt

(∫
Ω
|u+ tv|q dx

) p
q

∣∣∣∣∣
t=0

=
p

q

(∫
Ω
|u|q dx

) p
q
−1

· q
∫

Ω
|u|q−2 u · v dx.

Für einen Minimierer u ∈ Γq von Bq (u) gilt λf (q) = Bfq (u). Mit

∫
Ω

N∑
k=1

[H (∇u)]p−1 · ∂H
∂ξk

(∇u) · ∂vk
∂xk

dx = λf (q)
∫

Ω
|u|q−2 u · v dx

folgt, dass u eine schwache Lösung der Gleichung

−Qu = λf (q) |u|q−2 u

ist, was (iii) nachweist.

3.4 Eindeutigkeit der Lösung für q ≤ p

Lemma 3.4.1: λf (q) ist beschränkt, falls q aus einer beschränkten Menge ist.
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3 Das elliptische Randwertproblem im Minkowski Raum

Beweis: Sei q aus einer beschränkten Menge, dann ist nach Lemma 2.5.1 λ (q) beschränkt.
Zudem gilt ∫

Ω
[H (∇u)]p dx

(3.1)

≤ Cp ·
∫

Ω
|∇u|p dx

Dies impliziert:

λf (q) = inf
u∈W 1,p

0 (Ω),u 6=0

∫
Ω [H (∇u)]p dx(∫

Ω |u|
q dx

)p/q
≤ inf

u∈W 1,p
0 (Ω),u 6=0

Cp ·
∫

Ω |∇u|
p dx(∫

Ω |u|
q dx

)p/q
= Cp ·λf (q) <∞

Satz 3.4.2: Für q = p ist die positive Lösung von (3.8) eindeutig.

Bemerkung 3.4.3: Für q = p hat man folgenden Spezialfall:{
−Qu = λf (p)up−1 für x ∈ Ω,

u = 0 für x ∈ ∂Ω.
(3.15)

Hierbei sieht man sofort oder an (3.10), dass mit u auch αu für jedes α ∈ R \ {0} eine
Lösung des Randwertproblems ist. (3.15) ist die Euler-Lagrange-Gleichung des speziellen
Minimierungsproblems: Minimiere

Jf (v) := p · If (v) =
∫

Ω
[H (∇v)]p dx (3.16)

auf der Menge Γfp :=
{
v ∈W 1,p

0 (Ω) | ‖v‖Lp(Ω) = 1
}
.

Beweis des Satzes 3.4.2:

Analog zum Beweis des Satzes 2.5.2 nehme ich an, dass es zwei positive Minimierer u
und z des Funktionals (3.16) gibt, wobei u, z ∈ Γfq gilt.

Wie in [4] de�niere ich für t ∈ (0, 1) die Funktionen η := t ·up+(1− t) zp und w := η1/p.
Dann ist w ebenfalls eine zur Minimierung zulässige Funktion, denn es gilt:∫

Ω
wpdx = t ·

∫
Ω
updx+ (1− t) ·

∫
Ω
zpdx = t+ 1− t = 1

⇒ w ∈ Γfp . Berechne nun J (w). Betrachte dazu:

∇w = ∇
(
η

1
p

)
=

1
p
η

1
p
−1 (

t · p up−1∇u+ (1− t) · p zp−1∇z
)

= η
1
p

(
t ·up

η
· ∇u
u

+
(1− t) · zp

η
· ∇z
z

)
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3.4 Eindeutigkeit der Lösung für q ≤ p

Da η ≥ 0 und H positiv homogen vom Grad eins ist, gilt:

H (∇w) = η
1
pH

(
t ·up

η
· ∇u
u

+
(1− t) · zp

η
· ∇z
z

)
De�niere s (x) := t ·up

η . O�ensichtlich ist s (x) positiv. Zudem gilt:

[s (x)]−1 =
t ·up + (1− t) · zp

t ·up
= 1 +

1− t
t
· z

p

up
> 1

⇒ s (x) ∈ (0, 1) und (1− s (x)) = 1− t ·up

η
=

(1− t) zp

η

Damit ergibt sich

H (∇w) = η
1
pH

(
s (x) · ∇u

u
+ (1− s (x)) · ∇z

z

)
.

Nach Lemma 3.3.3 ist das Funktional Jf (v) insbesondere konvex in vp. Wendet man
zunächst die Konvextität und anschlieÿend die Homogenität von H an, so erhält man:

[H (w)]p = η

[
H

(
s (x) · ∇u

u
+ (1− s (x)) · ∇z

z

)]p
≤ η

(
s (x)

[
H

(
∇u
u

)]p
+ (1− s (x))

[
H

(
∇z
z

)]p)
= t ·up

[
H

(
∇u
u

)]p
+ (1− t) · zp

[
H

(
∇z
z

)]p
= t · [H (∇u)]p + (1− t) · [H (∇z)]p (3.17)

Nach Annahme minimieren u und z das Funktional Jf (v), d.h. es gilt:∫
Ω

[H (∇u)]p dx =
∫

Ω
[H (∇z)]p dx = λf (p)

Hiermit folgt, dass auch w das Funktional Jf (v) minimieren muss, denn es ist:∫
Ω

[H (∇w)]p dx ≤ t ·
∫

Ω
[H (∇u)]p dx+ (1− t) ·

∫
Ω

[H (∇z)]p dx

= t ·λf (q) + (1− t) ·λf (q)
= λf (q) (3.18)

Dies bedeutet, dass in (3.17) bzw. in (3.18) Gleichheit gelten muss. Beide Funktionen
sind aus Γfp = Γp und deshalb bezüglich der Lp -Norm normiert. Dementsprechend folgt
wie im Beweis des Satzes 2.5.2 u = z in Lp (Ω). Im Falle p = q ist damit die Eindeutigkeit
bewiesen.
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3 Das elliptische Randwertproblem im Minkowski Raum

Lemma 3.4.4: Seien a, b ∈ RN und a 6= b Dann gilt:

∫
Ω

(
N∑
k=1

{
[H (a)]p−1 ∂H

∂ak
(a)− [H (b)]p−1 ∂H

∂bk
(b)
}
· (ak − bk)

)
dx > 0

Beweis: Sei t ∈ RN . Die Funktion

f (t) := [H (t)]p

ist strikt konvex in t. Daher ist

N∑
k=1

(
∂f (t)
∂tk

∣∣∣∣
t=a

− ∂f (t)
∂tk

∣∣∣∣
t=b

)
· (ak − bk) > 0

für a 6= b. Es ist:

∂f (t)
∂tk

= p · [H (t)]p−1 · ∂H (t)
∂tk

Somit ergibt sich nach Integration über Ω und mit der abgekürzten Schreibweise

∂H (t)
∂tk

∣∣∣∣
t=x

=
∂H

∂xk
(x) für x = a, b

die Behauptung.

Satz 3.4.5: Für λf > λf (p) gibt es keine positiven Eigenfunktionen von (3.8) mit
Eigenwert λf . Mit anderen Worten ist jede positive Eigenfunktion von (3.8) ein Mini-
mierer des Rayleigh-Quotienten.

Beweis durch Widerspruch: Sei λf > λf (p). Angenommen es existiert eine positive
Eigenfunktion v von (3.8) mit Eigenwert λf . Sei vp die entsprechende Eigenfunktion
zu λf (q). Dann ist vp insbesondere stetig und vp = 0 auf ∂Ω. Da v positiv ist, lässt sich
vp durch Multiplikation mit einer genügend kleinen Konstante so skalieren, dass

vp (x) ≤ v (x) für alle x ∈ Ω

gilt. De�niere

κ :=
(
λf (p)
λf

) 1
p−1

.
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Es ist 0 < κ < 1. Sei φ eine positive Testfunktion, dann gilt mit ρ = ∇vp und ψ = ∇ (κv):∫
Ω

(
N∑
k=1

[H (∇vp)]p−1 ∂H

∂ρk
(∇vp)

∂φ

∂xk

)
dx

= λf (p)
∫

Ω
vp−1
p φ dx

≤ λf (p)
∫

Ω
vp−1φ dx

= λf

∫
Ω

(κv)p−1 φ dx

=
∫

Ω

(
N∑
k=1

[H (∇ (κv))]p−1 ∂H

∂ψk
(∇ (κv))

∂φ

∂xk

)
dx

⇒
∫

Ω

(
N∑
k=1

{
[H (∇vp)]p−1 ∂H

∂ρk
(∇vp)− [H (∇ (κv))]p−1 ∂H

∂ψk
(∇ (κv))

}
∂φ

∂xk

)
dx ≤ 0

Wähle nun als Testfunktion φ = (vp − κv)+. Dann ergibt sich:∫
vp≥κv

N∑
k=1

{
[H (∇vp)]p−1 ∂H

∂ρk
(∇vp)− [H (κ∇v)]p−1 ∂H

∂ψk
(κ∇v)

}
∂ (vp − κv)

∂xk
dx ≤ 0

Nach Lemma 3.4.4 gilt jedoch mit ∇vp = a und ∇ (κv) = b, dass dieser Ausdruck für
∇vp 6= κv positiv ist. Folglich ist (vp − κv)+ = 0, was bedeutet, dass ∇vp ≤ κv gilt.

Zusammengefasst heiÿt das: Aus vp ≤ v folgt −Qvp ≤ −Q (κv) und dies impliziert
vp ≤ κv. Wiederholt man nun das Argument für κv anstelle von v so erhält man vp ≤ κ2v.
Für den j − ten Schritt ergibt sich daher

0 ≤ vp ≤ κjv.

Die rechte Seite konvergiert für j → ∞ gegen Null, woraus vp ≡ 0 folgt. Dies steht im
Widerspruch zur Annahme, dass vp eine positive Eigenfunktion ist.

Satz 3.4.6: Positive (schwache) Lösungen von{
Qu+ f (x, u) = 0 für x ∈ Ω,

u = 0 für x ∈ ∂Ω
(3.19)

sind eindeutig vorausgesetzt f : Ω× [0,∞) genügt den Bedingungen:

1. Die Abbildung r1−pf (x, r) ist streng monoton fallend in r ∈ [0,∞).

2. Es existiert eine positive Konstante C, so dass f (x, r) ≤ C
(
rp−1 + 1

)
für fast alle

x ∈ Ω und für alle r ∈ [0,∞) gilt.
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Beweis: Lösungen von (3.19) sind kritische Punkte des Funktionals

H (v) :=
∫

Ω

{
1
p

[H (∇v)]p − F (x, v)
}
dx

mit F (x, v) :=
∫ v

0 f (x, |s|) ds. Aufgrund von 2. ist H aufW 1,p
0 (Ω) wohlde�niert. Zudem

ist H per Konstruktion ein gerades Funktional in v, d.h. es gilt H (v) = H (−v). Der
erste Teil ist nach Lemma 3.3.3 konvex in vp. Der zweite Teil −

∫
Ω F (x, v) dx ist sogar

strikt konvex in vp. Denn mit w := vp gilt

F (x,w) =
∫ w

1
p

0
f (x, |x|) ds.

Di�erenziert man diesen Ausdruck nach w so erhält man

∂F

∂w
= f

(
x,w

1
p

)
· 1
p
w

1
p
−1 =

1
p
· f (x, v) · v1−p.

Dies ist aufgrund von 1. strikt monoton fallend in v. Somit ist − ∂F
∂vp strikt monoton

wachsend in v, was die strikte Konvexität von −
∫

Ω F (x, v) dx in vp beweist. Zusammen-
genommen impliziert dies, dass das Funktional H maximal einen kritischen Punkt haben
kann.

Mit Hilfe des Satzes 3.4.6 lässt sich nun Folgendes beweisen:

Satz 3.4.7: Für q < p ist die positive Lösung des folgenden Randwertproblems eindeutig:{
−Qu = λf (q) |u|q−2u für x ∈ Ω,

u = 0 für x ∈ ∂Ω

Beweis: Hier ist f (x, u) = λf (q)u (x)q−1. Dass dieses f den Bedingungen 1. und 2.
genügt wurde bereits im Beweis des Satzes 2.5.2 gezeigt. Damit ist die Eindeutigkeit im
Fall q < p ebenfalls bewiesen.

Bemerkung 3.4.8: Aus den Sätzen 3.4.2 und 3.4.7 folgt, wie in der Überschrift dieses
Abschnittes angedeutet, die Eindeutigkeit der Lösung von (3.8) für q ≤ p.

3.5 Konvergenzverhalten im allgemeineren Fall

Satz 3.5.1: Sei q < p∗. Da p < p∗ gilt, gibt es für q zwei mögliche Fälle:

(a) Für q → q0 < p gilt: λf (q) → λf (q0) und u (q) → u (q0) in W 1,p
0 (Ω). Dies

bedeutet, dass λf (q) und u (q) stetig in q sind, falls q < p ist.
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3.5 Konvergenzverhalten

(b) Für q → q0 > p gibt es (λf0 , u0), so dass (λf (q) , u (q))→ (λf0 , u0), mit λ0 ≥ λ (q0),
u0 > 0 und (λf0 , u0) eine Lösung von (3.8) ist. Dies bedeutet insbesondere, dass
λf (q) in q oberhalbstetig für q > p ist.

Lemma 3.5.2: Es gilt die folgende Identität:

H (ξ) =
N∑
k=1

∂H

∂ξk
(ξ) ξk (3.20)

Hierbei ist ξ = ∇u.

Beweis: Da H positiv homogen vom Grad eins ist, gilt insbesondere

H (tξ) = tH (ξ) für alle positiven, reellen t und für alle ξ ∈ RN .

Di�erenziert man diese Gleichung bezüglich t und wertet sie anschlieÿend bei t = 1 aus,
so erhält man einerseits

d

dt

(
H (tξ)

)∣∣∣
t=1

=
N∑
k=1

∂H

∂ (tξk)
(tξ) · ∂ (tξk)

∂t

∣∣∣∣
t=1

=
N∑
k=1

∂H

∂ξk
(ξ) · ξk

und andererseits

d

dt

(
tH (ξ)

)∣∣∣
t=1

= H (ξ) .

Zusammen ergibt sich die Behauptung.

Lemma 3.5.3: Sei u (q) eine Lösung des Randwertproblems (3.8) mit beschränktem q,
dann ist u (q) bezüglich der W 1,p-Norm beschränkt in W 1,p

0 (Ω).

Beweis:

‖u (q)‖p =
(∫

Ω
|u|p + |∇u|p dx

) 1
p
· p

(3.2)

≤ ‖u (q)‖pp +
1

C̃p

∫
Ω

[H (∇u)]p dx
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3 Das elliptische Randwertproblem im Minkowski Raum

⇒ ‖|∇u (q)|‖pp ≤ 1

C̃p

∫
Ω

[H (∇u)]p dx

=
1

C̃p

∫
Ω

[H (∇u)]p−1 ·H (∇u) dx

(3.20)
=

1

C̃p

∫
Ω

(
N∑
k=1

[H (∇u)]p−1 ∂H

∂ξk
(∇u)

∂u

∂xk

)
dx

(3.11)
=

1

C̃p
·λf (q)

∫
Ω
|u|q−2 u ·u dx

=
1

C̃p
·λf (q) ‖u (q)‖qq

Da u ∈ Γfq , ist ‖u‖
q
q = 1 und damit

‖|∇u (q)|‖pp ≤
1

C̃p
·λf (q) . (3.21)

Ist q beschränkt, so folgt aus Lemma (3.4.1), dass λf (q) beschränkt ist und man erhält,
dass u (q) in W 1,p

0 (Ω) bezüglich der Norm ‖ · ‖∇,p beschränkt ist. Dass u (q) beschränkt
in W 1,p

0 (Ω) bezüglich der W 1,p-Norm ist, beweist man wie in Kapitel 2 mit folgender
Ungleichungskette

‖u (q)‖p = ‖u (q)‖pp + ‖|∇u (q)|‖pp
(2.4)

≤ (Cp + 1) ‖|∇u (q)|‖pp
(3.21)

= (Cp + 1)λf (q) <∞.

Beweis des Satzes 3.5.1:

I: Der erste Teil funktioniert analog zu dem ersten Schritt des Beweises von Satz 2.6.1:
Sei (qn)n∈N eine gegen q0 konvergente Folge. Wegen Lemma (3.5.3) ist u (qn) := un
eine beschränkte Folge und besitzt somit eine in W 1,p

0 (Ω) schwach konvergente
Teilfolge mit einem Grenzwert u0 < ∞. Ohne Beschränkung der Allgemeinheit
gelte also qn → q0, λf (qn)

qn→q0−−−−→ λf0 und

un
qn→q0−−−−⇀ u0 schwach in W 1,p

0 (Ω) , stark in Lq0 (Ω) .

Insbesondere ist damit (u (qn))n∈N in Lq0 (Ω) eine Cauchyfolge.

II: Zeige, dass u (qn)
qn→q0−−−−→ u0 stark in W 1,p

0 (Ω) konvergiert.
Entsprechend des Beweises von Satz 2.6.1 genügt es die beiden Eigenschaften

(i) ∇u (qn)
qn→q0−−−−⇀ ∇u0 in Lp (Ω)
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3.5 Konvergenzverhalten

(ii) ‖|∇u (qn)|‖p
qn→q0−−−−→ ‖|∇u0|‖p in R

nachzuweisen.

Zu (i): Da u (qn)
qn→q0−−−−⇀ u0 schwach in W 1,p

0 (Ω) konvergiert, gilt insbesondere

∇u (qn)
qn→q0−−−−⇀ ∇u0 in Lp (Ω) .

Zu (ii): Zeige zunächst, dass (∇u (qn))n∈N eine Cauchyfolge in Lp (Ω) bildet. Wobei es
wiederum ausreicht die Eigenschaften (i) und (ii) für diesen Fall nachzuweisen.
Aus der schwachen Konvergenz in Lp (Ω) von ∇u (qn) gegen ∇u0 folgt wie
zuvor (i). Um zu zeigen, dass

‖|∇u (qn)|‖p − ‖|∇u (qm)|‖p
qn,qm→q0−−−−−−→ 0 in R (3.22)

gilt, betrachtet man qn, qm in der Nähe von q0. u (qn) und u (qm) erfüllen die
Gleichung:

M :=
∫

Ω

N∑
k=1

{
[H (∇un)]p−1 ∂H

∂ξk
(∇un)

− [H (∇um)]p−1 ∂H

∂ζk
(∇um)

}
· ∂

∂xk
(un − um) dx

=
∫

Ω
−

N∑
k=1

∂

∂xk

{
[H (∇un)]p−1 ∂H

∂ξk
(∇un)

− [H (∇um)]p−1 ∂H

∂ζk
(∇um)

}
(un − um) dx

=
∫

Ω
−
{
Qu (qn)−Qu (qm)

}
(u (qn)− u (qm)) dx

(3.8)
=

∫
Ω

{
λf (qn)uqn−1

n − λf (qm)uqm−1
m

}
(un − um) dx (3.23)

Hierbei steht ξk als Abkürzung für ∂un
∂xk

und ζk für ∂um
∂xk

. Die rechte Seite der
Gleichung konvergiert wie in (2.20) für n,m→∞ gegen Null.

Multipliziert man M , d.h. den ersten Ausdruck aus Gleichung (3.23) aus, so
erhält man qualitativ zwei verschiedene Terme:

1.)
∫

Ω

N∑
k=1

[H (∇un)]p−1 ∂H

∂ξk
(∇un) · ∂

∂xk
un dx

(3.20)
=

∫
Ω

[H (∇un)]p dx = ‖H (∇un)‖pp
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3 Das elliptische Randwertproblem im Minkowski Raum

2.)
∫

Ω

N∑
k=1

[H (∇un)]p−1 ∂H

∂ξk
(∇un) · ∂

∂xk
um dx

=
∫

Ω
[H (∇un)]p−1

N∑
k=1

∂H

∂ξk
(∇un) · ζk dx

Hölder
≤

∥∥∥[H (∇un)]p−1
∥∥∥

p
p−1

·

∥∥∥∥∥
N∑
k=1

∂H

∂ξk
(∇un) · ζk

∥∥∥∥∥
p

= ‖H (∇un)‖p−1
p ·

∥∥∥∥∥
N∑
k=1

∂H

∂ξk
(∇un) · ζk

∥∥∥∥∥
p

(R)

≤ ‖H (∇un)‖p−1
p ‖H (∇um)‖p

Hierbei gilt die Abschätzung (R), denn es ist:

d

dt

(
H (ξ + tζ)

)∣∣∣∣
t=0

=
N∑
k=1

∂H

∂ (ξk + tζk)
(ξk + tζk) ·

∂ (ξk + tζk)
∂t

∣∣∣∣
t=0

=
N∑
k=1

∂H

∂ξk
(ξk) · ζk = H ′ (ξ) · ζ

Das heiÿt
∑N

k=1
∂H
∂ξk

(ξk) · ζk ist die erste Variation von H in ξ in Richtung ζ.

Zudem gilt 1
t [H (ξ + tζ)−H (ξ)] ≤ 1

t [H (ξ) + tH (ζ)−H (ξ)] = H (ζ) für
jede positive, reelle Zahl t. Insgesamt erhält man

N∑
k=1

∂H

∂ξk
(ξk) · ζk = lim

t→0

1
t

[H (ξ + tζ)−H (ξ)] ≤ H (ζ)

und damit die Abschätzung (R)

∥∥∥∥∥
N∑
k=1

∂H

∂ξk
(∇un) · ζk

∥∥∥∥∥
p

≤ ‖H (ζ)‖p = ‖H (∇um)‖p .
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3.5 Konvergenzverhalten

Die anderen beiden Terme ergeben sich analog. Damit folgt:

M =
∫

Ω

N∑
k=1

{
[H (∇un)]p−1 ∂H

∂ξk
(∇un)

− [H (∇um)]p−1 ∂H

∂ξk
(∇um)

}
∂

∂xk
(un − um) dx

≥ ‖H (∇un)‖pp − ‖H (∇un)‖p−1
p · ‖H (∇um)‖p

+ ‖H (∇um)‖pp − ‖H (∇um)‖p−1
p · ‖H (∇un)‖p

= ‖H (∇un)‖p−1
p

(
‖H (∇un)‖p − ‖H (∇um)‖p

)
+ ‖H (∇um)‖p−1

p

(
‖H (∇um)‖p − ‖H (∇un)‖p

)
=

(
‖H (∇un)‖p−1

p − ‖H (∇um)‖p−1
p

)
·
(
‖H (∇un)‖p − ‖H (∇um)‖p

)
=: N ≥ 0

Für n, m → ∞ konvergiert M gegen Null, daher muss auch der kleinere
(positive) Ausdruck N in diesem Grenzwert gegen Null gehen:

⇒ ‖H (∇un)‖p − ‖H (∇um)‖p
qn,qm→q0−−−−−−→ 0 in R

Da H eine stetige Norm ist und aufgrund der Äquivalenz aller Normen in RN

folgt damit (3.22) und es ist gezeigt, dass (∇u (qn))n∈N eine Cauchyfolge in
Lp (Ω) ist.

Als Banachraum ist Lp (Ω) insbesondere vollständig. Somit existiert eine
Grenzfunktion, die aufgrund der Eindeutigkeit des schwachen Grenzwertes
mit ∇u0 übereinstimmen muss:

⇒ ‖|∇u (qn)|‖p − ‖|∇u0|‖p
qn→q0−−−−→ 0

Damit sind (i) und (ii) erfüllt und es gilt u (qn)
qn→q0−−−−→ u0 stark in W 1,p

0 (Ω).

III: Aufgrund der starken Konvergenz überträgt sich auf u0 die Eigenschaft u0 ≥ 0.
Die Stetigkeit der Norm sorgt für ‖u0‖q0 = 1. Daher ist u0 nicht identisch Null.

Zusätzlich impliziert u (qn)
qn→q0−−−−→ u0 stark in W 1,p

0 (Ω), dass u0 eine schwache
Lösung des folgenden Randwertproblems ist:{

−Qu0 = λf0u
q0−1
0 für x ∈ Ω,

u0 = 0 für x ∈ ∂Ω.

Positivität von u0 folgt erneut aus dem Minimumprinzip [11].
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3 Das elliptische Randwertproblem im Minkowski Raum

IV: Es gilt λf (q0) ≤ λf0 . Denn (λf0 , u0) ist eine Lösung von (3.8) und damit ist λf0
nach Satz 3.3.2 durch folgenden Ausdruck gegeben:

λf0 =

∫
Ω [H (∇u0)]p dx(∫
Ω |u0|q0 dx

)p/q0
Somit gilt:

λf (q0)
(3.13)

= inf
u∈W 1,p

0 (Ω),u6=0

∫
Ω [H (∇u0)]p dx(∫

Ω |u|
q0 dx

)p/q0 ≤
∫

Ω [H (∇u0)]p dx(∫
Ω |u0|q0 dx

)p/q0 = λf0

Hiermit ist Fall (b) aus Satz 3.5.1 bewiesen.

V: Für q ≤ p ist die Lösung des Randwertproblems (3.8) eindeutig. Damit folgt aus
der Eindeutigkeit der Lösung für q → q0 < p , dass u0 = u (q0) und λf0 = λf (q0)
gilt. Damit ist auch (a) aus Satz 3.5.1 gezeigt.

3.6 Der Fall q konvergiert gegen p

Konvergiert der Exponent q der rechten Seite der partiellen Di�erentialgleichung gegen
die Konstante p des Q-Laplace Operators, so gilt folgender Satz:

Satz 3.6.1: Sei

v (q) =
(
λf (q)
λf

)1/(q−p)
u (q) (3.24)

für ein λf > 0. Falls entweder

(i) λf < λf (p) und q → p+ oder

(ii) λf > λf (p) und q → p−

erfüllt ist, dann gilt ‖v (q)‖ q→p−−−→∞.
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Beweis: Da u (q) , λf und λf (q) positiv sind, ist auch v (q) positiv. Für v (q) gilt:

−Qv (q)
(3.24)

= −Q

[(
λf (q)
λf

)1/(q−p)
u (q)

]
(3.10)

=
(
λf (q)
λf

) p−1
q−p

· (−1)Qu (q)

(3.12)
=

(
λf (q)
λf

) p−1
q−p

λf (q) u (q)q−1

(3.24)
=

(
λf (q)
λf

) p−1
q−p

λf (q) ·
(

λf
λf (q)

) q−1
q−p

v (q)q−1

(O)
= λf v (q)q−1

Nebenrechnungen zu (O): Es ist

λf (q)
p−1
q−p
− q−1

q−p
+1 = λf (q)

p−1−q+1
q−p

+1 = λf (q)1− (q−p)
q−p = λf (q)0 = 1

und

λ
− p−1

q−p
+ q−1

q−p

f = λ
−p+1+q−1

q−p

f = λ
(q−p)
q−p

f = λf .

Damit genügt v (q) der Gleichung

−∆pv (q) = λf v (q)q−1 . (3.25)

Zudem gilt v (q) =
(
λf (q)
λf

)1/(q−p)
u (q) = 0 auf dem Rand von Ω, da u eine Lösung von

(3.8) ist.

Angenommen ‖v (q)‖ divergiert nicht für q → p. Dies bedeutet, dass v (q) beschränkt
ist. Folglich besitzt v (q) für q → p eine in W 1,p

0 (Ω) schwach konvergente Teilfolge mit
einem schwachen Grenzwert v0, der ebenfalls in W

1,p
0 (Ω) liegt. Sei ohne Beschränkung

der Allgemeinheit v (qn)
qn→p−−−⇀ v0 schwach konvergent in W 1,p

0 (Ω).

Analog zu Schritt II im Beweis des Satzes 3.5.1 erhält man, dass v (qn) → v0 stark in
W 1,p

0 (Ω) konvergiert. Hieraus ergibt sich ebenfalls analog zum Beweis des Satzes 3.5.1
(mit q0 = p), dass v0 positiv und eine schwache Lösung der folgenden Gleichung ist:{

−Qv0 = λf v
p−1
0 für x ∈ Ω,

v0 = 0 für x ∈ ∂Ω
(3.26)

Zu Fall (i): λf < λf (p) und q → p+, d.h. insbesondere gilt q > p. Nach Satz 3.3.2 ist

λf (p) = inf
u∈W 1,p

0 (Ω),u 6=0

∫
Ω [H (∇u)]p dx(∫

Ω |u|
p dx

)

63



3 Das elliptische Randwertproblem im Minkowski Raum

der kleinste Eigenwert, welcher eine nicht triviale Lösung von (3.26) ermöglicht.
Daher folgt für λf < λf (p), dass v0 ≡ 0 in W 1,p

0 (Ω) gelten muss.

⇒ v (q)→ 0 in W 1,p
0 (Ω) .

Insbesondere konvergiert v (q) punktweise gegen die Nullfunktion und es genügt
ohne Beschränkung der Allgemeinheit v (q) < 1 fast überall in Ω zu betrachten.
Für q > p, λf < λf (p) , v (q) < 1 gilt:

−Qv (q)
(3.25)

= λfv (q)q−1 < λfv (q)p−1

Da mit u (p) auch α ·u (p) eine Lösung von (3.15) ist, kann man v (q) ≤ u (p) für
genügend kleines β := (q − p) > 0 annehmen. Dann gilt:

−Qu (p)
(3.15)

= λf (p)u (p)p−1 ≥ λf (p) v (q)p−1 > λfv (q)p−1

Zusammengefasst hat man also:

v (q) ≤ u (p) und

−Qv (q) < λfv (q)p−1 < −Qu (p)

Hieraus lässt sich nach [17], [23] ableiten, dass ein ũ ∈ W 1,p
0 (Ω) existiert mit

v (q) ≤ ũ ≤ u (p), so dass ũ folgende Gleichung löst:

−Qũ = λf ũ
p−1

Dies steht jedoch im Widerspruch dazu, dass (λf (p) , u (p)) die eindeutige Lösung
des Randwertproblems (3.15) ist. Damit ergibt sich im Fall (i): ‖v (q)‖ q→p−−−→∞.

Zu Fall (ii): λf > λf (p) und q → p−, d.h. insbesondere q < p. Nach Satz 3.4.5 gibt es für
p = q keine positiven Eigenfunktionen von (3.8) mit Eigenwert λf > λf (p). Daher
muss v0 = 0 in W 1,p

0 (Ω) gelten. Dies bedeutet, dass v (q) in W 1,p
0 (Ω) gegen die

Nullfunktion konvergiert:

v (q)
q→p−−−→ 0 in W 1,p

0 (Ω)

Insbesondere konvergiert v (q) punktweise gegen die Nullfunktion und es genügt
ohne Beschränkung der Allgemeinheit v (q) < 1 fast überall in Ω zu betrachten.

p > q ⇒ p− q > 0 ⇒ v (q)p−q < 1p−q = 1 ⇒ v (q)q−p > 1.

Mit λf > λf (p) bzw. λf

λf (p) > 1 folgt durch Multiplikation beider Ungleichungen

λf
λf (p)

v (q)p−q > 1 ⇒ λfv (q)p−q > λf (p) .
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Zudem gilt folgende Ungleichungskette:

0
(U)

≤
∫

Ω

(
−Qv (q) · v (q)p − u (p)p

v (q)p−1

)
dx

−
∫

Ω

(
−Qu (p) · v (q)p − u (p)p

u (p)p−1

)
dx

(3.25),(3.8)
=

∫
Ω

(
λfv (q)q−1 · v (q)p − u (p)p

v (q)p−1

)
dx

−
∫

Ω

(
λf (p)u (p)p−1 · v (q)p − u (p)p

u (p)p−1

)
dx

=
∫

Ω

(
λfv (q)q−p − λf (p)

)︸ ︷︷ ︸
>0

· (v (q)p − u (p)p)︸ ︷︷ ︸
<0

dx < 0

Aus dieser ergibt sich dann auch im Fall (ii) ein Widerspruch:

⇒ ‖v (q)‖ q→p−−−→∞

Zu (U): De�niere ũ := up und

Kf (ũ) :=
∫

Ω

[
H
(
∇ (ũ)

1
p

)]p
dx =

∫
Ω

[H (∇u)]p dx = p · If (u) .

Nach Lemma 3.3.3 ist
∫

Ω [H (∇v)]p dx konvex in vq für q ≤ p. Insbesondere ist
daher Kf (ũ) konvex in ũ. Damit ist K ′f (ũ) monoton wachsend und dies impliziert:

K ′f (ũ) (ũ− ṽ)−K ′f (ṽ) (ũ− ṽ) =
(
K ′f (ũ)−K ′f (ṽ)

)
(ũ− ṽ) ≥ 0

K ′f (ũ) · (ũ− ṽ) ist die erste Variation von Kf in ũ in Richtung (ũ− ṽ). Um diese

zu berechnen de�niere ich zunächst die Hilfsgröÿen χ(t) und χ:

χ(t) = ∇ (ũ+ tϕ)
1
p und

χ = ∇ (ũ)
1
p
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Damit ergibt sich die erste Variation von Kf in eine beliebige Richtung ϕ zu:

d

dt
Kf (ũ+ tϕ)

∣∣∣
t=0

=
d

dt

∫
Ω

[
H
(
∇ (ũ+ tϕ)

1
p

)]p
dx
∣∣∣
t=0

=
∫

Ω

N∑
k=1

p
[
H
(
∇ (ũ+ tϕ)

1
p

)]p−1 ∂H

∂χ
(t)
k

(
χ(t)
)

· ∂

∂xk

(
1
p

(ũ+ tϕ)
1
p
−1 ·ϕ

)
dx

∣∣∣∣
t=0

=
∫

Ω

N∑
k=1

[
H
(
∇ (ũ)

1
p

)]p−1 ∂H

∂χk
(χ) · ∂

∂xk

(
(ũ)

1−p
p ·ϕ

)
dx

=
∫

Ω

N∑
k=1

[H (∇u)]p−1 ∂H

∂ξk
(∇u) · ∂

∂xk

(
u1−p ·ϕ

)
dx, mit ũ = up

=
∫

Ω
−

N∑
k=1

∂

∂xk

{
[H (∇u)]p−1 ∂H

∂ξk
(∇u)

}
u1−p ·ϕ dx

=
∫

Ω
−Qu ·u1−p ·ϕ dx

Analog erhält man für ṽ

d

dt
Kf (ṽ + tϕ)

∣∣∣
t=0

=
∫

Ω
−Qv · 1

vp−1
·ϕ dx.

Nutzt man nun als Testfunktion ϕ = (ũ− ṽ) so ergibt sich (U):

0 ≤
(
K ′f (ũ)−K ′f (ṽ)

)
(ũ− ṽ)

=
∫

Ω

(
−Qv (q) · v (q)p − u (p)p

v (q)p−1

)
dx−

∫
Ω

(
−Qu (p) · v (q)p − u (p)p

u (p)p−1

)
dx

Bemerkung 3.6.2: Satz 3.6.1 besagt, dass Lösungen der partiellen Di�erentialgleichung
(3.25) - bzw. skalierte Lösungen von (3.15) - unter der Bedingung (i) oder (ii) im Grenz-
wert q gegen p divergieren. Sie liegen damit nicht mehr in W 1,p

0 (Ω).
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